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Abstract

The classical convection–diffusion–reaction equation has the unphysical property that if a sudden change in the dependent
variable is made at any point, it will be felt instantly everywhere. This phenomena violate the principle of causality. Over the years,
several authors have proposed modifications in an effort to overcome the propagation speed defect. The purpose of this paper is to
study, from analytical and numerical point of view a modification to the classical model that take into account the memory effects.
Besides the finite speed of propagation, we establish an energy estimate to the exact solution. We also present a numerical method
which has the same qualitative property of the exact solution. Finally we illustrate the theoretical results with some numerical
simulations.
© 2008 IMACS. Published by Elsevier B.V. All rights reserved.
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1. Introduction

The classical heat equation for the temperature u

∂u

∂t
(x, t) = k

γ

∂2u

∂x2
(x, t),

on a bar, where γ represents the heat capacity, is obtained combining the Fourier’s law for the heat flux q

q(x, t) = −k
∂u

∂x
(x, t),

where k denotes the thermal conductivity, with the Mass Conservation law

∂u

∂t
(x, t) + ∂q

∂x
(x, t) = 0. (1)
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The classical heat equation has the unphysical property that if a sudden change in the temperature is made at a point
of the bar, it will be felt instantly everywhere. This property, known as a infinite speed of propagation, is not present
in heat conduction phenomena and is consequence of the violation of principle of causality by the Fourier law for the
flux. In fact, this law establishes that the observed heat flux at some point at some time is consequence of the space
temperature variation at the same point and at the same time.

In order to overcome the limitation of the traditional heat equation, over the years, several authors have proposed
modifications to Fourier’s flux including in its definition a certain memory term as an effort to avoid the infinite
propagation speed [5,12,11].

Attending that the heat flux q at point x and at time t should be consequence of the temperature variation at point
x but at some passed time, Cattaneo, in [5], proposed the following heat flux definition

q(x, t + τ) = −k
∂u

∂x
(x, t),

where τ is a relaxation time. Considering a first-order approximation to the flux and integrating the first-order differ-
ential equation

∂q

∂t
(x, t) + 1

τ
q(x, t) = − k

τ

∂u

∂x
(x, t),

we obtain the so-called Cattaneo’s flux

q(x, t) = − k

τ

t∫
0

e− t−s
τ

∂u

∂x
(x, s)ds. (2)

Note that, when τ → 0, the Cattaneo’s flux tends to the classical Fourier’s flux. Combining (2) with (1) we obtain,
for the temperature, the Cattaneo’s equation

∂u

∂t
(x, t) = k

τγ

t∫
0

e− t−s
τ

∂2u

∂x2
(x, s)ds. (3)

The simplest initial boundary value problem (IBVP) – (3) with u(x,0) = u0(x) – that gives rise to finite speed of
propagation is defined using (3) [5,12]. In fact, if we impose some regularity on the initial condition u0, we may prove
that this IBVP is equivalent to a hyperbolic IBVP defined by telegraph equation

∂2u

∂t2
(x, t) + 1

τ

∂u

∂t
(x, t) = k

γ τ

∂2u

∂x2
(x, t),

that transmits waves with finite velocity c = √
k/(γ τ).

In [11], Joseph and Preziosi argue that there is no real conductor where the heat conduction phenomenon can be
modeled by the Cattaneo’s equation. So, they propose the use of a modified flux defined by

q(x, t + τ) = −k
∂u

∂x

(
x, t + τ ∗), τ > τ ∗,

with two relaxation parameters. Considering the first-order approximation to the flux and to the gradient of the con-
centration we obtain

∂q

∂t
(x, t) + 1

τ
q(x, t) = − k

τ

∂u

∂x
(x, t) − k

τ ∗

τ

∂

∂t

∂u

∂x
(x, t), (4)

which allows us to obtain the following heat flux

q(x, t) = −k
τ ∗

τ

∂u

∂x
(x, t) − k

τ

(
1 − τ ∗

τ

) t∫
e− t−s

τ
∂u

∂x
(x, s)ds.
Please cite this article in press as: A. Araújo et al., On the stability of a class of splitting methods for integro-differential equations, Applied
Numerical Mathematics (2008), doi:10.1016/j.apnum.2008.03.005

0



ARTICLE IN PRESS APNUM:2120
JID:APNUM AID:2120 /FLA [m3SC+; v 1.91; Prn:11/04/2008; 15:38] P.3 (1-18)

A. Araújo et al. / Applied Numerical Mathematics ••• (••••) •••–••• 3
If we take k = k1 + k2, where k1 represent the effective thermal conductivity and k2 the elastic conductivity, and
τ ∗/τ = k1/k, we obtain the so-called Jeffrey’s heat flux [11]

q(x, t) = −k1
∂u

∂x
(x, t) − k2

τ

t∫
0

e− t−s
τ

∂u

∂x
(x, s)ds.

From the Mass Conservation law (1) it is easy to show that, in this case, the temperature u satisfies the Jeffrey’s
equation

∂u

∂t
(x, t) = k1

γ

∂2u

∂x2
(x, t) + k2

τγ

t∫
0

e− t−s
τ

∂2u

∂x2
(x, s)ds.

In the last years several analytical and numerical studies on the solution of IBVP defined by using integro-
differential equation as the Jeffrey’s equation, arise in the literature. For instance, in [2], the authors considered the
Jeffrey’s equation

∂u

∂t
(x, t) = α

∂2u

∂x2
(x, t) + D

τ

t∫
0

e− t−s
τ

∂2u

∂x2
(x, s)ds, x ∈ (a, b), t > 0, (5)

with homogeneous Dirichlet boundary conditions. From an analytical point of view they establish an energy estimate
which was fundamental to prove the stability of the IBVP with respect to perturbations of the initial condition. From
a numerical viewpoint they propose a splitting method which simulates the heat transport as the superposition of two
phenomena: diffusion and memory in time, being the memory treated by using the telegraph equation.

Reaction–diffusion integro-differential equations have been also considered in the literature in order to overcome
some unphysical behavior presented by the solution of the classical Fisher equation

∂u

∂t
(x, t) = D

∂2u

∂x2
(x, t) + f

(
u(x, t)

)
. (6)

In fact, if the reaction term f is defined by f (u(x, t)) = Uu(x, t)(1 − u(x, t)), then the traveling wave solution
u(x, t) = φ(x − ct) connecting the stationary states u = 0 (unstable) and u = 1 (stable) satisfies c �

√
4DU. Then

when the reaction parameter U goes to infinity, the propagation speed c goes also to infinity and this behavior is
unphysical [6,7]. For instance, in [4], the Fisher–Kolmogorov–Petrovskii–Piskunov equation

∂u

∂t
(x, t) = f

(
u(x, t)

) + D

τ

t∫
0

e− t−s
τ

∂2u

∂x2
(x, s)ds, x ∈ (a, b), t > 0, (7)

with homogeneous Dirichlet boundary conditions, was studied from analytical and numerical point of view. The
stability of the model was established and some numerical methods were proposed.

In [8] and [9], reaction-transport systems with memory and long range interaction were modeled by the following
integro-differential equation

∂u

∂t
(x, t) =

t∫
0

α(t − s)

(∫
R

u(x + μ, s)φ(μ)dμ − u(x, s)

)
ds + f

(
u(x, t)

)
, x ∈ R, (8)

where α(s) and φ(μ) represent kernel functions. The initial value problem defined by (8) was studied in [10] from
analytical and numerical point of view where estimates for the L2 norm of the solution and the L2 norm of its past
were established. These estimates were deduced for the continuous model and for the discrete models proposed in that
paper.
Please cite this article in press as: A. Araújo et al., On the stability of a class of splitting methods for integro-differential equations, Applied
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The use of memory terms in the definition of the flux in some biological applications leads to new models. These
new models enables us to study quantities that the classical models do not give any information. For instance, in [3],
it was considered a new model for percutaneous absorption of a drug which consists in integro-differential equation

∂u

∂t
(x, t) = μ − γ u(x, t) + β

∂u

∂x
(x, t) + D

τ

t∫
0

e− t−s
τ

∂2u

∂x2
(x, s)ds, x ∈ (a, b), t > 0, (9)

with appropriate initial and boundary conditions. The authors studied the qualitative properties of the model and its
numerical approximation and they compared their model with the classical one based on the classical Fick’s law for
the flux.

In this paper we will consider the IBVP

∂u

∂t
(x, t) = f

(
u(x, t)

) + β
∂u

∂x
(x, t) + α

∂2u

∂x2
(x, t) + D

τ

t∫
0

e− t−s
τ

∂2u

∂x2
(x, s)ds, x ∈ (a, b), t > 0, (10)

where α,D � 0, τ > 0, β ∈ R, with initial and boundary conditions

u(x,0) = u0(x), x ∈ (a, b),

u(a, t) = ua(t), u(b, t) = ub(t), t > 0. (11)

Our aim is to study the qualitative properties of the solution of (10)–(11) and the stability of the model with respect
to the L2 norm and also with respect of the L2 norm of the past in time of the gradient. From the numerical point of
view we propose splitting methods which allow us to compute numerical approximations presenting the qualitative
behavior of the solution of (10)–(11). As the models considered in [1–4] are particular cases of the general model (10),
the stability results for the continuous model can be seen as generalizations of the stability results presented in the
mentioned papers. In what concerns the numerical point of view, a splitting method for the integro-differential model
with β = 0 was considered in [2] but replacing the subproblem defined by the integro-differential term by a telegraph
equation. In that paper the stability results were established with respect to a discrete L2 norm. The splitting method
that we study in the present paper is based on the functional splitting considered in [2] but using the integro-differential
version. Such approach enable us to characterize a discrete L2 norm of the discrete solution as well the norm of the
past in time of the space numerical derivative of such solution.

The paper is organized as follows. In Section 2 the qualitative behavior of model (10)–(11) is studied and its
stability is concluded. In Section 3 we study a family of θ numerical methods in terms of its stability and accuracy.
Finally, in Section 4 some numerical simulations are included illustrating the theoretical results obtained in Section 3.

2. Energy estimates

Let us consider the IBVP (10)–(11). We use the following notation: by v(t) we denote the x-function if v is defined
in [a, b] × [0, T ] and t is fixed.

We establish, in the following result, an estimate for the energy functional

E(u)(t) = ∥∥u(t)
∥∥2 + D

τ

∥∥∥∥∥
t∫

0

e− t−s
τ

∂u

∂x
(s)ds

∥∥∥∥∥
2

, (12)

for t > 0, where ‖ · ‖ represents the usual L2 norm.

Theorem 1. Let u be a solution of (10)–(11) with homogeneous boundary conditions, satisfying, for each t ∈ [0, T ],
|u(x, t)| � L (L ∈ R

+), for x ∈ [a, b], and ∂u
∂t

(t), ∂u
∂x

(t), ∂2u

∂x2 (t),
∫ t

0 e− t−s
τ

∂2u

∂x2 (s)ds ∈ L2[a, b]. If f is continuously
differentiable and f (0) = 0, then

E(u)(t) � e
2 max{− 1

τ
,f ′

max− α

(b−a)2
,}t‖u0‖2, (13)

for each t ∈ (0, T ], where f ′
max = max|u|�L f ′(u).
Please cite this article in press as: A. Araújo et al., On the stability of a class of splitting methods for integro-differential equations, Applied
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Proof. Multiplying (10) by u, with respect to the L2 inner product (·,·) and integrating by parts, we easily get

1

2

d

dt

∥∥u(t)
∥∥2 � f ′

max

∥∥u(t)
∥∥2 − α

∥∥∥∥∂u

∂x
(t)

∥∥∥∥
2

− D

τ

( t∫
0

e− t−s
τ

∂u

∂x
(s)ds,

∂u

∂x
(t)

)
. (14)

As ( t∫
0

e− t−s
τ

∂u

∂x
(s)ds,

∂u

∂x
(t)

)
= 1

2

d

dt

∥∥∥∥∥
t∫

0

e− t−s
τ

∂u

∂x
(s)ds

∥∥∥∥∥
2

+ 1

τ

∥∥∥∥∥
t∫

0

e− t−s
τ

∂u

∂x
(s)ds

∥∥∥∥∥
2

,

we deduce from (14) the differential inequality

d

dt
E(u)(t) � 2 max

{
− 1

τ
, f ′

max − α

(b − a)2

}
E(u)(t), (15)

which allows us to obtain (13). �
According to the previous theorem, the solution u satisfies∥∥u(t)

∥∥ � e
max{− 1

τ
,f ′

max− α

(b−a)2
}t‖u0‖

and the “average in time” of its gradient∥∥∥∥∥
t∫

0

e− t−s
τ

∂u

∂x
(s)ds

∥∥∥∥∥ � e
max{− 1

τ
,f ′

max− α

(b−a)2
}t‖u0‖.

If f ′
max < 0 then

∥∥u(t)
∥∥ → 0 and

∥∥∥∥∥
t∫

0

e− t−s
τ

∂u

∂x
(s)ds

∥∥∥∥∥ → 0, as t → ∞.

Remark 1. We remark that, as particular cases, we conclude the following:

1. For the IBVP defined by the Fisher–Kolmogorov–Petrovskii–Piskunov equation (7) we have, as in [4],

E(u)(t) � e2 max{− 1
τ
,f ′

max}t‖u0‖2, t � 0.

2. For the IBVP defined by the Fisher equation (6) it can be shown that∥∥u(t)
∥∥ � ef ′

maxt‖u0‖.
3. For the Jefferey’s IBVP defined by (5) holds, as in [1],

E(u)(t) � e
−2 min{ 1

τ
, α

(b−a)2
}t‖u0‖ → 0, as t → ∞.

4. For Cattaneo’s IBVP we may conclude that

E(u)(t) � ‖u0‖2.

5. For the classical heat IBVP it is known that∥∥u(t)
∥∥ � e

− α

(b−a)2
t‖u0‖ → 0, as t → ∞.

Let us now consider the stability behavior of the solution u under perturbations in the initial condition u0.
Let u and uε be solutions of (10) satisfying the same boundary conditions and initial conditions u0 and u0 + ε,

respectively. The influence of ε on the solution of is estimated in the following result.
Please cite this article in press as: A. Araújo et al., On the stability of a class of splitting methods for integro-differential equations, Applied
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Theorem 2. Let u and uε be solutions of (10) satisfying the same boundary conditions and initial conditions u0 and
u0 + ε, respectively. If, for these solutions, the hypothesis of Theorem 1 are satisfied then

E(u − uε)(t) � e
2 max{− 1

τ
,f ′

max− α

(b−a)2
,}t‖ε‖2,

for each t ∈ (0, T ], where f ′
max = max|u|�L f ′(u).

Proof. Let us first note that vε = u − uε satisfies

∂vε

∂t
(x, t) = f

(
u(x, t)

) − f
(
uε(x, t)

) + β
∂vε

∂x
(x, t)

+ α
∂2vε

∂x2
(x, t) + D

τ

t∫
0

e− t−s
τ

∂vε

∂x
(x, s)ds, x ∈ (a, b), t > 0, (16)

and the conditions

uε(x,0) = −ε(x), x ∈ (a, b),

uε(a, t) = uε(b, t) = 0, t > 0.

Multiplying Eq. (16) by vε with respect to the L2 inner product (·,·) we obtain(
∂vε

∂t
(t), vε(t)

)
= (

f
(
u(t)

) − f
(
uε(t)

)
, vε(t)

) + β

(
∂vε

∂x
(t), vε(t)

)

+ α

(
∂2vε

∂x2
(t), vε(t)

)
+ D

τ

( t∫
0

e− t−s
τ

∂2vε

∂x2
(s)ds, vε(t)

)
.

As (f (u(t)) − f (uε(t)), vε(t)) � f ′
max‖vε‖2, the proof is concluded following the same steps of the proof of the last

theorem. �
The stability result – Theorem 2 – enables us to deduce for the L2 norm of (u − uε) the estimate

∥∥(u − uε)(t)
∥∥ � e

max{− 1
τ
,f ′

max− α

(b−a)2
}t‖ε‖.

From the same result we have for the L2 norm of the “average in time” of the gradient of (u − uε) the following∥∥∥∥∥
t∫

0

e− t−s
τ

∂

∂x
(u − uε)(s)ds

∥∥∥∥∥ � e
max{− 1

τ
,f ′

max− α

(b−a)2
}t‖ε‖.

Then if ε is small enough, we conclude that the two quantities

∥∥(u − uε)(t)
∥∥ and

∥∥∥∥∥
t∫

0

e− t−s
τ

∂

∂x
(u − uε)(s)ds

∥∥∥∥∥
remain small enough in the bounded time interval [0, T ]. If the reaction term is such that f ′

max < 0 then the estimated
quantities are less than ‖ε‖. In this case, we also conclude that in the unbounded time interval [0,+∞), we have

∥∥(u − uε)(t)
∥∥ → 0 and

∥∥∥∥∥
t∫

0

e− t−s
τ

∂

∂x
(u − uε)(s)ds

∥∥∥∥∥ → 0, as t → ∞,

independently of the perturbation ε.
Please cite this article in press as: A. Araújo et al., On the stability of a class of splitting methods for integro-differential equations, Applied
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3. Numerical methods

Let us consider in [a, b] a grid Gh = {xi : i = 0, . . . ,N} with x0 = a, xN = b and xi − xi−1 = h, i = 1, . . . ,N .
In what follows, we will consider the second-order centered finite difference operator D2,h and Dh,s(β) which corre-
sponds to Dh,−, the first-order backward finite difference operator when β < 0, or to Dh,+, the first-order forward
finite difference operator when β > 0, defined by the usual way. Let us also consider the time grid {tn, n = 0, . . . ,M}
such that t0 = 0, tM = T and tn+1 − tn = 
t .

The class of splitting methods that we study are based on the following functional splitting

I. Reaction:⎧⎨
⎩

∂u1

∂t
(x, t) = f (u1(x, t)), x ∈ (a, b), t ∈ (t, t + 
t],

u1(x, t) = u(x, t), x ∈ (a, b).

II. Advection and diffusion:⎧⎨
⎩

∂u2

∂t
(x, t) = β

∂u2

∂x
(x, t) + α

∂2u2

∂x2
(x, t), x ∈ (a, b), t ∈ (t, t + 
t],

u2(x, t) = u1(x, t + 
t), x ∈ (a, b).

III. Diffusion memory:⎧⎪⎪⎨
⎪⎪⎩

∂u3

∂t
(x, t) = D

τ

t∫
0

e− t−s
τ

∂2u3

∂x2
(x, s)ds, x ∈ (a, b), t ∈ (t, t + 
t],

u3(x, t) = u2(x, t + 
t), x ∈ (a, b).

We assume that the reaction problem, the advection–diffusion problem and the diffusion-memory problem are com-
plemented with the Dirichlet boundary conditions prescribed in the original problem.

By SM we denote the splitting method obtained combining Ih, IIh and IIIh defined by

Ih. Reaction:{
un+1

1,h = un
1,h + 
t

(
(1 − θ)f

(
un

1,h

) + θf
(
un+1

1,h

))
, θ ∈ [0,1],

un
1,h = un

h.

IIh. Advection and diffusion:{
un+1

2,h = un
2,h + 
tβDh,s(β)u

n+1
2,h + 
tαD2,hu

n+1
2,h ,

un
2,h = un+1

1,h .

IIIh. Diffusion memory:⎧⎪⎪⎨
⎪⎪⎩

un+1
3,h = un

3,h + 
t2 D

τ

n∑
j=1

e− tn+1−tj
τ D2,hu

j
h + 
t2 D

τ
D2,hu

n+1
3,h ,

un
3,h = un+1

2,h ,

where

u
j
i,h(x0) = ua(tj ), u

j
i,h(xN) = ub(tj ), i = 1,2,3, j = 1, . . . ,M − 1,

u0
h(xi) = u0(xi), i = 1, . . . ,N. (17)

Finally we will consider u(xi, tn+1) ≈ un+1(xi) = un+1(xi), i = 1, . . . ,N .
Please cite this article in press as: A. Araújo et al., On the stability of a class of splitting methods for integro-differential equations, Applied
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As we would like to study the influence of the implicitness and the explicitness of the discretization of the reaction
term in the behavior of the splitting method presented, we only considered a θ -method in the discretization of the
reaction problem.

The stability and accuracy properties of the described splitting method will be compared with the correspondent
properties of the non-splitting scheme (NSM)

un+1
h = un

h + 
t
(
(1 − θ)f

(
un

h

) + θf
(
un+1

h

)) + 
tβDh,s(β)u
n+1
h

+ 
tαD2,hu
n+1
h + D
t2

τ

n+1∑
j=1

e−(tn+1−tj )/τD2,hu
j
h, θ ∈ [0,1]. (18)

3.1. Stability

In order to study the stability of the numerical methods, let us introduce some notation. We denote by L2(Gh) the
space of grid functions vh defined in Gh such that vh(x0) = vh(xN) = 0. In this space, we will consider the discrete
inner product

(vh,wh)h = h

N−1∑
i=1

vh(xi)wh(xi), vh,wh ∈ L2(Gh). (19)

We denote by ‖ · ‖h the norm induced by this inner product. We will introduce other notations:

(vh,wh)h+ = h

N∑
i=1

vh(xi)wh(xi), (20)

‖vh‖h+ =
(

h

N∑
i=1

vh(xi)
2

)1/2

, (21)

for grid functions defined on Gh − {xN }.
We remark that holds the following discrete Friedrichs–Poincaré inequality

‖vh‖2
h � (b − a)2‖Dh,−vh‖2

h+.

Our goal is to obtain an estimate for the fully discrete version of the energy (12) given by

Eh

(
un+1

h

) = ∥∥un+1
h

∥∥2
h

+ D

τ

∥∥∥∥∥
t

n∑
j=1

e−(tn+1−tj )/τDh,−u
j
h

∥∥∥∥∥
2

h+
. (22)

We will prove the following result for the SM defined by Ih–IIIh and (17).

Theorem 3. Let u
j
h be a solution of the SM defined by Ih–IIIh and (17), with homogeneous boundary conditions, such

that |uj
h(xi)| � L (L ∈ R

+), for i = 1, . . . ,N and j = 1, . . . ,M . If f is continuously differentiable and f (0) = 0, then

Eh

(
un+1

h

)
�

(
S(
t, θ)

)n+1‖u0‖2
h, (23)

for n = 0, . . . ,M − 1, where the stability factor S(
t, θ) is defined by

S(
t, θ) = 1 + 
t(1 − θ)

(1 + 2α
t(b − a)−2)(1 − 
t((1 − θ)f ′2
max + 2θf ′

max))
(24)

for θ ∈ [0,1], and f ′
max = max|u|�L f ′(u), provided that

1 − 
t
(
(1 − θ)f ′2

max + 2θf ′
max

)
> 0. (25)
Please cite this article in press as: A. Araújo et al., On the stability of a class of splitting methods for integro-differential equations, Applied
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Proof. Let us first consider Ih

un+1
1,h = un

1,h + 
t
(
(1 − θ)f

(
un

1,h

) + θf
(
un+1

1,h

))
.

Multiplying this equation by un+1
1,h , with respect to the L2 inner product (·,·)h, we get(

un+1
1,h , un+1

1,h

)
h

= (
un

1,h, u
n+1
1,h

)
h

+ 
t
(
(1 − θ)

(
f

(
un

1,h

)
, un+1

1,h

)
h

+ θ
(
f

(
un+1

1,h

)
, un+1

1,h

)
h

)
.

Due to the fact that f (0) = 0 we obtain(
1 − 
t

(
(1 − θ)f ′2

max + 2θf ′
max

))∥∥un+1
1,h

∥∥2
h

� 1 + 
t(1 − θ)
∥∥un

1,h

∥∥2
h

which implies∥∥un+1
1,h

∥∥2
h

� 1 + 
t(1 − θ)

1 − 
t((1 − θ)f ′2
max + 2θf ′

max)

∥∥un
1,h

∥∥2
h
, (26)

provided that 
t satisfies (25).
Let us now consider IIh

un+1
2,h = un

2,h + 
tβDh,s(β)u
n+1
2,h + 
tαD2,hu

n+1
2,h .

Proceeding as before and using summation by parts we get(
un+1

2,h , un+1
2,h

)
h

= (
un

2,h, u
n+1
2,h

)
h

− 
tβ
(
Dh,s(β)u

n+1
2,h , un+1

2,h

)
h

− 
tα
∥∥Dh,−un+1

2,h

∥∥2
h+. (27)

We remark that

β
(
Dh,s(β)u

n+1
2,h , un+1

2,h

)
h

� 0. (28)

In fact, for instance for β > 0, taking vh := un+1
2,h we have

β(Dh,+vh, vh)h = β

(
N∑

i=2

vivi−1 −
N−1∑
i=1

v2
i

)

� β

(
1

2

N∑
i=1

(
v2
i + v2

i−1

) −
N−1∑
i=1

v2
i

)

� 0.

Taking (28) in (27) and using the discrete Friedrichs–Poincaré inequality we obtain∥∥un+1
2,h

∥∥2
h

� 1

1 + 2α
t(b − a)−2

∥∥un
2,h

∥∥2
h
. (29)

Finally let us consider IIIh

un+1
3,h = un

3,h + 
t2 D

τ

n∑
j=1

e− tn+1−tj
τ D2,hu

j
h + 
t2 D

τ
D2,hu

n+1
3,h .

As in the previous cases we get

∥∥un+1
3,h

∥∥2
h

= (
un

3,h, u
n+1
3,h

)
h

− 
t2 D

τ

(
n∑

j=1

e− tn+1−tj
τ Dh,−u

j
h,Dh,−un+1

3,h

)
h+


t2 D

τ

∥∥Dh,−un+1
3,h

∥∥2
h+.

Using the same arguments as before and due to the fact that

2

(
n+1∑
j=1

e− tn+1−tj
τ Dh,−u

j
h,Dh,−un+1

h

)
h+

=
∥∥∥∥∥

n+1∑
e− tn+1−tj

τ Dh,−u
j
h

∥∥∥∥∥
2

− e−2
t/τ

∥∥∥∥∥
n∑

e− tn−tj
τ Dh,−u

j
h

∥∥∥∥∥
2

+ ∥∥Dh,−un+1
h

∥∥2
h+
Please cite this article in press as: A. Araújo et al., On the stability of a class of splitting methods for integro-differential equations, Applied
Numerical Mathematics (2008), doi:10.1016/j.apnum.2008.03.005

j=1 h+ j=1 h+



ARTICLE IN PRESS APNUM:2120
JID:APNUM AID:2120 /FLA [m3SC+; v 1.91; Prn:11/04/2008; 15:38] P.10 (1-18)

10 A. Araújo et al. / Applied Numerical Mathematics ••• (••••) •••–•••
we obtain

∥∥un+1
3,h

∥∥2
h

+ D

τ

∥∥∥∥∥
t

(
n∑

j=1

e− tn+1−tj
τ Dh,−u

j
h + Dh,−un+1

3,h

)∥∥∥∥∥
2

h+

�
∥∥un

3,h

∥∥2
h

+ D

τ

∥∥∥∥∥
t

n∑
j=1

e− tn+1−tj
τ Dh,−u

j
h

∥∥∥∥∥
2

h+
. (30)

Attending that un
3,h = un+1

2,h and using in (30) inequality (29) we obtain

∥∥un+1
3,h

∥∥2
h

+ D

τ

∥∥∥∥∥
t

(
n∑

j=1

e− tn+1−tj
τ Dh,−u

j
h + Dh,−un+1

3,h

)∥∥∥∥∥
2

h+

� 1

1 + 2α
t(b − a)−2

∥∥un
2,h

∥∥2
h

+ D

τ

∥∥∥∥∥
t

n∑
j=1

e− tn+1−tj
τ Dh,−u

j
h

∥∥∥∥∥
2

h+
. (31)

Finally, as we have un
2,h = un+1

1,h , from inequalities (31) and (26) we conclude the proof. �
Following the proof of the last result we have the following stability result:

Theorem 4. Let u
j
h and ũ

j
h be solutions of the SM defined by Ih–IIIh and (17), with the conditions u0 and ũ0, respec-

tively. If |uj
h(xi)| � L, |ũj

h(xi)| � L (L ∈ R
+), for i = 1, . . . ,N and j = 1, . . . ,M, f is continuously differentiable

and f (0) = 0, then

Eh

(
un+1

h − ũn+1
h

)
�

(
S(
t, θ)

)n+1‖u0 − ũ0‖2
h, (32)

for n = 0, . . . ,M − 1, where the stability factor S(
t, θ) is defined by (24) and provided that the time stepsize
satisfies (25).

Following the arguments used in the proof of Theorem 3, we may obtain an estimate for the discrete energy (22) of
the solution of the NSM defined by (18) and (17) when homogeneous boundary conditions are considered. A stability
result can be also established when the initial condition is perturbed, more precisely we have:

Theorem 5. Let uj
h, ũj

h be solutions of the NSM defined by (18) and (17), with initial conditions u0 and ũ0, respectively.

If |uj
h(xi)| � L, |ũj

h(xi)| � L (L ∈ R
+), for i = 1, . . . ,N and j = 1, . . . ,M , f is continuously differentiable and

f (0) = 0, then

Eh

(
un+1

h − ũn+1
h

)
�

(
S(
t, θ)

)n+1‖u0 − ũ0‖2
h, (33)

for n = 0, . . . ,M − 1, where the stability factor S(
t, θ) is defined by

S(
t, θ) = 1 + 
t(1 − θ)

min{1,1 − 
t((1 − θ)f ′2
max + 2θf ′

max − (2α + D/τ
t)(b − a)−2)} (34)

for θ ∈ [0,1] and f ′
max = max|u|�L f ′(u), provided that

1 − 
t
(
(1 − θ)f ′2

max + 2θf ′
max − (2α + D/τ
t)(b − a)−2) > 0. (35)

The stability restriction for the time stepsize defined by (35) is stronger than the restriction (25) for the SM in the
sense that the first one implies a smaller time stepsize than the second one.

We denote by SI the splitting method Ih–IIIh with θ = 1 (implicit reaction), SE the splitting method Ih–IIIh with
θ = 0 (explicit reaction), by FI the non-splitting scheme (18) with θ = 1 (implicit reaction) and by IMEX the non-
splitting scheme (18) with θ = 0 (explicit reaction) and by Si, Se, Sf i and Simex we represent the corresponding
stability factors.
Please cite this article in press as: A. Araújo et al., On the stability of a class of splitting methods for integro-differential equations, Applied
Numerical Mathematics (2008), doi:10.1016/j.apnum.2008.03.005
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Fig. 1. Stability factor: f ′
max < 0.

Fig. 2. Stability factor: f ′
max > 0.

In Figs. 1–2 we plot the defined stability factors as functions of the time step. As we expected, in what concerns
the stability, these figures confirm the advantage of the implicit schemes. If we compare the splitting schemes with the
non-splitting ones we may see, specially for f ′

max < 0 (Fig. 1), that the stability factor for the splitting method with
implicit reaction is less or equal than the stability factor of the non-splitting scheme with implicit reaction.

The behavior of the stability conditions to the time step is considered in Fig. 3. Let SC(
t, θ) be defined by

SC(
t, θ) = max
{
0,1 − 
t

(
(1 − θ)f ′2

max + 2θf ′
max

)}
,

for splitting schemes and by

SC(
t, θ) = max
{
0,1 − 
t

(
(1 − θ)f ′2

max + 2θf ′
max − (2α + D/τ
t)(b − a)−2)},
Please cite this article in press as: A. Araújo et al., On the stability of a class of splitting methods for integro-differential equations, Applied
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Fig. 3. Stability conditions.

for non-splitting ones. By SCi ,SCe,SCf i and SCimex we denote the previous functions. Fig. 3 illustrates the fact that
the restrictions to the stability imposed by the explicit schemes are more restrictive.

The spitting method – SM – and the non-splitting method – NSM – studied in this paper were defined replacing
the first-order partial derivative with respect to space variable by the first-order backward finite difference operator
Dh,− or first-order forward finite difference operator Dh,+ depending on the signal of β. Let Dc be the second-order
centered finite difference operator defined by

Dcvh(xi) = vh(xi+1) − vh(xi−1)

2h
.

Attending that for vh such that vh(x0) = vh(xN) = 0 we have

(Dcvh, vh)h = 0

we conclude that for the SM and the NSM defined replacing ∂u
∂x

(xi, tn) by Dcu
n
h(xi) hold stability results analogous

to Theorem 4 for the SM and to Theorem 5 for the NSM.

3.2. Error estimates

In this section we will study the convergence of the numerical schemes proposed in the previous section. Let
e
j
h(xi) = u

j
h(xi) − u(xi, tj ) be the global error of the approximation u

j
h(xi) obtained by the numerical method Ih–IIIh

with boundary conditions (17), and let T
j
h (xi) be the corresponding truncation error. Following the proof of Theorem 3

we may prove the next result.

Theorem 6. Let u
j
h, j = 1, . . . ,M, be the numerical solution of (10)–(11) obtained with Ih–IIIh with boundary

conditions (17). If f is continuously differentiable and f (0) = 0, then

Eh

(
en+1
h

)
�

n∑
j=0

Sj+1(
t, θ)
t
∥∥T

n+1−j
h

∥∥2
h
,

with ‖T �
h ‖2

h = maxk=Ih,IIh,IIIh ‖T �
k,h‖2

h, where T �
k,h denotes the truncation error corresponding to problem k for

k = Ih, IIh, IIIh, and

S(
t, θ) = M(
t, θ)
,

Please cite this article in press as: A. Araújo et al., On the stability of a class of splitting methods for integro-differential equations, Applied
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where

M(
t, θ) = max

{
e−2
t/τ ,

1 + 
t(1 − θ)

1 − 
t((1 − θ)f ′2
max + 2θf ′

max + 1)

}
and

m(
t, θ) = min

{
1,1 − 
t

(
1 − D

τ

t(b − a)−2

)}
,

provided that

1 − 
t
(
(1 − θ)f ′2

max + 2θf ′
max + 1

)
> 0 (36)

and

1 − 
t

(
1 − D

τ

t(b − a)−2

)
> 0. (37)

Proof. Let

e
j
k,h(xi) = u

j
k,h(xi) − uk(xi, tj ), k = 1,2,3,

be the error for the different subproblems Ih–IIIh. Let us first consider Ih. Considering the error equation for en+1
1,h it

can be shown that

∥∥en+1
1,h

∥∥2
h

�
(1 + 
t(1 − θ))‖en

1,h‖2
h + 
t‖T n+1

1,h ‖2
h

1 − 
t((1 − θ)f ′2
max + 2θf ′

max + 1)
, (38)

provided that (36) holds.
Let us now consider IIh. Using on the error equation for en+1

2,h the arguments considered on the proof of inequal-
ity (29), it can be shown that∥∥en+1

2,h

∥∥2
h

= ∥∥en
2,h

∥∥2
h

− 2α(b − a)−2
∥∥Dh,−en+1

2,h

∥∥2
h+ + 2
t

(
T n+1

2,h , en+1
2,h

)
h
.

Attending that(
T n+1

2,h , en+1
2,h

)
h

� 1

ε2

∥∥T n+1
2,h

∥∥2
h

+ ε2
∥∥en+1

2,h

∥∥2
h

holds for ε 
= 0, considering ε2 = 2α(b − a)−2, we obtain∥∥en+1
2,h

∥∥2
h

�
∥∥en

2,h

∥∥2
h

+ 
t

2α
t(b − a)−2

∥∥T n+1
2,h

∥∥2
h
. (39)

Finally let us consider IIIh. From the error equation for en+1
3,h , considering the procedures used on the proof of

inequality (30), it can be shown

m(
t, θ)

(∥∥en+1
3,h

∥∥2
h

+ D

τ

∥∥∥∥∥
t

(
n∑

j=1

e− tn+1−tj
τ Dh,−e

j
h + Dh,−en+1

3,h

)∥∥∥∥∥
2

h+

)

�
∥∥en

3,h

∥∥2
h

+ D

τ
e−2
t/τ

∥∥∥∥∥
t

n∑
j=1

e− tn+1−tj
τ Dh,−e

j
h

∥∥∥∥∥
2

h+
+ 
t

∥∥T n+1
3,h

∥∥2
h
. (40)

Combining (38)–(40) and attending that en
1,h = en

h, en
2,h = en+1

1,h and en
3,h = en+1

2,h , we conclude that

Eh

(
en+1
h

)
� S(
t, θ)Eh

(
en
h

)
.

As Eh(e
0
h) = 0, we conclude the proof. �

According to Theorem 6, we conclude that, if

M(
t, θ) = e−2
t/τ ,
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we have

Eh

(
en+1
h

)
� eCT ‖Th‖2

h,∞,

where C = −2/τ if m(
t, θ) = 1, and

C = 1

1 − 
t(1 − D
τ

t(b − a)−2)

if

m(
t, θ) = 1 − 
t

(
1 − D

τ

t(b − a)−2

)
.

For

M(
t, θ) = 1 + 
t(1 − θ)

1 − 
t((1 − θ)f ′2
max + 2θf ′

max + 1)

we may obtain similar results.
The convergence of the θ family of methods is now consequence of the consistency, that is, ‖Th‖h,∞ = O(h,
t).

4. Numerical results

Our aim in this section is to illustrate the theoretical results established in the last section namely the stability
results. In all numerical examples we consider the convection–diffusion–reaction equation

∂u

∂t
(x, t) = f (u) + β

∂u

∂x
(x, t) + α

∂2u

∂x2
(x, t) + D

τ

t∫
0

e− t−s
τ

∂2u

∂x2
(x, s)ds, x ∈ (0,50), t ∈ (0, T ]. (41)

Example 1. Let us consider (41) with

f (u) = Uu(1 − u),

and U = 10, α = 0.1, D = 0.1, τ = 0.01, β = −0.5 and T = 5. Eq. (41) is complemented with initial and boundary
conditions

u(x,0) =
{

1, x ∈ [0,5],
0, x ∈ (5,50],

u(0, t) = 1, u(50, t) = 0, t ∈ (0,5]. (42)

In Fig. 4 we plot the numerical solution computed with the method FI defined by (18) (θ = 1), with 
t = 0.001
and h = 0.1. This solution is adopted as reference solution in what follows. We remark that the same results were
obtained with the methods IMEX, SE and SI.

Let us consider now only the implicit methods FI and SI. In Figs. 5 and 6 we plot the numerical solutions obtained
with 
t = 0.01.

From Figs. 5 and 6 we observe that an increasing of the time stepsize implies in the method FI an erratic behavior:
the numerical traveling wave solution propagates with a higher speed than the corresponding solutions obtained with
the splitting method SI.

When the method SI is used, we solve, in each time step, a diagonal non-linear system. Otherwise, when we use
the method FI, we solve, in each time step, a tridiagonal non-linear system. Attending to this facts the first method is
cheaper than the second one. Such remark can be concluded from the CPU time of both methods. We observed in all
numerical experiments the following relation between the CPU times of both methods:

CPU(FI)

CPU(SI)
� 1.85.

Let us compare now the splitting methods. We consider U = −20, α = 0.1, D = 0.1, τ = 0.1, β = 0, T = 2 and
the conditions (42). In Fig. 7 we plot the numerical solutions obtained using the method SE for several values of 
t.
Please cite this article in press as: A. Araújo et al., On the stability of a class of splitting methods for integro-differential equations, Applied
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Fig. 4. The reference solution computed with the method FI.

Fig. 5. Numerical solutions computed using the non-splitting method FI.

We observe that when 
t increases the numerical solution presents an instable behavior. As the stability restriction
of the implicit method SI is weaker than the corresponding restriction of the explicit one, the behavior presented in
Fig. 7 is not observed when the method SI is considered. In Fig. 8 we plot only the numerical solution obtained with
the method SI for 
t = 0.1.

In the following example we analyze the sharpness of the restriction (25) to the time stepsize which allowed the
establishment of the stability result for the splitting methods: Theorem 4.
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Fig. 6. Numerical solutions computed using the splitting method SI.

Fig. 7. Numerical solutions computed using the method SE.

Example 2. Let us consider the IBVP defined by Eq. (41) with

f (u) = −2u2,

by Dirichlet homogeneous boundary conditions and by the initial condition

u(x,0) = 8.1 sech(x − 25)2, x ∈ (0,50).

In Eq. (41) we take α = 0.1, D = 0.1, τ = 0.1 and β = 0.
In Figs. 9 and 10 we plot the numerical results obtained using the methods SE and SI respectively, when 
t

increases.
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Fig. 8. Numerical solutions computed using the method SI.

Fig. 9. Numerical solutions computed using the method SE.

Based on the numerical experiments presented in Fig. 9 we conclude that the upper stability bound 
t0 for the
stepsize is in [0.06,0.07). However, if we use the condition (25) we conclude that 
t0 � 1/f ′2

max � 0.00381. We
remark that the upper bound deduced from the numerical results is approximately equal to 1/|f ′

max|. This conclusion
shows that the theoretical restriction (25) is sharp in the present context.

The last example shows that the condition (25) could be sharp. Nevertheless we point out that this condition can be
replaced by

1 − 
t
(
(1 − θ)|f ′

max| + 2θf ′
max

)
> 0. (43)

In this case the definition (24) of S(
t, θ) should be replaced by the following

S(
t, θ) = 1 + 
t(1 − θ)|f ′
max|

(1 + 2α
t(b − a)−2)(1 − 
t((1 − θ)|f ′ | + 2θf ′ ))
. (44)
Please cite this article in press as: A. Araújo et al., On the stability of a class of splitting methods for integro-differential equations, Applied
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Fig. 10. Numerical solutions computed using the method SI.

This means that Theorem 4 holds with S(
t, θ) given by (44) under the new condition (43) for the time stepsize.

References

[1] A. Araújo, J.A. Ferreira, P. de Oliveira, Qualitative behaviour of numerical traveling waves solutions for reaction diffusion equations with
memory, Applicable Analysis 84 (2005) 1231–1246.

[2] A. Araújo, J.A. Ferreira, P. de Oliveira, The effect of memory terms in diffusion phenomena, Journal of Computational Mathematics 24 (2006)
91–102.

[3] S. Barbeiro, J.A. Ferreira, Integro-differential models for percutaneous drug absortion, International Journal of Computer Mathematics 84
(2007) 451–467.

[4] J.R. Branco, J.A. Ferreira, P. de Oliveira, Numerical methods for the generalized Fisher–Kolmogorov–Petrovskii–Piskunov equation, Applied
Numerical Mathematics 57 (2007) 89–102.

[5] C. Cattaneo, Sulla condizione de calore, Atti del Seminario Matematico e Fisico dell’ Universitá de Modena 3 (1948) 3–21.
[6] S. Fedotov, Traveling waves in a reaction–diffusion system: diffusion with finite velocity and Kolmogorov–Petrovskii–Piskunov kinetics,

Physical Review E 4 (1998) 5143–5145.
[7] S. Fedotov, Nonuniform reaction rate distribution for the generalized Fisher equation: ignition ahead of the reaction front, Physical Review E 4

(1998) 4958–4961.
[8] S. Fedotov, Y. Okuda, Non Markovian random process and traveling front in a reaction transport system with memory and long-range inter-

actions, Physical Review E 66 (2002) 021113 (7 pages).
[9] S. Fedotov, Y. Okuda, Waves in a reaction-transport system with memory, long-range interactions and transmutations, Physical Review E 70

(2004) 051108, (10 pages).
[10] J.A. Ferreira, P. de Oliveira, Memory effects and random walks in reaction-transport systems, Applicable Analysis 86 (2007) 99–118.
[11] D.D. Joseph, L. Preziosi, Heat waves, Reviews of Modern Physics 61 (1989) 41–73.
[12] P. Vernotte, La véritable de équation de la chaleur, Comptes Rendus de l’Académie des Sciences 247 (1958).
Please cite this article in press as: A. Araújo et al., On the stability of a class of splitting methods for integro-differential equations, Applied
Numerical Mathematics (2008), doi:10.1016/j.apnum.2008.03.005


