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Summary

The hydraulic characteristics of a laboratory submerged packed bed, filled with a vol-
canic stone, pozzuolana, have been experimentally investigated through tracer tests. Sets
of essays at flow rates from1 to 2.5 l/h in clean conditions were performed. The results
showed a considerable amount of dispersion through the filter as the hydraulic loading was
changed, indicating a multiplicity of hydrodynamic states, approaching its behavior to plug
flow. An analytical solution for the advection-dispersion equation model have been devel-
oped for a semi-infinite system and we have considered an appropriate physical boundary
condition. A numerical simulation using finite difference schemes is done taking into ac-
count this particular boundary condition that changes according to the flow rates. Proper
formulation of boundary conditions for analysis of column displacements experiments in
the laboratory is critically important to the interpretation of observed data, as well as for
subsequent extrapolation of the experimental results to transport problems in the field.

Introduction

The experiments were carried out on a pilot scale packed bed (Fig. 1) made of tubular
acrylic glass with 7 cm internal diameter, 41 cm total packing length, submerged with 3 cm
of water level. The filter was filled with a homogeneous pozzuolana material with 4 mm of
effective diameter and porosity of 0.52. Five ports have been used to collect samples. The
flow rates were measured by a peristaltic pump. Experiments have been performed at flow
rates of 1.0, 2.0 and 2.5 l/h, at different carbon concentrations for a33 cm packing length.
These experiments will allow the studying of the hydrodynamic characteristics along the
filter. We injected 10 ml of a tracer (Blue Dextran) impulse immediately above the liquid
level being the response evaluated by measuring the absorbance at 610 nm of collected
samples at equal time periods.

In vertical columns, especially if the ratio length/diameter is too large (Bedient et al
[3]), the effects of liquid flow in the horizontal directionx is considered not important
compared with the flux in the vertical directionz. In these conditions, the mechanism
of advection, dispersion and exchange reaction in an isotropic and homogeneous packed
bed under steady-state conditions, are generally described by the well-known advection-
dispersion equation, see for instance, Ogata and Banks [7], van Genuchten and Alves [8],
van Genuchten and Parker [9], Levespiel [5], Bedient et al [3],

R
∂C
∂t
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= D
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∂z2 , (1)
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Figure 1:Schematic representation of the experimental apparatus

whereC is the solute concentration,D is the dispersion coefficient,V is the average pore-
water velocity,t is the time andz is the distance. The parameterR accounts from possible
interactions between the chemical and the solid phase of the soil. Here, we consider there
is no interactions between the chemical and the solid phase and thereforeR= 1.

We consider a dimensionless parameter, called Péclet number,Pe=
VL
D

, whereL is

the packing length. The Péclet number describes the relative influence of the effects carac-
terised by advection-dispersion problems which involve a non-dissipative component and a
dissipative component. The Péclet number also determines the nature of the problem, that
is, the Ṕeclet number is low for dispersion-dominated problems and is large for advective
dominated problems.

The model problem

Our interest is in the solution of

∂C
∂t

+V
∂C
∂z

= D
∂2C
∂z2 (2)

for t > 0,z≥ 0 with an initial condition

C(z,0) = f (z) (3)

and subject to the boundary conditions

lim
x→∞

C(z, t) = 0 and C(0, t) = g(t), t ≥ 0. (4)
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The exact solution of the problem (2)-(4) can be found using Laplace Transforms int
and we will get the solution

C(z, t) =
1√
π

Z t

0
g(t− τ̂)G∗(z, τ̂)dτ̂+

1√
π

Z +∞

Vt−z
2
√

Dt

f (z−Vt+2
√

Dtξ)e−ξ2
dξ

− 1√
π

Z +∞

Vt+z
2
√

Dt

f (−z−Vt+2
√

Dtξ)eVz/De−ξ2
dξ, (5)

where the functionG∗(z, τ̂) is given by G∗(z, τ̂) =
z

2
√

Dτ̂3/2
e−(z−V τ̂)2/4Dτ̂.

For our particular case we have that the initial condition is given byf (z) = 0. We need
to determine the boundary condition,g(t), which represents the solute concentration on the
inflow boundary. We have the following physical parameters:Vin j denotes the volume of
injected tracer;Vsl is the volume of the liquid on the top of the packed bed;M0 is the mass
injected;Csl is the concentration of the liquid level where the tracer is absorbed before
going into the packed bed through the media top andQ denotes the flow rate.

We have that Csl =
Ms

Vin j +Vsl
and the physical boundary condition is given by the

following exponential decay

g(t) = Csle
−Qt/Vsl . (6)

This condition is obtained considering that the inflow concentration is governed by the
differential equation,

dg
dt

=− Q
Vsl

g with g(0) = Csl (7)

which describes the inflow decay by a rate ofQ/Vsl.

Note that for our specific case where the initial condition is given byC(z,0) = 0 and
the inflow is governed by (6) we have the analytical solution

C(z, t) =
1√
π

Z t

0
g(t− τ̂)G∗(z, τ̂)dτ̂. (8)

Numerical solution using a finite difference scheme

To derive finite differences we suppose there are approximationsUn := {Un
j } to the

valuesC(x j , tn) at the mesh pointsx j = j∆x, j = 0,1,2, . . . .
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If we choose a uniform space step∆x and time step∆t, there are two dimensionless
quantities very important in the properties of a numerical scheme

µ=
D∆t

(∆x)2 , ν =
V∆t
∆x

.

The quantityν is usually called the Courant (or CFL) number. We use the usual central,
backward and second difference operators,

∆0U j :=
1
2
(U j+1−U j−1), ∆−U j := U j −U j−1, andδ2U j := U j+1−2U j +U j−1

to describe the finite difference scheme.

Consider the approximation formula

Un+1
j = [1−ν∆0 +(

1
2

ν2 +µ)δ2 +ν(
1
6
− ν2

6
−µ)δ2∆−]Un

j . (9)

This scheme was first proposed by Leonard [4] using control volume arguments. However,
it can also be obtained using a cubic expansion by interpolatingUn

j−2 as well asUn
j−1, Un

j
andUn

j+1, as we can see in Morton and Sobey [6].

The model problem we are interested in is defined on the half-line with an inflow
boundary conditionC(0, t) = g(t), whereg(t) is defined by (6). Consequently we consider

Un
0 = g(n∆t). (10)

The scheme (9) is a higher order scheme and it uses two points upstream. Therefore it
can not be applied on the first interior point of the mesh. At this particular point we need
to apply a numerical boundary condition. To determine the numerical boundary condition
we use for interpolation the pointsUn

0 , Un
1 , Un

2 andUn
3 and we bring in a forward third

difference instead of a backward third order difference to yield

Un+1
1 = [1−ν∆0 +(

1
2

ν2 +µ)δ2 +ν(
1
6
− ν2

6
−µ)δ2∆+]Un

1 , (11)

where∆+ is the forward operator defined by∆+U j := U j+1−U j . For more information on
this and other numerical boundary conditions see for instance Sousa and Sobey [10]. The
use of this downwind third difference does not affect accuracy since still based on a cubic
local approximation. However, it does have some penalties in terms of stability. Some
more interesting discussions could be done on the right choice of the numerical boundary
condition which is independent of the physical boundary condition (10).
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Numerical results versus experimental results

In this section we present the numerical results that adjust the essays for three different
flow rates.

Table 1 shows the values of different parameters necessary to the evaluation of the in-
flow boundary condition defined by (6). We can observe that we have a different boundary
condition for each flow rateQ. We show, in Fig. 2 and Fig.3, the experimental results and
the numerical simulations for different flow rates. The numerical results allow us to deter-
mine the Ṕeclet number, that is helpful in the characterization of the hydraulic conditions.

Q (l/h) Vin j (ml) Vsl (ml) Ms (mg) Csl(mg/l)

1 10 112 32.5 267.26
2 10 112 32.5 267.26

2.5 10 112 32.5 267.26

Table 1. Parameters related to the determination of the physical inflow boundary con-
dition.
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Figure 2: (a) Experimental results for flow ratesQ = 1,2,2.5; (b) Numerical simulation
for flow ratesQ = 1,2,2.5.

The results lead us to conclude that, according to the range of hydraulic loading ap-
plied, a large amount of diffusion occurs in the filter bed. This occurrence is associated to
the likely combination of factors such as dead zones, immobile zones, short-circuiting and
diffusion (both mechanical dispersion and molecular diffusion). The analytical solution
represented by (5) for the semi-infinitive system can accurately predict the experimental
curves and may be applied to results from finite experiments as the one here mentioned.
To the numerical simulation we use a numerical scheme quite appropriated since when we
have significant values of diffusion we need a larger stability region, that is, we need the
method to converge to the analytic solution in a region where we can have great accuracy
and at the same time we are allowed to have significant diffusion. More experiments are in
progress considering different organic loadings at different hydraulic loadings.
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Figure 3:The same as Fig. 2 but with the numerical results and experimental results in the
same figure: (a)Q = 1: V = 0.00828, D/VL= 0.065, Pe= 15.3 (b) Q = 2: V = 0.01440,
D/VL = 0.056, Pe= 17.8 (c) Q = 2.5:V = 0.01680, D/VL = 0.054, Pe= 18.5
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