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t. The 
onstru
tion of �nite di�eren
e s
hemes in two dimensions is moreambiguous than in one dimension. This ambiguity arises be
ause di�erent 
ombi-nations of lo
al nodal values are equally able to model lo
al behaviour with thesame order of a

ura
y. In this paper we outline an evolution operator for the two-dimensional 
onve
tion-di�usion problem in an unbounded domain and use it as thesour
e for obtaining a family of se
ond order (Lax-Wendro�) s
hemes and third-order (Qui
kest) s
hemes not yet studied in the literature. Additionally we studyand 
ompare the stability of these se
ond-order and third-order s
hemes using thevon Neumann method.1 Introdu
tionA de
eptively simple balan
e of 
onve
tion and di�usion is related to manyproblems in 
omputational 
uid dynami
s. Despite its simpli
ity, this bal-an
e is very diÆ
ult to simulate without arti�
ial e�e
ts su
h as in
reaseddispersion or os
illations degrading the solution �delity. These e�e
ts takeon in
reased importan
e in two and three-dimensional 
ows be
ause of dif-�
ulty in resolving all possible length s
ales. Great advan
es in simulating
onve
tion-di�usion have o

urred in the last two de
ades and it is now pos-sible to devise s
hemes of arbitrary a

ura
y for 
onstant velo
ity 
onve
tionin an unbounded domain.In this paper we dedu
e a new family of se
ond-order s
hemes (that we
all Lax-Wendro� s
hemes) and third-order s
hemes (that we 
all Qui
k-est s
hemes) by using an evolution operator in an unbounded domain forthe two-dimensional 
onve
tion-di�usion problem. The one-dimensional Lax-Wendro� s
heme is due to Lax and Wendro� [1℄ and the Qui
kest s
heme wasintrodu
ed by Leonard [2℄ as an alternative to 
entral di�eren
ing 
onve
tionor to upwinding di�eren
ing 
onve
tion.The Lax-Wendro� s
hemes are a 
lass of s
hemes whi
h have attained
onsiderable stature in theoreti
al studies of di�eren
e s
hemes. The essen-tial property of the Lax-Wendro� s
hemes lies in the 
ombination of time and
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e-
entred dis
retisations. Their popularity is due to their se
ond-order a
-
ura
y and simpli
ity, although their behaviour around dis
ontinuities is notfully satisfa
tory. The Qui
kest s
heme was �rst generalised in two dimen-sions by Davis and Moore [3℄ but when generalising the method they ignoredsome of the 
ross-derivatives and that redu
ed the temporal a

ura
y of thes
heme. The new Qui
kest s
hemes are expe
ted to be more a

urate in timethan the Qui
kest s
heme derived by Davis and Moore [3℄, sin
e we take intoa

ount the 
ross-derivatives.To analyse the pra
ti
al stability of the numeri
al s
hemes we use vonNeumann analysis. We observe that interesting di�eren
es o

ur between thestability regions of the di�erent numeri
al s
hemes. For a 
lear visualisationof the stability regions we plot suÆ
ient and ne
essary stability 
onditionsin a three-dimensional spa
e, in whi
h the 
oordinates involve the 
onve
tive
oeÆ
ients and the di�usion.Stability of �nite di�eren
e s
hemes has been widely des
ribed in theliterature. Two important books on stability analysis of di�eren
e methodsare the 
lassi
al book by Ri
htmyer and Morton [4℄ and the more re
ent bookby Gustafsson et al [5℄. The latter 
on
entrates its attention in the normalmode analysis. Some of the work on stability analysis for �nite di�eren
es
hemes for the 
onve
tion-di�usion equation using the von Neumann methodwas done by Be
kers [6℄ for a s
heme in three dimensions, Hindmarsh et al[7℄ for a multidimensional 
entral s
heme, Kwok and Tam [8℄ for leap-frog-type �nite di�eren
e s
hemes, Siemieniu
h and Gladwell [9℄ for 
entral andupwind s
hemes, Verwer and Sommeijer [10℄ in relation with an odd-even-linehops
ot
h method, and Wesseling [11℄ for a fourth-order 
entral s
heme.2 Finite di�eren
es s
hemesMorton and Sobey [12℄ have derived s
hemes using the exa
t solution ofa one-dimensional 
onve
tion-di�usion problem. In this se
tion we apply thesame idea by deriving the analyti
 solution for a two-dimensional 
onve
tion-di�usion problem and using it as the sour
e for obtaining the �nite di�eren
es
hemes.Consider the 
onve
tion-di�usion equation with 
oeÆ
ient D > 0:�u�t (x; y; t) + V �u�x (x; y; t) +W �u�y (x; y; t) = D��2u�x2 + �2u�y2� (x; y; t) (1)and the initial 
ondition u(x; y; 0) = u0(x; y): (2)The di�usion 
oeÆ
ient is taken to be positive sin
e a negative 
oeÆ
ient isa physi
al impossibility. Using a two-dimensional Fourier transform to �nd



Finite di�eren
es for 
onve
tion-di�usion 3the solution for the problem (1),(2) we obtain:u(x; y; t) = 1� Z +1�1 Z +1�1 u0(x�V t+2pDt�; y�Wt+2pDt�)e��2��2d�d�:(3)This is a two-dimensional evolution operator. In a manner similar, to theone-dimensional 
ase, it de�nes a Green's fun
tion G(x; y;�t) whi
h givesthe evolution over a single time-step:u(x; y; tn +�t) = 1� Z +1�1 Z +1�1 u(�; �; tn)G(x � �; y � �;�t)d�d� (4)where G(s; p; t) = 14Dt� e�(s�V t)2=4Dte�(p�Wt)2=4Dt.Using the evolution operator (4) and following the same pro
edure as inMorton and Sobey [12℄ for one dimension, we 
an now obtain �nite di�er-en
e s
hemes by interpolation on a uniform mesh. We denote by Unjk theapproximations to the values u(xj ; yk; tn) at the mesh points (xj ; yk) =(j�x; k�y); j; k = 0;�1;�2; : : : :We use the usual operators, 
entral, se
ond di�eren
e, ba
kward and for-ward respe
tively:�x0Ujk = (Uj+1k � Uj�1k)=2; Æ2xUjk = Uj+1k � 2Ujk + Uj�1k ;�x�Ujk = Ujk � Uj�1k; �x+Ujk = Uj+1k � Ujk :The operators �y0; Æ2y ; �y�; �y+ are de�ned similarly.We 
hoose uniform spa
e-steps �x and �y and a time-step �t. We alsode�ne the important quantities �x, �y, �x and �y, that we are using in whatfollows: �x = V �t�x ; �y = W�t�y �x = D�t�x2 ; �y = D�t�y2 :In the next se
tions we derive a family of Lax-Wendro� s
hemes and afamily of Qui
kest s
hemes in two dimensions. Firstly we derive the s
hemesbased on a quadrati
 and 
ubi
 polynomial interpolation of the fun
tionu(�; �; tn) that appears in (4). Se
ondly we also derive s
hemes by usingTaylor approximations of order two and three, of the same fun
tion.The generalisation of �nite di�eren
e s
hemes for a 
onve
tion di�u-sion equation to multidimensions is not just the sum of the individual one-dimensional 
ontributions, sin
e the simple addition of individual �nite dif-feren
es in x and y without appropriate 
ross terms 
an lead to a basi
instability.
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tion we obtain �nite di�eren
e s
hemes by approximating u(x; y; tn)in (4) by a lo
al polynomial of degree K around the point (xj ; yk), namely,pjk(x; y) = KXr=0 KXs=0 brs(x� xj)r(y � yk)s:Using the exa
t evolution operator, the approximation Un+1jk is given byUn+1jk = KXr;s=0 brs� ZIR2 (�V �t+ 2pD�t�)r(�W�t+ 2pD�t�)se��2��2d�d�:If the power terms are expanded then all the integrals 
an be determined andwe 
an write:Un+1jk = b00 � b10V �t� b01W�t+ b11V W (�t)2 + b20(2D�t+ V 2(�t)2)+b02(2D�t+W 2(�t)2)� b30(6DV (�t)2 + V 3(�t)3)�b03(6DW (�t)2 +W 3(�t)3)� b21W�t(2D�t+ V 2(�t)2)�b12V �t(2D�t+W 2(�t)2) + : : : : (5)Within this formula we obtain se
ond and third-order �nite di�eren
e s
hemesby using quadrati
 interpolation or 
ubi
 interpolation.If we use a quadrati
 interpolation we need to 
hoose six interpolationpoints to determine the six 
oeÆ
ients b00; b01; b10; b20; b11; b02. We obtain adi�erent method for ea
h 
hoi
e of points. Any nodal value will have eightneighbouring points so we need to 
hoose six points from the nine points(nodal point plus eight neighbours). We 
hoose the points, so that they forma �ve-point star around (xj ; yk) and the sixth point is sele
ted a

ording tothe dire
tion of the velo
ities V and W . For instan
e assume that V and Ware positive. We 
hoose the sixth interpolation point to be (xj�1; yk�1). Thenwe have the formula:Un+1jk = [1��x�x0��y�y0+(12�2x+�x)Æ2x+(12�2y+�y)Æ2y+�x�y�x��y�℄Unjk :(6)We 
all this s
heme the Polynomial Lax-Wendro� s
heme.Clearly there are three other 
on�gurations depending on various 
ombi-nations of the signs of V and W . For V negative and W positive, we 
hoosethe sixth point as (xj+1; yk�1). If V is positive and W negative, we 
on-sider the point (xj�1; yk+1) and for V and W negative we 
hoose the point(xj+1; yk+1). The di�erent possibilities 
an give us a di�erent 
oeÆ
ient b11.Next we turn to 
ubi
 interpolation. One advantage of using high-ordermethods is that numeri
al di�usion and dispersion errors are relatively smallerthan in low order methods. The pro
edure is illustrated for two-dimensional
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ow with velo
ity V and W positive as in the previous 
ase. We need touse ten points to 
arry out this interpolation. Using the ten points Uj�2k ,Uj�1k�1, Uj�1k , Uj�1k+1, Ujk�2, Ujk�1, Ujk , Ujk+1, Uj+1k�1 and Uj+1k toevaluate brs, r = 0; 1; 2; 3; s = 0; 1; 2; 3 we �nd the s
heme:Un+1jk = Unjk � �x�x0Unjk � �y�y0Unjk + (12�2x + �x)Æ2xUnjk + (12�2y + �y)Æ2yUnjk+12�x�y�y+�x�Unjk + 12�x�y�x+�y�Unjk+16�x(1� �2x � 6�x)Æ2x�x�Unjk + 16�y(1� �2y � 6�y)Æ2y�y�Unjk��y(�x + 12�2x)Æ2x�y�Unjk � �x(�y + 12�2y)Æ2y�x�Unjk : (7)This s
heme is 
alled the Polynomial Qui
kest s
heme. As with the Lax-Wendro� s
hemes, we 
an 
hange the 
hoi
e of the mesh points, dependingon the dire
tion of the velo
ities. The 
hanges that o

ur in the s
heme(7) a

ording to the sign of the velo
ities involve 
hanges in the 
oeÆ
ientsb11; b12; b21; b30 and b03.2.2 Taylor approximationIn the previous se
tion we 
onsidered a lo
al polynomial interpolation of somesele
ted points in a neighbourhood of (xj ; yk). Sin
e the lo
al interpolationrequires only a small number of neighbouring points, we used the 
ow dire
-tions to 
hoose whi
h neighbouring points to use. Now we use an alternativeidea and approximate u(x; y; tn) by a trun
ated Taylor series of degree Karound (xj ; yk): tjk(x; y) = KXr=0 KXs=0 brs(x� xj)r(y � yk)s; (8)where brs = uxrysr!s! . Using the evolution operator as in the previous se
tion,depending on the order of the expansion we 
an obtain the numeri
al s
hemesdes
ribed below.For the se
ond-order a

urate Taylor expansion we obtain the numeri
almethod:Un+1jk = [1�(�x�x0+�y�y0)+(12�2x+�x)Æ2x+(12�2y+�y)Æ2y+�x�y�x0�y0℄Unjk :(9)This s
heme uses a nine-point s
heme and we 
all it the Taylor Lax-Wendro�s
heme. This method 
an be used independently of the sign of the velo
ity
omponents.For the third-order a

urate Taylor expansion, taking in 
onsiderationthat V and W are positive, we use the eleven point sten
il Uj�2k, Uj�1k�1,
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��lia Sousa & Ian SobeyUj�1k Uj�1k+1, Ujk�2, Ujk�1, Ujk , Ujk+1 Uj+1k�1, Uj+1k , and Uj+1k+1. Itgives the numeri
al method:Un+1jk = Unjk � �x�x0Unjk � �y�y0Unjk+(12�2x + �x)Æ2xUnjk + (12�2y + �y)Æ2yUnjk + �x�y�x0�y0Unjk+16�x(1� �2x � 6�x)Æ2x�x�Unjk + 16�y(1� �2y � 6�y)Æ2y�y�Unjk��y(�x + 12�2x)Æ2x�y0Unjk � �x(�y + 12�2y)Æ2y�x0Unjk : (10)Similarly to the previous s
hemes, we 
all this s
heme the Taylor Qui
kests
heme. The 
hoi
e of the mesh points, to approximate the third derivatives,depends on the dire
tions of the velo
ity 
omponents and a�e
ts the valuesof the 
oeÆ
ients b30 and b03.In the next se
tion we use the von Neumann method to analyse the sta-bility region of these four numeri
al s
hemes.3 Von Neumann stability analysisThe von Neumann analysis in two dimensions is a straightforward generalisa-tion of the one-dimensional 
ase. The dis
rete Fourier de
omposition in twodimensions 
onsists of the de
omposition of the fun
tion into a Fourier seriesas Unjk = X�x;�y �nei�xj�xei�yk�y ;where the range �x, �y is de�ned separately for ea
h dire
tion, as in the one-dimensional 
ase. The ampli�
ation fa
tor is given by �. The produ
ts �x�xand �y�y are often represented as a phase angle, namely, �x = �x�x; �y =�y�y: To obtain a von Neumann stability 
ondition we insert the singular
omponent �neij�xeik�y into the dis
retised s
heme. The ampli�
ation fa
toris said to satisfy the von Neumann 
ondition if there is a 
onstant K su
hthat j�(�x; �y)j � 1 +K�t 8 �x; �y 2 [0; 2�℄: (11)As in the one-dimensional 
ase, in pra
ti
e we use the stronger 
onditionj�(�x; �y)j � 1 8 �x; �y 2 [0; 2�℄; (12)and the dis
rete s
heme that meets this 
ondition, we refer to as von Neumannstable. This has been 
alled pra
ti
al stability by Ri
htmyer and Morton [4℄or stri
t stability by other authors. In some 
ases 
ondition (11) allows nu-meri
al modes to grow exponentially in time for �nite values of�t. Therefore,the pra
ti
al, or stri
t, stability 
ondition (12) is re
ommended in order toprevent numeri
al modes from growing faster than the physi
al modes of thedi�erential equation.
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tion-di�usion 7For our �nite di�eren
e s
hemes we derive mostly analyti
al ne
essary
onditions. Nevertheless we plot numeri
ally the suÆ
ient and ne
essary sta-bility regions in the three-dimensional spa
e (�x; �y; �), where for simpli
itywe assume � = �x = �y.We present below lemmas that des
ribe only ne
essary stability 
ondi-tions for the four numeri
al s
hemes derived in the previous se
tion. Theseanalyti
al results 
orrespond to 
ondition (12) for phase angles of high fre-quen
y, namely, �x = � and �y = �, and for the limiting 
ase �x ! 0, �y ! 0.Ne
essary and suÆ
ient 
onditions for the stability of the numeri
al s
hemesare displayed in Fig. 1-4, where the stable regions are inside the surfa
es.
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ν y(a) (b)Fig. 1. (a) von Neumann stability analysis for the Polynomial Lax-Wendro�s
heme; (b) proje
tion of the �gure (a) on the plane �x Æ �y: � = 0:05 (�);� = 0:1 (� � �); � = 0:2 (� � �); � = 0:24 (��).Lemma 1 Ne
essary 
onditions for the Polynomial Lax-Wendro� s
heme(6) to be stable are: 2(�x + �y) � 1 (13)(�x � �y)2 � 1� 2(�x + �y): (14)Lemma 2 Ne
essary 
onditions for the Taylor Lax-Wendro� s
heme (9) tobe stable are: 2(�x + �y) � 1 (15)�2x + �2y � 1� 2(�x + �y): (16)Lemma 3 A ne
essary 
ondition for the Polynomial Qui
kest s
heme (7) tobe stable is:(�2x + 2�x)(1� 2�y) + (�2y + 2�y)(1� 2�x) + 2�x�y+23�x(1� �2x � 6�x) + 23�y(1� �2y � 6�y) � 1: (17)
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essary 
ondition for the Taylor Qui
kest s
heme (10) to bestable is:(�2x +2�x) + (�2y +2�y) + 23�x(1� �2x � 6�x) + 23�y(1� �2y � 6�y) � 1: (18)
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ν y(a) (b)Fig. 2. (a) von Neumann stability analysis for the Taylor Lax-Wendro� s
heme;(b) proje
tion of the �gure (a) on the plane �x Æ�y: � = 0:02 (��); � = 0:1 (���);� = 0:2 (� � �); � = 0:24 (�).In Lemma 1 
ondition (14) is asso
iated with the diagonal lines shown inFig. 1(b), whi
h determines the stable region to be between the two lines aswe see in Fig. 1(b). Condition (13) gives us a limit for the di�usion parame-ter. We observe that the Polynomial Lax-Wendro� s
heme is still stable forsimultaneously large values of �x and �y, when � is small. Although we plotthe stability region for (�x; �y) 2 [�1; 1℄� [�1; 1℄, note that for this s
hemewe are assuming that both velo
ity 
omponents are positive, that is, that �xand �y are both positive.The se
ond lemma 
on
erns the Taylor Lax-Wendro� s
heme. Althoughthis s
heme 
an be used independently of the signs of the velo
ity 
ompo-nents, it has a smaller region of stability for small �, when 
ompared with thePolynomial Lax-Wendro� s
heme (6). In Fig. 2 we plot ne
essary and suÆ-
ient von Neumann stability 
onditions for the Taylor Lax-Wendro� s
heme(9). In view of the Fig. 2(b), a ne
essary and suÆ
ient 
ondition for thiss
heme is 
ondition (16) in Lemma 2 asso
iated with some other 
onditionthat seems to 
hange as � in
reases from j�xj2=3+j�yj2=3 � 1 to j�xj+j�yj � 1.For the Polynomial Qui
kest s
heme we have a ne
essary 
ondition forthe stability of the s
heme in Lemma 3 and we plot suÆ
ient and ne
essary
onditions in �gure 3. Note that on the three-dimensional surfa
e displayed in�gure 3, we have � � 9=16. This value 
orresponds to (�x; �y) = (1=4; 1=4).The stability regions for the small � are bigger than those of both Lax-Wendro� s
hemes.Next, in Lemma 4, we provide a ne
essary 
ondition for the stabilityof the Taylor Qui
kest s
heme. SuÆ
ient and ne
essary 
onditions for the
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(a) (b)Fig. 3. (a) von Neumann stability analysis for the Polynomial Qui
kest s
heme;(b) proje
tion of the �gure (a) on the plane �x Æ �y: � = 0:02 (� � �); � = 0:1 (� ��);� = 0:2 (��); � = 0:4 (�).Taylor Qui
kest s
heme are shown in �gure 4. By assuming �x = �y = � and�x = �y = 1=4 in (18) we have the 
ondition � � 9=32. This is the maximumvalue that � 
an take inside the stable region (see �gure 4).4 SummaryIn this paper we provided von Neumann stability regions for various �nitedi�eren
e s
hemes. The Lax-Wendro� s
hemes 
onsidered present regions ofstability that are suÆ
ient and ne
essary 
onditions, with a shape that ap-pears to have a simple form, although we found 
onsiderable diÆ
ulties whenwe attempted to �nd these 
onditions analyti
ally. The main sour
e of thesediÆ
ulties was related to the majorisation of the Fourier terms asso
iatedwith the mixed derivatives. The Qui
kest s
hemes present more awkwardregions and they do not seem to show an obvious regularity leading us to
onje
ture that to provide the analyti
al suÆ
ient and ne
essary 
onditionsis an extremely diÆ
ult task. Therefore we provide only the analyti
al ne
-essary 
onditions, although suÆ
ient and ne
essary regions of stability are
al
ulated numeri
ally. We know that the presen
e of boundary 
onditionsinterferes with the stability of a �nite di�eren
e s
heme. Although in thepresen
e of boundaries that are not periodi
 the von Neumann 
ondition isno longer a suÆ
ient 
ondition, it remains an important ne
essary 
ondition.A
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