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Abstract. We consider a model that serves as a paradigm for a class
of search strategies in which the searcher having explored its environ-
ment unsuccessfully for a while, returns to its initial position and begins
a new search. The model describes the diffusive motion of a particle,
performing a random walk with Lévy distributed jump lengths, which
is interrupted at random times when the particle is reset to its initial
position. A numerical method is proposed to determine the solutions of
this diffusive problem with resetting. The influence of resetting on the
solutions is analysed and physical quantities such as the pseudo second
moment will be discussed.

1 Introduction

Search problems can occur in many different contexts leading to a variety of inter-
esting processes. Recently, search problems with stochastic resetting of random
searchers have been investigated [1–4, 7]. These processes involve two consecu-
tive steps. Firstly, the searcher goes out to search, and secondly, the searcher is
drawn back to the starting point.

We consider a one dimensional resetting model, that describes the movement
of the searcher in discrete time on a line, starting from an initial position x0.
At time step t + dt, the current location x(t + dt) of the searcher is updated
via the following stochastic rule: we have x(t+ dt) = x0 with probability rdt or
x(t+ dt) = x(t) + η(t)dt with probability 1− rdt, where r is the resetting rate.
These equations give the probability of a resetting event and the jump lengths
described by η(t) are independent and identically distributed random variables
each drawn from a probability density function that can be a Gaussian white
noise with mean zero [4] or a probability density function with a heavy tail [7].
In this work we assume we have a probability density function with a heavy tail.
More specifically we consider the class of Lévy stable processes for which the
characteristic function is given by ψ(k) = e−|k|

α

. The case α = 2 corresponds
to the Gaussian case described in [4], while the case 0 < α < 2 describes Lévy
flights where the jumps are typically very large.

2 The model

The class of Lévy stable processes described by the characteristic function e−D|k|
α

,
for 1 < α ≤ 2, can be represented by the fractional diffusion equation [8, 13], that
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is, the equation for the probability distribution f(x, t), of finding the particle at
position x at time t, reads

∂f(x, t)

∂t
=

D

2Γ (2− α)| cos(πα/2)|
∂2

∂x2

∫ ∞
−∞

f(x′, t)

|x′ − x|α−1
dx′ =: D

∂αf

∂|x|α
(x, t),

(1)
where Γ (·) is the Gamma function.

If additionally to the diffusive process we add the resetting events, similarly
to what has been presented in [2], we arrive at the equation

∂f(x, t)

∂t
= D

∂αf

∂|x|α
(x, t)− rf(x, t) + rf0(x), (2)

where f0(x) is the initial condition. The second term and third term on the right
hand side accounts for the resetting events [2, 9, 12], denoting the negative prob-
ability flux −rf(x, t) from each point x and a corresponding positive probability
flux into x = x0.

Consider equation (2) and assume lim
x→±∞

f(x, t) = 0 and f0(x) = δ(x). The

resetting rate r should be a positive quantity, on physical grounds. Let f be a
sufficiently smooth solution of (2). Then, the characteristic function is given by

f̂(k, t) = e−(D|k|
α+r)t +

r

D|k|α + r
(1− e−(D|k|

α+r)t). (3)

From the inverse Fourier transform, we obtain the following solution of (2),

f(x, t) = e−rtuα(x, t) +

∫ t

0

re−r(t−s)uα(x, t− s)ds, (4)

where uα(x, t) is the solution of the fractional diffusion equation (1), which does
not include the resetting terms.

The solution of the fractional diffusion equation (1) can be written in closed
form, when the initial condition is f0(x) = δ(x). It is given in terms of the Fox
functions ([8], pag. 27), that is,

uα(x, t) =
1

α|x|
H1,1

2,2

[
|x|

(Dt)1/α
(1, 1/α) (1, 1/2)

(1, 1) (1, 1/2)

]
. (5)

It is easy to conclude that for r > 0 then f(x, t) > 0 for all x, t when uα is
positive and for r positive we have the sum of two positive quantities.

A more general equation can consider a space resetting rate r(x) [2] and can
be written as

∂f

∂t
(x, t) = D

∂αf

∂|x|α
(x, t)− r(x)f(x, t) + f0(x)

∫
IR

r(x′)f(x′, t)dx′, (6)

where now r depends on x. For r constant we recover (2) when

∫
IR

f(x′, t)dx′ = 1.

In the next section we derive a numerical method to solve the fractional
diffusion equation with resetting terms (6) and analyze its efficiency. Then, in
the last section, we discuss the influence of resetting in the moments and how it
changes the character of the solution.
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3 The numerical method

The equation under consideration can be written in the form

∂f

∂t
(x, t) =

D

2| cos(απ/2)|

(
∂αf

∂xα
+

∂αf

∂(−x)α

)
(x, t)− r(x)f(x, t) + s(x, t), (7)

where s(x, t) = f0(x)

∫
IR

r(x′)f(x′, t)dx′ and the fractional Riesz operator has

been represented in terms of the left and right Riemann-Liouville derivatives of
order α, 1 < α < 2. The left and right Riemann-Liouville fractional derivatives
of order α, for x ∈ [a, b], −∞ ≤ a < b ≤ ∞ are given respectively by

∂αf

∂xα
(x, t) =

1

Γ (2− α)

∂2

∂x2

∫ x

a

f(ξ, t)(x− ξ)1−αdξ, (8)

∂αf

∂(−x)α
(x, t) =

(−1)2

Γ (2− α)

∂2

∂x2

∫ b

x

f(ξ, t)(ξ − x)1−αdξ. (9)

Our problem is defined in the domain IR × [0, T ]. We define a uniform discrete
domain in space and time, that is, xj+1 = xj + ∆x, j ∈ ZZ, tn = n∆t, ∆t =
T/M, where ∆x is the space step and ∆t is the time step.

Let fnj denote the approximation of f(xj , tn). We approximate the frac-
tional Riesz operator using the approximations discussed in [10, 11] which are
approximations of the left and right Riemann-Liouville derivatives. These ap-
proximations are respectively given by the discrete operators δαl f(xj , t)/∆x

α

and δαr f(xj , t)/∆x
α where

δαl f(xj , t) =

∞∑
m=−1

qm
Γ (4− α)

f(xj−m, t), δαr f(xj , t) =

∞∑
m=−1

qm
Γ (4− α)

f(xj+m, t).

(10)
The coefficients qm are defined by

q−1 = a0, q0 = −2a0 + a1 qm = am−1 − 2am + am+1, m ≥ 1, (11)

where a0 = 1 and am = (m+ 1)3−α − 2m3−α + (m− 1)3−α, m ≥ 1. Finally, the
discrete operator δαf/∆xα approximates the Riesz operator, where

δαf(xj , t) =
1

2| cos(απ/2)|
(δαl f(xj , t) + δαr f(xj , t)) . (12)

We consider the explicit first order upwind numerical method

fn+1
j − fnj
∆t

= D
δαfnj

(∆x)α
− rnj fnj + snj , (13)

where rnj = r(xj , tn) and snj is the second order approximation of s(xj , tn)

snj = f0(xj)∆x

1

2
(r0f

n
0 + rNf

n
N ) +

N−1∑
j=1

rjf
n
j

 . (14)
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We discuss the efficiency of the numerical method in terms of two essential
aspects, which are accuracy and stability.

The accuracy of the method comes directly from its formulation and the
fact that the approximation we have used for the Riesz operator is known to be
second order accurate. This conclusion follows from the next result concerning
the approximation of the left fractional derivative.

Theorem 1 [10, 11]: Let u be a function with sufficiently many continuous spa-
tial derivatives that vanish at infinity in an appropriate manner. Then, we have
that

∂αu

∂xα
(xj)−

δαl u

(∆x)α
(xj) = O((∆x)2).

A similar result is valid for the right fractional derivative. From here we can
conclude that the Riesz operator is approximated by a second order accurate
formula.

In order to derive stability conditions for the finite difference scheme, we
apply the von Neumann analysis or Fourier analysis. We have assumed resetting
r locally constant. Let

sα = −
∞∑

m=−1
qm cos(mθ), Aα =

µα
2| cos(απ/2)|

, µα =
D∆t

(∆x)α
.

Theorem 2 The numerical method (13) is von Neumann stable if and only if

sαAα ≤ 2. (15)

Proof. Fourier analysis assumes that for a solution defined in the whole real
line, the error will be propagated forward in time according to the equation

en+1
j = enj + µαδ

αenj − renj . (16)

This analysis also assumes the error enj is decomposed into a Fourier series with

terms given by κnpe
iξp(j∆x), where κnp is the amplitude of the p-th harmonic and

θ is the phase angle and covers the domain [−π, π]. Considering a single mode
κneijθ, its time evolution is determined by the same numerical scheme as the
error enj . The stability conditions will be satisfied if the amplification factor κ
does not grow in time.

We denote by κ(θ;µα) the amplification factor since it will depend on µα. If
we insert κneijθ in (16) we obtain the equality for the amplification factor

κ(θ;µα) = 1− r∆t+
µα

2| cos(απ/2)|Γ (4− α)

[ ∞∑
m=−1

qme−imθ +

∞∑
m=−1

qmeimθ

]

= 1− r∆t+
µα

2| cos(απ/2)|Γ (4− α)

[ ∞∑
m=−1

qm cos(mθ)

]
= 1− r∆t−Aαsα.
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Hence, |κ(θ;µα)| = |1 − Aαsα − r∆t| ≤ |1 − Aαsα| + r∆t. Note that sα ≥ 0
(see [11]). Therefore the method is stable if and only if |1 − Aαsα| ≤ 1. This
inequality is equivalent to sαAα ≤ 2. �

Note that sα ≤ |q−1 + q1| + |q0| + |
∑∞
m=2 qm| ≤ 8(1 − 21−α) ≤ 8 and if

Aα ≤ 1/4 the method is stable for all 1 < α ≤ 2. Therefore the numerical
method can be implemented efficiently by considering a space step ∆x and a
time step ∆t that verifies Aα = 1/4.

The tests done in the next section for the solution defined in all real line are
run in a domain [−L,L]. The constant L should be large enough such that the
presence of the artificial boundaries at x = ±L do not affect the accuracy of the
approximate solution. In particular, the power law decay verified for anomalous
diffusion requires some additional care. Without resetting this would necessarily
mean to increase the computational domain as we increase time.

The matricial form of the numerical method is build in the domain [−L,L]
and the discrete points in space are xj = −L+ j∆x, ∆x = 2L/N. We get

fn+1 = (I + Aα −R ∗ I)fn + sn, (17)

where Aα is an (N−1)×(N−1) matrix related to the anomalous diffusion term,
R is a diagonal matrix with the resetting values rj as entries and sn is the vector
that contains the entries snj . The matrix Aα will be of the form Aα = Lα +LTα ,
where Lα is a matrix that contains the coefficients defined in (11).

4 The effect of resetting

In this section we discuss the effect of resetting in the solutions. We consider the
initial condition δε(x) = (1/ε

√
π)e−(x−x0)

2/ε2 that can be seen as an approxima-
tion of the delta Dirac function.

In the absence of resetting, the anomalous or classical diffusion in free space
does not have a stationary state (see Figure 1(a) and Figure 1(b)). However a
nonzero rate of resetting to a fixed position leads to a stationary state when
t→∞ (see Figure 1(c) and Figure 1(d)). The steady state solution of (7), when
r(x) is constant is fst(x) =

√
r/D exp(−

√
r/D|x−x0|). The numerical solution,

when α = 2, plotted in Figure 1(d) is in agreement to this steady state solution.
This stationary distribution is non-gaussian in x, contrasting with the fact that
if we omit the resetting term, then the stationary solution would be gaussian in
x. Therefore, the resetting term changes the character of the long time solution.

For the sake of clarity in the discussion that follows we assume x0 = 0. It
is well known that the first and second moments for the classical diffusion are
given respectively by < x >= 0 and < x2 >= 2Dt. If we consider the diffusion
problem with resetting, for α = 2, we can find, from the characteristic function
given by (3), that the first and second moments are given respectively by

M1(t) :=

∫
IR

xf(x, t)dx = 0, M2(t) :=

∫
IR

x2f(x, t)dx =
2D

r

(
1− e−rt

)
. (18)
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Fig. 1. Plots of f(x, t) for x0 = 1, D = 0.5 computed with ∆x = 0.005, ∆t = 0.01∆x.
Left figures: r(x) = 0. (a) t = 1; (b) t = 2. Right figures: r(x) = 1; (c) t = 1; (d) t = 5.
For r(x) = 1 and t = 10 the solution is similar to (d) indicating we have reached the
steady state.

At this point we can ask two questions, for the case α = 2. Can we see at
which time the steady state is reached by looking at the second moment? And
if we increase the resetting rate does it mean the solution is pushed quicker to
the steady state? In order to answer to the previous questions in Figure 2 we

t
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2
(t

)
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0.8

1

Fig. 2. Second moment M2(t) for the classical diffusion with resetting r = 1 (red) and
r = 3 (blue): D = 0.5.

plot the second moment M2(t) for the classical diffusion with resetting r = 1
and r = 3. Theoretically, we have that

lim
t→∞

2D

r
(1− e−rt) =

2D

r
(19)

and this is in agreement to what is shown in Figure 2. We can observe that for
r = 1 the second moment starts to look constant around t = 6 and according
to the value M2(t) = 2D/r = 1. For r = 3 is around t = 2 where M2(t) = 1/3
which is also according to (19).

Now let us turn to the anomalous diffusion case. For 1 < α < 2 the second
moment for diffusion without resetting is known to be divergent and the first
moment is zero. For the case with resetting from the characteristic function, given
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by (3), we can also conclude that the second moment is divergent and the first
moment is zero. The problem of having a diverging second moment encountered
in the discussions of Lévy flights can be circumvented by considering a pseudo
second moment, that is,

ML
2 (t) :=< x2 >L=

∫ L2(t)

L1(t)

x2f(x, t)dx (20)

according to which the walker is considered in an imaginary box with L =
max{|L1|, |L2|}. Without loss of generality, we assume a symmetric box, that is,
L2(t) = −L1(t) = L(t). Note that the cut-offs of the integral are time dependent
and the imaginary box is chosen in the spatial interval. We can say it gives a
measure, that a finite portion of the probability is gathered within the given
interval 2L(t). Pseudo second moments have been considered before in litera-
ture. For instance, in [5, 6, 8], the box considered was [L1t

1/α, L2t
1/α]. Here, we

consider a different type, that is, for a final time T we consider a sufficently large
box [−L(T ), L(T )] and then we compute (20) in that box for all 0 < t ≤ T .

Since the density follows the power-law asymptotic behaviour the cut-offs of
the integral needs to be chosen such that the asymptotic behaviour of f(x, t) is
reached. This can be done, by choosing a box [−L,L] for which the values of
f(x, t) are very small in ±L. Note that for smaller values of α we have larger
tails, that is, the tail increases with decreasing α.

In what follows we compare the estimates of the pseudo second moments,
ML

2 (t), for the problems with and without resetting. We plot in Figure 3(a) and
Figure 3(b) the results for r = 0 and in Figure 3(c) and 3(d) we plot the results
for r = 1. From these results we infer that for the problem without resetting we
have

ML
2 (t) = Cαt (21)

with Cα a constant that depends on α. Then in the presence of resetting we get
the behaviour

ML
2 (t) ∼ Cα

(
1− exp(−rt)

r

)
. (22)

Another interesting information we can obtain from the pseudo second mo-
ments is related to the steady state solutions. The results suggest that in the
presence of resetting we reach a steady state for all α’s as can be seen in Figure
3. It also seems that smaller is the value of α, it takes longer to reach the steady
state. This information was obtained for particular values of L. Although the
pseudo moment increases with L as expected, it becomes constant at similar
instants of time for different values of L.
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