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In this article, we study continuous and discrete models to describe reaction transport systems
with memory and long range interaction. In these models the transport process is described by a
non-Brownian random walk model and the memory is induced by a waiting time distribution of
the gamma type. Numerical results illustrating the behavior of the solution of discrete models
are also included.
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1. Introduction

Reaction–diffusion models are currently used to describe the dynamics of problems that
involve dispersal and reaction phenomena. These problems arise in a wide variety of
contexts as for example population structure, propagation of epidemics or combustion
waves.

From a chronological point of view the first models found in the literature are
differential models. The simplest one is the well known Fisher–Kolmogorov–
Petrosvskii–Piskunov (FKPP) equation

@v

@t
¼ �

@J

@x
þ fðvÞ, ð1Þ

where J ¼ �Dð@v=@xÞ, D is the diffusion coefficient and f represents the reaction term
[3,11,12]. This equation presents, however, a serious drawback – which is related to its
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8 parabolic character – that can be roughly defined as an ‘‘infinite speed of heat/mass
transfer’’. As a consequence the propagation rate of traveling wave solutions, given
by

ffiffiffiffiffiffiffiffiffiffi
4DU

p
for fðvÞ ¼ Uð1� vÞv, exhibits the unphysical property of becoming arbitrarily

large when U goes to infinity.
To overcome this difficulty several modifications of (1) have been proposed in the

literature. A first modification takes into account the boundness of the transport
process by introducing a relaxation parameter � which represents the waiting time
between two successive jumps of the particles whose movement we want to describe
[1,2,4,6,7]. The FKPP equation is then replaced by the integro-differential equation

@v

@t
ðx, tÞ ¼

D

�

Z t

0

e�ðt�sÞ=� @
2v

@x2
ðx, sÞdsþ f ðvðx, tÞÞ: ð2Þ

We note that equation (2) can be obtained from (1) by defining the flux J as the solution
of the first order differential equation

@J

@t
þ
1

�
J ¼

D

�

@v

@x
:

Another generalization of FKPP equation results from considering the form of the
particular random walk model underlying the transport process. This approach leads
to the establishment of integro-difference equations of type

vðx, tþ �Þ ¼

Z
R

vðxþ�, tÞ�ð�Þd�þ �f ðvÞ ð3Þ

where the kernel �ð�Þ represents the probability distribution function of jumps length
[8,13]. An equivalent continuous version of (3), up to the second order in �, is the
integro-differential equation

@v

@t
ðx, tÞ ¼

1

�

Z
R

vðxþ�, tÞ�ð�Þd�� vðx, tÞ

� �
þ f ðvðx, tÞÞ, x2R: ð4Þ

A natural generalization of both (3) and (4) consists in considering a model
where the memory effects associated with random process are also present. To describe
this simultaneous effect of randomness and memory integro-differential equations
of type

@v

@t
ðx, tÞ ¼

Z t

0

�ðt� sÞ

Z
R

vðxþ�, sÞ�ð�Þd�� vðx, sÞ

� �
dsþ f ðvðx, tÞÞ, x2R, ð5Þ

have been proposed in [9] and [10]. We observe that when the time kernel �ðt� sÞ
is defined by �ðt� sÞ ¼ ��ðt� sÞ, where � stands for the Dirac delta function,
we obtain the ‘‘memoryless’’ equation (4) with � ¼ ð1=�Þ: On the other hand if
isotropic kernels � are considered in (5) then up to the second order in � an equivalent
‘‘memoryfull’’ deterministic equation of type (2) is obtained. In the case
�ðt� sÞ ¼ �2e�2�ðt�sÞ, which corresponds to a waiting time density defined by a

100 J. A. Ferreira and P. De Oliveira
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8 member of the family of gamma distributions, where the parameter � is given by
� ¼ ð2=�Þ and � stands for the mean time between successive jumps, we have a model
represented by the integro-differential equation

@v

@t
ðx, tÞ ¼ �2

Z t

0

e�2�ðt�sÞ

Z
R

vðxþ�, sÞ�ð�Þd�� vðx, sÞ

� �
dsþ f ðvðx, tÞÞ, x2R, t > 0:

ð6Þ

From a practical point of view models of type (6) are very useful because both memory
effects and random walks represent significant features in many areas of physics,
chemistry and biology. As far as such models are concerned the speed of traveling
waves has been computed for various time and space kernels in [9] and [10].
However in these articles there is no reference to the well-posedness of the model
nor to the stability of steady states. One of our aims in this article is to study these
last problems. In this sense, in section 2, we establish an energy estimate which
leads to the stability of the model. In section 3 the stability of the steady states is
studied by using an equivalent second-order equation which is a generalization of the
telegrapher’s equation. In section 4 we study the qualitative properties – steepness
and width – of the front connecting the stable state with the unstable state.
The energy estimate established for equation (6) is then used in Section 5 to design
a numerical method exhibiting discrete analogous energy properties. Finally, in section 6
we present some numerical examples.

2. The stability of the model

In the main result of this section – Theorem 7 – we study the behavior of the solution of
problem (6) with initial condition

vðx, 0Þ ¼ v0ðxÞ, x2R: ð7Þ

The stability of the model presented in Theorem 2 is then a straightforward conse-
quence of Theorem 1.

THEOREM 1 Let v be solution of (6), (7). If the source term f is a differentiable function
that satisfies

f ð0Þ ¼ 0, f 0ðyÞ � Mf 0 , y2 ½c, d �, ð8Þ

where ½c, d � is such that vðy, tÞ 2 ½c, d �, y2R, t � 0, then

kvð�, tÞk2L2ðRÞ þ �2
Z t

0

e�2�ðt�sÞvð�, sÞds

����
����
2

L2ðRÞ

� emaxf1�4�, �2þ2Mf 0 gtkv0k
2
L2ðRÞ: ð9Þ

Memory effects and random walks in reaction-transport systems 101
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8 Proof Multiplying equation (6) by v with respect to the L2ðRÞ inner product, it it can
be shown that

1

2

d

dt
kvð�, tÞk2L2ðRÞ ¼ �2

Z
R�R

Z t

0

e�2�ðt�sÞvðz, sÞds�ðz� yÞdzvðy, tÞdy

� �2
Z
R

Z t

0

e�2�ðt�sÞvðy, sÞds

� �
vðy, tÞdyþ

Z
R

f ðvðy, tÞÞvðy, tÞdy: ð10Þ

Let us represent respectively by Q1 and Q2 the first and the second terms of the right-
hand side of this last equation.

For Q1 we have

Q1 �
1

2

Z
R�R

Z t

0

e�2�ðt�sÞvðy, sÞds

� �2

�ðz� yÞdz dyþ
1

2

Z
R�R

v2ðy, tÞ�ðz� yÞdz dy

�
1

2

Z
R

Z t

0

e�2�ðt�sÞvðy, sÞds

� �2

dyþ
1

2

Z
R

v2ðy, tÞdy

¼
1

2

Z t

0

e�2�ðt�sÞvð�, sÞds

����
����
2

L2ðRÞ

þ
1

2
kvð�, tÞk2L2ðRÞ, ð11Þ

and for Q2 it can be shown that

Q2 ¼
1

2

d

dt

Z t

0

e�2�ðt�sÞvð�, sÞds

����
����
2

L2ðRÞ

þ2�

Z t

0

e�2�ðt�sÞvð�, sÞds

����
����
2

L2ðRÞ

: ð12Þ

As we have

Z
R

f ðvðy, tÞÞvðy, tÞdy � Mf 0 kvð�, tÞk
2
L2ðRÞ, ð13Þ

we easily establish from (10)–(13)

d

dt
kvð�, tÞk2L2ðRÞ þ �2

d

dt

Z t

0

e�2�ðt�sÞvð�, sÞds

����
����
2

L2ðRÞ

� 1� 4�ð Þ�2
Z t

0

e�2�ðt�sÞvð�, sÞds

����
����
2

L2ðRÞ

þ �2 þ 2Mf 0
� �

kvð�, tÞk2L2ðRÞ ð14Þ

which allows us to conclude (9). g

As a consequence of Theorem 1, we establish in what follows the stability of (6)–(7).

THEOREM 2 Let v and ~v be two solutions of (6) with initial conditions v0 and ~v0
respectively. If vðy, tÞ, ~vðy, tÞ 2 ½c, d�, y2R, t � 0, and the differentiable source function f

102 J. A. Ferreira and P. De Oliveira
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8 satisfies (8), then

kðv� ~vÞð�, tÞk2L2ðRÞ þ �2
Z t

0

e�2�ðt�sÞðv� ~vÞð�, sÞds

����
����
2

L2ðRÞ

� emaxf1�4�, �2þ2Mf 0 gtkv0 � ~v0k
2
L2ðRÞ:

ð15Þ

Proof For w ¼ v� ~v we have

@w

@t
ðx, tÞ ¼ �2

Z t

0

e�2�ðt�sÞ
� Z

R

wðxþ�, sÞ�ð�Þd�� wðx, sÞ
�
ds

þ f 0ð�vðx, tÞ þ ð1� � ~vðx, tÞÞwðx, tÞ, x2R,

with � 2 ð0, 1Þ: Proceeding as in Theorem 1 we then establish (15). g

Remark 1

(1) Let us assume that � and Mf 0 satisfy

1� 4� � �2 þ 2Mf 0 , ð16Þ

which is equivalent to

�2 �2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5� 2Mf 0

p
, þ1

h �
ð17Þ

provided that Mf0 � ð5=2Þ:
(a) If

�2 þ 2Mf 0 < 0, ð18Þ

then (6)–(7) is stable.
(b) If �2 þ 2Mf 0 > 0 then we conclude that

kðv� ~vÞð�, tÞk2L2ðRÞ þ �2
Z t

0

e�2�ðt�sÞðv� ~vÞð�, sÞds

����
����
2

L2ðRÞ

ð19Þ

is bounded in bounded time intervals.

(2) In the case � and Mf 0 do not satisfy (16) that is

1� 4� > �2 þ 2Mf 0 , ð20Þ

and Mf 0 � ð5=2Þ then as � is a positive constant we have

�2 ð0,�2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5� 2Mf 0

p
Þ:

Two particular subcases of (20) can be considered.

(a) If � < 14 then (6)–(7) is stable.
(b) If � > 14 then (19) is bounded in bounded time intervals.

Memory effects and random walks in reaction-transport systems 103



D
ow

nl
oa

de
d 

B
y:

 [B
-o

n 
C

on
so

rti
um

 - 
20

07
] A

t: 
11

:4
1 

5 
M

ar
ch

 2
00

8 (3) Finally we consider a source function such that Mf 0 > 5=2: As �2 þ 4�þ
2Mf 0 � 1 � 0 we conclude in this case that (19) is bounded in bounded time intervals.

Remark 2 As a consequence of Theorem 2 we conclude that if (6)–(7) has a solution
then such a solution is unique.

3. The stability of the steady states

In this section we prove that the solution of (6)–(7) is solution of a telegrapher’s initial
value problem provided that such a solution is smooth enough. Using this result we can
characterize the stability of the steady states of (6).

THEOREM 3 Let v be the solution of (6) with vðx, 0Þ ¼ v0ðxÞ, x2R: Then v satisfies the
telegrapher’s equation

@2v

@t2
ðx, tÞ ¼

@v

@t
ðx, tÞ f 0ðvðx, tÞÞ � 2�ð Þ þ �2

Z
R

vðxþ�, tÞ�ð�Þd�� vðx, tÞ

� �
þ 2�f ðvðx, tÞÞ, x2R, t > 0, ð21Þ

and the initial conditions

@v

@t
ðx, 0Þ ¼ f ðv0ðxÞÞ, x2R,

vðx, 0Þ ¼ v0ðxÞ, x2R,

8<
: ð22Þ

provided that ð@2v=@t2Þ exists. Otherwise, if v is a solution of (21)–(22) then v is a
solution of (6) and vðx, 0Þ ¼ v0ðxÞ, x2R:

Proof We remark that from (6) we have

@2v

@t2
ðx, tÞ ¼ �2

Z
R

vðxþ�, tÞ�ð�Þd�� vðx, tÞ

� �
þ f 0ðvðx, tÞÞ

@v

@t
ðx, tÞ

� 2�3
Z t

0

e�2�ðt�sÞ

Z
R

vðxþ�, sÞ�ð�Þd�� vðx, sÞ

� �
ds

which combined with (6) enable us to conclude that v satisfies the integro-differential
equation (21). g

It is easy to show that with a source function given by

f ðvÞ ¼ Uvð1� vÞ, ð23Þ

equation (6) has the steady states v¼ 1 and v¼ 0. In the following we study the stability
properties of such steady states considering that the probability density function of

104 J. A. Ferreira and P. De Oliveira
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8 jumps length is represented by the Gauss density function

�ð�Þ ¼
1

r
ffiffiffi
�

p e�ð�2=r2Þ, ð24Þ

or the Laplace density function

�ð�Þ ¼
1

2r
e�ðj�j=rÞ: ð25Þ

THEOREM 4 Let the source function f be defined by (23). If the kernel � is defined by
(24) or (25), then the steady state v¼ 1 is stable.

Proof Following [14] we consider the linearized method. For v¼ 1 we have the linear-
ized integro-differential equation

@2w

@t2
ðx, tÞ þ

@w

@t
ðx, tÞ 2�þUð Þ ¼ �2

Z
R

wðxþ�, tÞ�ð�Þd�� wðx, tÞ

� �
� 2�U: ð26Þ

Let us take wðx, tÞ ¼ expðikxþ �tÞ, k2Z: For � we obtain the algebraic equation

�2 þ �ð2�þUÞ � �2
ffiffiffiffiffiffi
2�

p
Fð�ÞðkÞ � 1

� �
þ 2�U ¼ 0, ð27Þ

where Fð�ÞðkÞ denotes the Fourier transform of the density function �. As

(1) for the Gauss kernel we have
ffiffiffiffiffiffi
2�

p
Fð�ÞðkÞ ¼ e�k2r2=4,

(2) for the Laplace kernel we have
ffiffiffiffiffiffi
2�

p
Fð�ÞðkÞ ¼ 1=ð1þ r2k2Þ ,

we conclude in both cases that � is a negative real number for all k2Z, and
consequently v¼ 1 is a stable steady state of (6). g

THEOREM 5 Let the source function f be defined by (23). If the kernel � is defined by
(24) or (25), then the steady state v¼ 0 is unstable.

Proof Let us consider initial value problem (21), (22) with the initial condition
v0ðxÞ ¼ 	: We compute a solution of this problem of form vðx, tÞ ¼ 	wðtÞ: For w we
obtain the ordinary differential equation

w00 þ 2��Uð1� 2	wÞð Þw0 � 2�Uð1� 	wÞw ¼ 0, ð28Þ

which is equivalent to the system

w0 ¼ z

z0 ¼ � 2��Uð1� 2	wÞð Þzþ 2�Uð1� 	wÞw:

	
ð29Þ

System (29) has equilibrium points P1 ¼ ð0, 0Þ and P2 ¼ ðð1=	Þ, 0Þ which are unstable
and stable points respectively. We then conclude that v converges to 1 when t!1,
which allow us to establish that v¼ 0 is an unstable steady state [5]. g

Memory effects and random walks in reaction-transport systems 105
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8 4. Steepness and width of the wave front

Let us consider equation (5) and a traveling wave solution v connecting v¼ 1 and v ¼ 0:
Assuming that v is C1, equation (5) can also be written as

@v

@t
ðx, tÞ ¼

Z t

0

�ðt� sÞ
X1
‘¼0

h�‘i

‘!

@‘v

@x‘
ðx, sÞdsþ f ðvðx, tÞÞ, x2R, ð30Þ

where < �‘ >¼

Z
R

�‘�ð�Þd�: Then for isotropic kernels we get

@v

@t
ðx, tÞ ¼

Z t

0

�ðt� sÞ
X1
‘¼1

h�2‘i

ð2‘Þ!

@2‘v

@x2‘
ðx, sÞdsþ f ðvðx, tÞÞ, x2R: ð31Þ

For each t let xðtÞ be the point where @v=@x attains it maximum and the partial
derivatives @2‘v=@x2‘ are null, which means that the travel wave v presents an inflection
point x: We have

@v

@t
ðxðtÞ, tÞ ¼ f ðvðxðtÞ, tÞÞ: ð32Þ

Considering now Lagrangian coordinates moving with the speed V of the front that is
(z, t) with z ¼ x� Vt we deduce that

@v

@t
ðxðtÞ, tÞ ¼ �V

@v

@z
ðxðtÞ, tÞ ð33Þ

with @v=@zðxðtÞ, tÞ ¼ ð@v=@zÞðxðtÞ � Vt, tÞ:
From (32) and (33) we conclude that

@v

@z
ðxðtÞ, tÞ ¼ �

f ðvðxðtÞ, tÞÞ

V
:

As ð@v=@zÞðxðtÞ, tÞ measures the steepness of the front we can define its width WðtÞ as
in [13], by the module of the inverse of the steepness that is

WðtÞ ¼
V

j f ðvðxðtÞ, tÞÞj
:

If f ðvÞ ¼ Uvð1� vÞ we can explicitly compute WðtÞ obtaining

WðtÞ ¼
V

UvðxðtÞ, tÞÞ
�
1� vðxðtÞ, tÞ

� :
As the gradient @v=@x attains its maximum for x ¼ xðtÞ and @v=@x ¼ @v=@z then @v=@z
attains a maximum at z ¼ xðtÞ � Vt: Considering that

@2v

@z2
ðxðtÞ, tÞ ¼ �

f 0ðvðxðtÞ, tÞÞ

V

@v

@z
ðxðtÞ, tÞ,

106 J. A. Ferreira and P. De Oliveira
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8 we have f 0ððvðxðtÞ, tÞÞ ¼ 0: In the case of the logistic reaction f 0ðvðxðtÞ, tÞÞ ¼ 0 for
vðxðtÞ, tÞ ¼ 1=2 and consequently f ðvðxðtÞ, tÞÞ ¼ U=4: The width W of the front can
finally be represented by

W ¼
4V

U
:

5. Discrete models of non-Brownian type

In this section, we study numerical methods for equation (6).
Let us consider (6) with t2 ð0,T � where we define the grid ftj, j ¼ 0, . . . ,Mg with

t0¼ 0, tjþ1 � tj ¼ �t, for j ¼ 0, . . . ,M� 1: In R we introduce the uniform grid
Rh ¼ fxi, i2Zg, with x0 ¼ 0, xi ¼ ih, i2Z: By vi^j we denote an approximation to
vðxi, tjÞ defined by

vnþ1
i ¼ vni þ�t2�2

Xnþ1

j¼1

e�2�ðtnþ1�tjÞ h
X
k2Z

v jiþk�ðzhÞ � v ji

 !
þ f ðvnþ1

i Þ, i2Z, ð34Þ

with initial condition

v0i ¼ v0ðxiÞ, i2Z: ð35Þ

We study in what follows the behavior of the grid function vnh, defined in the grid Rh,
with respect to the norm

kwhk
2
L2ðRhÞ

¼ h
X
i2Z

vhðxiÞ
2

ð36Þ

induced by the inner product

ðuh,whÞh ¼ h
X
i2Z

vhðxiÞwhðxiÞ, ð37Þ

where uh and wh are grid functions taking values in Rh:

THEOREM 6 Let � be a probability density function of jumps length defined by (24)
or (25). If the source function f satisfies (8) then the solution of (34) satisfies

vnþ1
h

�� ��2
L2ðRhÞ

þ �2 �t
Xnþ1

j¼1

e�2�ðtnþ1�tjÞvjh

�����
�����
2

L2ðRhÞ

� Cn
I ð1þ�t2�2ÞC0 v0h

�� ��2
L2ðRhÞ

ð38Þ

with

CI ¼
1

minf1��tð2Mf 0 þ �2Þ; 1��tg
,

C0 ¼
1

1� 2�tMf 0
,

ð39Þ
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8 and provided that

1��t > 0 , 1��tð2Mf 0 þ �2Þ > 0 , 1� 2�tMf 0 > 0: ð40Þ

Proof

(1) Let us assume first that n � 1:
Multiplying (34) by vh and considering the Cauchy–Schwarz inequality we obtain

vnþ1
h

�� ��2
L2ðRhÞ

�
1

2
vnþ1
h

�� ��2
L2ðRhÞ

þ
1

2
vnh
�� ��2

L2ðRhÞ
þh�t

X
i2Z

f ðvnþ1
i Þvnþ1

i

þ h2�t2�2
X
i,k2Z

Xnþ1

j¼1

e�2�ðtnþ1�tjÞvjiþk�ðkhÞv
nþ1
i

� h�t2�2
X
i2Z

Xnþ1

j¼1

e�2�ðtnþ1�tjÞvjiv
nþ1
i : ð41Þ

As the source function f satisfies (8) we easily deduce

h
X
i2Z

f ðvnþ1
i Þvnþ1

i � Mf 0 vnþ1
h

�� ��2
L2ðRhÞ

: ð42Þ

Let Q3 and Q4 be defined respectively by

Q3 ¼ h2�t2
X
i,k2Z

Xnþ1

j¼1

e�2�ðtnþ1�tjÞv jiþk�ðkhÞv
nþ1
i ,

Q4 ¼ h�t2
X
i2Z

Xnþ1

j¼1

e�2�ðtnþ1�tjÞv ji v
nþ1
i :

As far as Q3 is concerned we have

Q3 ¼ h2�t2
X

i,m2Z

Xnþ1

j¼1

e�2�ðtnþ1�tjÞvjm�ððm� iÞhÞvnþ1
i

¼ h2�t2
X
m2Z

Xnþ1

j¼1

e�2�ðtnþ1�tjÞvjm�ððm� iÞhÞvnþ1
i

�
�t

2
h
X
m2Z

�t
Xnþ1

j¼1

e�2�ðtnþ1�tjÞvjm

 !2

h
X
i2Z

�ððm� iÞhÞ

þ
�t

2
h
X
i2Z

ðvnþ1
i Þ

2h
X
m2Z

�ððm� iÞhÞ: ð43Þ
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8 Attending that � represents the Gauss density function (24) or Laplace density
function (25), we conclude that

Q3 �
�t

2
�t
Xnþ1

j¼1

e�2�ðtnþ1�tjÞvjh

�����
�����
2

L2ðRhÞ

þ
�t

2
kvnþ1

h k2L2ðRhÞ
: ð44Þ

For Q4 holds the following representation

Q4 ¼
1

2
�t
Xnþ1

j¼1

e�2�ðtnþ1�tjÞv jh

�����
�����
2

L2ðRÞ

�
e�4��t

2
�t
Xn
j¼1

e�2�ðtn�tjÞvjh

�����
�����
2

L2ðRÞ

þ
�t2

2
vnþ1
h

�� ��2
L2ðRÞ

:

ð45Þ

Considering (42)–(45) in (41) we obtain

1þ�t2�2 ��t 2Mf 0 þ �2
� �� �

vnþ1
h

�� ��2
L2ðRhÞ

þ �2ð1��tÞ �t
Xnþ1

j¼1

e�2�ðtnþ1�tjÞvjh

�����
�����
2

L2ðRhÞ

� �2e�4��t �t
Xn
j¼1

e�2�ðtn�tjÞvjh

�����
�����
2

L2ðRhÞ

þ vnh
�� ��2

L2ðRhÞ
:

ð46Þ

which implies

minf1��tð2Mf 0 þ �2Þ ; 1��tg vnþ1
h

�� ��2
L2ðRhÞ

þ �2 �t
Xnþ1

j¼1

e�2�ðtnþ1�tjÞvjh

�����
�����
2

L2ðRhÞ

0
@

1
A

� �2 �t
Xn
j¼1

e�2�ðtn�tjÞvjh

�����
�����
2

L2ðRhÞ

þ vnh
�� ��2

L2ðRhÞ
: ð47Þ

Then choosing �t such that (40) holds we obtain, for n � 1,

vnþ1
h

�� ��2
L2ðRhÞ

þ �2 �t
Xnþ1

j¼1

e�2�ðtnþ1�tjÞvjh

�����
�����
2

L2ðRhÞ

� CI �2 �t
Xn
j¼1

e�2�ðtn�tjÞvjh

�����
�����
2

L2ðRhÞ

þ vnh
�� ��2

L2ðRhÞ

0
@

1
A: ð48Þ

(2) We consider now n ¼ 0: It is easy to establish in this case that

ð1� 2�tMf 0 Þ v1h
�� ��2

L2ðRhÞ
� v0h
�� ��2

L2ðRhÞ
þ 2�t2�2 h2

X
i, k2Z

v1iþkv
1
i �ðkhÞ � v1h

�� ��2
L2ðRhÞ

 !
:
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8 As we have

h2
X
i,k2Z

v1iþkv
1
i �ðkhÞ ¼ h2

X
i,m2Z

v1mv
1
i �ððm� iÞhÞ

�
h

2

X
m2Z

ðv1mÞ
2h
X
i2Z

�ððm� iÞhÞ

þ
h

2

X
i2Z

ðv1i Þ
2h
X
m2Z

�ððm� iÞhÞ

� v1h
�� ��2

L2ðRhÞ

we conclude that

v1h
�� ��2

L2ðRhÞ
� C0 v0h

�� ��2
L2ðRhÞ

ð49Þ

with C0 given by (39), provided that �t satisfies 1� 2�tMf 0 > 0:
Finally from (48) and (49) we obtain (38). g

Remark 3 In order to establish stability bounds for �t0 the coefficients CI and C0

in (38) can be analyzed with some detail.

(1) Let

2Mf 0 þ �2 > 1, ð50Þ

which implies that

CI ¼
1

1��tð2Mf 0 þ �2Þ
:

As � ¼ 2=� where � stands for the mean time between successive jumps, inequality
(50) is verified by a large class of source function because �2 can be very large. Let
�t0 be fixed such that

1��t0ð2Mf 0 þ �2Þ > 0, ð51Þ

and

1� 2�t0Mf 0 > 0: ð52Þ

IfMf 0 < 0 then (52) holds and�t0 is fixed only by (51). In this caseMf 0 > 0, and�t0
is defined by

�t0 ¼
1

maxf2Mf 0 ; 2Mf 0 þ �2g
:

110 J. A. Ferreira and P. De Oliveira
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8 As for �t � �t0 we have

CI � 1þ�t
2Mf 0 þ �2

1��t0ð2Mf 0 þ �2Þ
,

we conclude from (38)

vnþ1
h

�� ��þ �2 �t
Xnþ1

j¼1

e�2�ðtnþ1�tjÞvjh

�����
�����
2

L2ðRhÞ

� en�tð2Mf 0þ�2Þ=ð1��t0ð2Mf 0þ�2ÞÞ 1þ �2�t20
1� 2�t0Mf 0

v0h
�� ��2

L2ðRhÞ
:

ð53Þ

(2) If � and Mf 0do not satisfy (50) then

CI ¼
1

1��t
:

Let �t0 be such that

�t0 ¼
1

maxf1, 2Mf 0 g
: ð54Þ

Then for �t � �t0, we conclude from (38)

vnþ1
h

�� ��þ �2 �t
Xnþ1

j¼1

e�2�ðtnþ1�tjÞvjh

�����
�����
2

L2ðRhÞ

� en�tð1=1��t0Þ
1þ �2�t20

1� 2�t0Mf 0
v0h
�� ��2

L2ðRhÞ
: ð55Þ

Inequalities (53), (55) enable us to conclude the stability of method (34). g

If the reaction is stiff the implicit discretization (34) should be used. For non-stiff
reactions the implicit–explicit discretization

vnþ1
i ¼ vni þ�t2�2

Xnþ1

j¼1

e�2�ðtnþ1�tjÞ h
X
k2Z

v jiþk�ðzhÞ � v ji

 !
þ f ðvni Þ, i2Z, ð56Þ

can be used. We establish in what follows a stability result for method (56).
If source function f satisfies (8) then

h
X
i2Z

f ðvni Þv
nþ1
i �

M2
f 0

2
vnh
�� ��2

L2ðRhÞ
þ
1

2
vnþ1
h

�� ��2
L2ðRhÞ

ð57Þ
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8 but also

h
X
i2Z

f ðvni Þv
nþ1
i �

1

2
vnh
�� ��2

L2ðRhÞ
þ
M2

f 0

2
vnþ1
h

�� ��2
L2ðRhÞ

: ð58Þ

Inequalities (57) and (58) enable us to conclude that for n � 1, (48) holds with CI

replaced now by CE defined by

CE ¼
maxf1þ�t; 1þ�tM2

f 0 g

minf1��tð1þ �2Þ; 1��tðM2
f 0 þ �2Þg

, ð59Þ

provided that

1��tð1þ �2Þ > 0, 1��tðM2
f 0 þ �2Þ > 0: ð60Þ

As

v1h
�� ��2

L2ðRhÞ
�

1þ�tM2
f 0

1��t
v0h
�� ��2

L2ðRhÞ
,

v1h
�� ��2

L2ðRhÞ
�

1þ�t

1��tM2
f 0

v0h
�� ��2

L2ðRhÞ
,

ð61Þ

we deduce that

v1h
�� ��2

L2ðRhÞ
� C0 v0h

�� ��2
L2ðRhÞ

ð62Þ

where

C0 ¼
maxf1þ�tMf 0 ; 1þ�tg

minf1��t; 1��tM2
f 0 g

: ð63Þ

Estimate (62) is analogous to estimate (49) established for implicit method (34).
Following the proof of Theorem 37 we conclude next stability result:

THEOREM 7 Let � be a probability density function of jumps length defined by
(24) or (25). If the source function f satisfies (8) then the numerical solution defined by
(56) satisfies

vnþ1
h

�� ��þ �2 �t
Xnþ1

j¼1

e�2�ðtnþ1�tjÞvjh

�����
�����
2

L2ðRhÞ

� Cn
Eð1þ �2�t2ÞC0 v0h

�� ��2
L2ðRhÞ

ð64Þ

provided that (60) holds and with CE and C0 defined by (59), (63) respectively.
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If �t0 is a fixed value such that

1��t0ð1þ �2Þ > 0, 1��t0ðM
2
f 0 þ �2Þ > 0, ð65Þ

then for �t < �t0 we easily obtain

vnþ1
h

�� ��2
L2ðRhÞ

þ �2 �t
Xnþ1

j¼1

e�2�ðtnþ1�tjÞvjh

�����
�����
2

L2ðRhÞ

� e
n�tð1þ�2þM2

f 0
=1��t0ð1þ�2ÞÞ

C0ð1þ �2�t20Þ v0h
�� ��2

L2ðRhÞ
: ð66Þ

Estimate (66) guarantees stability for method (56).
In figure 1 we plot the stability coefficients CI and CE as functions of Mf 0 for � ¼ 1,

�t ¼ 0:1:

6. Numerical examples

The purpose of this section is two-fold: firstly to illustrate the stability behavior of
implicit method (34) and implicit–explicit method (56) and secondly to analyze the
dependence on f, � and � of the speed propagation and the steepness of the front.

The computational results have been obtained with a reaction term of type
f ðvÞ ¼ Uð1� vÞv, with probability density functions � defined by (24) and (25), and
an initial condition v0 given by

v0ðxÞ ¼
1, x � 50,

0, x > 50:

(

−10 −5 5 10

2

4

6

8

10

Stability coefficients

Figure 1. Stability coefficients CE(. . .) and CI ð ���) for � ¼ 1, �t ¼ 0:1:
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Figure 2. Numerical solutions computed with method (56) for U ¼ � ¼ r ¼ 1 and h ¼ �t ¼ 0:1:

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

1.2

1.4

x

v

Red-Laplace (r=1), Green Gauss (r=1)

t=0
t=5
t=5
t=10
t=10
t=15
t=15
t=20
t=20

Figure 3. Numerical solutions computed with method (56) for U ¼ � ¼ r ¼ 1 and h ¼ �t ¼ 0:1.
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Considering h ¼ �t ¼ 0:1 both methods present a stable behavior for U¼ 1
(figures 2–4). This result was expected because both methods (34) and (56) are stable
as a consequence of (40) and (65). For U¼ 6 implicit-explicit method (56) exhibits an
unstable behavior as was expected from the fact that (65) does not holds (figures 5
and 6).

Let us consider in what follows U¼ 1 and again h ¼ �t ¼ 0:1: We illustrate now
the influence of space and time memory on the speed of propagation and on the
steepness of the front. As for U ¼ 1, h ¼ �t ¼ 0:1 both methods give analogous
solutions we just exhibit in what follows the results obtained with the less computation-
ally expensive method (56). In figures 2 and 3 can be observed the influence of
Gauss and Laplace probability density functions in the speed of propagation.
Laplace probability density function induces a greater speed of propagation and
leads to a smoother solution.

In figure 7 we show the numerical solution computed using Laplace and
Gauss kernels but using now a parameter r ¼ 0:5: As expected from an intuitive
point of view if we decrease r the speed of the front decreases and its steepness
increases.

Finally in figure 8 we illustrate the influence of the waiting time � between two
successive jumps with � ¼ 10, U ¼ 1, h ¼ 0:1 and �t ¼ 0:01: As � ¼ 2=� it is expected
that as � increases the speed increases and the steepness decreases.

0 20 40 60 80 100 120 140
0

0.2

0.4

0.6

0.8

1

1.2

1.4

x

v
Red-Laplace (r=1), Green Gauss (r=1)

t=0
t=5
t=5
t=10
t=10
t=15
t=15
t=20
t=20

Figure 4. Numerical solutions computed with method (34) for U ¼ r ¼ 1, h ¼ �t ¼ 0:1 and � ¼ 1:
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46 47 48 49 50 51 52 53

0.96

0.97

0.98

0.99

1

1.01

1.02

1.03

1.04

x

v

Red-Laplace (r=1), Green Gauss (r=1)

t=0
t=0.7
t=0.7
t=1.4
t=1.4

Figure 6. Numerical solutions computed with method (34) for h ¼ �t ¼ 0:1, r ¼ � ¼ 1 and U ¼ 6:

48.5 49 49.5 50 50.5 51

0.97

0.975

0.98

0.985

0.99

0.995

1

x

v

Red-Laplace (r=1), Green Gauss (r=1)

t=0
t=0.7
t=0.7
t=1.4
t=1.4

Figure 5. Numerical solutions computed with method (56) for h ¼ �t ¼ 0:1, r ¼ � ¼ 1 and U ¼ 6:
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0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

1.2

1.4
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Red-Laplace (r=0.5), Green Gauss (r=0.5)

t=0
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t=10
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t=15
t=15
t=20
t=20

Figure 7. Numerical solutions computed with method (56) for U ¼ � ¼ 1, h ¼ �t ¼ 0:1 and r ¼ 0:5:

0 50 100 150 200 250
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v

Red-Laplace (r=1), Green Gauss (r=1)
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Figure 8. Numerical solutions computed with method (56) for U ¼ r ¼ 1, h ¼ 0:1, �t ¼ 0:01 and � ¼ 10:
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[2] Araújo, A., Ferreira, J.A. and Oliveira, P., 2006, The effect of memory terms in the qualitative behaviour
of the solution of diffusion equations. Journal of Computational Mathematics, 24, 91–102.

[3] Aronson, D.G. and Weinberger, H.F., 1978, Multidimensional nonlinear diffusion in population
genetics. Advanced Mathematics, 30, 33–76.

[4] Branco, J.R., Ferreira, J.A. and Oliveira, P., Numerical methods for generalized Fisher–Kolmogorov–
Petrovskii–Piskunov equation. Applied Numerical Mathematics (To appear).

[5] Debnath, L., 1997, Nonlinear Partial Differential Equations for Scientists and Engineers (Boston:
Birkhuser).

[6] Fedotov, S., 1998, Traveling waves in a reaction – diffusion system: diffusion with finite velocity and
Kolmogorov–Petrovski–Piskunov kinectics. Physical Review E, 5(4), 5143–5145

[7] Fedotov, S., 1999, Nonuniform reaction rate distribution for the generalized Fisher equation: ignition
ahead of the reaction front. Physical Review E, 60(4), 4958–4961

[8] Fedotov, S., 2001, Front propagation into an unstable state of reaction – transport systems. Physical
Review Letter, 86(5), 926–929

[9] Fedotov, S. and Okuda, Y., 2002, Non Markovian random process and traveling front in a reaction
transport system with memory and long-range interactions. Physical Review E, 66, 021113–021119

[10] Fedotov, S. and Okuda, Y., 2004, Waves in a reaction-transport system with memory, long-range
interactions and transmutations. Physical Review E, 70, 051108–051117.

[11] Fisher, R.A., 1937, The wave of advance of advantageous genes. Annals of Eugenics, 7, 353–369.
[12] Kolmogorov, A., Petrovskii, I. and Piskunov, N., 1937, Étude de l’equation de la diffusion avec crois-
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