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a b s t r a c t 

The fractional Klein-Kramers equation describes the process of subdiffusion in the presence 

of an external force field in phase space and incorporates a fractional operator in time of 

order α, 0 < α < 1. We present a family of finite volume schemes for the fractional Klein- 

Kramers equation, that includes first or second-order schemes in phase space, and implicit 

or explicit schemes in time with an order of accuracy that can change between α and 

2 − α. It is proved, for the open domain, that the schemes satisfy the positivity preserv- 

ing property. The positivity preserving property for the explicit schemes imposes a strong 

condition in the relation between time step, space step and phase step, for small values 

of α, highlighting the advantage of using implicit schemes in these cases. For a bounded 

domain in space, two types of boundary conditions are considered, absorbing boundary 

conditions and reflecting boundary conditions. The inclusion of boundary conditions leads 

to some technical complications that require changes in the schemes near the boundary. 

The positivity preserving property holds for the new formulation and the overall accuracy 

is ensured with the use of non-uniform meshes. Numerical tests are presented in the end 

to show the convergence of the finite volume schemes. 

© 2020 Elsevier B.V. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

The deterministic Klein-Kramers equation describes the motion of particles and its solution is a probability density func-

tion that depends on the position x and the velocity space v . It is a fundamental equation in the modeling of many physical

processes, such as, the particle escape over a barrier and the first passage time. This equation can be seen as a generaliza-

tion of the classical Fokker-Planck equation to the phase space by taking into account the position and the velocity of the

particles whose mass cannot be neglected. These ideas were introduced by Klein [20] and lately developed by Kramers [22] .

The Langevin equation can provide the dynamics foundation for these transport processes, where the friction constant, its

connection to the diffusion coefficient and the external force enter through this stochastic differential equation [37] . From

the Langevin equation, for large friction constants, we can obtain the Fokker-Planck equation and for the low-friction-limit

case, we can obtain the Rayleigh equation. For non-zero friction the process is described by the Klein-Kramers equation. A

similar interpretation can be done for the fractional Klein-Kramers equation, as can be seen, for instance in [32] . Its stochas-
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tic structure is discussed in [29] where a numerical solution and an approach by the subordinated Langevin equation are

also included. Further details on the physical approach of this equation can be found in [12,31,35] . 

In this work, we propose positivity preserving schemes to solve the fractional Klein-Kramers equation exhibiting anoma-

lous diffusion, subdiffusion, in an external force field F ext ( x ). For the function u ( x, v, t ) the fractional Klein-Kramers equation

[32,33,35] is given by 

∂u 

∂t 
= 0 D 

1 −α
t 

[
−∂(v u ) 

∂x 
+ 

∂ 

∂v 

(
γ v − F ext (x ) 

m 

)
u + 

γ k B T p 

m 

∂ 2 u 

∂v 2 

]
, (1) 

where γ is the friction constant, m is the mass of the particle, T p is the temperature of the fluid, k B is the Boltzmann’s

constant and F ext ( x ) is the external force. The operator 0 D 

1 −α
t with 0 < α < 1 stands for the Riemann-Liouville fractional

derivative. It includes a slowly decaying memory with a power-law kernel and is defined by 

0 D 

1 −α
t u (x, v , t) = 

1 

�(α) 

∂ 

∂t 

∫ t 

0 

(t − s ) α−1 u (x, v , s ) ds, 

where �( · ) is the Gamma function. 

The fractional Klein-Kramers equation describes the position and velocity of the Brownian particle successively immo-

bilized in traps [4,12] . The waiting times when the particle stays motionless are drawn from the power-law probability

density function. After each trapping event the particle is released with the same position and velocity that it had prior to

the immobilization. The heavy-tailed waiting times considerably slow the overall motion and lead to the sublinear in time

mean-square displacement of the particle, which is typical for subdiffusion. 

In many physical contexts, random processes can be found whose probability density function is a solution of the frac-

tional Klein-Kramers equation [2,29,31,40] and, therefore, it is important to implement numerical methods that guaranty the

numerical solution is non-negative, which will be the focus of our work. 

For numerical calculations it is convenient to use the Klein-Kramers equation in normalized form. By introducing the

following variables and parameters 

x n = 

√ 

m 

k B 
x, v n = 

√ 

m 

k B 
v , F ext n (x n ) = 

√ 

m 

k B 
F ext (x ) , (2)

the fractional Klein-Kramers equation transforms to 

∂u n 

∂t 
= 0 D 

1 −α
t 

[
−∂(v n u n ) 

∂x n 
+ 

∂ 

∂v n 
( γ v n − F ext n (x n ) ) u n + γ T p 

∂ 2 u n 

∂v 2 n 

]
. (3) 

Omitting the subscript n for convenience, the equation under study will be 

∂u 

∂t 
= 0 D 

1 −α
t 

[
−∂(v u ) 

∂x 
− ∂ 

∂v 
(F (x, v ) u ) + D 

∂ 2 u 

∂v 2 

]
, (4) 

where 

F (x, v ) = F ext (x ) − γ v , D = γ T p . (5)

The external force F ext ( x ) most of the times depends on a potential field, that is, F ext (x ) = −V ′ (x ) . 

Eq. (4) can also have a different form that comes from applying the fractional operator 0 D 

α−1 
t on both sides of the

equation. If u is bounded at the lower limit in time then 

0 D 

α−1 
t 

(
0 D 

1 −α
t u (x, v , t) 

)
= u (x, v , t) . 

These fractional derivatives exist, if the function u is in L 1 . A more complete discussion on the regularity of the solutions

can be found in [19,34,38] . Additionally, we have 

0 D 

α−1 
t 

(
∂u 

∂t 
(x, v , t) 

)
= 

C 
0 D 

α
t u (x, v , t) , 

where the operator C 
0 
D 

α
t u is the Caputo fractional derivative defined by 

C 
0 D 

α
t u (x, v , t) := 

1 

�(1 − α) 

∫ t 

0 

∂u 

∂t 
(x, v , s )(t − s ) −αds. 

Therefore the fractional Klein-Kramers equation has the form 

C 
0 D 

α
t u = −∂(v u ) 

∂x 
− ∂ 

∂v 
(F (x, v ) u ) + D 

∂ 2 u 

∂v 2 
. (6) 

The difficulties of solving the Klein-Kramers equation numerically come from several factors. This problem behaves like

a parabolic equation in the v -direction, and behaves like a hyperbolic equation in the x -direction. Additionally in the x -

direction, depending on the sign of v , the solution may satisfy different kinds of boundary conditions on different subdo-

mains. This leads to additional difficulties in actual computation and theoretical analysis. 
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The main purpose of this work is to derive positivity preserving finite volume methods, for the fractional Klein-Kramers

Eq. (6) and in the presence of physical boundaries. We consider not only the case when we have an open domain, that is,

natural boundary conditions, but also the case when we have absorbing and reflecting boundaries in the spatial direction

( x -direction). These boundaries are frequently associated with the Klein-Kramers equation as can be seen, for instance, in

[1,10,11,37] . 

The approach presented here, with finite volume methods, allows to get second-order schemes more suitable for prob-

lems where the non-diffusive flux term is dominant and in this way it covers the most interesting cases. Additionally the

implementation takes into account the presence of physical boundaries. As far as we know there are no works that study

numerical solutions for the fractional Klein-Kramers equation in the presence of these boundaries. Only finite difference

methods for the fractional Klein-Kramers equation have been considered in literature [6] but not with absorbing or reflect-

ing boundaries. Furthermore in the presence of a dominant force field the positivity preserving finite volume schemes avoid

non-physical numerical oscillations that can easily appear with other numerical methods. 

Finite volume methods for time fractional differential equations have not been extensively studied either. However some

works have appeared recently for fractional differential equations that involve the Caputo fractional derivative, such as,

[17,28] . These works consider one dimensional problems and they differ significantly from the work we are presenting since

a two dimensional problem is considered that is parabolic in one direction, hyperbolic in another direction and with the

additional difficulty of assuming physical boundaries. 

The structure of the paper is as follows. In the next section, the finite volume schemes are described in an open domain.

Then, in Section 3 , the properties of the finite volume methods are presented, that is, we prove the positivity preserving

property. In Section 4 we discuss the case of having a bounded domain in the spatial direction ( x -direction) and how to

reformulate the finite volume schemes in order to maintain the positivity of the numerical solution. In Section 5 numerical

tests are presented that show the convergence of the numerical methods, how the presence of boundary conditions affect

the accuracy of the finite volume schemes and how to recover the accuracy using a non-uniform mesh. We also show

numerical solutions of the Klein-Kramers equations for physically relevant force fields and compare the performance of the

methods with an existing method in literature. We finish with some conclusions. 

2. The numerical method 

We start to discuss finite volume methods for a problem with natural boundary conditions, that is, lim | x |→∞ 

u (x, v , t) =
0 , lim | v |→∞ 

u (x, v , t) = 0 . 

The finite volume methods will be first-order or second-order in phase space and the approach follows the ideas pre-

sented in [5,23,24] . For the time discretization we consider an explicit method, an implicit method and an implicit-explicit

(IMEX) method. The discretisation in time will have an order of accuracy that can be between α and 2 − α according to the

regularity of the solution and depending on the type of temporal mesh. These schemes will be positivity preserving, which

is a physical property required by Eq. (6) for suitable initial and boundary conditions. The time discretisation is also chosen

to ensure that the positivity preserving property holds. 

2.1. Finite volume method: spatial discretisation 

Consider the spatial domain � = [ x L , x R ] × [ v L , v R ] and let ( x i , v j ), i = 1 , . . . , N x ; j = 1 , . . . , N v denote a vertex-centered

discretization of �. For reasons that will become clear later on, we consider a uniform-discretization in the v -direction

(phase direction) and a non-uniform discretization in the x -direction (spatial direction). In particular, we define x i +1 = x i +
�x i , with x 1 = x L , x N x = x R and v j+1 = v j + �v , with v 1 = v L , v N v = v R . 

Associated with this discretization we define the cell-centered finite volume grid ( ̄x i , ̄v j ) , i = 1 , . . . , N x − 1 ; j = 1 , . . . , N v −
1 with x̄ i = x i + �x i / 2 and v̄ j = v j + �v / 2 . We define the cells C i, j = [ ̄x i −1 / 2 , j , ̄v i, j−1 / 2 ] × [ ̄x i +1 / 2 , j , ̄v i, j+1 / 2 ] , i = 1 , . . . , N x − 1 ,

j = 1 , . . . , N v − 1 , where x̄ i ±1 / 2 , j = x̄ i, j ± �x i / 2 and v̄ i, j±1 / 2 = v̄ i, j ± �v / 2 . Note that the cell boundary points ( ̄x i ±1 / 2 , j , ̄v i, j±1 / 2 )

coincide with the vertex-centered grid points ( x i , v j ), as displayed in Fig. 1 (a). In the following, unless otherwise specified,

the subscripts i, j are used to denote an approximation at the node ( ̄x i , ̄v j ) . Similarly, the subscripts i ± 1/2, j and i, j ± 1/2

denote an approximation at the nodes ( ̄x i ±1 / 2 , ̄v j ) and ( ̄x i , ̄v j±1 / 2 ) respectively. 

Let us define the flux functions f x u (x, v , t) = v u and g v u (x, v , t) = F (x, v ) u. We start with a standard finite volume approach

and integrate (6) over a cell C i,j . Multiplying on both sides by 1/ �x i �v , and integrating, we obtain ∫ 
C i, j 

C 
0 D 

α
t u (x, v , t) 
�x i �v 

d xd v = −
∫ v̄ j+1 / 2 

v̄ j−1 / 2 

f x u ( ̄x i +1 / 2 , v , t) − f x u ( ̄x i −1 / 2 , v , t) 
�x i �v 

dv −
∫ x̄ i +1 / 2 

x̄ i −1 / 2 

g v u (x, ̄v j+1 / 2 , t) − g v u (x, ̄v j−1 / 2 , t) 

�x i �v 
d x 

+ 

D 

�x i �v 

∫ x̄ i +1 / 2 

x̄ i −1 / 2 

(
∂u (x, ̄v j+1 / 2 , t) 

∂v 
− ∂u (x, ̄v j−1 / 2 , t) 

∂v 

)
dx. (7)

We apply the midpoint integration rule on the first and second integral on the right-hand side of Eq. (7) . For the third

integral the centered finite difference approximation is used 

∂u (x, ̄v j+1 / 2 , t) ≈ u (x, ̄v j+1 , t) − u (x, ̄v j , t) 
. 
∂v �v 



4 L. Pinto and E. Sousa / Commun Nonlinear Sci Numer Simulat 91 (2020) 1054 4 4 

Fig. 1. (a) Volume cell C i, j = [ x i −1 / 2 , x i +1 / 2 ] × [ v j−1 / 2 , v j+1 / 2 ] = [ x i , x i +1 ] × [ v j , v j+1 ] centered at ( x i , v j ) . We denote u i, j = u ( x i , v j ) . (b) Reconstructed values 

u ±
i ±1 / 2 , j 

, u ±
i, ji ±1 / 2 

(in blue) defined according to (11) –(12) . They are boundary extrapolated data, computed at the edges of each cell. (For interpretation of 

the references to colour in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

We can also write 

u ( ̄x i , ̄v j , t) � 

1 

�x i �v 

∫ 
C i, j 

u (x, v , t) d xd v , 

and denote the approximated values at the cell centered nodes of u and u 0 as 

u i, j (t) := u ( ̄x i , ̄v j , t) , u 

0 
i, j := u 0 ( ̄x i , ̄v j ) . 

The following numerical method is obtained 

C 
0 D 

α
t u i, j (t) = − f x u ( ̄x i +1 / 2 , ̄v j , t) − f x u ( ̄x i −1 / 2 , ̄v j , t) 

�x i 
− g v u ( ̄x i , ̄v j+1 / 2 , t) − g v u ( ̄x i , ̄v j−1 / 2 , t) 

�v 

+ D 

u i, j+1 (t) − 2 u i, j (t) + u i, j−1 (t) 

�v 2 
. (8) 

To evaluate the flux functions we introduce the quantities u ±
i +1 / 2 , j 

(t) and u ±
i, j+1 / 2 

(t) . They are boundary extrapolated data,

computed at the edges of each cell with a piecewise linear reconstruction at fixed time t , as illustrated in Fig. 1 (b). More

details are given after the definition of the fluxes. 

The values f x u ( ̄x i +1 / 2 , ̄v j , t) and g v u ( ̄x i , ̄v j+1 / 2 , t) are determined in the following manner, 

f x u ( ̄x i +1 / 2 , ̄v j , t ) � 

v̄ j u 

+ 
i +1 / 2 , j 

(t ) + ̄v j u 

−
i +1 / 2 , j 

(t) 

2 

−
a x 

i +1 / 2 , j 
(t ) 

2 

(u 

+ 
i +1 / 2 , j 

(t) − u 

−
i +1 / 2 , j 

(t)) , (9) 

g v u ( ̄x i , ̄v j+1 / 2 , t) � 

F i, j+1 / 2 u 

+ 
i, j+1 / 2 

(t) + F i, j+1 / 2 u 

−
i, j+1 / 2 

(t) 

2 

−
b v 

i, j+1 / 2 
(t) 

2 

(u 

+ 
i, j+1 / 2 

(t) − u 

−
i, j+1 / 2 

(t)) , (10) 

where F i, j := F ( ̄x i , ̄v j ) . In (9) and (10) , a x 
i +1 / 2 , j 

(t) and b v 
i, j+1 / 2 

(t) are called local maximal speeds and they are given by 

a x i +1 / 2 , j (t) = 

∣∣∣∂ f x u 

∂u 

∣∣∣ = | ̄v j | , b v i, j+1 / 2 (t) = 

∣∣∣∂g v u 

∂u 

∣∣∣ = | F i, j+1 / 2 | , 
with | · | the absolute value. 

Let us now define the quantities u ±
i +1 / 2 , j 

(t) and u ±
i, j+1 / 2 

(t) . These values represent suitable approximations, first-order or

second-order accurate and positivity preserving, for u ( x, v, t ) at the right ( + ) and at the left ( - ) of the points ( ̄x i +1 / 2 , ̄v j )
and ( ̄x i , ̄v j+1 / 2 ) . The choice of these values can determine if we have a first-order or a second-order finite volume scheme. 

We start to describe how we obtain the second-order approximation. We define on each cell C i,j a piecewise linear

reconstruction for u , denoted by ˜ u | C i, j 
, that reads 

˜ u | C i, j 
(x, v , t) = u i, j (t) + (u x ) i, j (t)(x − x̄ i ) + (u v ) i, j (t)(v − v̄ j ) , (x, v ) ∈ C i, j , (11)

where ( u x ) i,j ( t ) and ( u v ) i, j ( t ) are at least first-order approximations of their respective first-order derivatives, that is, 

(u x ) i, j (t) � 

∂u 

( ̄x i , ̄v j , t) , (u v ) i, j (t) � 

∂u 

( ̄x i , ̄v j , t) . 
∂x ∂v 
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The constructed points u ±
i +1 / 2 , j 

and u ±
i, j+1 / 2 

are then given by 

u 

−
i +1 / 2 , j 

(t) = 

˜ u | C i, j 
( ̄x i + �x i / 2 , ̄v j , t ) , u 

+ 
i +1 / 2 , j 

(t ) = 

˜ u | C i +1 , j 
( ̄x i +1 − �x i +1 / 2 , ̄v j , t) , 

u 

−
i, j+1 / 2 

(t) = 

˜ u | C i, j 
( ̄x i , ̄v j + �v / 2 , t) , u 

+ 
i, j+1 / 2 

(t) = 

˜ u | C i, j+1 
( ̄x i , ̄v j+1 − �v / 2 , t) . (12)

Further details can be found in [5] . To avoid oscillatory reconstructions and preserve the positivity, the numerical approxi-

mations of the derivatives can be computed using a nonlinear limiter. Here the generalized minmod limiter is used [5,23,24] ,

that is, ( u x ) i,j ( t ) and ( u v ) i, j ( t ) are respectively given by 

minmod 

(
θ

u i, j (t) − u i −1 , j (t) 

x̄ i − x̄ i −1 

, 
u i +1 , j (t) − u i −1 , j (t) 

x̄ i +1 − x̄ i −1 

, θ
u i +1 , j (t) − u i, j (t) 

x̄ i +1 − x̄ i 

)
, 

minmod 

(
θ

u i, j (t) − u i, j−1 (t) 

v̄ j − v̄ j−1 

, 
u i, j+1 (t) − u i, j−1 (t) 

v̄ j+1 − v̄ j−1 

, θ
u i, j+1 (t) − u i, j (t) 

v̄ j+1 − v̄ j 

)
, 

with the minmod function defined as 

minmod (z 1 , z 2 , . . . , z k ) = 

⎧ ⎨ 

⎩ 

min 

k 
z k , if z k > 0 , for all k, 

max 
k 

z k , if z k < 0 for all k, 

0 , otherwise. 

(13)

The parameter θ ∈ [1, 2] is related to the numerical viscosity of the scheme. Larger values originate less dissipative results,

however, non-physical numerical oscillations can arise [5,23,24] . The optimal θ value is problem dependent. Here, unless

otherwise stated, we consider θ = 2 . 

This finite volume scheme is theoretically second-order accurate [5,23] . Note however that it reduces to a first-order

upwind scheme when the minmod function returns the zero value. In practice this situation may occur near steep gradients

or discontinuities. 

Remark 1. The numerical fluxes can be rewritten in a different form. If v̄ j > 0 then f x u ( ̄x i ±1 / 2 , ̄v j , t) � v̄ j u −i ±1 / 2 , j 
(t) and if

v̄ j ≤ 0 then f x u ( ̄x i ±1 / 2 , ̄v j , t ) � v̄ j u + i ±1 / 2 , j 
(t ) . Also, if F i, j+1 / 2 > 0 then g v u ( ̄x i , ̄v j+1 / 2 , t) � F i, j+1 / 2 u 

−
i, j+1 / 2 

(t) and if F i, j+1 / 2 ≤ 0 then

we have g v u ( ̄x i , ̄v j+1 / 2 , t) � F i, j+1 / 2 u 
+ 
i, j+1 / 2 

(t) . 

Regarding the first-order approximation the values u ±
i +1 / 2 , j 

and u ±
i −1 / 2 , j 

are simply given by u + 
i +1 / 2 , j 

= u i +1 , j , u −
i +1 / 2 , j 

= u i, j ,

u + 
i −1 / 2 , j 

= u i, j , u + 
i −1 / 2 , j 

= u i −1 , j . The values u ±
i, j±1 / 2 

are obtained in a similar way. 

In the next section we discuss the discretisation in time. 

2.2. Time discretisation 

In this section we discuss the discretization in time. By introducing the operators 

L A u i, j (t) := − f x u ( ̄x i +1 / 2 , ̄v j , t) − f x u ( ̄x i +1 / 2 , ̄v j , t) 
�x i 

− g v u ( ̄x i , ̄v j+1 / 2 , t) − g v u ( ̄x i , ̄v j−1 / 2 , t) 

�v 
, (14)

L D u i, j (t) := D 

u i, j+1 (t) − 2 u i, j (t) + u i, j−1 (t) 

�v 2 
, (15)

we can rewrite the numerical approach (8) as 

C 
0 D 

α
t u i, j (t) = L τA u i, j (t) + L D u i, j (t) , τ = 1 , 2 , (16)

where τ = 1 refers to the first-order finite volume approximation of the fluxes and τ = 2 to the second-order approximation.

We consider a non-uniform time step discretization 0 = t 0 < t 1 < t 2 < . . . < t n = T and denote �t n = t n − t n −1 the time step.

The maximum step is denoted by �t = max 
n 

�t n . 

We start to discuss the discretisation of the Caputo fractional derivative. In the last years, several approaches to discretize

the Caputo derivative have appeared in the literature [7–9,13,25,30,36] , but we will use the L 1 approximation that recently

has received much attention. This approximation is constructed by using a piecewise linear interpolation of the solution

on each subinterval. It was proved, in [27] , to be of order O (�t 2 −α) for a uniform mesh, if the solution is C 2 ([0, T ]). But

this assumes that the solution is smooth at the initial time t = 0 . However, often the solution does not have this type of

regularity at t = 0 . Therefore some recent works have improved such estimates. In [18] it was shown that the L1 formula

is accurate of order O ( �t ) for less smooth functions on a uniform mesh. In [39] error estimates were obtained for the L1

formula on graded time grids, showing how the regularity of the solution and the grading of the mesh affect the order

of convergence of the difference scheme. In particular, if the regularity of the solution is reduced we can get order of

convergence O ( �t α). In [26] the L1 formula for approximating the Caputo derivative was revisited and it was shown that the

nonuniform L1 scheme achieves an optimal temporal convergence of order O (�t 2 −α) under the graded grid t k = T (k/M) γ opt 
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with M mesh points and an optimal parameter γ opt . Also in [21] , more discussions about considering non-uniform meshes

can be found. In conclusion, we can expect the order of accuracy of the L 1 approximation to change between �t α and

�t 2 −α depending on the regularity of the solution and the type of temporal mesh. 

The L 1 approximation can be easily explained. It consists of approximating the derivative inside the integral by a standard

first-order approximation and then the integral is computed exactly. If we denote u n 
i, j 

:= u i, j (t n ) , the approximation of the

Caputo derivative can be given by 

D 

α
M 

u 

n 
i, j = 

1 

�(1 − α) 

n −1 ∑ 

k =0 

u 

k +1 
i, j 

− u 

k 
i, j 

�t k +1 

∫ t k +1 

t k 

(t n − s ) −αds = 

1 

�(2 − α) 

n −1 ∑ 

k =0 

u 

k +1 
i, j 

− u 

k 
i, j 

�t k +1 

[(t n − t k ) 
1 −α − (t n − t k +1 ) 

1 −α] . 

This approximation can be re-written as 

D 

α
M 

u 

n 
i, j = 

d n, 1 

�(2 − α) 
u 

n 
i, j −

d n,n 

�(2 − α) 
u 

0 
i, j + 

1 

�(2 − α) 

n −1 ∑ 

k =1 

(d n,k +1 − d n,k ) u 

n −k 
i, j 

, (17) 

where 

d n,k = 

(t n − t n −k ) 
1 −α − (t n − t n −k +1 ) 

1 −α

�t n −k +1 

. 

Simplifying a little more by doing n − k = p

D 

α
M 

u 

n 
i, j = 

d n −1 

�(2 − α) 
u 

n 
i, j −

d 0 
�(2 − α) 

u 

0 
i, j + 

1 

�(2 − α) 

n −1 ∑ 

p=1 

(d p−1 − d p ) u 

p 
i, j 

, (18) 

where 

d n −1 = 

1 

�t αn 
, d p = 

(t n − t p ) 1 −α − (t n − t p+1 ) 
1 −α

�t p+1 

, p = 0 , . . . , n − 2 . 

Since d p ≥ 0 , p = 0 , 1 , . . . , n − 1 and d p−1 ≤ d p , the coefficients of the terms in the last sum of (18) are negative. 

A family of numerical methods is presented that are first-order or second-order in phase space and explicit or implicit

in time. They consist of an explicit method with the first and second-order finite volume scheme, an IMEX method with the

second-order finite volume scheme and an implicit method with the first-order finite volume scheme given respectively by 

Explicit D 

α
M 

u 

n 
i, j = L τA u 

n −1 
i, j 

+ L D u 

n −1 
i, j 

, τ = 1 , 2 , (19)

IMEX D 

α
M 

u 

n 
i, j = L 2 A u 

n −1 
i, j 

+ L D u 

n 
i, j , (20) 

Implicit D 

α
M 

u 

n 
i, j = L 1 A u 

n 
i, j + L D u 

n 
i, j . (21) 

3. Properties of the finite volume schemes 

In the previous section, the schemes were presented and the various aspects of consistency were discussed. The consis-

tency together with stability properties are necessary conditions for the convergence of the finite volume schemes. In this

section we prove the positivity preserving property of the numerical solutions which is an important stability property of

the method since the appearance of negative values may trigger numerical instabilities [5] . 

We start to present the results for the explicit method with the second-order finite volume approximation in phase

space. 

Theorem 1 (Second-order explicit method) . Consider the finite volume scheme (19) for τ = 2 . Then the cell values u i,j ( t n ) remain

nonnegative provided the initial cell values are nonnegative and the following conditions are satisfied, for all n ≥ 1, 

1 

�t n +1 / 2 

( 

�t αn �t n −1 �(2 − α) 

2 − 2 

1 −α
(
�t n / �t n +1 / 2 

)α

) 

≤ min 

{
�v 2 

2 D 

(1 − w ) , 
�x m 

v M 

w 

4 

, 
�v 
F M 

w 

4 

}
, (22) 

where 0 < w < 1, �x m 

= min i �x i , �t n +1 / 2 = (�t n + �t n −1 ) / 2 , v M 

= max | v | and F M 

= max | F (x, v ) | . 
Proof. In what follows, we consider the reconstructed points u ±

i ±1 / 2 , j 
(t n −1 ) and u ±

i, j±1 / 2 
(t n −1 ) and we omit the time step t n −1 

for the sake of clarity. Let u k 
i, j 

:= u i, j (t k ) . The numerical method (19) as the explicit form 

d n −1 

�(2 − α) 
u 

n 
i, j −

d 0 
�(2 − α) 

u 

0 
i, j + 

1 

�(2 − α) 

n −1 ∑ 

p=1 

(d p−1 − d p ) u 

p 
i, j 
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= − 1 

2�x i 

[
v̄ j (u 

+ 
i +1 / 2 , j 

+ u 

−
i +1 / 2 , j 

) − | ̄v j | (u 

+ 
i +1 / 2 , j 

− u 

−
i +1 / 2 , j 

) 

−v̄ j (u 

+ 
i −1 / 2 , j 

+ u 

−
i −1 / 2 , j 

) + | ̄v j | (u 

+ 
i −1 / 2 , j 

− u 

−
i −1 / 2 , j 

) 
]
− 1 

2�v 
[
F i, j+1 / 2 (u 

+ 
i, j+1 / 2 

+ u 

−
i, j+1 / 2 

) − | F i, j+1 / 2 | (u 

+ 
i, j+1 / 2 

− u 

−
i, j+1 / 2 

) 

−F i, j−1 / 2 (u 

+ 
i, j−1 / 2 

+ u 

−
i, j−1 / 2 

) + | F i, j−1 / 2 | (u 

+ 
i, j−1 / 2 

− u 

−
i, j−1 / 2 

) 
]
+ 

D 

�v 2 
(u 

n −1 
i, j+1 

− 2 u 

n −1 
i, j 

+ u 

n −1 
i, j−1 

) . 

Rearranging the terms we have the following linear combination 

d n −1 

�(2 − α) 
u 

n 
i, j = 

d 0 
�(2 − α) 

u 

0 
i, j −

n −2 ∑ 

p=1 

(d p−1 − d p ) 

�(2 − α) 
u 

p 
i, j 

− (d n −2 − d n −1 ) 

�(2 − α) 
u 

n −1 
i, j 

+ u 

+ 
i +1 / 2 , j 

−v̄ j + | ̄v j | 
2�x i 

+ u 

−
i +1 / 2 , j 

−v̄ j − | ̄v j | 
2�x i 

+ u 

+ 
i −1 / 2 , j 

v̄ j − | ̄v j | 
2�x i 

+ u 

−
i −1 / 2 , j 

v̄ j + | ̄v j | 
2�x i 

+ u 

+ 
i, j+1 / 2 

−F i, j+1 / 2 + | F i, j+1 / 2 | 
2�v 

+ u 

−
i, j+1 / 2 

−F i, j+1 / 2 − | F i, j+1 / 2 | 
2�v 

+ u 

+ 
i, j−1 / 2 

F i, j−1 / 2 − | F i, j−1 / 2 | 
2�v 

+ u 

−
i, j−1 / 2 

F i, j−1 / 2 + | F i, j−1 / 2 | 
2�v 

+ 

D 

�v 2 
(u 

n −1 
i, j+1 

− 2 u 

n −1 
i, j 

+ u 

n −1 
i, j−1 

) . 

The finite volume is constructed using (11) and (12) and 

u 

−
i +1 / 2 , j 

= u i, j + 

�x i 
2 

(u x ) i, j , u 

+ 
i −1 / 2 , j 

= u i, j −
�x i 

2 

(u x ) i, j , 

u 

−
i, j+1 / 2 

= u i, j + 

�v 
2 

(u v ) i, j , u 

+ 
i, j−1 / 2 

= u i, j −
�v 
2 

(u v ) i, j . 

Consequently we have 

u 

n −1 
i, j 

= 

1 

4 

(
u 

−
i +1 / 2 , j 

+ u 

+ 
i −1 / 2 , j 

+ u 

−
i, j+1 / 2 

+ u 

+ 
i, j−1 / 2 

)
. 

For 0 ≤ w ≤ 1 it can be re-written as 

u 

n −1 
i, j 

= 

w 

4 

(
u 

−
i +1 / 2 , j 

+ u 

+ 
i −1 / 2 , j 

+ u 

−
i, j+1 / 2 

+ u 

+ 
i, j−1 / 2 

)
+ (1 − w ) u 

n −1 
i, j 

. (23)

Therefore, substituting (23) in the third term of the right-hand side of (23), we can write 

d n −1 

�(2 − α) 
u 

n 
i, j = 

d 0 
�(2 − α) 

u 

0 
i, j + 

1 

�(2 − α) 

n −2 ∑ 

p=1 

(d p − d p−1 ) u 

p 
i, j 

+ 

w 

4�(2 − α) 
(d n −1 − d n −2 ) 

(
u 

−
i +1 / 2 , j 

+ u 

+ 
i −1 / 2 , j 

+ u 

−
i, j+1 / 2 

+ u 

+ 
i, j−1 / 2 

)
+ 

1 − w 

�(2 − α) 
(d n −1 − d n −2 ) u 

n −1 
i, j 

+ 

D 

�v 2 
(u 

n −1 
i, j+1 

− 2 u 

n −1 
i, j 

+ u 

n −1 
i, j−1 

) + u 

+ 
i +1 / 2 , j 

−v̄ j + | ̄v j | 
2�x i 

+ u 

−
i +1 / 2 , j 

−v̄ j − | ̄v j | 
2�x i 

+ u 

+ 
i −1 / 2 , j 

v̄ j − | ̄v j | 
2�x i 

+ u 

−
i −1 / 2 , j 

v̄ j + | ̄v j | 
2�x i 

+ u 

+ 
i, j+1 / 2 

−F i, j+1 / 2 + | F i, j+1 / 2 | 
2�v 

+ u 

−
i, j+1 / 2 

−F i, j+1 / 2 − | F i, j+1 / 2 | 
2�v 

+ u 

+ 
i, j−1 / 2 

F i, j−1 / 2 − | F i, j−1 / 2 | 
2�v 

+ u 

−
i, j−1 / 2 

F i, j−1 / 2 + | F i, j−1 / 2 | 
2�v 

. 

The only terms with negative coefficients are the coefficients of the diffusive term −2 u n −1 
i, j 

and the coefficients of u −
i +1 / 2 , j 

,

u + 
i −1 / 2 , j 

, u −
i, j+1 / 2 

and u + 
i, j−1 / 2 

. The reconstructed points are positive, by the way they were constructed as discussed in

[5,16,23,24] . Therefore we reorganise the equality as 

d n −1 

�(2 − α) 
u 

n 
i, j = 

d 0 
�(2 − α) 

u 

0 
i, j + 

1 

�(2 − α) 

n −2 ∑ 

p=1 

(d p − d p−1 ) u 

p 
i, j 

+ 

D 

�v 2 
(u 

n −1 
i, j+1 

+ u 

n −1 
i, j−1 

) 

+ 

(
1 − w 

�(2 − α) 
(d n −1 − d n −2 ) − 2 

D 

�v 2 
)

u 

n −1 
i, j 

+ u 

+ 
i +1 / 2 , j 

−v̄ j + | ̄v j | 
2�x i 

+ u 

−
i −1 / 2 , j 

v̄ j + | ̄v j | 
2�x i 

+ u 

+ 
i, j+1 / 2 

−F i, j+1 / 2 + | F i, j+1 / 2 | 
2�v 

+ u 

−
i, j−1 / 2 

F i, j−1 / 2 + | F i, j−1 / 2 | 
2�v 

+ u 

−
i +1 / 2 , j 

(
w 

4�(2 − α) 
(d n −1 − d n −2 ) + 

−v̄ j − | ̄v j | 
2�x i 

)
+ u 

+ 
i −1 / 2 , j 

(
w 

4�(2 − α) 
(d n −1 − d n −2 ) + 

v̄ j − | ̄v j | 
2�x i 

)

+ u 

−
i, j+1 / 2 

(
w 

4�(2 − α) 
(d n −1 − d n −2 ) + 

−F i, j+1 / 2 − | F i, j+1 / 2 | 
2�v 

)

+ u 

+ 
i, j−1 / 2 

(
w 

4�(2 − α) 
(d n −1 − d n −2 ) + 

F i, j−1 / 2 − | F i, j−1 / 2 | 
2�v 

)
. (24)
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Since 

1 

d n −1 − d n −2 

= 

2�t αn �t n −1 

�t n + �t n −1 

(
1 

2 − 2 

1 −α( 2�t n / (�t n + �t n −1 ) ) 
α

)
, 

from condition (22) all the terms on the right-hand side of Eq. (24) are positive and the result follows. �

The constant w that appears in (22) in Theorem 1 can be chosen between 0 and 1. It is difficult to decide which value is

the best choice since it will depend on the problem under consideration. A natural choice is to consider w = 1 / 2 . 

Condition (22) is written for a non-uniform mesh in time. If the mesh is uniform in time, with time step �t , it follows

that 

�t α ≤ 2 − 2 

1 −α

�(2 − α) 
min 

{
�v 2 

2 D 

(1 − w ) , 
�x m 

v M 

w 

4 

, 
�v 
F M 

w 

4 

}
. (25) 

In the next theorem, the positivity preserving property is presented for the explicit method with the first-order approx-

imation in phase space. 

Theorem 2 (First-order explicit method) . Consider the finite volume method (19) for τ = 1 . Then the cell values u i,j ( t n ) remain

nonnegative provided the initial cell values are nonnegative and the following conditions are satisfied, for all n ≥ 1, 

1 

�t n +1 / 2 

( 

�t αn �t n −1 �(2 − α) 

2 − 2 

1 −α
(
�t n / �t n +1 / 2 

)
α

) 

≤ min 

{
�v 2 

2 D 

(1 − w ) , 
�x m 

v M 

w 

2 

, 
�v 
F M 

w 

2 

}
, (26) 

where 0 < w < 1, �x m 

= min i �x i , �t n +1 / 2 = (�t n + �t n −1 ) / 2 , v M 

= max | v | and F M 

= max | F (x, v ) | . 
Proof. The proof starts in the same way as the previous proof and we get (23). However now the intermediate values are

given by 

u 

−
i +1 / 2 , j 

= u 

n −1 
i, j 

, u 

+ 
i −1 / 2 , j 

= u 

n −1 
i, j 

, u 

−
i, j+1 / 2 

= u 

n −1 
i, j 

, u 

+ 
i, j−1 / 2 

= u 

n −1 
i, j 

, (27)

u 

+ 
i +1 / 2 , j 

= u 

n −1 
i +1 , j 

, u 

−
i −1 / 2 , j 

= u 

n −1 
i −1 , j 

, u 

−
i, j−1 / 2 

= u 

n −1 
i, j−1 

, u 

+ 
i, j+1 / 2 

= u 

n −1 
i, j+1 

. (28)

Proceeding similarly as in the previous theorem, by rearranging the terms and taking in consideration (27) and (28) we

obtain 

d n −1 

�(2 − α) 
u 

n 
i, j = 

d 0 
�(2 − α) 

u 

0 
i, j + 

1 

�(2 − α) 

n −2 ∑ 

p=1 

(d p − d p−1 ) u 

p 
i, j 

+ 

D 

�v 2 
(u 

n −1 
i, j+1 

+ u 

n −1 
i, j−1 

) 

+ 

(
1 − w 

�(2 − α) 
(d n −1 − d n −2 ) − 2 

D 

�v 2 
)

u 

n −1 
i, j 

+ u 

n −1 
i +1 , j 

−v̄ j + | ̄v j | 
2�x i 

+ u 

n −1 
i, j 

(
w 

2�(2 − α) 
(d n −1 − d n −2 ) + 

−| ̄v j | 
�x i 

)

+ u 

n −1 
i −1 , j 

v̄ j + | ̄v j | 
2�x i 

+ u 

n −1 
i, j+1 

−F i, j+1 / 2 + | F i, j+1 / 2 | 
2�v 

+ u 

n −1 
i, j−1 

F i, j−1 / 2 + | F i, j−1 / 2 | 
2�v 

+ u 

n −1 
i, j 

(
w (d n −1 − d n −2 ) 

2�(2 − α) 
+ 

−F i, j+1 / 2 − | F i, j+1 / 2 | 
2�v 

+ 

F i, j−1 / 2 − | F i, j−1 / 2 | 
2�v 

)
. (29) 

Since F i, j−1 / 2 ≥ F i, j+1 / 2 , if F i, j−1 / 2 ≥ 0 and F i, j+1 / 2 ≥ 0 then 

−F i, j+1 / 2 − | F i, j+1 / 2 | + F i, j−1 / 2 − | F i, j−1 / 2 | = −2 F i, j+1 / 2 . (30) 

If F i, j−1 / 2 ≥ 0 and F i, j+1 / 2 ≤ 0 then 

−F i, j+1 / 2 − | F i, j+1 / 2 | + F i, j−1 / 2 − | F i, j−1 / 2 | = 0 , (31) 

and for F i, j−1 / 2 ≤ 0 and F i, j+1 / 2 ≤ 0 

−F i, j+1 / 2 − | F i, j+1 / 2 | + F i, j−1 / 2 − | F i, j−1 / 2 | = 2 F i, j−1 / 2 . (32) 

Hence, condition (26) assure us that the terms on the right-hand side of (29) are positive and the result follows. �

For the first-order method, the positivity preserving property could have been obtained directly from Theorem 1 since

the first-order method can be seen as a particular case of the general method described in Section 2.1 . However, as shown

in Theorem 2 , an additional analysis allows to obtain a slightly less restrictive stability condition. 

To prove the next theorems we will rely on the properties of M -matrices [3,15] . An invertible matrix C = (c i, j ) is called an

M -matrix if C −1 ≥ 0 and c i,j ≤ 0 for all i � = j . A sufficient condition for a matrix C = (c i, j ) to be an M -matrix is c i,j ≤ 0 ( i � = j )

and c i,i > 
i � = j | c i,j |. Additionally, if u ≥ 0 and p = C −1 u, then p ≥ 0. This is the result that will be used in the next proofs. 
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The next result is related to the IMEX method. We have a second-order approximation in phase space for the fluxes and

an implicit approach for the diffusive term to avoid the severe time restrictions for small D . 

Theorem 3 (IMEX method) . Consider the finite volume method (20) . Then the cell values u i,j ( t n ) remain nonnegative provided

the initial cell values are nonnegative and the following conditions are satisfied, for all n ≥ 1, 

1 

�t n +1 / 2 

( 

�t αn �t n −1 �(2 − α) 

2 − 2 

1 −α
(
�t n / �t n +1 / 2 

)α

) 

≤ min 

{
�x m 

v M 

1 

4 

, 
�v 
F M 

1 

4 

}
, (33)

where �x m 

= min i �x i , �t n +1 / 2 = (�t n + �t n −1 ) / 2 , v M 

= max | v | and F M 

= max | F (x, v ) | . 
Proof. The part that involves the non-diffusive fluxes in Eq. (20) is similar to what we have discussed previously. The main

difference is that the diffusive part is treated implicitly, that is, evaluated at time t n . We consider the reconstructed points

u ±
i ±1 / 2 , j 

(t n −1 ) and u ±
i, j±1 / 2 

(t n −1 ) and we omit the time step t n −1 for the sake of clarity. It follows 

d n −1 

�(2 − α) 
u 

n 
i, j = 

d 0 
�(2 − α) 

u 

0 
i, j −

1 

�(2 − α) 

n −2 ∑ 

p=1 

(d p−1 − d p ) u 

p 
i, j 

− 1 

�(2 − α) 
(d n −2 − d n −1 ) u 

n −1 
i, j 

+ u 

+ 
i +1 / 2 , j 

−v̄ j + | ̄v j | 
2�x i 

+ u 

−
i +1 / 2 , j 

−v̄ j − | ̄v j | 
2�x i 

+ u 

+ 
i −1 / 2 , j 

v̄ j − | ̄v j | 
2�x i 

+ u 

−
i −1 / 2 , j 

v̄ j + | ̄v j | 
2�x i 

+ u 

+ 
i, j+1 / 2 

−F i, j+1 / 2 + | F i, j+1 / 2 | 
2�v 

+ u 

−
i, j+1 / 2 

−F i, j+1 / 2 − | F i, j+1 / 2 | 
2�v 

+ u 

+ 
i, j−1 / 2 

F i, j−1 / 2 − | F i, j−1 / 2 | 
2�v 

+ u 

−
i, j−1 / 2 

F i, j−1 / 2 + | F i, j−1 / 2 | 
2�v 

+ 

D 

�v 2 
(u 

n 
i, j+1 − 2 u 

n 
i, j + u 

n 
i, j−1 ) . (34)

Using the fact that 4 u n −1 
i, j 

= 

(
u −

i +1 / 2 , j 
+ u + 

i −1 / 2 , j 
+ u −

i, j+1 / 2 
+ u + 

i, j−1 / 2 

)
the terms are rearranged in the following way 

d n −1 

�(2 − α) 
u 

n 
i, j −

D 

�v 2 
(u 

n 
i, j+1 − 2 u 

n 
i, j + u 

n 
i, j−1 ) = 

d 0 
�(2 − α) 

u 

0 
i, j + 

1 

�(2 − α) 

n −2 ∑ 

p=1 

(d p − d p−1 ) u 

p 
i, j 

+ u 

+ 
i +1 / 2 , j 

−v̄ j + | ̄v j | 
2�x i 

+ u 

−
i −1 / 2 , j 

v̄ j + | ̄v j | 
2�x i 

+ u 

−
i +1 / 2 , j 

(
d n −1 − d n −2 

4�(2 − α) 
+ 

−v̄ j − | ̄v j | 
2�x i 

)
+ u 

+ 
i −1 / 2 , j 

(
d n −1 − d n −2 

4�(2 − α) 
+ 

v̄ j − | ̄v j | 
2�x i 

)

+ u 

+ 
i, j+1 / 2 

−F i, j+1 / 2 + | F i, j+1 / 2 | 
2�v 

+ u 

−
i, j−1 / 2 

F i, j−1 / 2 + | F i, j−1 / 2 | 
2�v 

+ u 

−
i, j+1 / 2 

(
d n −1 − d n −2 

4�(2 − α) 
+ 

−F i, j+1 / 2 − | F i, j+1 / 2 | 
2�v 

)

+ u 

+ 
i, j−1 / 2 

(
d n −1 − d n −2 

4�(2 − α) 
+ 

F i, j−1 / 2 − | F i, j−1 / 2 | 
2�v 

)
. (35)

The vector form of the finite volume scheme is (
�t −α

n 

�(2 − α) 
I + B 

)
U 

n = 

d 0 
�(2 − α) 

U 

0 + 

1 

�(2 − α) 

n −2 ∑ 

p=1 

(d p − d p−1 ) U 

p + L (U 

+ 
x + , U 

−
x + , U 

+ 
x −, U 

−
x −, U 

+ 
v + , U 

−
v + , U 

+ 
v −, U 

−
v −) , 

where U 

k is a vector containing the cell averages u k 
i, j 

, B is the tridiagonal matrix associated to the diffusive part, U 

±
x ±, U 

±
v ±

are vectors containing the reconstructed point values and L is a vector, with each element being the linear combination of

the corresponding point values in U 

±
x ±, U 

±
v ±. 

The vector form can also be written as 

MU 

n = �t αn d 0 U 

0 + �t αn 

n −2 ∑ 

p=1 

(d p − d p−1 ) U 

p + �t αn �(2 − α) L , 

for M = I + �t αn �(2 − α) B . It follows that 

U 

n = M 

−1 

( 

�t αn d 0 U 

0 + �t αn 

n −2 ∑ 

p=1 

(d p − d p−1 ) U 

p + �t αn �(2 − α) L 

) 

. (36)

The main diagonal of B is 2 D / �v 2 and there are two diagonals with the values −D/ �v 2 and therefore M = I + �t αn �(2 − α) B

is an M -matrix. The right-hand side is positive if the condition (33) is verified. Consequently, it is known [3,15] that all the

components of the linear system (36) are also non-negative and the proof is complete. �

Since we have quite restrictive conditions for small values of α there is the need of using an implicit scheme. In this

case the implicit has a significant advantage over the explicit for values α near zero. 
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Theorem 4 (Implicit method) . Consider the finite volume method (21) . Then the cell values u i,j ( t n ) remain nonnegative provided

the initial cell values are nonnegative and that 

�t αn ≤ 1 

γ�(2 − α) 
. (37) 

Proof. Let us go back to (23) and now taking in consideration that 

u 

+ 
i +1 / 2 , j 

= u 

n 
i +1 , j , u 

−
i +1 / 2 , j 

= u 

n 
i, j , u 

+ 
i −1 / 2 , j 

= u 

n 
i, j , u 

−
i −1 / 2 , j 

= u 

n 
i −1 , j , 

and that 

u 

+ 
i, j+1 / 2 

= u 

n 
i, j+1 , u 

−
i, j+1 / 2 

= u 

n 
i, j , u 

+ 
i, j−1 / 2 

= u 

n 
i, j , u 

−
i, j−1 / 2 

= u 

n 
i, j−1 , 

we obtain 

d n −1 

�(2 − α) 
u 

n 
i, j = 

d 0 
�(2 − α) 

u 

0 
i, j + 

1 

�(2 − α) 

n −1 ∑ 

p=1 

(d p − d p−1 ) u 

p 
i, j 

+ u 

n 
i +1 , j 

−v̄ j + | ̄v j | 
2�x i 

+ u 

n 
i, j 

−v̄ j − | ̄v j | 
2�x i 

+ u 

n 
i, j 

v̄ j − | ̄v j | 
2�x i 

+ u 

n 
i −1 , j 

v̄ j + | ̄v j | 
2�x i 

+ u 

n 
i, j+1 

−F i, j+1 / 2 + | F i, j+1 / 2 | 
2�v 

+ u 

n 
i, j 

−F i, j+1 / 2 − | F i, j+1 / 2 | 
2�v 

+ u 

n 
i, j 

F i, j−1 / 2 − | F i, j−1 / 2 | 
2�v 

+ u 

n 
i, j−1 

F i, j−1 / 2 + | F i, j−1 / 2 | 
2�v 

+ 

D 

�v 2 
(u 

n 
i, j+1 − 2 u 

n 
i, j + u 

n 
i, j−1 ) . (38) 

Rearranging the terms we can write 

d n −1 

�(2 − α) 
u 

n 
i, j + 

D 

�v 2 
(−u 

n 
i, j+1 + 2 u 

n 
i, j − u 

n 
i, j−1 ) + a i j u 

n 
i +1 , j + b i j u 

n 
i, j + c i j u 

n 
i −1 , j 

+ d i j u 

n 
i, j+1 + e i j u 

n 
i, j−1 = 

d 0 
�(2 − α) 

u 

0 
i, j + 

1 

�(2 − α) 

n −1 ∑ 

p=1 

(d p − d p−1 ) u 

p 
i, j 

, (39) 

where 

a i j = −−v̄ j + | ̄v j | 
2�x i 

, c i j = − v̄ j + | ̄v j | 
2�x i 

, 

b i j = 

| ̄v j | 
�x i 

+ 

F i, j+1 / 2 + | F i, j+1 / 2 | − F i, j−1 / 2 + | F i, j−1 / 2 | 
2�v 

, 

d i j = −−F i, j+1 / 2 + | F i, j+1 / 2 | 
2�v 

, e i j = −F i, j−1 / 2 + | F i, j−1 / 2 | 
2�v 

. 

The finite volume scheme in the vector form is (
�t −α

n 

�(2 − α) 
I + A + B 

)
U 

n = 

d 0 
�(2 − α) 

U 

0 + 

1 

�(2 − α) 

n −1 ∑ 

p=1 

(d p − d p−1 ) U 

p , 

where B is the same matrix as the matrix B in the previous theorem and A is the matrix that contains the values a ij , b ij , c ij ,

d ij and e ij related to the fluxes. 

The rest of the proof consists in showing that if condition (37) is verified then the matrix 
�t −α

n 
�(2 −α) 

I + A + B is an M -matrix.

The elements in the main diagonal are non-negative since 

�t −α
n 

�(2 − α) 
+ 

2 D 

�v 2 
+ b i j ≥ 0 , 

where b ij is positive because we have (30) –(32) . The matrix elements located in the other four diagonals are non-positive

since 

a i j ≤ 0 , c i j ≤ 0 , d i j ≤ 0 , e i j ≤ 0 . 

It is now sufficient for 
�t −α

n 
�(2 −α) 

I + A + B to be an M -matrix to verify that it is also true that 

�t −α
n 

�(2 − α) 
+ 

2 D 

�v 2 
+ b i j ≥ | a i j | + | c i j | + | d i j | + | e i j | + 

D 

�v 2 
+ 

D 

�v 2 
. (40)

Since 

| a i j | + | c i j | = 

| v j | 
�x 

and | d i j | + | e i j | = 

−F i, j+1 / 2 + | F i, j+1 / 2 | + F i, j−1 / 2 + | F i, j−1 / 2 | 
2�v 

, 

i 
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Fig. 2. Absorbing boundary conditions. The fictitious points needed are in the grey zone, that represent the part where we have a boundary. On the other 

part of the domain, respectively, there is no boundary. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the inequality (40) is equivalent to 

�t −α
n 

�(2 − α) 
+ 

F i, j+1 / 2 + | F i, j+1 / 2 | − F i, j−1 / 2 + | F i, j−1 / 2 | 
2�v 

≥ −F i, j+1 / 2 + | F i, j+1 / 2 | + F i, j−1 / 2 + | F i, j−1 / 2 | 
2�v 

. (41)

It follows that (41) can be rewritten as 

�t −α
n 

�(2 − α) 
≥ −F i, j+1 / 2 − F i, j−1 / 2 

�v 
. (42)

We have that F i, j+1 / 2 − F i, j−1 / 2 = −γ ( ̄v j+1 / 2 − v̄ j−1 / 2 ) and therefore 

�t −α
n 

�(2 − α) 
≥ γ

(
v̄ j + �v / 2 − v̄ j + �v / 2 

�v 

)
= γ . (43)

This is the same as condition (37) and the proof is complete. �

The condition presented in the previous theorem is not a stability restriction since it does not impose a dependence

between �t and �v or �x i . Restrictions for positivity preserving implicit methods appear in other works, such as, for

differential equations of integer order [14] . It is also reported that for implicit methods, of order higher than one in time,

strong stability conditions as the ones observed for explicit methods can be expected, which is not the case in our context.

In our case this restriction depends on the physical parameter γ > 0, that is, the friction parameter. In particular, this

parameter is related with the parameters D and T p through Eq. (5) . One can ask what are the γ values in some physical

situations. Usually when the values of the friction parameter are very high we obtain the Fokker-Planck equation derived

from the Langevin equation. The Klein-Kramers equation is derived assuming the friction parameter is not very large. There-

fore the condition is even less restrictive by taking into consideration that from the physical point of view large values of γ
should not be considered. Large values of γ correspond to either large diffusion D or low temperature T p (see Eq. (5) ). 

4. Formulation of the boundary conditions and the positivity preserving property 

Additionally to the study of the open domain problem, the case of having a bounded domain in the spatial direction is

discussed and absorbing boundary conditions or reflecting boundary conditions are considered. To implement these bound-

ary conditions the finite volume schemes need to be reformulated for the cells near the boundary. In particular, we describe

how to implement the implicit method and the second-order IMEX method in the presence of boundary conditions. The

other methods considered in Section 2 can be similarly modified. 

4.1. Absorbing boundary conditions 

The absorbing boundary conditions are, for all t > 0, given by 

u (x L , v , t) = 0 , v > 0 , and u (x R , v , t) = 0 , v < 0 . (44)

If the first-order approximation is used in the full domain, as it happens in the case of the implicit method, the im-

plementation of the absorbing boundary conditions is straightforward. However, for the second-order spatial approximation

that appears in the case of the IMEX method, we do not have the necessary cells available near the boundary. 

For the IMEX method with the second-order approximation, we proceed, near the boundary, in the following way. At x L
for v > 0 the computational domain is extended as needed and set u i, j = 0 at the corresponding extra cells, as illustrated in

Fig. 2 . We proceed similarly near x R for v < 0. 

In the parts of the domain where there is no boundary in x , the first-order scheme is considered since no extra informa-

tion outside the domain is needed. For v > 0 a right boundary is not needed and for v < 0 a left boundary is not needed



12 L. Pinto and E. Sousa / Commun Nonlinear Sci Numer Simulat 91 (2020) 1054 4 4 

Fig. 3. Reflecting boundary conditions represented at x = x L . For x = x R we have a similar procedure. The fictitious points needed are in the grey zone and 

the values they take are assigned. The symmetry is highlighted by colors. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

as illustrated in Fig. 2 . If we use the first-order approximation near these parts, this means that in (14) the term involving

the function f x u is approximated as 

f x u ( ̄x i +1 / 2 , ̄v j , t) − f x u ( ̄x i −1 / 2 , ̄v j , t) 
�x i 

� 

⎧ ⎨ 

⎩ 

v̄ j 
u i, j − u i −1 , j 

�x i 
, v̄ j > 0 

v̄ j 
u i +1 , j − u i, j 

�x i 
v̄ j < 0 , 

where the values of f x u are according to Remark 1 . This is done for the first and last cells, that is, u i, j , i = N x − 1 , for v > 0

and i = 1 when v < 0. 

Regarding the properties of the finite volume method with the absorbing boundary conditions, similar conditions are

obtained for the non-negativity of the numerical solutions. For the implicit method we can derive the same result as the

one stated in Theorem 4 since the boundary conditions are non-negative and no changes where done in the numerical

approximations. For the IMEX method with the second-order approximation a first-order approximation was imposed near

the boundary and this slightly changes the method. For this method the final stability condition consists on the intersection

of the condition obtained for the second-order finite volume method with the condition obtained for the first-order finite

volume method. Considering that the first-order approximation imposes less restrictive conditions regarding non-negativity, 

given in Theorem 2 , we obtain the same condition as the one stated in Theorem 1 . 

Since the assumption of absorbing boundary conditions requires the use of the first-order approximation, one may ask

if the overall accuracy of the method is influenced by this change. In the section of the numerical tests, it will be observed

that this happens and that to recover the second-order accuracy a non-uniform mesh can be used, which is more refined

near the boundary. 

4.2. Reflecting boundary conditions 

Other type of boundary conditions frequently associated with the Klein-Kramers equation are the following reflecting

boundary conditions 

u (x L , v , t) = u (x L , −v , t) and u (x R , v , t) = u (x R , −v , t) . (45) 

To implement (45) we first extend the finite volume grid, near x = x L , by setting 

x̄ 0 = x̄ 1 − �x 1 , x̄ −1 = x̄ 0 − �x 1 + �x 2 
2 

. 

Similarly, near x = x R we set 

x̄ N x = x̄ N x −1 + �x Nx , x̄ N x +1 = x̄ N x + 

�x N x + �x N x −1 

2 

. 

To decide which values the fictitious cells should have we take into consideration the symmetry imposed by the reflective

boundary conditions, that is, the fictitious finite volume cells are chosen inspired on the reflective property (45) . This is

illustrated in Fig. 3 . In general, we define, near x = x L , 

u 0 , j = u 1 ,N ∗v − j+1 , j = 1 , . . . , N 

∗
v , u −1 , j = u 2 ,N ∗v − j+1 , j = 1 , . . . , N 

∗
v . 

Similarly, near x = x R , we take 

u N x , j = u N x −1 ,N ∗− j+1 , j = 1 , . . . , N 

∗
v ; u N x +1 , j = u N x −2 ,N ∗− j+1 , j = 1 , . . . , N 

∗
v . 
v v 
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Here, N 

∗
v = N v − 1 and we assume that N 

∗
v is an even number and also that v L = −v R . 

Regarding the properties of the finite volume schemes we discuss the implicit method and the IMEX method as done

previously for the absorbing boundary conditions. For the implicit method, from (39) , we have, for i = 1 , 

d n −1 

�(2 − α) 
u 

n 
1 , j + 

D 

�v 2 
(−u 

n 
1 , j+1 + 2 u 

n 
1 , j − u 

n 
1 , j−1 ) + a 1 j u 

n 
2 , j + b i j u 

n 
1 , j + c 1 j u 

n 
0 , j + d 1 j u 

n 
1 , j+1 + e 1 j u 

n 
1 , j−1 

= 

d 0 
�(2 − α) 

u 

0 
1 , j + 

1 

�(2 − α) 

n −1 ∑ 

p=1 

(d p − d p−1 ) u 

p 
1 , j 

. 

We have a fictitious point u n 
0 , j 

and we take u n 
0 , j 

= u n 
1 ,N ∗v − j+1 

. Since the new element is not equal to an element in the

diagonal of the matrix represented in the proof of Theorem 4 , and the coefficient c 1 j has the same sign as all the elements

out of the diagonal, we can follow the same steps of the proof of Theorem 4 and conclude that Theorem 4 remains valid for

the case when reflecting boundary conditions are assumed. A similar justification can be given to the approximations near

the other side of the boundary. 

For the IMEX method, from (34) , for i = 1 , it follows 

d n −1 

�(2 − α) 
u 

n 
1 , j = 

d 0 
�(2 − α) 

u 

0 
1 , j −

1 

�(2 − α) 

n −1 ∑ 

p=1 

(d p−1 − d p ) u 

p 
1 , j 

+ u 

+ 
1+1 / 2 , j 

−v̄ j + | ̄v j | 
2�x i 

+ u 

−
1+1 / 2 , j 

−v̄ j − | ̄v j | 
2�x i 

+ u 

+ 
1 −1 / 2 , j 

v̄ j − | ̄v j | 
2�x i 

+ u 

−
1 −1 / 2 , j 

v̄ j + | ̄v j | 
2�x i 

+ u 

+ 
1 , j+1 / 2 

−F i, j+1 / 2 + | F i, j+1 / 2 | 
2�v 

+ u 

−
1 , j+1 / 2 

−F i, j+1 / 2 − | F i, j+1 / 2 | 
2�v 

+ u 

+ 
1 , j−1 / 2 

F i, j−1 / 2 − | F i, j−1 / 2 | 
2�v 

+ u 

−
1 , j−1 / 2 

F i, j−1 / 2 + | F i, j−1 / 2 | 
2�v 

+ 

D 

�v 2 
(u 

n 
1 , j+1 − 2 u 

n 
1 , j + u 

n 
1 , j−1 ) . 

The main point, in this case, is that the positivity of the solution is based on the positivity of the reconstructed values that is

guaranteed by the minmod limiter (13) . The minmod limiter also guarantees the positivity of the reconstructed values when

the relations illustrated in Fig. 3 are used. Therefore the positivity is guaranteed for the reflecting boundary conditions. 

5. Numerical tests 

In this section several numerical tests are presented in order to observe the convergence rates of the implicit method

(21) and the IMEX method (20) . We start to discuss the problem with homogeneous boundary conditions, since it simulates

a problem defined in an open domain. In Section 5.2 it is discussed how the presence of absorbing boundary conditions

affects the performance of the finite volume schemes. The same is done in Section 5.3 for the reflective boundary condi-

tions. In Section 5.4 the convergence rates are discussed when the time is refined. Finally, in the last subsection numerical

solutions for different force fields are presented and the performance of a positivity preserving method is compared with

the performance of an existing method in literature. 

5.1. Homogeneous boundary conditions 

The convergence results for the implicit method (21) and the IMEX method (20) are presented and it is shown that

for the implicit method we obtain first-order convergence and for the IMEX method we have second-order convergence in

phase space. The sharpness of the positivity preserving condition (stability condition) derived in Section 3 is also discussed.

In order to illustrate the convergence rate of the numerical methods we consider a problem defined in the ( x, v )-domain

[0, 2] × [0, 2] and t ∈ [0, T ], with T = 1 . Homogeneous boundary conditions are assumed and the parameters in Eq. (6) are

defined as D = 1 , γ = 1 and F (x, v ) = x 2 − v . A source term is included on the right-hand side of the equation in order to

have access to the exact solution. 

We define the initial condition and the source term, such that, the exact solution of the problem, shown in Fig. 4 , is

given by u (x, v , t) = t 2 v 4 x 4 (2 − x ) 4 (2 − v ) 4 . The source term can be determined by substituting this exact solution in Eq. (6) .

In the next tables we display the errors between the exact solution and the numerical solution given by 

E M 

N x ,N v 
= max 

n =1 , ... ,M 

( 

max 
i 

�x i �v 
N x −1 ∑ 

i =1 

N v −1 ∑ 

j=1 

(u 

n 
i, j − u (x i , v j , t n )) 2 

) 1 / 2 

. (46)

The rate of convergence is measured by 

Rate = 

log (E M 

N x ,N v 
) − log (E M 

˜ N x , ̃  N v 
) 

log ( min { ˜ N x , ˜ N v } ) − log ( min { N x , N v } ) , (47)

for min { N x , N v } ) < min { ˜ N x , ˜ N v } and where N x , ˜ N x and N v , ˜ N v are the number of space and phase grid points respectively and

they are associated with two meshes that keep the same number of grid points in time, M . 
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Fig. 4. Surface of the exact solution for Eq. (6) with a source term, initial condition zero and homogeneous boundary conditions when the final time is 

T = 1 and D = 1 , γ = 1 , F (x, v ) = x 2 − v . 

Table 1 

Implicit method: first-order in phase space and time step �t = 0 . 01 . The error E 1 is 

obtained for a uniform mesh with �x = �v = 0 . 1 . The error E 2 is obtained with the 

previous mesh divided by two, that is, �x = �v = 0 . 05 . 

α E 1 CPU time E 2 CPU time Rate 

0.9 3.7408e-02 6.0901e-01 1.9390e-02 1.0915e + 00 9.4806e-01 

0.7 3.9486e-02 4.2027e-01 2.0669e-02 9.2138e-01 9.3388e-01 

0.5 4.1148e-02 4.4147e-01 2.1580e-02 9.8165e-01 9.3113e-01 

0.3 4.2646e-02 4.0469e-01 2.2362e-02 9.6498e-01 9.3139e-01 

0.1 4.4052e-02 3.9889e-01 2.3084e-02 9.7079e-01 9.3231e-01 

Table 2 

IMEX method: second-order in phase space. To determine E 1 and E 2 the mesh sizes �x and �v are the same 

as in Table 1 . 

α E 1 �t CPU time E 2 �t CPU time Rate 

0.9 5.1459e-03 3.6605e-03 1.7889e + 00 1.2090e-03 1.6473e-03 3.6158e + 00 2.0896 

0.7 5.3186e-03 6.1194e-04 6.8780e + 00 1.2370e-03 2.1921e-04 6.0870e + 01 2.1043 

0.5 5.4583e-03 1.8886e-05 2.8377e + 03 1.2904e-03 4.4868e-06 9.2461e + 04 2.0806 

Table 3 

IMEX method: second-order in phase space. The mesh sizes �x and �v are chosen as in Table 1 . The choice of the time 

step does not obey the positivity preserving condition derived in Section 3 . On the first column, �t ∗ stands for the time 

step considered in Table 2 and 2 �t ∗ , 20 �t ∗ , 260 �t ∗ is the actual value considered for �t in the third and fifth column. 

α E 1 �t CPU time E 2 �t CPU time Rate 

(2 �t ∗) 0.9 5.6258e-03 7.3210e-03 1.1626e + 00 1.6738e-03 3.2945e-03 1.7442e + 00 1.7490 

(20 �t ∗) 0.7 7.1498e-03 1.2239e-02 5.8045e-01 2.1482e-03 4.3842e-03 1.3037e + 00 1.7348 

(260 �t ∗) 0.5 5.4514e-03 4.9103e-03 7.6518e-01 1.5944e-03 1.1666e-03 4.9680e + 00 1.7736 

 

 

 

 

 

 

 

 

 

 

 

The information of the CPU time in seconds is included in all the tables of this subsection. The proposed numerical

methods were implemented in MATLAB R2018b on a computer with a 3.4 GHz IntelCore i7 processor and 16 GB of RAM. 

In Table 1 the results for the implicit scheme are shown and the first-order convergence is observed. The error defined

according to (46) and denoted by E 1 is displayed for a uniform mesh in phase space with �x = �v = 0 . 1 and for �t = 0 . 01 .

To determine the second error, denoted by E 2 , the previous mesh is divided by two, that is, �x = �v = 0 . 05 . 

The results for the IMEX method are shown in Table 2 and the second-order convergence in phase space is achieved. The

time step is displayed in Table 2 since now we have a conditionally stable numerical method and the time step depends on

the phase step, space step and also on the value of α. The error values E 1 and E 2 are for the same mesh sizes as the ones

considered in Table 1 . 

In Table 3 , it is shown how the violation of the stability condition given by the positivity preserving property in Section 3 ,

for the IMEX method, affects the results. The numerical method does not seem to blow up for the chosen values of the

phase, space and time steps but the convergence rate is not two anymore. For larger values of �t the scheme stops to

converge. 

The CPU times shown in Table 1 , for the implicit method, and shown in Table 2 , for the IMEX method, highlights the

advantage of using an implicit method, in particular for smaller values of α. This is a consequence of the stability condition
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Fig. 5. Surface of the exact solution for Eq. (6) with a source term, initial condition zero and absorbing boundary conditions when the final time is T = 1 

and D = 1 , γ = 1 , F (x, v ) = x 2 − v . 

Table 4 

Absorbing boundary conditions and implicit numerical method: numerical results for 

�t = 0 . 01 . The error E 1 is obtained for a uniform mesh in x and v , with �x = �v = 0 . 1 . 

The error E 2 is obtained with the previous mesh divided by two, that is, �x = �v = 

0 . 05 . 

α E 1 E 2 Rate 

0.9 1.3023e-02 6.5289e-03 9.9617e-01 

0.7 1.4731e-02 7.6333e-03 9.4852e-01 

0.5 1.6104e-02 8.4240e-03 9.3481e-01 

0.3 1.7379e-02 9.1124e-03 9.3141e-01 

0.1 1.8637e-02 9.7772e-03 9.3065e-01 

Table 5 

Absorbing boundary conditions for the IMEX method, second-order in phase 

space with first-order approximation in space near the boundary, that is, at 

x = −1 , v ≤ 0 and x = 1 , v ≥ 0. To determine E 1 and E 2 the mesh sizes are the 

same as in Table 4 . 

α E 1 �t E 2 �t Rate 

0.9 3.4311e-03 3.5564e-03 1.2952e-03 1.6241e-03 1.4055 

0.7 3.4526e-03 5.8966e-04 1.2759e-03 2.1526e-04 1.4362 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

required by the IMEX method that forces the time step to be small. Once the small step is less restrictive the CPU time is

greatly diminished as can be seen in Table 3 . 

5.2. Absorbing boundary conditions 

In this section, we assume absorbing boundary conditions in the spatial direction. The numerical tests have the purpose

of clarifying the effect of considering a lower order method near the boundary, as a result of having boundaries, and also

to show the advantage of having a non-uniform mesh in space. To recover the second-order accuracy, it will be enough to

divide the nearest cell to the boundary in two cells and to choose the size of the closest new cell to the boundary as �x 2 ,

where �x was the previous size. 

Consider the Klein-Kramers equation with absorbing boundary conditions, defined in the ( x, v )-domain [ −1 , 1] × [ −3 , 3]

and t ∈ [0, T ], with T = 1 . For the variables in Eq. (6) , we consider D = 1 , γ = 1 and F (x, v ) = x 2 − v . A source term is

included on the right-hand side of the equation, in order to be able to get an exact solution. The exact solution is shown in

Fig. 5 and is given by u (x, v , t) = t 2 
(

1 − e −(x | v | v + v 2 ) 
)

e −v 2 e −2 x 2 . 

The errors are measured according to (46) as in the previous subsection and the rates of convergence are computed also

according to (47) . The mesh sizes in the ( x, v ) phase space are the same as the ones considered in Section 5.1 . 

In Table 4 , the results for the implicit method are presented and the expected first-order convergence rate is obtained.

In Table 5 , the results for the second-order IMEX method are displayed and because we are in the presence of boundaries,

a first-order approximation in space is used near the boundary as described previously in Section 4 . We see that using

a lower order approximation near the boundary culminates in a lost of the overall second-order accuracy. The last test

shown in Table 6 consists of using the IMEX method with the first-order accuracy at the boundary as in the test shown

in Table 5 , but now with a non-uniform mesh. It intends to illustrate that we can recover the second-order accuracy by
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Table 6 

Absorbing boundary conditions for the IMEX method: second-order in phase 

space with first-order approximation in space near the boundary. First-order 

approximation at x = −1 , v ≤ 0 and x = 1 , v ≥ 0. Refined mesh near the bound- 

ary, that is, the first space step �x = 0 . 1 is now replaced by �x 1 = 0 . 02 and 

�x 2 = 0 . 08 . 

α E 1 �t E 2 �t Rate 

0.9 1.5984e-03 3.7577e-04 3.9975e-04 1.7234e-04 1.9995 

0.7 1.6463e-03 3.2782e-05 4.1975e-04 1.2032e-05 1.9716 

Fig. 6. Surface of the exact solution for Eq. (6) with a source term, initial condition zero and reflecting boundary conditions when the final time is T = 1 

and D = 1 , γ = 1 , F (x, v ) = x 2 − v . 

Table 7 

Reflecting boundary conditions and implicit numerical method: numerical results for 

�t = 0 . 01 . The error E 1 , obtained for a uniform mesh in x , with �x = �v = 0 . 1 . The 

error E 2 obtained with the previous mesh divided by two, that is, �x = �v = 0 . 05 . 

α E 1 E 2 Rate 

0.9 5.1455e-02 2.7102e-02 9.2492e-01 

0.7 5.7428e-02 3.0634e-02 9.0665e-01 

0.5 6.2243e-02 3.3334e-02 9.0092e-01 

0.3 6.6529e-02 3.5637e-02 9.0058e-01 

0.1 7.0552e-02 3.7766e-02 9.0162e-01 

 

 

 

 

 

 

 

 

 

 

 

 

 

refining the mesh near the boundary points. In particular, for the cells near the left boundary, it was considered �x 1 = 0 . 02

and �x 2 = 0 . 08 to replace the nearest cell to the boundary of size �x = 0 . 1 . In the right part of the domain we have

proceeded similarly by doing �x N x −1 = 0 . 02 , �x N x = 0 . 08 to refine �x = 0 . 1 . 

5.3. Reflecting boundary conditions 

In this section, numerical tests are presented for the problem with reflecting boundary conditions in space. As we have

seen a consequence of using a second-order scheme with this type of boundaries is the need of using fictitious points.

Therefore, the effect of using fictitious points is shown and also the advantage of having a non-uniform mesh in space. To

keep the second-order accuracy it will be enough to divide the nearest cell to the boundary in three cells and to choose the

size of the two closest new cells to the boundary as �x 2 , where �x was the previous size. 

Consider the Klein-Kramers equation with reflecting boundary conditions, defined in the ( x, v )-domain [ −1 , 1] × [ −4 , 4]

and t ∈ [0, T ], with T = 1 . For the variables in Eq. (6) , we consider D = 1 , γ = 1 and F (x, v ) = x 2 − v . A source term is

assumed on the right-hand side of the equation, in order to be able to get an exact solution. The exact solution is shown in

Fig. 6 and is given by u (x, v , t) = t 2 sin 

2 (2 x ) e −v 2 . 

As previously, the errors and the rates are measured according to (46) and (47) respectively. 

We have considered the same mesh in the ( x, v ) phase space as in Section 5.1 and Section 5.2 . In Table 7 , the first-order

convergence rate can be observed for the implicit method. In Table 8 , the results for the second-order IMEX method are

presented. To deal with the fictitious volume cells needed to compute the cell near the boundary, a new formulation of the

finite volume scheme was done as explained in Section 4 . The idea was to take in consideration the symmetry imposed by

the reflective boundary conditions. However, the overall second-order accuracy is lost, as shown in Table 8 . 
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Table 8 

Second-order in space and first-order IMEX in time. To determine E 1 and E 2 the 

mesh sizes considered are the same as in Table 7 . 

α E 1 �t E 2 �t Rate 

0.9 1.3366e-02 3.5564e-03 5.7585e-03 1.6241e-03 1.2147 

0.7 1.3699e-02 5.8966e-04 5.8211e-03 2.1526e-04 1.2347 

Table 9 

Second-order in space and first-order IMEX in time. Refined mesh. The last cell 

of size �x = 0 . 1 was now divided in three cells of sizes respectively �x 1 = 

0 . 01 , �x 2 = 0 . 01 , and �x 3 = 0 . 08 . 

α E 1 �t E 2 �t Rate 

0.9 9.5457e-03 3.7577e-04 2.2271e-03 1.7234e-04 2.0997 

0.7 9.7531e-03 3.2782e-05 2.2869e-03 1.2032e-05 2.0924 

Table 10 

Rate of convergence, when T = 1 , for a smooth solution, with �x = 

�v = 1 / 800 and M = 5 and M = 10 . The convergence rate in time is 

2 − α as expected. 

α E 1 E 2 Rate 

0.7 1.3214e-02 5.2850e-03 1.3221 

0.5 5.9018e-03 2.0013e-03 1.5602 

0.3 2.1402e-03 6.3645e-04 1.7496 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The last test, displayed in Table 9 , illustrates how the second-order accuracy can be recovered by refining the mesh

near the boundary. Now, for the second-order IMEX method with the fictitious cells we consider a non-uniform mesh. In

particular we consider for the cells near the left boundary �x 1 = 0 . 01 , �x 2 = 0 . 01 and �x 3 = 0 . 08 to replace the cell of

size �x = 0 . 1 . In the right part of the domain we have proceeded similarly by choosing �x N x −2 = 0 . 01 , �x N x −1 = 0 . 01 and

�x N x = 0 . 08 to refine �x = 0 . 1 . 

5.4. Order of convergence in time 

In this subsection, the test examples show the rates of convergence regarding time. They depend on the regularity of

the solution and the time steps of the mesh, in particular, if they are uniform or non-uniform. Only the implicit method is

implemented, since the purpose of this section is to show the convergence rate in time. 

In the next tables we present the errors between the exact solution and the numerical solution given by (47) and the

rates of convergence in time are measured according to 

Rate = 

log (E M 

N x ,N v 
) − log (E 

˜ M 

N x ,N v 
) 

log ( ˜ M ) − log (M) 
, (48)

with M < 

˜ M . The number of grid points in time M and 

˜ M are associated with two meshes that keep the same number of

space and phase discrete points N x and N v respectively. 

Consider the Klein-Kramers equation with homogeneous boundary conditions. The variables and the source term are the

same as in Section 5.1 . The space and phase steps are now �x = �v = 1 / 800 and the uniform time steps obtained with

M = 5 and M = 10 . For this example the solution in time is C 2 [0, T ] and therefore a convergence rate of 2 − α is expected,

as proved in [27] . The rates of convergence are displayed in Table 10 and they are according to this result. 

In the next example, the regularity of the solution is decreased. Consider the Klein-Kramers equation defined in ( x,

v ) ∈ [0, 2] × [0, 2] and t ∈ [0, T ], with T = 1 , D = 1 , γ = 1 and F (x, v ) = x 2 − v . A source term is assumed on the right-hand

side of the equation, in order to be able to get an exact solution, that is given by u (x, v , t) = (t α + t 3 ) v 4 x 4 (2 − x ) 4 (2 − v ) 4 . 
An uniform mesh in x and v is considered with �x = 1 / 800 and �v = 1 / 800 and uniform time steps with M = 25 and

M = 50 . For this case, the expected rate of convergence is α, see [39] . In Table 11 we observe that a slightly lower rate than

α is obtained. 

In Tables 12 and 13 , the results for a non-uniform graded mesh of the form t n = T (n/M) r are shown and it illustrates

how the convergence rate improves as discussed in [26,39] . We consider r = 1 /α in Table 12 and r = (2 − α) /α in Table 13 .

For the first case the rate of convergence improves to 1 and for the second case it improves to 2 − α. 
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Table 11 

Rate of convergence, when T = 1 , for a less smooth solution with �x = 

�v = 1 / 800 and a uniform time step with M = 25 and M = 50 . The con- 

vergence rate in time is nearly α, the expected value. 

α E 1 E 2 Rate 

0.7 9.0378e-03 6.0426e-03 5.8080e-01 

0.5 1.7038e-02 1.3313e-02 3.5589e-01 

0.3 2.1272e-02 1.9039e-02 1.5997e-01 

Table 12 

Rate of convergence, when T = 1 , for a less smooth solution with �x = 

�v = 1 / 800 and a graded mesh t n = T (n/M) 1 /α with M = 25 and M = 

50 . The convergence rate in time improved to 1 when compared with 

the rate for a uniform time step shown in the previous table. 

α E 1 E 2 Rate 

0.7 4.7996e-03 2.2580e-03 1.0878 

0.5 4.5949e-03 2.4136e-03 9.2885e-01 

0.3 3.9422e-03 2.0726e-03 9.2756e-01 

Table 13 

Rate of convergence, when T = 1 , for a less smooth solution with �x = 

�v = 1 / 800 and a graded mesh t n = T (n/M) (2 −α) /α with M = 25 and 

M = 50 . The convergence rate in time improved to 2 − α. 

α E 1 E 2 Rate 

0.7 6.7659e-03 2.4771e-03 1.4496 

0.5 4.8932e-03 1.5497e-03 1.6588 

0.3 4.3798e-03 1.3123e-03 1.7388 

Fig. 7. Initial condition (49) with ε = 0 . 005 . The force field is F ext (x ) = 0 . The parameters are D = 1 , γ = 1 and α = 0 . 8 . From left to right the time increases: 

Left: T = 0 . 06 . Right: T = 0 . 1 . 

 

 

 

 

 

 

5.5. Numerical solutions for different force fields 

Numerical solutions for the Klein-Kramers equation are presented for different force fields. The initial condition is speci-

fied by a Gaussian function, located in the middle of the domain 

u 0 (x, v ) = 

1 

ε
√ 

π
e −(x −c) 2 /ε2 1 

ε
√ 

π
e −v 2 /ε2 

, c = 

x L + x R 
2 

, (49) 

for a small value of ε. When ε goes to zero the initial condition approaches the Dirac delta function and the solutions of

the fractional Klein-Kramers equation represent probability distribution functions. 

To exemplify that we can use this methodology to obtain numerical approximations for probability distribution functions

of physical interest we start to display numerical solutions for two cases presented in [29] , where two types of potentials

have been studied, namely, a constant potential and a double-well potential, that is, the force fields are 

F ext (x ) = 0 and F ext (x ) = − d 

dx 

(
x 4 

4 

− 2 x 2 
)

respectively. In these cases we consider an open domain. In Fig. 7 we display the solutions for F ext (x ) = 0 and in Fig. 8 for

F ext (x ) = −x 3 + 4 x . In Fig. 8 , the stationary solution at T = 30 can be seen as well as the two stable states at x = ±2 . This

stationary solution is according to the discussion in [29] . 
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Fig. 8. Initial condition (49) with ε = 0 . 2 . The force field is F ext (x ) = −x 3 + 4 x, D = 1 , γ = 1 , α = 0 . 9 . Left: T = 5 . Right: T = 30 . The stationary solution is 

visible for T = 30 where we observe the two stable states at x = ±2 . 

Fig. 9. Initial condition (49) with ε = 0 . 2 . The force field is the derivative of the minus modulus. Spatial domain −5 < x < 5 , D = 1 , γ = 1 , α = 0 . 3 , T = 20 . 

Left: Absorbing boundary conditions. Right: Reflecting boundary conditions. 

Fig. 10. Initial condition (49) with ε = 0 . 2 . The force field is the derivative of the minus modulus. Spatial domain −5 < x < 5 , D = 1 , γ = 1 , α = 0 . 8 , 

T = 20 . Left: Absorbing boundary conditions. Right: Reflecting boundary conditions. 

 

 

 

 

 

 

 

 

 

 

Other force fields also of physical interest are 

F ext (x ) = − d 

dx 
(−| x | ) and F ext (x ) = − d 

dx 
( cos (8 πx/ 10)) . 

Numerical solutions are displayed in Figs. 9–12 and for these cases absorbing and reflecting boundaries have been included.

The initial condition considered is (49) with ε = 0 . 2 and the parameters are γ = 1 , D = 1 . The solutions are shown for

two different values of α, that is, α = 0 . 3 and α = 0 . 8 . The solutions are strongly influenced by the force fields and the

boundary conditions. In Figs. 9 –10 , the numerical solutions for the minus modulus potential field are plotted when T = 20

and α = 0 . 3 and α = 0 . 8 . In Figs. 11 –12 , the numerical solutions for the periodic potential field are plotted when T = 50 ,

and for the same values of α as the previous example. 

We proceed to compare the performance of the implicit finite volume method discussed in this work with the finite

difference method presented in [6] for the open domain. The non-oscillatory behaviour of the computed solution is demon-

strated in Fig. 13 , that is, it can be observed that no spurious oscillations are formed when the positivity preserving finite

volume method is used in opposition to what happens with the finite difference method. The numerical solutions are com-

puted for the periodic potential defined above, T = 30 and different values of the parameter D . The oscillatory behaviour

can be seen when the solution is computed with the finite difference method, for small values of D . 
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Fig. 11. Initial condition (49) with ε = 0 . 2 . The force field is the derivative of a periodic potential. Spatial domain −5 < x < 5 , D = 1 , γ = 1 , α = 0 . 3 , T = 50 . 

Left: Absorbing boundary conditions. Right: Reflecting boundary conditions. 

Fig. 12. Initial condition (49) with ε = 0 . 2 . The force field is the derivative of a periodic potential. Spatial domain −5 < x < 5 , D = 1 , γ = 1 , α = 0 . 8 , 

T = 50 . Left: Absorbing boundary conditions. Right: Reflecting boundary conditions. 

Fig. 13. Top: Numerical solution computed with the finite difference method [6] . Bottom: Numerical solution computed with the finite volume method. 

Initial condition (49) with ε = 0 . 2 . The force field is the derivative of a periodic potential. Open domain with γ = 1 , α = 0 . 3 , T = 30 , �x = �v = 0 . 1 , 

�t = 0 . 05 . From left to right the diffusion increases: D = 0 . 001 , D = 0 . 01 , D = 1 . 

 

 

 

 

6. Conclusions 

A family of finite volume schemes have been implemented that includes first and second-order methods in phase space

and are explicit or implicit in time. We have seen that explicit methods impose restrictive conditions for the cases when

α is less than 0.5 and therefore the development of implicit methods in this context is of importance. Explicit methods,

presented in the literature, for differential equations that involve a fractional derivative in time, show this limitation. We
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have also considered absorbing and reflecting boundaries that lead us to a different formulation of the numerical approach

near the boundaries. This formulation had an influence on the lost of accuracy of the overall numerical method. However, it

was shown that the lost of accuracy can be recovered with the use of non-uniform meshes. 
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