
Construction of a High Order Fluid-Structure Interaction Solver

Gonçalo Penaa,b, Christophe Prud’hommec

aCMUC, Department of Mathematics, University of Coimbra
3001 - 454 Coimbra, Portugal

bCMCS, École Polytechnique Fédérale de Lausanne
MA C2 573 (Bâtiment MA), Station 8, CH-1015 Lausanne, Switzerland

cLaboratoire Jean Kuntzmann, Université Joseph Fourier Grenoble 1
BP 53 38041 Grenoble Cedex 9, France

Abstract

Accuracy is critical if we are to trust simulation predictions. In settings such as fluid-
structure interaction it is all the more important to obtain reliable results to understand,
for example, the impact of pathologies on blood flows in the cardiovascular system. In this
paper, we propose a computational strategy for simulating fluid structure interaction using
high order methods in space and time.

First, we present the mathematical and computational core framework, Life, underlying
our multi-physics solvers. Life is a versatile library allowing for 1D, 2D and 3D partial
differential solves using h/p type Galerkin methods. Then, we briefly describe the handling
of high order geometry and the structure solver. Next we outline the high-order space-
time approximation of the incompressible Navier-Stokes equations and comment on the
algebraic system and the preconditioning strategy. Finally, we present the high-order
Arbitrary Lagrangian Eulerian (ALE) framework in which we solve the fluid-structure
interaction problem as well as some initial results.

Key words: h/p Galerkin method, incompressible Navier-Stokes, Preconditioning,
Arbitrary Lagrangian Eulerian, Fluid Structure Interaction

1. Mathematical and computational framework

We present a very brief overview of Life, a unified framework for finite element and
spectral element methods in 1D, 2D and 3D in C++. The objectives of this framework
are to construct a versatile, albeit small and manageable, mathematical kernel in C++

(i) easily solving partial differential equations(PDEs) problems, thanks to a syntax close
the mathematical abstractions and language, (ii) allowing to test and compare different
numerical methods, e.g. continuous Galerkin (cG) versus discontinuous Galerkin (dG).

1.1. Basic principles

The syntax, the semantics and the pragmatics of the library are very close to the
mathematics and in particular Galerkin type methods. C++ has been the chosen language
because it supports very well multiple paradigms design and offers a wide range of solutions

Preprint submitted to Journal of Computational and Applied Mathematics January 20, 2009

for a given problem. Generic programming, OO programming, meta-programming are such
paradigms and they are definitely very useful when dealing with mathematical abstractions.
The following C++ code uses all these paradigms

integrate(boundaryfaces(mesh), im, gradv(u)*N()). evaluate ();

It integrates the scalar function ∇u · n, where n is the outward normal to the boundary
of the domain. im provides the numerical integration method and boundaryfaces(mesh)

returns a pair of iterators over the set of faces on the boundary of the domain. We refer
the reader to [1, 2] for a more complete overview of Life and a description of the language.

1.2. The polynomial library and embedded language

The polynomial library and the embedded language are the two cornerstones of Life.
The polynomial library is composed of various bricks: (i) the geometrical entities or con-
vexes (ii) the L2 orthonormal primal basis in which we express subsequently the poly-
nomials, see [3, 4, 2], (iii) the definition and construction of point sets in convexes e.g.
quadrature point sets and finally (iv) polynomials and finite elements.

As for the domain specific language embedded(DSEL) in C++, also known as FEEL++1,
it provides a very close syntax for numerical integration, projection and variational formu-
lation to the corresponding mathematical language. To illustrate this, let us now consider
the following system of Oseen equations

αu− ν∆u + (β · ∇)u +∇p = f, in Ω (1)

∇ · u = 0, in Ω (2)

B(u, p) = g, on ∂Ω (3)

where Ω is a bounded open polygonal domain in Rd, d = 2, 3 with boundary ∂Ω, u is the
velocity of the fluid, p the pressure. The boundary conditions are represented by the oper-
ator B. This system can reproduce the steady Stokes problem as well as fix point iterations
for the Navier-Stokes case. As for the standard Navier-Stokes time discretizations, system
(1)-(3) is still relevant after modifications of α, β and f. An implementation in Life, once
written in variational form, would be done as follows
AUTO(def , 0.5*(grad(v) + trans(grad(v))));
AUTO(deft , 0.5*(gradt(u) + trans(gradt(u))));
form2(Xh , Xh, M) =

integrate(elements(Xh ->mesh()), IM ,
alpha*trans(idt(u))*id(v) + 2.0*nu*trace(trans(deft)*def)
+ trans(gradt(u)*idv(beta))*id(v) - div(v)*idt(p) + divt(u)*id(q));

The first two lines allow to define the strain tensor for test and trial functions. Then we
construct the bilinear form with its algebraic representation (matrix) M and where Xh is an
instance of the function space data structure, IM is an instance of a quadrature method
and finally we implement the expression of the form. In the context of fluid-structure
interaction, it is often the case that the fluid flow is advection-dominated, stabilization

1Finite Element Embedded Language in C++

2

techniques are then required. We chose the continuous interior penalty (CIP) method to
stabilize the velocity approximations, see [9]

jβ(u,v) =
∑
F∈FI

∫
F

(
(γβ + |β · n|) h2

F

N3.5
[[∇u]]F · [[∇v]]F

)
ds (4)

where FI denotes the internal faces of the mesh, hF denotes the length of the face F , N
the order of the velocity approximation and γβ the stabilization parameter. The notation
[[·]]F denotes the jump of the quantity · across the face F , see [9] for the definition. An
implementation of jβ reads as follows:
AUTO(stab_coeff , (γβ+abs(trans(N())* idv(beta)))*vf::pow(hFace () ,2.0)/N

3.5);
form2(Xh , Xh, M) += integrate(internalfaces(Xh->mesh()), IM,

stab_coeff * (trans(jumpt(gradt(u)))* jump(grad(v))));

In [11], the scaling for the stabilization term is γβ|β ·n| h
2
F

N3.5 , allowing for more flexibility.

2. High order geometry

We now turn to a brief description of the high order geometry. We sketch the high order
mesh construction and a versatile operator. We remark that using high order geometry
impacts the quadrature rules and approximation order used in the variational forms and
numerical integrals. Indeed, since we construct our polynomials in a reference element, to
represent for example exactly order 5 polynomials in a real element of geometric order 4,
we must use order 9 polynomials in the reference element.

2.1. Basic data structures

Denote Ω an open domain of Rd, d = 1, 2, 3, T Ngeo =

10−15

10−12

10−9

10−6

10−3

100

er
ro

r
er

ro
r

0.1 0.2 0.5

hh

P1

P2

P3

P4

P5

1
2.3

1
4.6

1
6.9

Figure 1: Convergence test for
high order geometry

∪Nel
k=1T

Ngeo

k its associated triangulation where T
Ngeo

k = ϕ
Ngeo

k (T̂),

T̂ is the reference element, and ϕ
Ngeo

k is the geometric trans-

formation of order Ngeo that maps T̂ to T
Ngeo

k . Two strate-

gies were followed (i) building ϕ
Ngeo

k and the corresponding
mesh following the steps in [3], and (ii) use the mesh genera-
tor [10] that provides high order meshes. Our implementation
of the former allows for a priori better quality arbitrary or-
der meshes but only in 2D while the latter allows for 2D and
3D up to order 5 but the interior points are not moved with
respect to the element deformation, e.g. using Gordon-Hall
transformations. Figure 1 plots the error π − ∫

Ω
1 dx where Ω is a radius one circle. The

curved boundary of the circle is described with a mesh with order one to five generated by
Gmsh.

Finally we can introduce a few more standard notations. Let T Ngeo

h be a triangulation of
the domain Ω, Ngeo being the order of the elements of mesh and denote h = max

Tk∈T
Ngeo
h

hk

(hk = diam(Tk)). We define PN(Tk) to be the space of polynomials of total degree N defined

in Tk ∈ T Ngeo

h . PN(Tk) is associated with triangulations composed of simplices. QN(Tk)

3

is the space of polynomials of degree N in each variable when Tk are tensorized convexes,
i.e. quadrangles and hexahedra.

2.2. A useful operator

We now describe an operator which turns out to be useful in visualizing high order
meshes and functions and in preconditioning matrices arising from high order discretiza-
tions. We denote

X
N,Ngeo

h

(T Ngeo
)

=
{
v ∈ C0(T Ngeo), v|TNgeo

k

∈ PN(T
Ngeo

k), T
Ngeo

k = ϕ
Ngeo

k (T̂) ∈ T Ngeo

}
(5)

X
N,Ngeo

h is a function space which is spanned by

Figure 2: A first order mesh generated
from a 4-th order mesh, In bold the
first order mesh associated to the ver-
tices of the elements of the 4-th order
one.

nodal basis functions and the expansions are contin-
uous. We would like to visualize not only high order
functions of X

N,Ngeo

h without losing too much infor-
mation but also high order meshes. To this end, we
introduce the following interpolation operator

ΠP1 : X
N,Ngeo

h 7→ X1,1

h̃
(6)

where the mesh associated to X1,1

h̃
, a space spanned

by a P1 Lagrange polynomials basis using a P1 ge-
ometric approximation, is constructed from the points
associated to the degrees of freedom of X

N,Ngeo

h . We
remark that the points on ∂T 1 are located, thanks to ϕNgeo , exactly on ∂T Ngeo thus we
retain a good approximation of the boundary. The construction of T 1

h̃
uses the following

ingredients (i) ϕNgeo , (ii) the degrees of freedom table of X
N,Ngeo

h and (iii) T̂ 1 a mesh of T̂
whose vertices are the points associated to the degrees of freedom in the reference element
T̂ . Figure 2 displays the results of the algorithm on a 4-th order mesh of a 3-rd order
boundary domain. We indeed observe that the points on the boundary edges lie on the
fourth order boundary.

As to using this operator to build preconditioners for matrices arising from high order
discretization, this comes from the features (i) dimX1,1

h̃
= dimX

N,Ngeo

h and (ii) if v ∈
X
N,Ngeo

h , ΠP1(v) has the same nodal values on the mesh associated toX1,1

h̃
as v. Its numerical

features are discussed in [3].

3. High order structure

Regarding the structure solver, prescribed displacement, StVenant-Kirchhoff and the
generalized string models have been implemented. The former is used in section 5.3 while
the later is being used in the fluid-structure section 5.4. The associated equations to the
generalized string models are stated in the solid reference domain Ω̂s =

{
(r, z) : r =

4

R0, z ∈ [0, L]
}

. σΣ is the radial component of the stress vector of the fluid acting on the
structure, see [6, 7]. The displacement d satisfies the following equation

ρsh
∂2d

∂t2
− kGh∂

2d

∂z2
+

Eh

1− ν2

d

R2
0

− γ ∂3d

∂z2∂t
= σΣ on Ω̂s (7)

and homogeneous Dirichlet boundary conditions. Here h is the wall thickness, k is the
Timoschenko shear correction factor, G the shear modulus, E the Young modulus, ν the
Poisson ratio, ρs the wall density, γ a viscoelastic parameter. The strategy to solve (7) is
(i) BDFn for the time discretization introducing the first derivative of the displacement as
an additional unknown and (ii) high order discretization in space.

4. High order Navier-Stokes

4.1. Algebraic framework

We consider now the system (1)-(3). The finite element spaces setting for the velocity
and pressure fields is the following:

VN = {v ∈ C0
(
Ω
)2

: v|Tk ∈ P2
N(Tk), ∀Tk ∈ T Ngeo

h } (8)

and
QN = {q ∈ C0

(
Ω
)

: q|Tk ∈ PM(Tk), ∀Tk ∈ T Ngeo

h } (9)

where M = N − 1 or M = N − 2. When using these discretization spaces, we shall
refer to the PN - PM method. The discontinuous pressure version of these methods are
also considered and denoted by PN - PdiscM . In what follows, the spaces are spanned by
Lagrange bases constructed at the Fekete points [3] associated to the type of convex. We
shall display only a few results to support our choices. For an exhaustive presentation of
the various results obtained, see [11]. The discretization of the system (1)-(3) using these
methods leads to the linear system[

FN GN

DN 0

] [
U
P

]
=

[
F1

F2

]
. (10)

where (i) FN = αMN + νHN +CN with MN , HN and CN corresponding to the discretiza-
tion of the identity, Laplace and convection operators respectively and (ii) GN and DN

correspond to the discretization of the gradient and divergence operators respectively.
In order to solve (10), the following preconditioning strategy has been used in all the

Navier-Stokes related results: (i) we build a complete LU factorization which does not
break since we set the pressure weakly either at inflow or at outflow, (ii) we reuse this LU
factorization as preconditioner in combination with a GMRES solver in all subsequent time
steps — we note that initially the number of linear iterations is 1 — (iii) we rebuild the LU
factorization when the number of the GMRES iterations reaches say 10 or 20 iterations. It
is very interesting to observe that the preconditioner is rebuilt very few times during the
whole computation and displays far better performances than an ILU approaches where the

5

right parameters need to be found, the cost of the LU factorization is in fact marginal when
compared to the overall cost. In 2D we have found this strategy extremely effective and
robust with respect to h and N . In the case of internal flows, Life allows to easily augment
the approximation space and add Lagrange multipliers to enforce a particular constraint
on the pressure, e.g. zero mean pressure, to ensure uniqueness then our strategy still holds.

4.2. Choice of the discretization spaces

To help our choices, we consider the Kovasznay solution of the steady Stokes equations
(see page 177 of [5]) and we use the H1 norm of the error on the velocity and the norm
‖q‖0,∗ = ‖q − mΩ(q)‖0, where mΩ(q) denotes the average of q in Ω, for the pressure to
compare the accuracy of the different methods. In the results displayed in this section Ngeo

was set to 1.

10−5

10−4

10−3

10−2

10−1

100

101

||u
h
−

u
e
x
a
c
t
|| 1

||u
h
−

u
e
x
a
c
t
|| 1

0.05 0.1 0.2 0.5 1

hh

P3 - Pdisc
1

P4 - Pdisc
2

1
1.9

1
2.82

(a) PN -Pdisc
N−2::Velocity

10−7

10−6

10−5

10−4

10−3

10−2

10−1

||p
h
−

p
e
x
a
c
t
|| 0

,∗
||p

h
−

p
e
x
a
c
t
|| 0

,∗

0.05 0.1 0.2 0.5 1

hh

P3 - Pdisc
1

P4 - Pdisc
2

1
1.9

1
2.73

(b) PN -Pdisc
N−2::Pressure

10−5

10−4

10−3

10−2

10−1

100

101

||u
h
−

u
e
x
a
c
t
|| 1

||u
h
−

u
e
x
a
c
t
|| 1

0.05 0.1 0.2 0.5 1

hh

P2 - P1

P4 - P3

1
2.09

1

3.95

(c) PN - PN−1::Velocity

10−8

10−6

10−4

10−2

100

||p
h
−

p
e
x
a
c
t
|| 0

,∗
||p

h
−

p
e
x
a
c
t
|| 0

,∗

0.05 0.1 0.2 0.5 1

hh

P2 - P1

P4 - P3

1
2

1
4.33

(d) PN - PN−1::Pressure

10−10

10−8

10−6

10−4

10−2

100

||u
h
−

u
e
x
a
c
t
|| 1

||u
h
−

u
e
x
a
c
t
|| 1

2 4 6 8 10 12

polynomial order Npolynomial order N

PN - PN−2

PN - Pdisc
N−2

PN - PN−1

(e) N Convergence::Velocity

10−10

10−8

10−6

10−4

10−2

||p
h
−

p
e
x
a
c
t
|| 0

,∗
||p

h
−

p
e
x
a
c
t
|| 0

,∗

2 4 6 8 10 12

polynomial order Npolynomial order N

PN - PN−2

PN - Pdisc
N−2

PN - PN−1

(f) N Convergence::Pressure

Figure 3: Error plots for the velocity and pressure for the various element types.

First, we compare the different methods of the preceding section by fixingN and varying
h. The QN - Qdisc

N−2 method is widely used, a quasi-optimal error estimate is obtained in the
quadrangular mesh case and we recover similar results in the triangular one, see Figures 3(a)
and 3(b). Although the velocity is approximated using order N basis functions, the error
decays only as hN−1, for N = 3, 4. As for the pressure, the error behaves optimally as
hN−1. Similar results are obtained for PN - PN−2. The PN - PN−1 methods were studied by
Brezzi and Falk, they are also known as the Taylor-Hood element. The results displayed
on Figures 3(c) and 3(d) show an optimal convergence behavior as h decreases for both
pressure and velocity. We now fix h and vary N . The most accurate method is the PN -
PN−2 one, see Figures 3(e) and 3(f).

6

5. Putting it all together: Fluid structure interaction

We now consider the unsteady Navier-Stokes equations in a domain with a moving
boundary. We use the Arbitrary Lagrangian Eulerian (ALE) framework to keep track of
the domain’s deformation, see e.g. [6].

5.1. Formulation

The system’s evolution is studied in the interval I = [t0, T]

Ω0 ΩD0ΩD0

Ωσ
0

Ωσ
0

Ωt
ΩDtΩDt

Ωσ
t

Ωσ
t

Figure 4: Reference domain at
time t = t0 (top) and current
domain at time t (bottom).

and we denote Ω0 the reference configuration for instance
the domain at time t = t0. The position of a point in the
current domain Ωt is denoted by x (in the Eulerian coordinate
system) and by Y in the reference domain Ω0. We consider
now the simple 2D model depicted on figure 4 where ΩD0 is
fixed and Ωσ

0 evolves according to some viscoelastic model.
We introduce the so called ALE map, a family of mappings

At : Ω0 7→ Ωt, Y −→ x(Y, t), t ∈ [t0, T]. (11)

and the domain’s deformation velocity, denoted w, given by
w(x, t) = ∂At

∂t

∣∣
Y

. The Navier-Stokes equations now read in
the ALE framework

Figure 5: Effect of x3
h on a

equidistributed point set in the
whole mesh.

∂u

∂t

∣∣∣∣
Y

+[(u−w) ·∇]u+∇p−2νD (u) = f, ∇ ·u = 0 (12)

in Ωt, for all t ∈ I. ∂u
∂t

∣∣
Y

denotes the time derivative in the

ALE framework and D (u) = 1
2

(
∇u + ∇uT

)
is the strain

tensor. A Dirichlet or Neumann boundary condition is im-
posed at the inflow, homogeneous Neumann at the outflow
and the domain’s deformation velocity on Ωσ

t .

5.2. Arbitrary Lagrangian Eulerian map

Assume that ΩDt is described in terms of polynomials of degree Ngeo and we denote T Ngeo

0,h

a triangulation of the domain Ω0,h ≈ Ω0. The algorithm runs as follows : (i) we construct
the harmonic extension of the boundary data denoted x1

h — other types of extension can

be found in [6, 8], — (ii) we project x1
h onto the space X

Ngeo,1
h and we denote x

Ngeo

h the

projection and (iii) we update the values of the degrees of freedom of x
Ngeo

h at the boundary
edges and at the interior of the boundary elements in the reference mesh so that the image
of Ω0,h is conform nodally with the high order description of the boundary. We emphasize
here that the procedure keeps the internal elements with straight edges, this allows to
differentiate internal elements and the high order boundary elements and use P1 geometry
approximation and lower order quadratures in the internal elements.

7

5.3. Navier-Stokes ALE solver with a prescribed boundary movement

We are now ready to assemble the various building blocks described previously and
build our ALE Navier-Stokes solver. Consider Ω0 = (0, 5) × (−1, 1), in our test Ωt is
obtained from Ω0 by applying the following displacement law

d(x, t) =


0, 0 6 t 6 1
0.08x(5− x)f(t), 1 < t < 3
0.08x(5− x), t > 3

(13)

with t ∈ I = [0; 5] and f(t) = 2.5(t− 1)2(0.3− 0.1(t− 1))
The discretization of the differential equations is done us-

10−6

10−5

10−4

10−3

10−2

10−1

||e
h
||

||e
h
||

0.01 0.02 0.05 0.1 0.2

∆t∆t

BDF1

BDF2

BDF3

1
1

1
2

1
2.9

Figure 6: ‖eh‖ for different time
integration schemes using a P6−
P4 element and a P4 geometric
description of the domain.

ing a non-conservative scheme (see page 82 of [6] for more
details). The time derivatives are discretized using first to
third order BDF schemes. The mesh velocity is calculated
also with a BDF scheme of the same order as for the ve-
locity time derivative and the nonlinear convective term is
linearized with an extrapolation formula also of the same or-
der. We check the convergence order of our solution meth-
ods for (12) by considering the solution of a Poiseuille flow,
say (uPoiseuille, pPoiseuille) that solves the steady Navier-Stokes
equations in the reference domain. uPoiseuille is prescribed
on Ωσ

t as boundary condition which is the solution that we
must recover in the domain. In Figure 6, the error ||eh|| =(

∆t
∑TN

n=0 ||unh − unPoiseuille||2L2(Ωt)
+ ||pnh − pnPoiseuille||2L2(Ωt)

)1/2

is plotted as a function of

∆t. TN is the number of subintervals in which [0, 5] is discretized for the different BDF
schemes. The exact solution was taken as uPoiseuille = y(1−y)e1, ν = 10−3 and pPoiseuille =
−2ν(x− 5). Note that in this simulation, the stabilization term (4) is not used. The same
results are obtained using P4 − P2 method and a P2 geometry.

5.4. Fluid-Structure interaction

The methodology we adopt to solve the coupled fluid-structure interaction problem is
to perform standard fix point iterations alternating the fluid and the structure solvers. The
algorithm reads as follows: for each tn

1. Extrapolate the structure displacement: dn+1
(0) = dn + ∆tḋn, ḋn+1

(0) = ḋn

2. for j = 1, . . . (fix point iterations)
(a) given dn+1

(j−1), calculate the ALE map and update the computational domain
(b) solve the Navier-Stokes equations
(c) calculate the shear stress at the moving boundary of the fluid
(d) solve for the structure displacement, dn+1,∗ (and ḋn+1,∗)

(e) if max{ ||d
n+1,∗−dn+1

(j−1)
||L2

||dn+1,∗||L2
,
||ḋn+1,∗−ḋn+1

(j−1)
||L2

||ḋn+1,∗||L2

} < tol, then advance for the next timestep

with dn+1 = dn+1,∗ and ḋn+1 = ḋn+1,∗; otherwise (Aitken relaxation) dn+1
(j) =

θdn+1,∗ + (1− θ)dn+1
(j−1) and ḋn+1

(j) = θḋn+1,∗ + (1− θ)ḋn+1
(j−1)

8

(a) t = 0ms (b) t = 2ms (c) t = 4ms

(d) t = 6ms (e) t = 8ms (f) t = 10ms

Figure 7: Pressure pulse propagating through the pipe. Fluid discretized with BDF1 and P6−P4 elements,
h = 0.5, ∆t = 10−4, no stabilization and tol = 10−6. For the structure we used BDF2 and P2 elements.

We first note that the fix point method to solve the fluid-structure interaction (FSI) prob-
lem is a naive approach. Better alternatives exist in the literature, but this paper focuses
on the high order finite element/geometry part, the time discretization of each subprob-
lem and putting them together. Second, the shear stress is explicitly calculated in the
boundary of the fluid domain and a nodal projection is used to pass this quantity to the
structure solver. Third, we implemented an Aitken acceleration procedure to determine
the relaxation parameter θ at each iteration (see [7] for more details). Finally, the meshes
of the structure and the fluid are nodally conform.

To check the strategy, we consider a test case as in [6] (see page 143). This example uses
physiological parameters for the FSI model in the context of haemodynamics. We changed
the original problem only by imposing a Dirichlet velocity profile at the inlet given by:

u(0, y, t) = 343.99(0.25− y)2(−1357t9 + 7443t8 − 17099t7 + 21255t6

−15356t5 + 6379t4 − 1368t3 + 97t2 + 6t)e1, with e1 = (1, 0)T .

In Figure 7 we plot the pressure field associated with this inlet profile at several time
steps. We can the pressure wave propagating through the pipe due to the elastic behavior
of the walls. We performed successfully several simulations, with different time/space
discretizations, namely, PN − PN−2 (N = 3, 4, 6) finite elements for the fluid, P1 geometry
and BDFn, n = 1, 2, 3 as time integrator. The structure model was discretized with PN ,
N = 1, 2, 3 elements. The current results using higher order geometrical transformation
for the fluid exhibit instabilities that we are currently addressing.

6. Conclusion

In this paper we presented a non standard approach to solve FSI problems. Our method
uses several complex tools that, to our knowledge, are being used together for the first time
in this context (high order space/time discretization, geometrical transformation and CIP
stabilization). Our current results confirm the expected accuracy properties of the ALE
Navier-Stokes solver. The FSI solver was successfully used to simulate a haemodynamics
problem with realistic data. Our next step is to use higher order geometrical elements for
the fluid in the FSI context.

.

9

Acknowledgements

The authors would like to thank Prof. A. Quarteroni, Dr. S. Deparis and A. Quaini
from EPFL and Prof. E. Burman from Univ. of Sussex for the fruitful discussions we had.
The first author was supported by Fundação para a Ciência e Tecnologia through grant
SFRH/BD/22243/2005 of POCI2010/FEDER.

References

[1] C. Prud’homme, A domain specific embedded language in C++ for automatic differen-
tiation, projection, integration and variational formulations, Scientific Programming
14 (2) (2006) 81–110.

[2] C. Prud’homme, Life: Overview of a unified C++ implementation of the finite and
spectral element methods in 1D, 2D and 3D, in: Workshop On State-Of-The-Art
In Scientific And Parallel Computing, Lecture Notes in Computer Science, Springer-
Verlag, 2006, p. 10, accepted.

[3] G. E. Karniadakis, S. J. Sherwin, Spectral/hp element methods for computational
fluid dynamics, 2nd Edition, Oxford Universtity Press, Oxford, 2004.

[4] R. C. Kirby, Algorithm 839: Fiat - a new paradigm for computing finite element basis
functions, ACM Trans. Math. Software 30 (4) (2004) 502–516.

[5] C. Canuto, M. Y. Hussani, A. Quarteroni, T. A. Zang, Spectral Methods: Evolution
to Complex Geometries and Applications to Fluid Dynamics, Springer-Verlag, New
York and Berlin, 2006.

[6] F. Nobile, Numerical approximation of fluid-structure interaction problems with ap-
plication to haemodynamics, Ph.D. thesis, EPF Lausanne (2001).

[7] S. Deparis, Numerical analysis of axisymmetric flows and methods for fluid-structure
interaction arising in blood flow simulation, Ph.D. thesis, EPF Lausanne (2004).

[8] R. Bouffanais, Simulation of shear-driven flows: transition with a free surface and
confined turbulence, Ph.D. thesis, EPF Lausanne (2007).

[9] E. Burman, M. Fernandez, Continuous interior penalty finite element method for
the time-dependent Navier-Stokes equations: space discretization and convergence,
Numer. Math. 107 (2007), no. 1, 39–77.

[10] C. Geuzaine and J.-F. Remacle, Gmsh: a three-dimensional finite element mesh gen-
erator with built-in pre- and post-processing facilities, Submitted to the International
Journal for Numerical Methods in Engineering, 2008

[11] G. Pena, High order methods in space and time for the Navier-Stokes equations in a
moving domain and applications, Ph.D. thesis (in preparation), EPF Lausanne (2009)

10

