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Abstract

In this paper we study numerical methods for solving integro-differential equations which generalize the well-known Fisher
equation. The numerical methods are obtained considering the MOL (Method of Lines) approach. The stability and convergence
of the methods are studied. Numerical results illustrating the theoretical results proved are also included.
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1. Introduction

It is well known that the diffusion approximation—Fick’s law—to model reaction–diffusion problems gives rise to
the Fisher equation

∂u

∂t
(x, t) = D

∂2u

∂x2
(x, t) + f

(
u(x, t)

)
, x ∈ (a, b), t > 0. (1)

In a large number of biological and chemical phenomena, the reaction term is represented by f (u) = U(1 − u)u,
where U > 0 can be dependent of the space variable. Such an equation has the steady state solutions u = 0 and u = 1,

the first one being unstable and the second one stable. The solution of this problem evolves into a traveling wave
solution connecting the two steady states with a speed of propagation c = √

4DU [1]. When the reaction is very fast,
c becomes arbitrarily large. This unphysical property can be corrected if memory effects are taken into account in the
mathematical model. This leads to integro-differential equations of type

∂u

∂t
(x, t) = D

τ

t∫
0

e− t−s
τ

∂2u

∂x2
(x, s)ds + f

(
u(x, t)

)
, x ∈ (a, b), t > 0, (2)
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with D � 0, τ > 0, which have been studied for instance in [3–5]. Eq. (2) is known as a generalized Fisher–
Kolmogorov–Petrovskii–Piskunov equation, FKPP, and it is coupled with initial and boundary conditions of type

u(x,0) = u0(x), x ∈ (a, b), u(a, t) = ua(t), u(b, t) = ub(t), t > 0. (3)

The parameter τ is a relaxation parameter and when τ → 0, the FKPP equation is replaced by (1). The existence and
the behavior of solutions of Eq. (2) with f (u) = Uu(1 − u), U > 0, and a Heaviside initial condition was considered
in [3]. Different models presenting traveling wave solutions with finite speed of propagation were considered in [6–8].

In this paper we study properties of a class of numerical methods that approximate (2)–(3). In Section 2 we establish
an energy estimate that improves the information given by the classical estimate known for the Fisher equation. This
new estimate enables us to conclude the stability of (2) relative to perturbations in the initial condition. In Section 3
we use the MOL approach to solve (2)–(3) numerically by using a numerical approximation obtained combining the
spatial discretization with a time integration method. A semi-discrete analogue of the estimate established for the
theoretical model is deduced for the semi-discrete approximation. In Section 4 fully discrete schemes are analyzed
and a discrete version of the continuous estimate is proved, see Theorem 6. As a consequence of Theorem 6 the
stability and the convergence of discrete schemes are also studied. Numerical experiments illustrating the theoretical
results are presented in Section 5.

2. Energy estimates for the PDE

In this section we study the stability of the solution of (2)–(3) when the initial condition is perturbed. Attending
to this fact we assume in Theorem 1 homogeneous Dirichlet boundary conditions. These conditions are considered
nonhomogeneous in the rest of the section.

Let (·, ·) denote the inner product in L2(a, b) and ‖ · ‖L2 the usual norm induced by (·, ·). If v is defined in
[a, b] × [0, T ] we represent v(·, t) by v(t).

We establish in what follows an estimate for the energy functional

E(u)(t) = ∥∥u(t)
∥∥2

L2 + D

τ

∥∥∥∥∥
t∫

0

e− t−s
τ

∂u

∂x
(s)ds

∥∥∥∥∥
2

L2

, t ∈ (0, T ]. (4)

Theorem 1. Let u be a solution of (2)–(3) with ua(t) = ub(t) = 0, t > 0, satisfying for each t ∈ [0, T ]
u(x, t) ∈ [c, d], x ∈ [a, b], (5)

∂u

∂t
(t),

t∫
0

e− t−s
τ

∂u

∂x
(s)ds ∈ L2[a, b], (6)

where c, d are constants.
If f is continuously differentiable and f (0) = 0, then the energy E(u) is such that

E(u)(t) � e2 max{− 1
τ
,f ′

max}t‖u0‖2
L2 (7)

for each t ∈ (0, T ], where f ′
max = max|u|�max{|c|,|d|} f ′(u).

Proof. Multiplying each member of (2) by u with respect to (·, ·) and integrating by parts we obtain(
∂u

∂t
(t), u(t)

)
+ D

τ

( t∫
0

e− t−s
τ

∂u

∂x
(s)ds,

∂u

∂x
(t)

)
= (

f
(
u(t)

)
, u(t)

)
.

Considering that

d

dt

∥∥u(t)
∥∥2

L2 = 2

(
∂u

∂t
(t), u(t)

)
,

and that
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d

dt

∥∥∥∥∥
t∫

0

e− t−s
τ

∂u

∂x
(s)ds

∥∥∥∥∥
2

L2

= 2

( t∫
0

e− t−s
τ

∂u

∂x
(s)ds,

∂u

∂x
(·, t)

)
− 2

τ

∥∥∥∥∥
t∫

0

e− t−s
τ

∂u

∂x
(s)ds

∥∥∥∥∥
2

L2

,

we deduce

d

dt

(∥∥u(t)
∥∥2

L2 + D

τ

∥∥∥∥∥
t∫

0

e− t−s
τ

∂u

∂x
(s)ds

∥∥∥∥∥
2

L2

)
= − 2

τ

D

τ

∥∥∥∥∥
t∫

0

e− t−s
τ

∂u

∂x
(s)ds

∥∥∥∥∥
2

L2

+ 2
(
f

(
u(t)

)
, u(t)

)
. (8)

Due to the fact that f (0) = 0, we have (f (u(t)), u(t)) � f ′
max‖u(t)‖L2 and then from (8), we conclude the differential

inequality

d

dt
E(u)(t) � 2 max

{
− 1

τ
, f ′

max

}
E(u)(t). (9)

Integrating (9) we finally establish (7). �
Under the assumptions of Theorem 1, if (2)–(3) has a solution u then u is unique. Moreover u satisfies∥∥u(t)

∥∥
L2 � emax{− 1

τ
,f ′

max}t‖u0‖L2 , (10)

and

D

τ

∥∥∥∥∥
t∫

0

e− t−s
τ

∂u

∂x
(s)ds

∥∥∥∥∥
L2

� emax{− 1
τ
,f ′

max}t‖u0‖L2 . (11)

Let us consider now the classical Fisher equation (1). It can be shown that∥∥u(t)
∥∥

L2 � ef ′
maxt‖u0‖L2 (12)

and no information is available about ∂u
∂x

. But if u represents the solution of (2), we conclude from (11) that the
“average in time” of its gradient is bounded by

emax{− 1
τ
,f ′

max}t‖u0‖L2,

for each time t ∈ (0, T ].
In what follows the stability behavior of u under perturbations in the initial condition u0 is considered. Let u and

uε be solutions of (2) satisfying the same boundary conditions (not necessarily homogeneous) and initial conditions
u0 and u0 + ε respectively. Then u − uε , is a solution of the initial-boundary value problem⎧⎪⎨⎪⎩

∂
∂t

(u − uε)(x, t) = D
τ

∫ t

0 e− t−s
τ

∂2

∂x2 (u − uε)(x, s)ds + f (u(x, t)) − f (uε(x, t)), x ∈ (a, b), t ∈ (0, T ],
(u − uε)(x,0) = −ε(x), x ∈ (a, b),

(u − uε)(a, t) = (u − uε)(b, t) = 0, t > 0.

(13)

The following stability result can be stated:

Theorem 2. Let u and uε be solutions of (2)–(3) with initial conditions u0 and u0 + ε, respectively. If for u,uε (5)
and (6) hold and the source function f is continuously differentiable and f (0) = 0, then

E(u − uε)(t) � e2 max{− 1
τ
,f ′

max}t‖ε‖2
L2 . (14)

Proof. Multiplying each member of (13) by vε = u − uε with respect to the inner product (·, ·) we obtain(
∂vε

∂t
(t), vε(t)

)
+ D

τ

( t∫
0

e− t−s
τ

∂vε

∂x
(s)ds,

∂vε

∂x
(t)

)
= (

f
(
u(t)

) − f
(
uε(t)

)
, vε(t)

)
.

As (f (u) − f (uε), vε) � f ′
max‖vε‖2

2 following the proof of Theorem 1 we conclude (14). �

L
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In the main result of this section, Theorem 2, we establish the stability of the initial-boundary value problem (2)–(3)
with respect to perturbations of the initial condition.

In the case of f (u) = U(1 − u)u with U > 0, we have f ′
max = U > 0 and (14) enables us to conclude that for

each t , the first member is bounded. If f ′
max < 0, we obtain

lim
t→+∞

∥∥(u − uε)(t)
∥∥

L2 = 0, lim
t→+∞

∥∥∥∥∥
t∫

0

e− t−s
τ

∂

∂x
(u − uε)(s)ds

∥∥∥∥∥
L2

= 0.

3. Energy estimates for the semi-discrete approximation

In this section we consider the MOL approach to compute a semi-discrete numerical approximation uh(t) to the
solution u of (2)–(3). The approximation uh(t) is defined by introducing a discretization of the spatial variable. Our
aim is to establish a semi-discrete analogue of Theorems 1 and 2 for uh(t) defined by (15)–(16).

Let us consider in [a, b] a grid Ih = {xj , j = 0, . . . ,N} with x0 = a, xN = b and xj − xj−1 = h. We discretize the
second partial derivative of u with respect to x in (2) using the second-order centered finite-difference operator D2,x

defined by

D2,xvh(xi) = vh(xi+1) − 2vh(xi) + vh(xi−1)

h2
.

The semi-discrete approximation uh(t) is a solution of the following system of ODE’s

duh

dt
(t) = Auh(t), t ∈ (0, T ], (15)

where

(
Auh(t)

)
i
= D

τ

t∫
0

e− t−s
τ D2,xuh(xi, s)ds + f

(
uh(xi, t)

)
, i = 1, . . . ,N − 1,

and

uh(x0, t) = ua(t), uh(xN , t) = ub(t), uh(xi,0) = u0(xi), i = 1, . . . ,N − 1. (16)

We denote by L2(Ih) the space of grid functions vh defined in Ih such that vh(x0) = vh(xN) = 0. In L2(Ih) we
consider the discrete inner product

(vh,wh)h = h

N−1∑
i=1

vh(xi)wh(xi), vh,wh ∈ L2(Ih). (17)

We denote by ‖ · ‖L2(Ih) the norm induced by the above inner product. For grid functions wh and vh defined in Ih we
introduce the notations

(wh, vh)h,+ =
N∑

i=1

hwh(xi)vh(xi),

and

‖wh‖L2(I+
h ) =

(
N∑

i=1

hwh(xi)
2

)1/2

.

Let

‖vh‖1 = (‖vh‖2
L2(Ih)

+ ‖D−xvh‖2
L2(I+

h )

)1/2
, vh ∈ L2(Ih),

where D−x denotes the backward finite-difference operator. We note that it represents a norm which can be viewed as
a discretization of the Sobolev norm of the space H 1(a, b).
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Let E(uh)(t) be the semi-discrete version of E(u)(t) defined by

E(uh)(t) = ∥∥uh(t)
∥∥2

L2(Ih)
+ D

τ

∥∥∥∥∥
t∫

0

e− t−s
τ D−xuh(s)ds

∥∥∥∥∥
2

L2(I+
h )

, t > 0.

A semi-discrete analogue of Theorem 1 is then established in Theorem 3.

Theorem 3. Let uh(t) be a solution of (15)–(16) with ua(t) = ub(t) = 0, t > 0, and such that uh(xi, t) ∈ [c, d], for
i = 0, . . . ,N, and t ∈ [0, T ]. If the source function f is continuously differentiable and f (0) = 0, then for the energy
E(uh)(t) holds, for each time t in (0, T ],

E(uh)(t) � e2 max{− 1
τ
,f ′

max}t‖u0‖2
L2(Ih)

. (18)

Proof. Multiplying each member of (15) by uh(t) with respect to the inner product (·, ·)h and using summation by
parts we obtain

1

2

d

dt

∥∥uh(t)
∥∥2

L2 + D

τ

( t∫
0

e− t−s
τ D−xuh(s)ds,D−xuh(t)

)
h,+

= (
f

(
uh(t)

)
, uh(t)

)
h
,

where f (uh(t))(xi) = f (uh(xi, t)), i = 1, . . . ,N − 1.
Adapting the proof of Theorem 1 to the discrete case it can be shown that the last equality is equivalent to

1

2

d

dt

(∥∥uh(t)
∥∥2

L2(Ih)
+ D

τ

∥∥∥∥∥
t∫

0

e− t−s
τ D−xuh(s)ds

∥∥∥∥∥
2

L2(Ih)

)

= − D

τ 2

∥∥∥∥∥
t∫

0

e− t−s
τ D−xuh(s)ds

∥∥∥∥∥
2

L2(I+
h )

+ (
f

(
uh(t)

)
, uh(t)

)
h
.

As (f (uh(t)), uh(t))h � f ′
max‖uh(t)‖2

L2(Ih)
, we easily conclude (18). �

A semi-discrete version of Theorem 2 is stated in the next result:

Theorem 4. Let uh(t), uh,ε(t) be defined by (15)–(16) with initial conditions given respectively by uh(xi,0) = u0(xi)

and uh,ε(xi,0) = u0(xi) + ε(xi), i = 0, . . . ,N . If uh(xi, t), uh,ε(xi, t) ∈ [c, d] for t ∈ [0, T ], i = 0, . . . ,N, and the
source function f is continuously differentiable and f (0) = 0, then

E(uh − uh,ε)(t) � e2 max{− 1
τ
,f ′

max}t‖ε‖2
L2(Ih)

. (19)

Proof. The difference vh(t) = uh(t) − uh,ε(t) satisfies the following initial-boundary value problem{
dvh

dt
(xi, t) = D

τ

∫ t

0 e− t−s
τ D2,xvh(xi, s)ds + f (uh(xi, t)) − f (uh,ε(xi, t)), i = 1, . . . ,N − 1,

vh(xi,0) = −ε(xi), i = 1, . . . ,N − 1, vh(x0, t) = vh(xN, t) = 0.

Replacing in the proof of Theorem 3, uh(t) by vh(t) and (f (uh(t)), uh(t))h by (f (uh(t)) − f (uh,ε(t)), uh(t))h
and considering that (f (uh(t)) − f (uh,ε(t)), vh(t))h � f ′

max‖vh(t)‖2
L2(Ih)

we conclude the proof. �
In Theorem 4 the stability of the semi-discrete approximation (15)–(16) is established. In what follows we study

the accuracy of uh(t). Let Th(t) be the truncation error associated with the spatial discretization defined by (15) and
let eh(xi, t) = u(xi, t) − uh(xi, t), i = 0, . . . ,N, be the spatial discretization error. We have

deh

dt
(xi, t) = D

τ

t∫
e− t−s

τ D2,xeh(xi, s)ds + f
(
u(xi, t)

) − f
(
uh(xi, t)

) + T̃h(xi, t), i = 1, . . . ,N − 1,
0
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and

eh(x0, t) = eh(xN, t) = 0, eh(xi,0) = 0, i = 1, . . . ,N − 1,

with T̃h(xi, t) = D
τ

∫ t

0 e− t−s
τ Th(xi, s)ds.

For the semi-discretization error eh(t) holds the following result:

Theorem 5. Let uh(t) be the solution of (15)–(16) such that uh(xi, t) ∈ [c, d] for t ∈ [0, T ], i = 0, . . . ,N . If the
solution u of (2)–(3) satisfies (5) and the source function f is continuously differentiable and f (0) = 0, then the
spatial discretization error satisfies

E(eh)(t) � D2

τ 2

t∫
0

emax{− 2
τ
,2f ′

max+1}(t−s)

s∫
0

∥∥Th(μ)
∥∥2

L2(Ih)
dμds. (20)

Proof. Following the proof of Theorem 3 it can be shown that

1

2

d

dt
E(eh)(t) � − D

τ 2

∥∥∥∥∥
t∫

0

e− t−s
τ D−xeh(s)ds

∥∥∥∥∥
2

L2(I+
h )

+ f ′
max

∥∥eh(t)
∥∥2

L2(Ih)
+ 1

2

∥∥T̃h(t)
∥∥2

L2(Ih)
+ 1

2

∥∥eh(t)
∥∥2

L2(Ih)
.

From the last inequality we obtain

1

2

d

dt
E(eh)(t) � max

{
− 1

τ
, f ′

max + 1

2

}
E(eh)(t) + 1

2

∥∥T̃h(t)
∥∥2

L2(Ih)
,

that is,

d

dt

(
e−2 max{− 1

τ
,f ′

max+ 1
2 }tE(eh)(t) −

t∫
0

e−2 max{− 1
τ
,f ′

max+ 1
2 }s∥∥T̃h(s)

∥∥2
L2(Ih)

ds

)
� 0. (21)

Finally, as

∥∥T̃h(s)
∥∥2

L2(Ih)
� D2

τ 2

s∫
0

∥∥Th(μ)
∥∥2

L2(Ih)
dμ,

we conclude (20) from (21). �
Considering that the spatial discretization is defined using the operator D2,x , the truncation error satisfies∥∥Th(t)

∥∥
L2(Ih)

� C max
t∈(0,T ]

h2
∥∥∥∥∂4u

∂x4
(t)

∥∥∥∥∞
= O

(
h2),

where C is a positive constant independent of u and h. Then we conclude that, for each time t ,

∥∥eh(t)
∥∥2

L2(Ih)
+ D

τ

∥∥∥∥∥
t∫

0

e− t−s
τ D−xeh(s)

∥∥∥∥∥
2

L2(I+
h )

ds = O
(
h4)

and consequently∥∥eh(t)
∥∥

L2(Ih)
= O

(
h2) (22)

and ∥∥∥∥∥
t∫
e− t−s

τ D−xeh(s)ds

∥∥∥∥∥
L2(I+)

= O
(
h2). (23)
0 h



J.R. Branco et al. / Applied Numerical Mathematics 57 (2007) 89–102 95
Being h and t independent variables, we have∥∥D−xeh(t)
∥∥

L2(I+
h )

= O
(
h2), (24)

which to the best of our knowledge is a nonstandard estimate for the spatial discretization error even when uniform
grids are used.

4. Energy estimates for the full discrete approximation

Let us integrate the system of ordinary differential equations (15) using the implicit Euler method in the time
grid {tn, n = 0, . . . ,M} such that t0 = 0, tM = T and tn+1 − tn = �t . We use the rectangular rule to approximate
the integral in (15). The discretization of the reaction could be implicit or explicit depending on the stiffness of the
reaction.

In the following we establish an estimate for the fully discrete version of (4),

E
(
un+1

h

) = ∥∥un+1
h

∥∥2
L2(Ih)

+ D

τ

∥∥∥∥∥�t

n+1∑
�=1

e− tn+1−tj
τ D−xu

�
h

∥∥∥∥∥
2

L2(I+
h )

,

where u
j
h is obtained using an implicit or explicit discretization of the reaction term.

1. Implicit discretization of the reaction term
In this case the fully discrete approximation of (2) is defined by the nonlinear system of equations

un+1
h (xj ) − un

h(xj )

�t
= D

τ
�t

n+1∑
�=1

e− tn+1−t�
τ D2,xu

�
h(xj ) + f

(
un+1

h (xj )
)
, j = 1, . . . ,N − 1, (25)

where

u�
h(x0) = ua(t�), u�

h(xN) = ub(t�), � = 1, . . . ,M − 1, u0
h(xj ) = u0(xj ), j = 1, . . . ,N − 1. (26)

Theorem 6. Let u�
h be defined by (25)–(26) with ua(t) = ub(t) = 0, t > 0, such that u�

h(xi) ∈ [c, d], for i = 0, . . . ,N,

and � = 0, . . . ,M . If the source function f is continuously differentiable and f (0) = 0, then

∥∥un+1
h

∥∥2
L2(Ih)

+ D

τ

∥∥∥∥∥�t

n+1∑
j=1

e− tn+1−tj
τ D−xu

j
h

∥∥∥∥∥
2

L2(I+
h )

�
(

1

min{1,1 − 2�tf ′
max}

)n+1∥∥u0
h

∥∥2
L2(Ih)

(27)

provided that 1 − 2�tf ′
max > 0.

Proof. (a) Let us consider in (25) n ∈ N. Multiplying each member of (25) by un+1
h with respect to the inner product

(·, ·)h and using summation by parts we obtain

(
un+1

h ,un+1
h

)
h

= (
un

h,u
n+1
h

)
h

− D�t2

τ

n+1∑
j=1

e− tn+1−tj
τ

(
D−xu

j
h,D−xu

n+1
h

)
h,+ + �t

(
f

(
un+1

h

)
, un+1

h

)
h
. (28)

As

n+1∑
j=1

e− tn+1−tj
τ

(
D−xu

j
h,D−xu

n+1
h

)
h,+

= 1

2

∥∥∥∥∥
n+1∑
j=1

e− tn+1−tj
τ D−xu

j
h

∥∥∥∥∥
2

L2(I+
h )

− 1

2
e−2 �t

τ

∥∥∥∥∥
n∑

j=1

e− tn−tj
τ D−xu

j
h

∥∥∥∥∥
2

L2(I+
h )

+ 1

2

∥∥D−xu
n+1
h

∥∥2
L2(I+

h )
, (29)

we have from (28)
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∥∥un+1
h

∥∥2
L2(Ih)

+ D

2τ

∥∥∥∥∥�t

n+1∑
j=1

e− tn+1−tj
τ D−xu

j
h

∥∥∥∥∥
2

L2(I+
h )

= (
un

h,u
n+1
h

)
h

+ �t
(
f

(
un+1

h

)
, un+1

h

)
h

+ D

2τ
e−2 �t

τ

∥∥∥∥∥�t

n∑
j=1

e− tn−tj
τ D−xu

j
h

∥∥∥∥∥
2

L2(I+
h )

− D�t2

2τ

∥∥D−xu
n+1
h

∥∥2
L2(I+

h )
. (30)

Considering in (30) the estimates(
un

h,u
n+1
h

)
h

� 1

2

∥∥un+1
h

∥∥2
L2(Ih)

+ 1

2

∥∥un
h

∥∥2
L2(Ih)

,
(
f

(
un+1

h

)
, un+1

h

)
h

� f ′
max

∥∥un+1
h

∥∥2
L2(Ih)

,

we conclude

(
1 − 2�tf ′

max

)∥∥un+1
h

∥∥2
L2(Ih)

+ D

τ

∥∥∥∥∥�t

n+1∑
j=1

e− tn+1−tj
τ D−xu

j
h

∥∥∥∥∥
2

L2(I+
h )

� ‖un
h‖2

L2(Ih)
+ D

τ
e−2 �t

τ

∥∥∥∥∥�t

n∑
j=1

e− tn−tj
τ D−xu

j
h

∥∥∥∥∥
2

L2(I+
h )

. (31)

(b) We consider now in (25) n = 0. Following the proof of (31) we obtain

(1 − 2�tf ′
max)

∥∥u1
h

∥∥2
L2(Ih)

+ D

τ

∥∥�tD−xu
1
h

∥∥2
L2(I+

h )
�

∥∥u0
h

∥∥2
L2(Ih)

. (32)

Finally from (31) and (32) we conclude (27). �
The factor

SI = 1

min{1,1 − 2�tf ′
max}

represents the stability amplification factor. If f ′
max < 0 then SI = 1 and from (27) we obtain

∥∥un+1
h

∥∥2
L2(Ih)

+ D

τ

∥∥∥∥∥�t

n+1∑
j=1

e− tn+1−tj
τ D−xu

j
h

∥∥∥∥∥
2

L2(I+
h )

�
∥∥u0

h

∥∥2
L2(Ih)

. (33)

Otherwise if f ′
max > 0, considering that for �t � �t0 we have

SI = 1

1 − 2�tf ′
max

= 1 + 2f ′
max

1 − 2�tf ′
max

�t � 1 + 2f ′
max

1 − 2�t0f ′
max

�t,

we conclude∥∥un+1
h

∥∥2
L2(Ih)

+ D

τ

∥∥∥∥∥�t

n+1∑
j=1

e− tn+1−tj
τ D−xu

j
h

∥∥∥∥∥
2

L2(I+
h )

� eβ(n+1)�t
∥∥u0

h

∥∥2
L2(Ih)

(34)

with

β = 2f ′
max

1 − 2�t0f ′
max

.

2. Explicit discretization of the reaction term
Let us consider now the IMEX scheme obtained by replacing in (25) f (un+1

h ) by f (un
h), that is,

un+1
h (xj ) − un

h(xj )

�t
= D

τ
�t

n+1∑
e− tn+1−t�

τ D2,xu
�
h(xj ) + f

(
un

h(xj )
)
, j = 1, . . . ,N − 1. (35)
�=1
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We remark that with ũn
h = θun

h for θ ∈ [0,1], we have

2�t
(
f

(
un

h

)
, un+1

h

)
h

= 2�t
(
f ′(ũn

h

)
un

h,u
n+1
h

)
h

� �t
∥∥un

h

∥∥2
L2(Ih)

+ �t(f ′
max)

2
∥∥un+1

h

∥∥2
L2(Ih)

.

Then the stability coefficient SI is replaced by the stability coefficient SIMEX defined by

SIMEX = 1 + �t

1 − �t(f ′
max)

2

provided that 1 − �t(f ′
max)

2 > 0. We have

SIMEX � 1 + 1 + (f ′
max)

2

1 − �t0(f ′
max)

2
�t

and we can prove (34) with

β = 1 + (f ′
max)

2

1 − �t0(f ′
max)

2
.

Let us study now the convergence of the approximation defined by (25), (26). Let e�
h(xi) = u�

h(xi)−u(xi, t�) be the
global error of the approximation u�

h(xi) computed using (25), (26), and let T �
h (xi) be the corresponding truncation

error. These two errors are related by

en+1
h (xi) = en

h(xi) + D

τ
�t2

n+1∑
j=1

e− tn+1−tj
τ D2,xe

j
h(xi)

+ f
(
un+1

h (xi)
) − f

(
u(xi, tn+1)

) + �tT n+1
h (xi), i = 1, . . . ,M − 1 (36)

with

e0
h(xi) = 0, i = 1, . . . ,N − 1, e�

h(x0) = e�
h(xN) = 0, � = 1, . . . ,M.

Following the proof of Theorem 6 the next convergence result can be proved.

Theorem 7. Let u�
h be defined by (25)–(26) and such that u�

h(xi) ∈ [c, d], for all i and for all �. If the solution u of
(2)–(3) satisfies (5) and the source function f is continuously differentiable and f (0) = 0, then

∥∥en+1
h

∥∥2
L2(Ih)

+ D

τ

∥∥∥∥∥�t

n+1∑
j=1

e− tn+1−tj
τ D−xe

j
h

∥∥∥∥∥
2

L2(I+
h )

�
n∑

j=0

Ŝ
j+1
I �t

∥∥T
n+1−j
h

∥∥2
L2(Ih)

(37)

with

ŜI = 1

min{1,1 − (1 + 2f ′
max)�t} .

Considering that (25) is defined approximating the second-order spatial derivative using centered differences, the
integral term using the rectangular rule and the integration in time using the Euler implicit method, we have

T n+1
h (xi) = −�t

2

∂2u

∂t2
(xi, t

∗
n ) − D

τ

n+1∑
j=1

tj∫
tj−1

∂

∂s

(
e− tn+1−s

τ
∂2u

∂x2
(xi, s)

)
(s − tj+1)ds

− h2

24

D

τ
�t

n+1∑
j=1

e− tn+1−tj
τ

(
∂4u

∂x4
(x∗

i , tj ) + ∂4u

∂x4
(x̄i , tj )

)
,

where t∗n ∈ [tn, tn+1], x∗, x̄i ∈ [xi−1, xi+1]. Then
i
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‖Th‖∞ = max
�

∥∥T �
h

∥∥∞

� C max
t∈(0,T ]

(
�t

(∥∥∥∥∂2u

∂t2
(t)

∥∥∥∥∞
+

∥∥∥∥∂2u

∂x2
(t)

∥∥∥∥∞
+

∥∥∥∥ ∂3u

∂t∂x2
(t)

∥∥∥∥∞

)
+ h2

∥∥∥∥∂4u

∂x4
(t)

∥∥∥∥∞

)
. (38)

In the last inequality C denotes a generic positive constant independent of h,�t and u. Using (38) in Theorem 7
we conclude:

Corollary 1. Under the assumptions of Theorem 7 and assuming f ′
max � − 1

2 then

∥∥en
h

∥∥2
L2(Ih)

+ D

τ

∥∥∥∥∥�t

n∑
j=1

e− tn−tj
τ D−xe

j
h

∥∥∥∥∥
2

L2(I+
h )

� C‖Th‖2∞. (39)

If f ′
max > − 1

2 then

∥∥en
h

∥∥2
L2(Ih)

+ D

τ

∥∥∥∥∥�t

n∑
j=1

e− tn−tj
τ D−xe

j
h

∥∥∥∥∥
2

L2(I+
h )

� Ceβn�t‖Th‖2∞, (40)

with

β = 1 + 2f ′
max

1 − (1 + 2f ′
max)�t0

.

Analogous convergence results can be established for the IMEX method.

5. Numerical results

In this section we present some numerical results that show the effectiveness of the estimates presented in Theo-
rems 5 and 7.

5.1. A semi-discrete approximation

Let us consider the semi-discrete system of ordinary differential equations (15). In order to avoid the integral term
and as our aim is to illustrate the behavior of the spatial discretization we rewrite (15) in the following form{

dvh

dt
(xi, t) = − 1

τ
vh(xi, t) + uh(xi, t), i = 1, . . . ,N − 1,

duh

dt
(xi, t) = D

τ
D2,xvh(xi, t) + f (uh(xi, t)), i = 1, . . . ,N − 1,

(41)

with the initial boundary conditions⎧⎪⎪⎨⎪⎪⎩
vh(xi,0) = 0, i = 1, . . . ,N − 1,

vh(xi, t) = ∫ t

0 e− t−s
τ uh(xi, s)ds, i = 0,N,

uh(x0, t) = ua(t), uh(xN , t) = ub(t),

uh(xi,0) = u0(xi), i = 1, . . . ,N − 1.

(42)

To illustrate the second-order estimates in space (22) and (24) we integrate in time (41) with a fourth-order
Runge–Kutta method. The numerical results obtained with u0(x) = e−(x−25)2

, x ∈ [0,50], f (u) = Uu(1 −u), U = 1,
D = 0.2, τ = 0.1 and �t = 0.05 are presented in Table 1. The estimates for the orders p and p∗ exhibited in this table
were computed using

p =
log

(maxj=0,...,M ‖ej
h1

‖
L2(Ih1

)

maxj=0,...,M ‖ej
h2

‖
L2(Ih2

)

)
log

(
h1
h2

) and p∗ =
log

(maxj=0,...,M ‖D−xe
j
h1

‖
L2(I

+
h1

)

maxj=0,...,M ‖D−xe
j
h2

‖
L2(I

+
h2

)

)
log

(
h1
h2

) ,

respectively, where h1 and h2 represent different space step-sizes. We considered M = 500 and the error was estimated
using a reference solution computed with �t = 0.01, h = 0.025.
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Table 1

h 0.1 0.2 0.3 0.4 0.5 0.6
p 2.0706 2.0222 2.0114 2.0067 2.0140
p∗ 2.0568 1.9829 1.9337 1.8870 1.8409

Fig. 1. Numerical solutions computed with methods (25) and (35) for U = 1, τ = D = 0.1 and �t = h = 0.1.

Fig. 2. Numerical solutions computed with methods (25) and (35) for U = 1, τ = D = 0.1 and �t = h = 0.1.

5.2. A fully discrete approximation

We present in what follows some numerical results that illustrate the qualitative and stability properties of methods
(25) and (35). The computational experiments have been obtained with a reaction term of type f (u) = U(1 − u)u,
and with the initial condition

u0(x) =
{

1, x ∈ [0,50],
0, x ∈ ]50,100].
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Fig. 3. Numerical solutions computed with methods (25) and (35) for U = 1, τ = 0.1, �t = h = 0.1 and D = 2.

Fig. 4. Numerical solution computed with method (25) for U = 1, D = 0.1, �t = h = 0.1 and τ = 0.001.

In Fig. 1 we plot the numerical approximations obtained using method (25) and method (35) with U = 1, τ =
0.1 = D = 0.1 and �t = h = 0.1. The two numerical solutions exhibit the same stability behavior, but as we can see
in Fig. 2 the speed of the numerical solution obtained with method (25) is greater.

In Fig. 3 we plot the numerical approximations obtained for D = 2. As expected, we observe in Figs. 1 and 3 that
increasing diffusion leads to a smoother solution.

The numerical approximation obtained from (25) with D = 1 and τ = 0.001 is plotted in Fig. 4. The plots presented
in Figs. 2 and 4 illustrate the fact that the generalized FKPP equation is replaced by the classical Fisher equation when
τ → 0.
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Fig. 5. Numerical solutions computed with methods (25) and (35) for D = τ = 0.1 = �t = h = 0.1 and U = −25.

We have shown in Section 4 that if the reaction term f is stiff, then method (25) is more stable then method (35).
This behavior is illustrated in Fig. 5 where we plot the numerical solution obtained with the previous methods for
U = −25 and h = �t = τ = D = 0.1. As can be observed, the numerical solution obtained with method (35) presents
an unstable behavior.

Finally we remark that when time t increases the discretization of the integral term needs more and more com-
putational memory and the method can become very expensive. In order to avoid this drawback, method (25) can be
rewritten in the following equivalent form:(

I − D�t2

τ
D2,x

)
un+1

h (xi) − �tf
(
un+1

h (xi)
)

= (
1 + e− �t

τ
)
un

h(xi) − �te− �t
τ f

(
un

h(xi)
) − e− �t

τ un−1
h (xi), n = 1, . . . ,M − 1,(

I − D�t2

τ
D2,x

)
u1

h(xi) − �tf
(
u1

h(xi)
) = u0

h(xi). (43)

Due to the discretization of the memory term the IMEX method (35) can also be computationally expensive. In
order to avoid this limitation method (35) can be rewritten in the following equivalent form:(

I − D�t2

τ
D2,x

)
un+1

h (xi)

= (
1 + e− �t

τ
)
un

h(xi) + �tf
(
un

h(xi)
) + �te− �t

τ f
(
un−1

h (xi)
) − e− �t

τ un−1
h (xi), n = 1, . . . ,M − 1,(

I − D�t2

τ
D2,x

)
u1

h(xi) = u0
i + �tf

(
u0

h(xi)
)
. (44)

Finally we remark that in [2], [9] and [10] were considered different methods for equations of type (2).
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