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Abstract Pore-scale models are becoming increasingly
useful as predictive tools for modeling flow and transport
in porous media. These models can accurately represent the
3D pore-structure of real media. Currently first-principles
modeling methods are being employed for obtaining
qualitative and quantitative behavior. Generally, artificial,
simple boundary conditions are imposed on a model that is
used as a stand-alone tool for extracting macroscopic
parameters. However, realistic boundary conditions, reflect-
ing flow and transport in surrounding media, may be
necessary for behavior that occurs over larger length scales
or including pore-scale models in a multiscale setting. Here,
pore-scale network models are coupled to adjacent media
(additional pore-scale or continuum-scale models) using
mortars. Mortars are 2D finite-element spaces employed to
couple independent subdomains by enforcing continuity of
pressure and flux at shared boundary interfaces. While
mortars have been used in the past to couple subdomains of
different models, physics, and meshes, they are extended
here for the first time to pore-scale models. The approach is
demonstrated by modeling single-phase flow in coupled
pore-scale models, but the methodology can be utilized to
model dynamic processes and perform multiscale modeling
in 3D continuum simulators for flow and transport.
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1 Introduction

Flow and transport in porous media is typically modeled at
the continuum scale by solving the continuity equation
together with momentum, energy, and/or species balances.
Constitutive equations, such as Darcy’s law, are substituted
into these equations for velocity. Quantitative values of
empirical parameters, such as permeability, relative perme-
ability, and capillary pressure, are needed as inputs for the
model, which are dependent on the media morphology and/
or the fluids in the pore space. Experimental measurements
are commonly used to estimate the parameters used for
direct substitution into continuum simulators, but recently,
pore-scale models have become a popular and efficient
method for parameter estimation.

Network modeling is a pore-scale technique in which the
porous medium is approximated as an interconnected
network of pores and pore throats. Network models have
long been used to study important behavior regarding flow
and transport in porous media but were limited to
qualitative studies because simple 2D or 3D lattices were
used. More recently, quantitative techniques have been
developed to model certain behavior in porous media
including single-phase Newtonian flow [10], multiphase
flow [8], and non-Newtonian flow [5, 18]. Physically
representative network models [10] are mapped directly
from a rigorous description of some original well-described
porous medium, and consequently, they retain important
morphology and spatial correlations that are necessary for
obtaining quantitative and predictive results. To make
network modeling as predictive as possible, advancements
continue to be made in two specific areas: (1) characteriza-
tion of the 3D pore structure and transformation into a
physically representative network model and (2) accurate
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flow modeling in the resulting network using a first-
principles approach.

The first step in characterizing the pore structure is to
obtain an accurate, numerical description of the porous
medium. X-ray computed microtomography (XMT) [15,
17, 26] is a technique used to extract the 3D pore structure
of real, naturally occurring porous media. The high-
resolution images obtained through XMT are digitally
represented as voxels, which (in a binary image) define
the pore and grain space. Computer-generated methods
offer an alternative to high-resolution imaging of porous
media. These methods include stochastic approaches [1, 15]
in which the porous medium is reconstructed using
statistical properties and process-based approaches that
attempt to simulate the geological process in which the
medium is formed. For example, Baake and Oren [8] have
created computer-generated sandstones by modeling sedi-
mentation, compaction, and diagenesis. Regardless of the
method used to digitally represent the medium, the second
step is conversion to a network model of pores and throats.
Grain-based methods are usually tied to approaches that
represent grain positions in porous media. Bryant et al. [10]
used a Delaunay tessellation to determine the pores and
interconnected throats to create a physically representative
network model. Al-Raoush et al. [2] extended that work by
using a modified Delaunay tessellation, which allowed the
pore interconnectivity to vary. For voxel data obtained from
imaging, the medial-axis [16, 22] can be used to thin the
void space, from which one can map out the pores and
throats in the network. Recently, a grain-based reconstruc-
tion algorithm [23] was created to generate network models
from voxel data. Advantages of this method include its
insensitivity to image resolution and the mapping of the
network from fundamental building blocks in the material
(i.e., the grains).

Once the network model is generated, it can be used to
model a wide range of flow and transport problems by
forcing mass conservation at every pore and solving
fundamental equations of momentum, mass, and heat
transfer in the connecting throats. Early network modeling
assumed throats were simple capillary tubes or transformed
the throats into equivalent capillaries [10, 18] so that the
Navier–Stokes equations, etc., could be solved in a
straightforward manner. Advancements continue to be
made to account for the actual irregular geometry of these
throats. Balhoff and Thompson [5, 6] have developed
closed-form empirical flow equations for non-Newtonian
fluids in converging/diverging ducts (which are more
representative of the true throat geometry) by solving the
momentum equations numerically.

The recent improvements in these two areas (character-
ization of the pore structure and flow modeling) has

allowed network modeling to become more of a predictive
tool for obtaining upscaled, macroscopic parameters.
Despite these advancements, simple boundary conditions
(usually a pressure gradient in one dimension) are almost
always imposed when flow modeling is performed. Be-
cause the pore-scale model often represents a portion of a
much larger medium, the true boundary conditions should
depend on flow behavior in the surrounding media.
Imposing artificial boundary conditions can lead to mis-
leading upscaled values, whereas choosing appropriate
boundary conditions on the network require direct coupling
to adjacent media (additional pore-scale or continuum-scale
models). The later procedure is not straightforward because
the models are independent and the boundary pores may
not be naturally connected to the adjacent model.

Recently, Balhoff et al. [7] developed a domain-
decomposition method for coupling a pore-scale model to
an adjacent continuum model. In that approach, a pressure
field is determined iteratively at the interface such that flow
in/out of every boundary pore of the network model
matches the total flow out/in of the continuum region
(integrated over an area corresponding to each specific
pore). The resulting interface boundary conditions were
very complex due to the heterogeneity captured in the pore-
scale models. It was shown that the boundary conditions
could be significantly different for two similar realizations
(with identical macroscopic properties such as grain
diameter, porosity, and permeability) because the pore
structure is different. Implementing a simple boundary
condition (such as a constant pressure, linear pressure
profile, or one obtained by approximating the pore-scale
region as a continuum) was also shown to result in incorrect
qualitative and quantitative results. While this multiscale
approach provides a motivation for determining realistic
boundary conditions by coupling to adjacent media, it has
limited practicality. First, the continuum model in that work
was simple and amenable to an analytical solution, so
fluxes could be evaluated easily at the discrete point
corresponding to the boundary pore positions in the
adjacent network model. The method would not be
applicable for coupling two discrete network models
because the boundary pore positions would not match in
general. Second, the approach can be very computationally
inefficient because it involves solving M simultaneous
equations (M being the number of boundary pores). Each
subdomain must be solved M times to generate the Jacobian
for the interface problem, and it becomes obvious that this
is not computationally efficient, especially for nonlinear
and time-dependent problems.

A domain decomposition approach using mortars has
been developed [3] to model flow and transport in porous
media. This has been implemented in the research software
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Integrated Parallel Accurate Reservoir Simulator. The
decomposed subdomains can model different physics,
contain different models, or implement different finite-
difference or finite-element meshes [3, 4, 12, 20, 25, Girault
et al. 2007, in review]. The subdomains are solved
independently and the interface boundary conditions are
determined using mortar spaces. The mortar space is a 2D,
finite-element space that is used to project primary
variables (e.g., pressure) onto the subdomain. The projected
pressure field must be chosen so that the jump in secondary
variables (e.g., fluxes) is zero, thus maintaining continuity.
Accuracy can be improved by utilizing finer meshes on the
mortar space or using higher-order mortars such as linear or
quadratic basis functions [see 4]. Because the subdomains
in the mortar method are solved independently, they can be
viewed as “black boxes” and thus could be models at
different scales. However, the mortar coupling method has
not yet been extended to include pore-scale models. The
method would have some advantages over the method used
by Balhoff et al. [7] for that application in that each element
would contain several pores, and therefore, a significantly
fewer number of interface equations would have to be
solved. Zhodi and Wriggers [27] did use a novel domain
decomposition approach to couple microscale models, but
the interface boundary conditions were not chosen rigor-
ously. They modeled mechanics at a continuum scale and
then used the solution to impose boundary conditions at the
subdomain interfaces. Balhoff et al. [7] showed some of the
limitations of utilizing boundary conditions in this manner.

A number of other methods have been developed to
perform multiscale modeling in solid mechanics by cou-
pling atomistic and continuum approaches. Kohloff et al.
[14] modeled mechanics in an atomistic domain surrounded
by a continuum, finite-element mesh. Boundary conditions
at the interface were determined by ensuring consistency in
strains in a small overlap region. Broughton et al. [9]
extended the work of Kohloff et al. using molecular-
atomistic-ab initio dynamics by refining the continuum,
finite-element mesh to the atomic scale in the overlap
region. Wagner and Liu [24] have developed a bridging
scale technique in which the atomistic and continuum
scales completely overlap. More information on these
multiscale methods can be found in the review by Rudd
and Broughton [21], as well as in an introduction by Klein
and Zimmerman [13].

The objective of the current work is to model flow in
porous media by coupling pore-scale network models to
other pore-scale or continuum-scale models using mortars
at the interface. The mortars provide a method for
determining realistic boundary conditions on predictive
pore-scale models because they are intended to represent a
portion of a much larger porous medium. The outline of the

paper is organized as follows: In Section 2 the mathemat-
ical approach for network modeling is discussed. The
equations for mortar coupling these pore-scale models to
other pore-scale or continuum-scale models are then
presented. In Section 3 the coupling method is verified by
coupling two identical, periodic pore-scale models and
comparing this unique case to the actual interface pressure
field. In Section 4, different pore-scale models are coupled
together; both qualitative and quantitative results are
discussed. Additionally, a pore-scale model is coupled to
surrounding continuum-scale models. Finally, in Section 5,
conclusions and future applications of the work are
discussed.

2 Mathematical approach

2.1 Network modeling

Although pore-scale models have been used in the past as
qualitative tools for modeling flow and transport in porous
media, today, physically representative [10] models of
heterogeneous 3D structures can be used to obtain
predictive information for upscaling. The first step in
network modeling is to obtain a 3D representation of the
porous medium. These structures can be computer-generated
sphere packings [2], computer-generated synthetic sand-
stones, or X-ray computed tomography of real reservoir
sandstones or consolidated rock. For example, Fig. 1a is a
sample sandstone structure from the Frontier Formation in
Wyoming, USA [11], and Fig. 1b is the network model
mapped from the sandstone [23]. In this work, both
computer-generated sphere packings and sample sandstones
imaged using XMT will be used as representative porous
media. Sphere packings can represent certain unconsol-
idated media in subsurface applications, such as proppant

Fig. 1 a Sample sandstone structure from the Frontier Formation in
Wyoming, USA [11] and b the resulting pore-scale network model
[23]
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particles in propped hydraulic fractures or weathered,
unconsolidated sands. These structures can be created
quickly with specified porosity, grain-size distribution, and
spatial correlation.

In each of the media described above, specification of
the position and size of each grain is sufficient to
completely define the structure of the void space in which
fluid is transported. However, it is a continuous,
interconnected region with a complex geometry, and hence,
some form of discretization is required prior to numerical
simulation. In the network-modeling approach, the contin-
uum void space is discretized into pores and pore throats.
The challenge is to obtain a network structure that
effectively represents the true pore-space morphology.

Here, networks were generated using a modified
Delaunay tessellation algorithm [2]. In the network gener-
ation process, several rigorous geometric parameters are
used to describe the network, along with the hydraulic
conductivity of each throat in the network, which is
computed based on the local pore and pore-throat geometry.

The general approach to network modeling is to impose
a mass conservation equation at each pore in the network.
For constant-density fluids, the conservation equation for
pore i is simply

X
j

qij ¼ 0 ð1Þ

where qij is the volumetric flowrate into pore i through a
throat connected to neighbor j. The flowrate qij is then
written in terms of unknown pore pressures, which become
the dependent variables in the problem. For low-Reynolds-
number flow of Newtonian fluids, flowrate is linearly
proportional to the pressure drop for all the pore-throat
geometries.

2.2 Mortar coupling

Domain decomposition can be an efficient way to solve
large problems because the decomposed subdomains may
be solved in parallel. Additionally, the subdomains may be
used to model different physics, meshes, or scales. This
allows for focusing the computational effort where it is
needed. A disadvantage of domain decomposition is that
boundary conditions must be imposed on the subdomains
and, if chosen incorrectly, pressures and fluxes would not
match at the interface. Mortars are a way of coupling
decomposed subdomains by enforcing continuity of pres-
sures and fluxes at their shared boundaries. Mortar spaces
are 2D finite-element spaces imposed at the interface of
subdomains, and they are used as a tool for determining
the shared boundary condition (pressure field) so that
continuity in fluxes is maintained.

The mortar spaces are first discretized into finite-element
meshes. Following Arbogast et al. [4], a pressure field on
the mortar space is chosen using basis functions (constants,
linears, quadratics, etc.) on the elements. The pressure field
is projected onto the adjacent face of each subdomain, and
the resulting boundary condition is used to solve the
subdomain problem. The fluxes (obtained from solution to
the subdomain problem) are forced to match weakly when
projected back to the mortar. Determination of the pressure
field (i.e., the coefficients of the basis functions) requires
the solution of a system of interface equations.

Here, the concept of mortar spaces is extended to include
discrete network models that are coupled to additional
network models or continuum-scale models. For clarity, the
mathematical formulation in Arbogast et al. [4], with the
necessary changes as applicable to the pore-scale model, is
presented. Let Ω¼Sn

i¼1
Ω si

i be a domain decomposed into n
nonoverlapping subdomain blocks, Ω si

i , with Ω s ¼ S
i
Ω si

i ,
where si=p or c, depending on whether the subdomain is a
pore-scale network or a continuum scale, respectively.

Further, let Γ ij ¼ @Ω si
i \ @Ω

sj
j denote the interface

between the ith and jth subdomains. Next, let Γ ¼
[n
i;j¼1Γ ij be the union of all such interfaces and, finally,

denote the interfaces associated with the ith domain by
Γ i ¼ @Ω si

i \ Γ ¼ @Ω si
i n@Ω. Here, we also define Vi ¼

H div;Ω c
i

� �¼ �
v 2 L2 Ω c

i

� �� �d
: r � v 2 L2 Ω c

i

� �
; v � n ¼ 0

on @ΩN \ @Ωc
i

�
; where d is the dimension of the problem

space and @ΩN represents the part of the external domain
with prescribed no-flow boundary conditions. The solution
for velocity in the continuum subdomains belong to the
spaces Vi. Next, let V ¼ �Nc

i¼1
Vi be the “direct sum” of the

spaces Vi. Similary, for pressure in the ith continuum
subdomain, define Wi ¼ L2 Ω c

i

� �
to be the solution space

and let W ¼ �Nc

i¼1
Wi be the direct sum. Here, Ns is used to

indicate the total number of “s-scale” subdomains.
It is also important to define the grids used in the

continuum subdomains for an analysis of approximate
solutions to the finite-element problem. Let T c

h;i be a
finite-element partition of the continuum subdomain, Ω c

i ,
where h represents the maximal element diameter in the
partition. Next, let TM

h;ij be a similar (coarser) finite-element
partition of the mortar interface Γ ij and let TM

h ¼
S
i;j
TM
h;ij.

Then, for finite-element approximations to the velocity and
pressure, let Vh;i �Wh;i � Vi �Wi be any of the usual
mixed finite-element spaces (e.g., the RTN0 space [19]) on
the continuum subdomains. For pressures on the interface,
define the space Mh Γð Þ � L2 Γð Þ to be a mortar finite-
element approximation space on the mortar interface, Γ; for
example, the space of piecewise constants, continuous/
discontinuous piecewise linears, or quadratics.

Then, Vh ¼ �Nc

i¼1
Vh;i and Wh ¼ �Nc

i¼1
Wh;i form the finite-

element approximation spaces for the solution on the
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continuum subdomains. To present completely the equa-
tions for the steady-state (and incompressible) problem
under consideration, suppose that f is a source term in the
continuum domains. Note that f is identically zero in all the
numerical experiments presented because the flow is driven
by the boundary conditions. Let g represent the function
that prescribes the pressure on the Dirichlet portion of the
external boundary, ∂ΩD. Then, introducing u ¼ �Krp to

denote the Darcy velocity in ΩC, we seek, using a mixed
finite-element approximation space in the continuum sub-
domains and a discrete space in the pore-scale subdomains:

uch;i 2 Vh;i Ω
c
i

� � � V; pch;i 2 Wh;i Ω
c
i

� �

� W ; pp xi;k
� �

: xi;k 2 Ω p
k

� � 2 <NΩ
p
k and lh 2 Mh Γð Þ

such that, for 1 ≤ i ≤Nc,

r � uch;i;w
� �

Ω c
i

¼ f ;wð ÞΩ c
i
; 8w 2 Wh;i

K�1uch;i; v
� �

Ω c
i

¼ pch;i;r � v
� �

Ω c
i

� < λh; v � ni >Γ i � < g; v � ni >@Ωc
i \@ΩD

8v 2 Vh;i

ð2Þ

and for 1 ≤ k ≤Np,

Pni
j¼1

q p
ij;k ¼ 0; 1 � i � NΩ p

k
where ni is the number of pores connected to pore i

q p
ij;k ¼ γij;k p p

i;k � p p
j;k

� �
and b:c0s given by;

p p
i;k ¼

g xið Þ; xi 2 @Ω p
k \ @ΩD

Πλh xið Þ; xi 2 @Ω p
k \ Γ

�
ð3Þ

with the interface condition:

Pn
i¼1

< usih;i � ni;μ >Γ i ¼ 0 8μ 2 Mh Γð Þ; ð4Þ

where, in Eq. 3, xi is the pore location, γij,k is the
conductivity of the throat connecting pores i and j in the
kth (pore-scale) subdomain, qp

ij;k represents the flux through
these pores, and NΩ p

k
denotes the total number of pores in

that subdomain. In Eq. 4, ni is the unit outward normal to Γi

and usih;i � ni is the flux on the face Γi, which is clearly the
usual flux for the continuum subdomains but is not so
obvious for the noncontinuum case and needs definition.
For a pore-scale subdomain (indexed i), it is computed by
introducing a discretization K(Γi) of the face Γi and
defining the flux through an element e of the discretization
as follows:

up
h;k � nk

���
e
¼

X
i;j

qp
ij;k : xi jð Þ 2 e; 8e 2 K Γ ið Þ: ð5Þ

Equation 5 essentially amounts to summing all the fluxes,
qp
ij;k through pore-throats that cut across the element e.

Equation 4 enforces weak continuity in the flux variable,
which is now well-defined for both scales, across the
subdomain interfaces. ∏ is a suitably defined L2 projection
operator that maps the pressure in the mortar space onto the

subdomain face; for details, the reader may refer to Eq. 2.13
in Arbogast et al. [4]. The pressures are projected from the
mortar space to the discretization K(Γi) introduced on the
pore-scale face adjacent to the mortar interface. Implicit in
the interface boundary condition of Eq. 3 is an interpolation
to the specific pore-location in question. It can be shown (see
Arbogast et al. [4] for proof) that the system of Eqs. 2–4
can be reduced to an interface formulation in λh. This
system is simpler to solve than the scheme described in
Section 1 because the mesh on the mortar interface can be
made as coarse as desirable. For the numerical results
presented, we use a conjugate gradient method to solve the
resulting interface equation. Proofs of convergence or
existence/uniqueness are beyond the scope of the current
work, but numerical results are presented to demonstrate
their validity.

3 Model verification

Mortars provide an efficient method for coupling pore-scale
models and determining approximate boundary conditions
at interfaces. Here we attempt to demonstrate that the
resulting boundary conditions are correct and also to
determine the effect of mesh size and basis functions on
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the accuracy. It is not possible in general to determine the
actual interface boundary conditions for two or more
coupled pore-scale models (motivation for mortar coupling)
because the discrete networks are independent models and
pores are not connected at the interface boundaries.

A model problem is created here to demonstrate the
mortar approach for coupled pore-scale models; a periodic,
computer-generated sphere packing is coupled to an exact
replica of itself. The original medium has 10,000 uniform-
sized spheres with a porosity of 38% and particle diameter
of 0.049 cm. The resulting network has 41,273 interior
pores, 826 and 847 boundary pores on their left and right
faces, respectively (these two sets of boundary pores are
adjacent at the interface when the network is coupled
to its replica), and the network has a permeability of
2.4×10−6 cm2.

Figure 2a is the fully coupled, single domain where the
pore-scale models are naturally connected by throats
through the periodicity; Fig. 2b shows the individual
pore-scale models coupled via mortars. Simulations were
performed for the realizations shown in Fig. 2a and b by
enforcing a pressure gradient in one direction (a constant
pressure was placed on each side of the domain, P= 0.3 Pa
and P= 0.1 Pa) and flow was simulated as described in the
previous section. Because the two domains in Fig. 2b are
identical and therefore have the same macroscopic perme-
ability, an interface pressure of exactly 0.2 Pa would seem
reasonable. In fact, that boundary condition results in a total
flowrate exiting subdomain 1 that matches the flowrate
entering subdomain 2. However, closer inspection shows
that interface boundary condition is not correct and the
flowrates match poorly at a smaller scale as shown in
Fig. 3.

Figure 4 is the contour plot of the actual pressure field at
the interface for the fully coupled case (Fig. 2a). Pressures
are only known at discrete points (the pore positions), and
the pressure field in the figure is found using an
interpolating function in MATLAB. The figure reflects the

Fig. 2 a Network model obtained from a periodic, computer-
generated sphere packing and then replicated to produce one large
network and b the original network model coupled to its replica using
a 4×4 mortar space

Fig. 3 Flux comparison at the
interface for pore-scale models
on an 8×8 grid for the uniform
pressure, P=0.2 Pa
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heterogeneity captured by the pore structure. The pressure
varies from approximately P= 0.195 to P= 0.209 at the
interface, which is significant given the total pressure
difference in the coupled domains. It is apparent that the
pressure is significantly higher (on average) in the area of
the lower-left quadrant. Higher pressures are required
because of some relatively low conducting throats in that
region. It is obvious that utilizing an average pressure of
P= 0.2 would not be able to correctly capture this behavior,
and it is not surprising that the simple boundary condition
results in the poor match in flowrates shown in Fig. 3.

The objective is to determine a pressure field using
mortars that results in weakly matched fluxes at the
interface. The resulting pressure field and fluxes should
then approximate the true solution corresponding to Fig. 4
(it is important to note that this is a unique example in
which we are able to find an “actual” solution). Pressure
fields have been found using mortar coupling with various
grids (2×2, 4×4, 8×8) and orders (constant, linear, and

Fig. 4 Contour plot of pressure field at the centerline of the network
model in Fig. 2a

Fig. 5 Comparison of contour plots for the mortar space for the coupled networks in Fig. 2b using various meshes and basis functions
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quadratic) and are shown in Fig. 5. The figures demonstrate
that more detail is included for the finer mortar grids and
higher-order mortars; they also appear to result in better
qualitative matches to the actual pressure field in Fig. 4.
Specifically, the mortars are able to reproduce the relatively
high pressures in the lower-left quadrant. Figure 6 shows
that the fluxes match at the interface for this pressure field
much better than the results shown in Fig. 3.

Table 1 compares errors in fluxes across the interface for
various mortar degrees of freedom and basis functions as
described above. This error is measured by calculating the
difference between the “actual” flux at the interface (which
is obtained by projecting the flux on a sufficiently fine
discretization of the midsection of the naturally coupled,
single, pore-scale network onto the finest mortar space in
each case, i.e., 8×8 constants, continuous linears, and
continuous quadratics) and the corresponding flux obtained
using the mortar finite-element approach. The resulting
error is then normalized by the value of the actual flux at
the interface. Thus, letting u represent the actual flux and
uh the approximate flux obtained in the coupled, mortar
solution, we have

e uhð Þ ¼

R
Γ

u� uhð Þ � nds
����

����
R
Γ
u � nds

����
����

: ð6Þ

Because the interface formulation reduces to forcing
weak continuity of fluxes as in Eq. 4, the error given by
Eq. 6 is a measure of the convergence of the method.

The table demonstrates that higher-order mortars and
finer grids result in a smaller error in flux when compared
to the actual solution. Alternatively, one could define an
error at the pore-level by comparing predicted and actual
pore pressures (or flowrates) as is shown in Eq. 7 (although
we note that the mortars are not intended to capture
heterogeneity at this scale).

e Pdiscreteð Þ ¼
PM
i¼1

Pi;actual � Pi;predicted

�� ��
M ΔP

ð7Þ

The error in the equation is normalized by M and ΔP
(the total applied pressure drop across the domain) so that
the maximum possible error is 1.0. Table 2 clearly shows a
general trend of improved accuracy with both finer grids
and higher-order mortars. As a point of comparison, the
simplest boundary condition, a 1×1 constant mortar
corresponding to P= 0.2 Pa, results in an error of 9.69×
10−3. The quantitative results in the table show that all of
the mortar solutions result in a relatively low error in pore
pressure, which is in agreement with the qualitative results
in Figs. 3 and 4. However, the accuracy is problem-specific,
as is the trade-off between accuracy and computational
requirements.

The mortars are intended to approximate the boundary
condition and give accurate results locally by averaging.

Fig. 6 Flux comparison at the
interface for pore-scale models
on an 8×8 grid the detailed
pressure field obtained from
mortar coupling using 8×8
mortar grid and quadratic
basis functions

Table 1 Comparison of flux errors across the interface for various
mortar spaces

Constants Linears Quadratics

1×1 1.08×10−2 1.03×10−2 1.00×10−2

2×2 1.03×10−2 1.00×10−2 9.69×10−3

4×4 1.00×10−2 9.69×10−3 7.70×10−3

8×8 9.12×10−3 7.72×10−3 3.29×10−3

Table 2 Comparison of errors for various mortar spaces

Constant Linear Quadratic

2×2 8.35×10−3 7.02×10−3 5.93×10−3

4×4 7.38×10−3 5.81×10−3 5.51×10−3

8×8 6.54×10−3 5.51×10−3 6.11×10−3
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The error at the pore-scale cannot be eliminated, and in fact,
there is no guarantee that the error defined in Eq. 7 will be
reduced by using finer mortar grids or higher-order basis
functions (the 8×8 quadratic result is actually higher than
some of the other errors) because the method is unable to
capture large fluctuations in pressure at the pore scale. For
example, consider two boundary pores at positions
x= 0.269, y = 0.294 and x= 0.272, y= 0.304, which nearly
coincide. For 4×4 quadratic mortars, the pore pressures are
found to be P= 0.206 and P= 0.207, respectively, which are
very close, as expected. However, the actual solution is
P= 0.198 and P= 0.210, respectively, which is a large
fluctuation for two adjacent pores. Regardless of the
discretization, the mortar is not intended to capture
heterogeneity at this scale.

Furthermore, it should be noted that extremely fine grids
on the mortars can actually lead to less accuracy at the
pore-scale for applications (such as the one here) where the
subdomains are discrete and have a finite number of pores.
In the extreme case, mortars can be chosen so fine that
some elements contain no pores and the system of
equations becomes singular. More generally, certain ele-
ments may contain a very small number of pores;
attempting to match pressures and fluxes across that
element may not be practical and can result in heterogeneity

in the pressure solution that is not associated with the
physics.

4 Results/discussion

4.1 Coupling different pore-scale models

Figure 7 shows four different pore-scale models coupled in
a 2×2 block pattern. The statistics of the blocks are given in
Table 3; block 1 is a computer-generated sphere packing
with 1,000 uniform spheres; block 2 is a computer-
generated sphere packing with 10,000 uniform spheres;
block 3 is a sandstone with 2,487 grains taken from the
Wall Creek Member of the Cretaceous Frontier Formation,
WY, USA [11, 23]; and block 4 is a sphere-packing with
10,000 spheres with a size distribution and a spatial
correlation. A 1D pressure gradient is imposed on the
porous media by imposing a constant pressure on each
boundary (P= 0.3 and P= 0.1 Pa) and no-flow boundaries
on the other four boundaries. The exterior boundary
conditions are obviously artificial; in reality, they would
be determined from additional coupling to other models.
The pore-scale models are coupled at each interface using
mortar spaces with 4×4 grids and quadratic basis functions.

Fig. 7 Schematic of four different pore-scale models arranged in a 2×2 block pattern that are coupled using mortars
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Figure 8a is a 2D contour plot of pressure for the four-
block pore-scale pattern (the 3D data is collapsed into 2D
for clarity). The points represent the location of pore centers
in the network model and the color scales the pressure in
the pores. The white background is the grain space (the
figures do not in any way represent the actual porosity and
the denser blocks simply have more pores). A few
observations can be made from this figure. First, a
continuity of pressure is observed along all of the mortar
boundaries, enforced in the domain decomposition, iterative
coupling scheme. Second, the results show heterogeneity in
the pressure field, which would not be observed if
continuum models were used. Figure 8b is pressure field
for the same four pore-scale models arranged in a different
pattern (from Table 2, network #3 is in the lower-left block,
network #2 in the lower-right block, network #4 in the
upper-right block, and network #1 in the upper-left block).

The total flow through the domain illustrated in Fig. 8a
is 2.26×10−3 cm3/s. The results can be compared to a
continuum simulation by using the upscaled permeabilities
for each model listed in Table 2. The resulting flowrate is
1.35×10−3 cm3/s, which underestimates the actual flowrate
by approximately 40%. In the second simulation (Fig. 8b),
the flowrate using the pore-scale models is 1.31×10−3 cm3/s.
For this case, the continuum simulation resulted in a 40%
overestimation (1.88×10−3 cm3/s). The examples demon-
strate the limitations of upscaling macroscopic properties
directly by using the pore-scale models as stand-alone tools.
Direct upscaling can severely under- or overestimate
behavior when coupled to surrounding media.

4.2 Coupling pore-scale and continuum models

The mortar method used here is not limited to coupling
only pore-scale models, it can be easily extended to couple

Fig. 8 a Contour plot of pressure for results obtained for Fig. 7
problem using 4×4 quadratic mortars for coupling and b contour plot
for Fig. 7 with alternative block pattern. The data are collapsed into
2D for clarity and the shaded points are the pore pressures

Table 3 Summary of network statistics used in coupling simulations

Network Type Grains Pores Grain (cm) Permeability (cm2) � Dimensions (cm3)

1 CGa 1,000 4,094 0.053 Kxx=1.043 E-05 38 1×1×1
Kyy=1.026 E-05
Kzz=1.015 E-05

2 CG 10,000 41,273 0.025 Kxx=2.469 E-06 38 1×1×1
Kyy=2.413 E-06
Kzz=2.411 E-06

3 SSb 2,487 9,463 ∼0.020 Kxx=2.158 E-07 22 1×1×1
Kyy=1.015 E-07
Kzz=8.984 E-08

4 CG 10,000 32,496 ∼0.014 Kxx=3.203 E-06 36 1×1×1
Kyy=2.985 E-06
Kzz=3.056 E-06

aCG is a network obtained from computer-generated porous medium.
b SS is a network obtained from a real sandstone using XMT. The network size has been rescaled to match the size of the other networks.
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pore-scale models to continuum-scale, Darcy models. This
application of the mortars is very useful for multiscale
modeling, in which the domain is primarily modeled at the
continuum scale, but specific regions are modeled at the
pore-scale to capture important fundamental behavior.

Figure 9 is a pore-scale network model (#3 in Table 2)
coupled to surrounding continuum models. The continuum
models are modeled using a 4×4×4 finite difference grid in
each block and utilizing Darcy’s law. All three blocks are
given a uniform permeability, equal to the upscaled values
for network model #3 shown in Table 2. A 1D pressure
gradient is imposed from right to left for this “simple”
problem. The four blocks are coupled using 4×4 quadratic
mortars at the interfaces to ensure continuity of pressures
and fluxes. It should be noted that the axis is rotated in this
simulation so that the flow is actually in the y direction.

Figure 10 is the contour plot of pressure in the domain
for the continuum and pore-scale regions, and it is clear that

pressure is continuous at the interfaces. If the entire domain
had been modeled at the continuum scale (with the
permeability also being uniform in the current pore-scale
region), then the solution would have been trivial. The
pressure would increase linearly from left to right and
the streamlines would be straight. In the simulation here,
the heterogeneity in the pore-scale region results in a more
complicated solution, not only in the pore-scale region but
in the continuum region as well, where the permeability is
uniform. In Fig. 10, it can be seen that velocity has a
vertical component even in the continuum region as a result
of the nonuniform boundary conditions obtained through
coupling to the pore-scale region.

The total flow through the domain is 7.90×10−5 cm3,
which is about 15% higher than the flowrate (6.76×
10−5 cm3/s) obtained from utilizing Darcy’s law and the
uniform permeability of Kyy=1.015×10

−7 cm2. Moreover,
the flow exiting the pore-scale region (block 1 in Fig. 9) is
50% higher than the continuum block (#4) directly above it.
Although the average, upscaled permeability in the pore-
scale region is the same as the other blocks, the natural
heterogeneity allows for preferential pathways for flow, and
the model acts as a “sink” for fluid to enter from the
surrounding blocks. The pressure field in Fig. 10 shows the
contour lines bend to allow for flow to enter the pore-scale
region. This is another demonstration of the limitations of
simple upscaling without imposing realistic boundary
conditions on the network model.

5 Conclusions

Although pore-scale models have been used recently as an
effective tool for obtaining predictive flow and transport
behavior, simple, artificial boundary conditions are usually

Fig. 9 Schematic of pore-scale
model (#3 in Table 2) and three
continuum models arranged
in a 2×2 block pattern that are
coupled using 4×4 quadratic
mortars. The continuum blocks
have uniform permeability
equal to the upscaled value
listed in Table 2

Fig. 10 Contour plot of pressure for pore-scale model coupled to
three continuum blocks
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implemented. Actual boundary conditions are dependent on
the heterogeneity in the pore-scale model itself as well as
the surrounding media; they are important because they
may affect the qualitative and quantitative results. Here, a
method has been developed to couple pore-scale network
models to other adjacent pore-scale or continuum-scale
models using 2D finite-element mortar spaces at the
boundary interfaces. The mortars ensure a pressure bound-
ary condition such that fluxes match weakly at that
boundary. The method has been verified by coupling a
network model to its exact replica. It is shown both
qualitatively and quantitatively that a good approximation
is obtained using mortars and that improved accuracy is
obtained by implementing a finer mortar discretization and
using higher-order basis functions (i.e., linear and quadratic).
Quantitative results suggest that coarse meshes and simple
basis functions may be suitable for certain problems and the
additional computational effort may not be worth the
additional accuracy. One important finding of this work is
that a decrease in accuracy at the pore-scale can be
observed if the mortar mesh is too fine. This can occur
because the mortars are intended to match fluxes in an
average sense, integrated over an elemental area. If the
mesh size is chosen small enough then certain elements will
have too few pores and artificial heterogeneity is observed.

Mortars are used to couple four different pore-scale
models in a 2×2 block pattern. The pore-scale models have
very different pore structures and permeability; the mortars
allow for continuity of both pressure and flux at the
boundaries. The heterogeneous flow patterns are a result of
the heterogeneity in the porous medium as well as the
realistic and detailed boundary conditions imposed at the
boundary interfaces. Mortars are also used to couple a pore-
scale model to surrounding continuum/Darcy models. In the
simulation performed here, the network acts as a sink and
draws fluid from the surrounding blocks despite having the
same average, upscaled permeability as the continuum
blocks. This is a result of the heterogeneity and preferential
flow pathways in the pore-scale model. These results
suggest that simple upscaling from the pore to continuum
scales may not be sufficient.

The ability to efficiently couple pore-scale models to
other media and to impose realistic boundary conditions has
many important implications, and the methodology devel-
oped here can be extended to a number of applications.
Certain flow and transport phenomena may strongly depend
on behavior that occurs upstream. For example, multiphase
processes are dynamic; relative permeability and capillary
pressure curves may depend on how the phases enter the
porous medium. Imposing realistic boundary conditions can
result in better upscaled values for substitution in contin-
uum simulators. Another application of this work would

involve models that utilize a continuum approach but
include select regions that model flow and transport at the
pore scale. For example, in reservoir simulation, pore-scale
models could be used very close to the well-bore where
acidization, particle filtration, non-Darcy flow, etc., are
common. The pore-scale region would then be coupled via
mortars to the continuum region of the model. Future work
will focus on using mortar coupling for these applications
and more.
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