
A family of �nite di�erene shemes for theonvetion-di�usion equation in twodimensionsEr��lia Sousa1;2 and Ian Sobey11 Oxford University Computing Laboratory, Wolfson Building, Parks Road,Oxford OX1 3QD, England2 New address: Departamento de Matem�atia, Universidade de CoimbraApartado 3008, 3001-454 Coimbra, PortugalAbstrat. The onstrution of �nite di�erene shemes in two dimensions is moreambiguous than in one dimension. This ambiguity arises beause di�erent ombi-nations of loal nodal values are equally able to model loal behaviour with thesame order of auray. In this paper we outline an evolution operator for the two-dimensional onvetion-di�usion problem in an unbounded domain and use it as thesoure for obtaining a family of seond order (Lax-Wendro�) shemes and third-order (Quikest) shemes not yet studied in the literature. Additionally we studyand ompare the stability of these seond-order and third-order shemes using thevon Neumann method.1 IntrodutionA deeptively simple balane of onvetion and di�usion is related to manyproblems in omputational uid dynamis. Despite its simpliity, this bal-ane is very diÆult to simulate without arti�ial e�ets suh as inreaseddispersion or osillations degrading the solution �delity. These e�ets takeon inreased importane in two and three-dimensional ows beause of dif-�ulty in resolving all possible length sales. Great advanes in simulatingonvetion-di�usion have ourred in the last two deades and it is now pos-sible to devise shemes of arbitrary auray for onstant veloity onvetionin an unbounded domain.In this paper we dedue a new family of seond-order shemes (that weall Lax-Wendro� shemes) and third-order shemes (that we all Quik-est shemes) by using an evolution operator in an unbounded domain forthe two-dimensional onvetion-di�usion problem. The one-dimensional Lax-Wendro� sheme is due to Lax and Wendro� [1℄ and the Quikest sheme wasintrodued by Leonard [2℄ as an alternative to entral di�erening onvetionor to upwinding di�erening onvetion.The Lax-Wendro� shemes are a lass of shemes whih have attainedonsiderable stature in theoretial studies of di�erene shemes. The essen-tial property of the Lax-Wendro� shemes lies in the ombination of time and



2 Er��lia Sousa & Ian Sobeyspae-entred disretisations. Their popularity is due to their seond-order a-uray and simpliity, although their behaviour around disontinuities is notfully satisfatory. The Quikest sheme was �rst generalised in two dimen-sions by Davis and Moore [3℄ but when generalising the method they ignoredsome of the ross-derivatives and that redued the temporal auray of thesheme. The new Quikest shemes are expeted to be more aurate in timethan the Quikest sheme derived by Davis and Moore [3℄, sine we take intoaount the ross-derivatives.To analyse the pratial stability of the numerial shemes we use vonNeumann analysis. We observe that interesting di�erenes our between thestability regions of the di�erent numerial shemes. For a lear visualisationof the stability regions we plot suÆient and neessary stability onditionsin a three-dimensional spae, in whih the oordinates involve the onvetiveoeÆients and the di�usion.Stability of �nite di�erene shemes has been widely desribed in theliterature. Two important books on stability analysis of di�erene methodsare the lassial book by Rihtmyer and Morton [4℄ and the more reent bookby Gustafsson et al [5℄. The latter onentrates its attention in the normalmode analysis. Some of the work on stability analysis for �nite di�ereneshemes for the onvetion-di�usion equation using the von Neumann methodwas done by Bekers [6℄ for a sheme in three dimensions, Hindmarsh et al[7℄ for a multidimensional entral sheme, Kwok and Tam [8℄ for leap-frog-type �nite di�erene shemes, Siemieniuh and Gladwell [9℄ for entral andupwind shemes, Verwer and Sommeijer [10℄ in relation with an odd-even-linehopsoth method, and Wesseling [11℄ for a fourth-order entral sheme.2 Finite di�erenes shemesMorton and Sobey [12℄ have derived shemes using the exat solution ofa one-dimensional onvetion-di�usion problem. In this setion we apply thesame idea by deriving the analyti solution for a two-dimensional onvetion-di�usion problem and using it as the soure for obtaining the �nite di�ereneshemes.Consider the onvetion-di�usion equation with oeÆient D > 0:�u�t (x; y; t) + V �u�x (x; y; t) +W �u�y (x; y; t) = D��2u�x2 + �2u�y2� (x; y; t) (1)and the initial ondition u(x; y; 0) = u0(x; y): (2)The di�usion oeÆient is taken to be positive sine a negative oeÆient isa physial impossibility. Using a two-dimensional Fourier transform to �nd



Finite di�erenes for onvetion-di�usion 3the solution for the problem (1),(2) we obtain:u(x; y; t) = 1� Z +1�1 Z +1�1 u0(x�V t+2pDt�; y�Wt+2pDt�)e��2��2d�d�:(3)This is a two-dimensional evolution operator. In a manner similar, to theone-dimensional ase, it de�nes a Green's funtion G(x; y;�t) whih givesthe evolution over a single time-step:u(x; y; tn +�t) = 1� Z +1�1 Z +1�1 u(�; �; tn)G(x � �; y � �;�t)d�d� (4)where G(s; p; t) = 14Dt� e�(s�V t)2=4Dte�(p�Wt)2=4Dt.Using the evolution operator (4) and following the same proedure as inMorton and Sobey [12℄ for one dimension, we an now obtain �nite di�er-ene shemes by interpolation on a uniform mesh. We denote by Unjk theapproximations to the values u(xj ; yk; tn) at the mesh points (xj ; yk) =(j�x; k�y); j; k = 0;�1;�2; : : : :We use the usual operators, entral, seond di�erene, bakward and for-ward respetively:�x0Ujk = (Uj+1k � Uj�1k)=2; Æ2xUjk = Uj+1k � 2Ujk + Uj�1k ;�x�Ujk = Ujk � Uj�1k; �x+Ujk = Uj+1k � Ujk :The operators �y0; Æ2y ; �y�; �y+ are de�ned similarly.We hoose uniform spae-steps �x and �y and a time-step �t. We alsode�ne the important quantities �x, �y, �x and �y, that we are using in whatfollows: �x = V �t�x ; �y = W�t�y �x = D�t�x2 ; �y = D�t�y2 :In the next setions we derive a family of Lax-Wendro� shemes and afamily of Quikest shemes in two dimensions. Firstly we derive the shemesbased on a quadrati and ubi polynomial interpolation of the funtionu(�; �; tn) that appears in (4). Seondly we also derive shemes by usingTaylor approximations of order two and three, of the same funtion.The generalisation of �nite di�erene shemes for a onvetion di�u-sion equation to multidimensions is not just the sum of the individual one-dimensional ontributions, sine the simple addition of individual �nite dif-ferenes in x and y without appropriate ross terms an lead to a basiinstability.



4 Er��lia Sousa & Ian Sobey2.1 Polynomial approximationIn this setion we obtain �nite di�erene shemes by approximating u(x; y; tn)in (4) by a loal polynomial of degree K around the point (xj ; yk), namely,pjk(x; y) = KXr=0 KXs=0 brs(x� xj)r(y � yk)s:Using the exat evolution operator, the approximation Un+1jk is given byUn+1jk = KXr;s=0 brs� ZIR2 (�V �t+ 2pD�t�)r(�W�t+ 2pD�t�)se��2��2d�d�:If the power terms are expanded then all the integrals an be determined andwe an write:Un+1jk = b00 � b10V �t� b01W�t+ b11V W (�t)2 + b20(2D�t+ V 2(�t)2)+b02(2D�t+W 2(�t)2)� b30(6DV (�t)2 + V 3(�t)3)�b03(6DW (�t)2 +W 3(�t)3)� b21W�t(2D�t+ V 2(�t)2)�b12V �t(2D�t+W 2(�t)2) + : : : : (5)Within this formula we obtain seond and third-order �nite di�erene shemesby using quadrati interpolation or ubi interpolation.If we use a quadrati interpolation we need to hoose six interpolationpoints to determine the six oeÆients b00; b01; b10; b20; b11; b02. We obtain adi�erent method for eah hoie of points. Any nodal value will have eightneighbouring points so we need to hoose six points from the nine points(nodal point plus eight neighbours). We hoose the points, so that they forma �ve-point star around (xj ; yk) and the sixth point is seleted aording tothe diretion of the veloities V and W . For instane assume that V and Ware positive. We hoose the sixth interpolation point to be (xj�1; yk�1). Thenwe have the formula:Un+1jk = [1��x�x0��y�y0+(12�2x+�x)Æ2x+(12�2y+�y)Æ2y+�x�y�x��y�℄Unjk :(6)We all this sheme the Polynomial Lax-Wendro� sheme.Clearly there are three other on�gurations depending on various ombi-nations of the signs of V and W . For V negative and W positive, we hoosethe sixth point as (xj+1; yk�1). If V is positive and W negative, we on-sider the point (xj�1; yk+1) and for V and W negative we hoose the point(xj+1; yk+1). The di�erent possibilities an give us a di�erent oeÆient b11.Next we turn to ubi interpolation. One advantage of using high-ordermethods is that numerial di�usion and dispersion errors are relatively smallerthan in low order methods. The proedure is illustrated for two-dimensional



Finite di�erenes for onvetion-di�usion 5ow with veloity V and W positive as in the previous ase. We need touse ten points to arry out this interpolation. Using the ten points Uj�2k ,Uj�1k�1, Uj�1k , Uj�1k+1, Ujk�2, Ujk�1, Ujk , Ujk+1, Uj+1k�1 and Uj+1k toevaluate brs, r = 0; 1; 2; 3; s = 0; 1; 2; 3 we �nd the sheme:Un+1jk = Unjk � �x�x0Unjk � �y�y0Unjk + (12�2x + �x)Æ2xUnjk + (12�2y + �y)Æ2yUnjk+12�x�y�y+�x�Unjk + 12�x�y�x+�y�Unjk+16�x(1� �2x � 6�x)Æ2x�x�Unjk + 16�y(1� �2y � 6�y)Æ2y�y�Unjk��y(�x + 12�2x)Æ2x�y�Unjk � �x(�y + 12�2y)Æ2y�x�Unjk : (7)This sheme is alled the Polynomial Quikest sheme. As with the Lax-Wendro� shemes, we an hange the hoie of the mesh points, dependingon the diretion of the veloities. The hanges that our in the sheme(7) aording to the sign of the veloities involve hanges in the oeÆientsb11; b12; b21; b30 and b03.2.2 Taylor approximationIn the previous setion we onsidered a loal polynomial interpolation of someseleted points in a neighbourhood of (xj ; yk). Sine the loal interpolationrequires only a small number of neighbouring points, we used the ow dire-tions to hoose whih neighbouring points to use. Now we use an alternativeidea and approximate u(x; y; tn) by a trunated Taylor series of degree Karound (xj ; yk): tjk(x; y) = KXr=0 KXs=0 brs(x� xj)r(y � yk)s; (8)where brs = uxrysr!s! . Using the evolution operator as in the previous setion,depending on the order of the expansion we an obtain the numerial shemesdesribed below.For the seond-order aurate Taylor expansion we obtain the numerialmethod:Un+1jk = [1�(�x�x0+�y�y0)+(12�2x+�x)Æ2x+(12�2y+�y)Æ2y+�x�y�x0�y0℄Unjk :(9)This sheme uses a nine-point sheme and we all it the Taylor Lax-Wendro�sheme. This method an be used independently of the sign of the veloityomponents.For the third-order aurate Taylor expansion, taking in onsiderationthat V and W are positive, we use the eleven point stenil Uj�2k, Uj�1k�1,



6 Er��lia Sousa & Ian SobeyUj�1k Uj�1k+1, Ujk�2, Ujk�1, Ujk , Ujk+1 Uj+1k�1, Uj+1k , and Uj+1k+1. Itgives the numerial method:Un+1jk = Unjk � �x�x0Unjk � �y�y0Unjk+(12�2x + �x)Æ2xUnjk + (12�2y + �y)Æ2yUnjk + �x�y�x0�y0Unjk+16�x(1� �2x � 6�x)Æ2x�x�Unjk + 16�y(1� �2y � 6�y)Æ2y�y�Unjk��y(�x + 12�2x)Æ2x�y0Unjk � �x(�y + 12�2y)Æ2y�x0Unjk : (10)Similarly to the previous shemes, we all this sheme the Taylor Quikestsheme. The hoie of the mesh points, to approximate the third derivatives,depends on the diretions of the veloity omponents and a�ets the valuesof the oeÆients b30 and b03.In the next setion we use the von Neumann method to analyse the sta-bility region of these four numerial shemes.3 Von Neumann stability analysisThe von Neumann analysis in two dimensions is a straightforward generalisa-tion of the one-dimensional ase. The disrete Fourier deomposition in twodimensions onsists of the deomposition of the funtion into a Fourier seriesas Unjk = X�x;�y �nei�xj�xei�yk�y ;where the range �x, �y is de�ned separately for eah diretion, as in the one-dimensional ase. The ampli�ation fator is given by �. The produts �x�xand �y�y are often represented as a phase angle, namely, �x = �x�x; �y =�y�y: To obtain a von Neumann stability ondition we insert the singularomponent �neij�xeik�y into the disretised sheme. The ampli�ation fatoris said to satisfy the von Neumann ondition if there is a onstant K suhthat j�(�x; �y)j � 1 +K�t 8 �x; �y 2 [0; 2�℄: (11)As in the one-dimensional ase, in pratie we use the stronger onditionj�(�x; �y)j � 1 8 �x; �y 2 [0; 2�℄; (12)and the disrete sheme that meets this ondition, we refer to as von Neumannstable. This has been alled pratial stability by Rihtmyer and Morton [4℄or strit stability by other authors. In some ases ondition (11) allows nu-merial modes to grow exponentially in time for �nite values of�t. Therefore,the pratial, or strit, stability ondition (12) is reommended in order toprevent numerial modes from growing faster than the physial modes of thedi�erential equation.



Finite di�erenes for onvetion-di�usion 7For our �nite di�erene shemes we derive mostly analytial neessaryonditions. Nevertheless we plot numerially the suÆient and neessary sta-bility regions in the three-dimensional spae (�x; �y; �), where for simpliitywe assume � = �x = �y.We present below lemmas that desribe only neessary stability ondi-tions for the four numerial shemes derived in the previous setion. Theseanalytial results orrespond to ondition (12) for phase angles of high fre-queny, namely, �x = � and �y = �, and for the limiting ase �x ! 0, �y ! 0.Neessary and suÆient onditions for the stability of the numerial shemesare displayed in Fig. 1-4, where the stable regions are inside the surfaes.
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8 Er��lia Sousa & Ian SobeyLemma 4 A neessary ondition for the Taylor Quikest sheme (10) to bestable is:(�2x +2�x) + (�2y +2�y) + 23�x(1� �2x � 6�x) + 23�y(1� �2y � 6�y) � 1: (18)
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