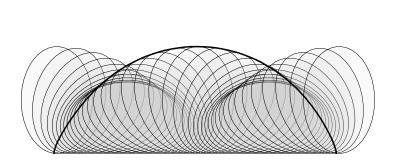
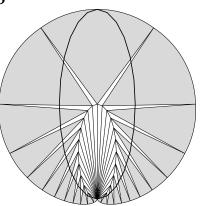


Pedais e roletas





Dado um polígono convexo fechado, \mathscr{P} , dizemos que uma reta é subtangente a \mathscr{P} se interseta \mathscr{P} mas não interseta o interior de \mathscr{P} . Fixemos, de uma vez por todas, um vértice V de \mathscr{P} . Chama-se pedal de \mathscr{P} ao lugar geométrico dos pés das perpendiculares lançadas de V para as subtangentes de \mathscr{P} .

Assente \mathscr{P} sobre um eixo fixo do plano de \mathscr{P} (o eixo é subtangente a \mathscr{P}) e faça o polígono rolar sobre o eixo sem escorregar, como na figura da esquerda. A curva descrita por V chama-se roleta. Notem que a roleta é uma curva periódica, que toca periodicamente o eixo; chamamos arco da roleta a uma secção da roleta cujas extremidades são os únicos pontos de contacto da dita secção com o eixo. A região delimitada por um arco da roleta e pelo eixo chamamos região sob o arco da roleta.

Nesta jornada, num polígono de n vértices não há três que sejam colineares. Por definição, ângulo entre dois arcos de circunferência que se cruzam em P é o ângulo formado pelos vetores tangentes em P, supondo, em cada circunferência, que os arcos se orientam no sentido direto.

- 1. Num triângulo arbitrário $\mathcal T$ escolham um vértice V. Desenhem um arco da roleta de $\mathcal T$ e determinem a área da região sob esse arco.
- 2. Para \mathcal{T} e V como acima, desenhem a curva pedal e mostrem que ela é a fronteira da união de dois círculos, nenhum deles contido no outro. Calculem a área delimitada por essa pedal.
- 3. Provem que, se \mathscr{P} tem n vértices, a pedal é a fronteira duma união de n-1 círculos, nenhum dos quais contido na união dos outros n-2.
- 4. A pedal é uma concatenação de n-1 arcos circulares. Determinem, em cada ponto de junção de dois arcos, o ângulo que eles fazem entre si. Calculem a soma desses ângulos.
- 5. Determinem, justificando, uma fórmula que dê o perímetro da pedal, em função dos lados, diagonais e ângulos em \mathscr{P} .
- 6. Determinem, justificando, uma fórmula que dê a área sob um arco da roleta, em função dos lados, ângulos e diagonais de \mathcal{P} .
- 7. Provem que, para qualquer escolha de \mathscr{P} e V, a área delimitada pela pedal é metade da área da região sob um arco da roleta.

RESPOSTAS

1. Num triângulo arbitrário \mathcal{T} escolham um vértice V. Desenhem um arco da roleta de \mathcal{T} e determinem a área da região sob esse arco.

A figura é do género da que está à direita, relativa a um triângulo [VAB], que mostra 3 posições do ponto V, gerador da roleta. A roleta só tem dois arcos circulares. A área pedida é a soma das áreas de dois setores circulares, $\triangleleft V_0AV_1$ e

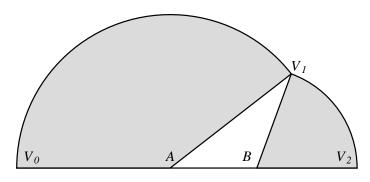


Figura 1:

 $\triangleleft V_1BV_2$, e da área de \mathscr{T} . A área dum setor circular de raio R e ângulo θ é $\frac{1}{2}R^2\theta$. Sendo $a:=\overline{VA}$, $b:=\overline{VB}$, e \widehat{A} e \widehat{B} os ângulos de \mathscr{T} em A e B, a área pedida é

$$\frac{a^2}{2}(\pi - \widehat{A}) + \frac{b^2}{2}(\pi - \widehat{B}) + \mathbb{A}(\mathscr{T}). \tag{1}$$

2. Para \mathcal{T} e V como acima, desenhem a curva pedal e mostrem que ela é a fronteira da união de dois círculos, nenhum deles contido no outro. Calculem a área delimitada por essa pedal.

Para cada subtangente s que passe por A, o ponto P, pé da perpendicular de V a s, pertence à circunferência de diâmetro [VA]; fazendo variar s, P descreve um arco dessa circunferência. Analogamente, as subtangentes que passam em B determinam uma parte da pedal que é um arco da circunferência de diâmetro [VB]. As subtangentes que passam por V apenas produzem V como ponto da pedal. Sendo V, I os pontos de intersecção das duas circunferências, é fundamental observar-se que A, B, I são colineares, pois VI é perpendicular a IB e a IA; consequentemente, o arco circular VAI é o lugar geométrico dos pés das perpendiculares de V às subtangen-

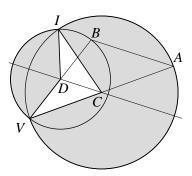


Figura 2:

tes que passam por A; e o arco \widehat{IV} da circunferência de diâmetro [VB] é o lugar geométrico dos pés das perpendiculares de V às subtangentes que passam por B. Portanto a pedal é a fronteira da união dos círculos.

Se um dos círculos estivesse contido no outro, eles seriam tangentes em V e os pontos V, A, B seriam colineares, o que está fora de causa.

Quanto à área, pode responder-se dizendo, apenas, que o problema 7 diz ser a dita área metade da da roleta. Mas o argumento sintético seguinte abre caminho ao que pode fazer-se para provar 7. Na figura escureceram-se os dois setores circulares, sobrando a ponta de flecha branca. A linha DC que une os centros dos círculos é mediatriz de VI e, consequentemente, paralela a AB; como C e D são os pontos médios de [VA] e [VB], [VCD] tem $\frac{1}{4}$ da área de \mathscr{T} ; sendo CD eixo de simetria da flecha branca, esta tem metade da área de \mathcal{T} . Determinemos a área do setor circular $\langle VAI \rangle$; o raio é metade do raio do

setor $\langle V_0 A V_1 \rangle$ da figura da roleta; a amplitude do arco \widehat{VI} centrado em C é o dobro de \widehat{A} , pelo que o setor em causa tem ângulo duplo do de $\triangleleft V_0AV_1$; portanto o setor $\triangleleft VAI$ tem metade da área de $\triangleleft V_0AV_1$. Analogamente, o setor sombreado no círculo de centro D tem metade da área do setor $\langle V_1BV_2 \rangle$. Portanto a área delimitada pela pedal é metade da área (1) da região sob a roleta.

3. Provem que, se \mathscr{P} tem n vértices, a pedal é a fronteira duma união de n-1 círculos, nenhum dos quais contido na união dos outros n-2.

Sejam V, P_1, \ldots, P_{n-1} os vértices de \mathscr{P} . Os círculos são os de diâmetros $[VP_1], \ldots, [VP_{n-1}]$ a que chamamos $\mathscr{C}_1,\ldots,\mathscr{C}_{n-1}$; seja \mathscr{U} a sua união. Dado $F\in\operatorname{fr}\mathscr{U}$, prova-se que F pertence à pedal. Existe um P_k tal que F está na fronteira de \mathscr{C}_k ; portanto FP_k é perpendicular a VF. Seja P_i um outro qualquer vértice de \mathscr{P} ; admitamos, por absurdo, que P_i está do lado de FP_k oposto a V; então o ângulo VFP_i é obtuso, pelo que F pertence ao interior de \mathscr{C}_i ; então F não é fronteiro de \mathscr{U} . A contradição mostra que todos os vértices de \mathscr{P} estão do mesmo lado de FP_k , ou seja, esta reta é subtangente a \mathscr{P} ; portanto F está na pedal. Reciprocamente, admitamos que Q está na pedal, e seja P_i um vértice tal que QP_i é subtangente a \mathscr{P} e ortogonal a VQ; como \mathscr{P} está todo do mesmo lado de QP_j , para qualquer vértice P_s o ângulo \widehat{VQP}_s não é obtuso, o que implica que Q não está no interior de \mathscr{C}_s ; portanto $P \in \operatorname{fr} \mathscr{U}$.

Cada par de circunferências fr \mathscr{C}_i interseta-se segundo dois pontos, um dos quais V; portanto não há tangências entre elas. Se Γ é um arco de fr \mathscr{C}_s contido em fr \mathscr{U} , Γ só pode ser tocado por um \mathscr{C}_i $(i \neq s)$ nos seus pontos extremos; portanto Γ não está contido na união dos \mathscr{C}_i para $i \neq s$.

4. A pedal é uma concatenação de n-1 arcos circulares. Determinem, em cada ponto de junção de dois arcos, o ângulo que eles fazem entre si. Calculem a soma desses ângulos.

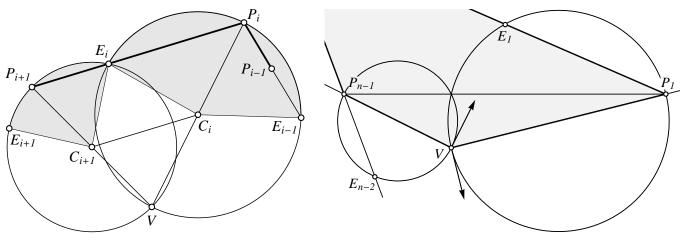


Figura 3 Figura 4

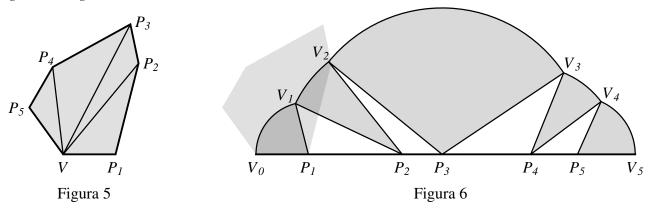
Cada vértice P_s produz um \mathscr{C}_s e, portanto, um arco de \mathscr{C}_s na pedal. Há n-1 pontos de junção destes arcos, um deles é V e os outros denotam-se por E_1, \ldots, E_{n-2} . Considerem-se os n-2 triângulos $\mathcal{T}_i =$ $[VP_iP_{i+1}]$; a cada \mathcal{T}_i corresponde um ponto de junção E_i , determinado como a figura 3 mostra; a figura 4 ilustra a localização e obtenção de E_1 e E_{n-2} . As subtangentes a \mathscr{P} em P_i produzem o arco $\widehat{E}_{i-1}\widehat{E}_i$ da pedal, e as subtangentes em P_{i+1} produzem o arco $\widehat{E}_i E_{i+1}$.

Quando duas circunferências se intersetam em dois pontos, em cada um o ângulo entre os arcos que aí se cruzam é o ângulo entre os diâmetros; portanto o ângulo entre os arcos concorrentes em E_i é o ângulo entre os vetores \overrightarrow{VP}_i e $\overrightarrow{VP}_{i+1}$; portanto a soma dos ângulos correspondentes aos E_i é \widehat{V} . Na junção V(figura 4) os arcos $\widehat{E_{n-2}V}$ e $\widehat{VE_1}$ formam um ângulo igual a \widehat{V} . Portanto a soma requerida é $2\widehat{V}$.

5. Determinem, justificando, uma fórmula que dê o perímetro da pedal, em função dos lados, diagonais e ângulos em P.

Adotemos a convenção $E_0 = E_{n-1} = V$. Nas figuras 3 e 4 o ângulo $\widehat{E_i}P_i\widehat{E_{i-1}}$ está inscrito em \mathscr{C}_i ; portanto o arco $\widehat{E_i V E_{i-1}}$ tem amplitude $2\widehat{P}_i$. Assim, o arco $\widehat{E_i P_i E_{i-1}}$ tem amplitude $2(\pi - \widehat{P}_i)$, raio $\frac{1}{2}\overline{VP_i}$ e, por isso, o seu comprimento é $\overline{VP_i}(\pi-\widehat{P_i})$. A soma pedida é $\sum_{i=1}^{n-1}\overline{VP_i}(\pi-\widehat{P_i})$.

6. Determinem, justificando, uma fórmula que dê a área sob um arco da roleta, em função dos lados, ângulos e diagonais de \mathcal{P} .



Seja \mathcal{T}_i o triângulo $[VP_iP_{i+1}]$, para $i=1,\ldots,n-2$. Vamos gerar o arco da roleta da seguinte forma: quando o lado $[P_iP_{i+1}]$ assenta sobre o eixo da roleta, eliminamos do polígono o triângulo \mathcal{T}_i , que deixamos para trás, agarrado ao eixo como a figura 6 ilustra. À medida que o polígono vai rolando sobre o eixo, ele vai perdendo sucessivamente os seus triângulos $\mathcal{T}_1, \mathcal{T}_2, \mathcal{T}_3, \ldots$, por esta ordem, até ficar vazio quando se completar o arco da roleta. A soma das áreas dos \mathcal{T}_i é a área de \mathcal{P} . Se descontarmos, na região sob o arco da roleta, os n-2 triângulos \mathcal{T}_i , o que fica é uma união de n-1 setores circulares cujas áreas são de cálculo fácil. Compare-se com o exemplo da figura 6: o setor $\lessdot V_{k-1}P_kV_k$ tem raio \overline{VP}_k e amplitude igual ao ângulo externo de \mathscr{P} em P_k , i.e., $\pi-\widehat{P}_k$. Portanto a área sob a roleta é

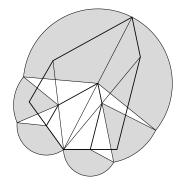
$$\frac{1}{2}\sum_{i=1}^{n-1}\overline{VP_i}^2(\pi-\widehat{P_i})+\mathbb{A}(\mathscr{P}).$$

7. Provem que, para qualquer escolha de \mathcal{P} e V, a área delimitada pela pedal é metade da área da região sob um arco da roleta.

A figura 3 sugere uma construção da pedal com régua e compasso. A reta que passa pelos centros, $C_i C_{i+1}$, é a mediatriz de $[VE_i]$; e este segmento é perpendicular a P_iP_{i+1} . Portanto E_i é a imagem refletida de V pela reta C_iC_{i+1} ; e $[C_iC_{i+1}]$ resulta de $[P_iP_{i+1}]$ por homotetia de centro V e razão $\frac{1}{2}$. A construção

alternativa da pedal é, pois a seguinte: considere-se o polígono \mathscr{P}^* de vértices V, C_1, \dots, C_{n-1} ; ele resulta de \mathscr{P} pela homotetia referida. Tracem-se em \mathscr{P}^* as diagonais $[VC_i]$ e determinem-se os pontos E_i pelas reflexões acabadas de indicar. Depois basta traçar os arcos centrados nos vértices de \mathscr{P}^* dum ponto de junção ao seguinte. O boneco que se obtém desenhando os triângulos $[C_i E_i C_{i+1}]$ é uma espécie de aranha de n-2 patas, como a figura 7 ilustra com o mesmo hexágono que o das figuras 5 e 6.

A área de \mathscr{P}^* (o corpo da aranha) é $\frac{1}{4}$ da área de \mathscr{P} ; as patas da aranha têm outro quarto da área, de modo que a aranha branca tem metade da área de P. O que sobra da região pedal depois de retirada a aranha é uma união de n-1 setores circulares. Da figura 3 pode deduzir-se facilmente a área de cada setor. Os alunos farão isso, provavelmente, obtendo a fórmula para a região delimitada pela pedal:



$$\frac{1}{4} \sum_{i=1}^{n-1} \overline{VP_i}^2 (\pi - \widehat{P}_i) + \frac{1}{2} \mathbb{A}(\mathscr{P}),$$

Figura 7:

que é metade do valor da área obtida para a região sob a roleta. Pode também argumentar-se que a cada setor circular da pedal corresponde um setor da roleta; na pedal, cada setor tem metade do raio e o dobro da amplitude do seu correspondente na roleta, o que dá metade a área, etc.