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Abstract. The construction of finite difference schemes in two dimensions is more
ambiguous than in one dimension. This ambiguity arises because different combi-
nations of local nodal values are equally able to model local behaviour with the
same order of accuracy. In this paper we outline an evolution operator for the two-
dimensional convection-diffusion problem in an unbounded domain and use it as the
source for obtaining a family of second order (Lax-Wendroff) schemes and third-
order (Quickest) schemes not yet studied in the literature. Additionally we study
and compare the stability of these second-order and third-order schemes using the
von Neumann method.

1 Introduction

A deceptively simple balance of convection and diffusion is related to many
problems in computational fluid dynamics. Despite its simplicity, this bal-
ance is very difficult to simulate without artificial effects such as increased
dispersion or oscillations degrading the solution fidelity. These effects take
on increased importance in two and three-dimensional flows because of dif-
ficulty in resolving all possible length scales. Great advances in simulating
convection-diffusion have occurred in the last two decades and it is now pos-
sible to devise schemes of arbitrary accuracy for constant velocity convection
in an unbounded domain.

In this paper we deduce a new family of second-order schemes (that we
call Lax-Wendroff schemes) and third-order schemes (that we call Quick-
est schemes) by using an evolution operator in an unbounded domain for
the two-dimensional convection-diffusion problem. The one-dimensional Lax-
Wendroff scheme is due to Lax and Wendroff [1] and the Quickest scheme was
introduced by Leonard [2] as an alternative to central differencing convection
or to upwinding differencing convection.

The Lax-Wendroff schemes are a class of schemes which have attained
considerable stature in theoretical studies of difference schemes. The essen-
tial property of the Lax-Wendroff schemes lies in the combination of time and
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space-centred discretisations. Their popularity is due to their second-order ac-
curacy and simplicity, although their behaviour around discontinuities is not
fully satisfactory. The Quickest scheme was first generalised in two dimen-
sions by Davis and Moore [3] but when generalising the method they ignored
some of the cross-derivatives and that reduced the temporal accuracy of the
scheme. The new Quickest schemes are expected to be more accurate in time
than the Quickest scheme derived by Davis and Moore [3], since we take into
account the cross-derivatives.

To analyse the practical stability of the numerical schemes we use von
Neumann analysis. We observe that interesting differences occur between the
stability regions of the different numerical schemes. For a clear visualisation
of the stability regions we plot sufficient and necessary stability conditions
in a three-dimensional space, in which the coordinates involve the convective
coefficients and the diffusion.

Stability of finite difference schemes has been widely described in the
literature. Two important books on stability analysis of difference methods
are the classical book by Richtmyer and Morton [4] and the more recent book
by Gustafsson et al [5]. The latter concentrates its attention in the normal
mode analysis. Some of the work on stability analysis for finite difference
schemes for the convection-diffusion equation using the von Neumann method
was done by Beckers [6] for a scheme in three dimensions, Hindmarsh et al
[7] for a multidimensional central scheme, Kwok and Tam [8] for leap-frog-
type finite difference schemes, Siemieniuch and Gladwell [9] for central and
upwind schemes, Verwer and Sommeijer [10] in relation with an odd-even-line
hopscotch method, and Wesseling [11] for a fourth-order central scheme.

2 Finite differences schemes

Morton and Sobey [12] have derived schemes using the exact solution of
a one-dimensional convection-diffusion problem. In this section we apply the
same idea by deriving the analytic solution for a two-dimensional convection-
diffusion problem and using it as the source for obtaining the finite difference
schemes.

Consider the convection-diffusion equation with coefficient D > 0:

Ou ou ou u  Ou

and the initial condition

U(iE,y,O) :U'O(wvy)' (2)

The diffusion coefficient is taken to be positive since a negative coefficient is
a physical impossibility. Using a two-dimensional Fourier transform to find
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the solution for the problem (1),(2) we obtain:

1 o[ree e 22
u(z,y,t) = ;/ / uo(z — Vit +2VDté,y — Wt +2VDtr)e 8 ~7 dédr.
(3)

This is a two-dimensional evolution operator. In a manner similar, to the
one-dimensional case, it defines a Green’s function G(z,y, At) which gives
the evolution over a single time-step:

+o00 +o00
u(x,y,tn + At) = % l l U(fﬂ?,tn)G(ﬂU - fay - At)dfdn (4)

where G(s,p,t) o (s=Vt)?/4Dt \—(p—Wt)> /4Dt

4Dtr

Using the evolution operator (4) and following the same procedure as in
Morton and Sobey [12] for one dimension, we can now obtain finite differ-
ence schemes by interpolation on a uniform mesh. We denote by Ujj, the
approximations to the values w(z;,yg,tn) at the mesh points (z;,yr) =
(jAz, kAy), 4 k=0,+1,+2,....

We use the usual operators, central, second difference, backward and for-
ward respectively:

A00Ujk, = (Ujpak = Uj—1r) /2, 82Uk = Ujgar — 2Uji + Uj 1,
A Ujr, =Uji, = Uj_g, Ao Uje = Ujpar — Ui

The operators Ay, 82, A,_, Ay are defined similarly.

We choose uniform space-steps Az and Ay and a time-step At. We also
define the important quantities v, vy, p, and p,, that we are using in what
follows:

VA Y DAt DAt

=g WSy M= g M= 3

In the next sections we derive a family of Lax-Wendroff schemes and a
family of Quickest schemes in two dimensions. Firstly we derive the schemes
based on a quadratic and cubic polynomial interpolation of the function
u(€,m,t,) that appears in (4). Secondly we also derive schemes by using
Taylor approximations of order two and three, of the same function.

The generalisation of finite difference schemes for a convection diffu-
sion equation to multidimensions is not just the sum of the individual one-
dimensional contributions, since the simple addition of individual finite dif-
ferences in z and y without appropriate cross terms can lead to a basic
instability.



4 Ercilia Sousa & Ian Sobey

2.1 Polynomial approximation

In this section we obtain finite difference schemes by approximating u(z,y, t,)
in (4) by a local polynomial of degree K around the point (z;,ys), namely,

K K
pjr(®,y) = Z Zbrs(fﬂ — ;)" (y — )’

r=0 s=0

Using the exact evolution operator, the approximation Uj’;c“ is given by

K
Urt =% brs / (—V At + 2VDALE) (WAL + 2VDAtr) e € 7 dedr.
Vs IR2

r,s=0

If the power terms are expanded then all the integrals can be determined and
we can write:

UTH' = boo — bioV At — bt W At + by VIV (At)® + bao (2D At + V?(At)?)
+boa (2D AL + W2 (A1)?) — b3 (6DV (At)* + V3 (At)?)
—bo3(6DW (A)® + W3(AL)?) — by WAL(2D At + V(At)?)
—b1aVAL2DAL + W2(AH) + ... (5)

Within this formula we obtain second and third-order finite difference schemes
by using quadratic interpolation or cubic interpolation.

If we use a quadratic interpolation we need to choose six interpolation
points to determine the six coefficients bog, bo1, b10, b20, b11, bo2. We obtain a
different method for each choice of points. Any nodal value will have eight
neighbouring points so we need to choose six points from the nine points
(nodal point plus eight neighbours). We choose the points, so that they form
a five-point star around (z;,yx) and the sixth point is selected according to
the direction of the velocities V' and W. For instance assume that V' and W
are positive. We choose the sixth interpolation point to be (;_1,yx—1). Then
we have the formula:

1 1
Uit = (1=, Apo—vy Ayo+ (55 + 112) 65 + (515 + 11y 0y +v2vy Ap - Ay U

2 2
(6)
We call this scheme the Polynomial Lax-Wendroff scheme.

Clearly there are three other configurations depending on various combi-
nations of the signs of V and W. For V negative and W positive, we choose
the sixth point as (zjy1,yr—1). If V is positive and W negative, we con-
sider the point (z;_1,yr+1) and for V' and W negative we choose the point
(j4+1,Yk+1). The different possibilities can give us a different coefficient bq;.

Next we turn to cubic interpolation. One advantage of using high-order
methods is that numerical diffusion and dispersion errors are relatively smaller
than in low order methods. The procedure is illustrated for two-dimensional
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flow with velocity V and W positive as in the previous case. We need to
use ten points to carry out this interpolation. Using the ten points U;_sy,
Uj—ik-1, Uj—1g, Uj—irt1, Ujk—2, Ujr—1, Ujk, Ujrt1, Ujr1x—1 and Ujp1p to
evaluate b.s, r = 0,1,2,3; s =0,1,2,3 we find the scheme:

1
Vg +lix)6925Uﬁc (

1
Ut = Ufy, — va AnoUJy, — vy AU}, + (5 5

2
1 n o1
+§VnyAy+Ax_Ujk + nyyyAgH_Ay_U

Vy + /“‘y)‘sy ik

1 1 .
+61/x(1 — V2 — b)) A, _Uj}, + 61/y(1 — vy —6uy)0, AU

1 n 1 n
vy(pa + 5’/3)5925Ay* ik~ Va(py + 5’/5)5§Am7 ke (7)

This scheme is called the Polynomial Quickest scheme. As with the Lax-
Wendroff schemes, we can change the choice of the mesh points, depending
on the direction of the velocities. The changes that occur in the scheme
(7) according to the sign of the velocities involve changes in the coefficients
bi1,b12, b1, b30 and bo3.

2.2 Taylor approximation

In the previous section we considered a local polynomial interpolation of some
selected points in a neighbourhood of (z;,yx). Since the local interpolation
requires only a small number of neighbouring points, we used the flow direc-
tions to choose which neighbouring points to use. Now we use an alternative
idea and approximate u(z,y,t,) by a truncated Taylor series of degree K
around (z;,yx):

K K
jk T y Zzbrs T — CU] (y - yk)sa (8)

r=0 s=0

Ugrys . . . . .
1“: . Using the evolution operator as in the previous section,

where b,s =

depending on the order of the expansion we can obtain the numerical schemes
described below.

For the second-order accurate Taylor expansion we obtain the numerical
method:

Ujf;jl — [1_(yxAx0+uyAy0)+(%u§+um)5§+(%u§+uy)62+uzuyAx0Ay0]U]k

(9)

This scheme uses a nine-point scheme and we call it the Taylor Lax-Wendroff

scheme. This method can be used independently of the sign of the velocity
components.

For the third-order accurate Taylor expansion, taking in consideration

that V' and W are positive, we use the eleven point stencil Uj;_as, Uj_1—1,
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Uj—1k Uj—ivt1, Ujk—2, Ujk—1, Uji, Ujpy1 Ujpin—1, Ujpar, and Ujpipgr- It
gives the numerical method:

Uﬁjl = Ujj, — Ve AeoUjj, — vy AU
+(%1/£ + ux)éng”k + (%1/5 + uy)ézank + vy Aro AyoUjj
-I-él/z(l — U —6pp) 02 A, Uy + %I/y(l — vy —6py)0. A, U
—vy (e + %V%)&iAyoUﬁ — vy (py + %VZ)&ZAIO - (10)

Similarly to the previous schemes, we call this scheme the Taylor Quickest
scheme. The choice of the mesh points, to approximate the third derivatives,
depends on the directions of the velocity components and affects the values
of the coefficients bzg and bos.

In the next section we use the von Neumann method to analyse the sta-
bility region of these four numerical schemes.

3 Von Neumann stability analysis

The von Neumann analysis in two dimensions is a straightforward generalisa-
tion of the one-dimensional case. The discrete Fourier decomposition in two
dimensions consists of the decomposition of the function into a Fourier series

as
n __ n if.jAx i€, kA
jk_E:negj elévkAy,
§a .8y

where the range &, &, is defined separately for each direction, as in the one-
dimensional case. The amplification factor is given by k. The products &, Ax
and &, Ay are often represented as a phase angle, namely, 0, = &, Az, 0, =
&y Ay. To obtain a von Neumann stability condition we insert the singular
component k"e'%el#% into the discretised scheme. The amplification factor
is said to satisfy the von Neumann condition if there is a constant K such
that

|k(0z,0,)| <1+ KAt V6,,60, € [0,27]. (11)

As in the one-dimensional case, in practice we use the stronger condition
|k(0z,0,) <1 V8,,8, €[0,2n], (12)

and the discrete scheme that meets this condition, we refer to as von Neumann
stable. This has been called practical stability by Richtmyer and Morton [4]
or strict stability by other authors. In some cases condition (11) allows nu-
merical modes to grow exponentially in time for finite values of At. Therefore,
the practical, or strict, stability condition (12) is recommended in order to
prevent numerical modes from growing faster than the physical modes of the
differential equation.
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For our finite difference schemes we derive mostly analytical necessary
conditions. Nevertheless we plot numerically the sufficient and necessary sta-
bility regions in the three-dimensional space (v, vy, ), where for simplicity
we assume fL = [ly = [by.

We present below lemmas that describe only necessary stability condi-
tions for the four numerical schemes derived in the previous section. These
analytical results correspond to condition (12) for phase angles of high fre-
quency, namely, 8, = m and 6, = 7, and for the limiting case §, — 0, 8, — 0.
Necessary and sufficient conditions for the stability of the numerical schemes
are displayed in Fig. 1-4, where the stable regions are inside the surfaces.

Fig.1. (a) von Neumann stability analysis for the Polynomial Lax-Wendroff
scheme; (b) projection of the figure (a) on the plane v, o vy: p = 0.05 (—);
p=01(=-=);p=02(-);p=024(——).

Lemma 1 Necessary conditions for the Polynomial Lax-Wendroff scheme
(6) to be stable are:

2(pr 4+ py) <1 (13)
(Ve = vy)” <1 = 2(ta + 1) (14)

Lemma 2 Necessary conditions for the Taylor Laz-Wendroff scheme (9) to
be stable are:

2(pe + py) <1 (15)
vi+ vy <1 =2(pts + py). (16)

Lemma 3 A necessary condition for the Polynomial Quickest scheme (7) to
be stable is:

(V2 + 2u,) (1 — 2v) + (1/; +20y) (1 = 2v) + 2v,py

2 2
-I-gl/z(]. —v2 —6u,) + gl/y(l - 1/; —6py) < 1. (17)
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Lemma 4 A necessary condition for the Taylor Quickest scheme (10) to be
stable is:

2 2
(V2 +2p0) + (v +2y) + 302 (1= 17 = 6pa) + 21y (1 = vy = 6p) < 1. (18)

(a) (b)
Fig. 2. (a) von Neumann stability analysis for the Taylor Lax-Wendroff scheme;
(b) projection of the figure (a) on the plane v, ovy: p=0.02 (——); £ =0.1 (—-—);
pn=02(-)p=024(-).

In Lemma 1 condition (14) is associated with the diagonal lines shown in
Fig. 1(b), which determines the stable region to be between the two lines as
we see in Fig. 1(b). Condition (13) gives us a limit for the diffusion parame-
ter. We observe that the Polynomial Lax-Wendroff scheme is still stable for
simultaneously large values of v, and v, when p is small. Although we plot
the stability region for (v,,v,) € [—1,1] x [-1,1], note that for this scheme
we are assuming that both velocity components are positive, that is, that v,
and v, are both positive.

The second lemma concerns the Taylor Lax-Wendroff scheme. Although
this scheme can be used independently of the signs of the velocity compo-
nents, it has a smaller region of stability for small u, when compared with the
Polynomial Lax-Wendroff scheme (6). In Fig. 2 we plot necessary and suffi-
cient von Neumann stability conditions for the Taylor Lax-Wendroff scheme
(9). In view of the Fig. 2(b), a necessary and sufficient condition for this
scheme is condition (16) in Lemma 2 associated with some other condition
that seems to change as y increases from |v,|*/%+|v, |>/? < 1to |v,|+|v,| < 1.

For the Polynomial Quickest scheme we have a necessary condition for
the stability of the scheme in Lemma 3 and we plot sufficient and necessary
conditions in figure 3. Note that on the three-dimensional surface displayed in
figure 3, we have p < 9/16. This value corresponds to (v,,v,) = (1/4,1/4).
The stability regions for the small y are bigger than those of both Lax-
Wendroff schemes.

Next, in Lemma 4, we provide a necessary condition for the stability
of the Taylor Quickest scheme. Sufficient and necessary conditions for the
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(a) (b)
Fig. 3. (a) von Neumann stability analysis for the Polynomial Quickest scheme;
(b) projection of the figure (a) on the plane vy ovy: = 0.02 (---); p = 0.1 (—-—);
p=02(—=);p=04(-).

Taylor Quickest scheme are shown in figure 4. By assuming p, = p, = p and
vy = vy = 1/4in (18) we have the condition p < 9/32. This is the maximum
value that p can take inside the stable region (see figure 4).

4 Summary

In this paper we provided von Neumann stability regions for various finite
difference schemes. The Lax-Wendroff schemes considered present regions of
stability that are sufficient and necessary conditions, with a shape that ap-
pears to have a simple form, although we found considerable difficulties when
we attempted to find these conditions analytically. The main source of these
difficulties was related to the majorisation of the Fourier terms associated
with the mixed derivatives. The Quickest schemes present more awkward
regions and they do not seem to show an obvious regularity leading us to
conjecture that to provide the analytical sufficient and necessary conditions
is an extremely difficult task. Therefore we provide only the analytical nec-
essary conditions, although sufficient and necessary regions of stability are
calculated numerically. We know that the presence of boundary conditions
interferes with the stability of a finite difference scheme. Although in the
presence of boundaries that are not periodic the von Neumann condition is
no longer a sufficient condition, it remains an important necessary condition.
A cknowledgments: ES acknowledges support from Sub-Programa Ciéncia
e Tecnologia do 2 Quadro Comunitédrio de Apoio, Portugal.
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