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ABSTRACT.We formulate a cell-volume method (expanded MFEM) for éogphultiphase flow
and reactive transport in porous media. Multiphase flow ideled using mortar mixed fi-
nite elements that allows for accurate and efficient patallmain decomposition with non-
matching grids. The reactive transport equations are teaising operator splitting for decou-
pling transport and reactions. Computational results aregented. Theoretical results are not
provided owing to space restrictions.
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1. Introduction

Microbial bio-degradation plays an important role in reridg subsurface contam-
inants harmless. It is a naturally occurring process thathmaccelerated to protect
potable water supply. Modeling this complex process is agapnally challenging.
It involves both flow and transport that occur over varyingtid and temporal scales.
The transport is often characterized by advection, rea@ial diffusion. The reaction
stage involves chemical interaction between hydrocarbmitrobes, oxygen, nitro-
gen and various other compounds. Therefore, simple andegfficumerical methods
are desirable in the simulation of these processes which gsit@cal importance in
designing adequate bio-restoration mechanisms.



2. Flow in porous media

We consider time-dependent two-phase immiscible flow impsmedia on a do-
main(2, decomposed into non-overlapping subdomain blézkso that? = U Q.
The blocks need not form a conforming partition. U&t; = 0Q; N 0y, I' =
Ui<i<j<n, iy, andl’; = 00 NT = 0Q;\0Q. On{; the governing mass balance
and Darcy velocity equations [CHA 86] are:

8(¢Pa5a)

7(,% +V- (l)ozuoz) = Ga, [l]

u, = —¥(Vpa — pagVD), [2]

Ha
wherea = w (wetting), n (non-wetting) denotes the phase,, pa, Sa; Po(Pa),
kro(Sa), ey o are the phase velocity, pressure, saturation, densigtivelperme-
ability, viscosity, and source term, resp.is the porosity K is the rock permeability
tensor,g is the gravitational constant, ard is the depth. For the case of one flow-
ing phaseS, = 1. On eachl’; ; meaningful continuity conditions are imposed, i.e.,
Pale, = Palo;: [Ua - 1ij = ualo, - n; + uslo, - n; = 0. Further, saturation and
capillary pressure constraintS,, + S,, = 1, p.(Sw) = pn — pw, are imposed. We
assume that no flow,, - n = 0 is imposed or9f2, although more general types of
boundary conditions can also be treated. Two of the unknawjig—[2] can be elim-
inated using these constraints. A common practice is to shas primary variables
one pressure and one saturation which we denojedndS.

Let 7, ; be a conforming, quasi-uniform affine finite element patitof 2;, 1 <
i < np, of maximal element diametdr;. Let h = maxi<;<y,, h;. Note that we
allow for the possibility that the subdomain partiticfys; and7;, ; need not align on
I; ;. Define7;, = U, Ty, ;. Let Vy,; x W, ; € H(div; ;) x L%(€2;) be any of the
usual mixed finite element spaces defined/pn (see [BRE 91], Section I11.3). The
most commonly used mixed spaces are the Raviart-Thomasspéorderk, RTj
[RAV 77, NED 80]. Our simulator uses BTspace defined on a rectangular partition
Th,i by

Vi ={Vv:VE,F €Ty, (121 + B1, 0222 + Ba, azzs + B3)", cu, B € R,
v - n IS continuous across element faces anch; = 0 on9€2; N 8(2},
Wi = {w VE €Ty, wp =a,a € R}
Let 7y ;,; be a non-degenerate, quasi-uniform finite element pantdid’; ; with
maximal element diametEHi,j, TF’H = U1§i<j§m,TH,i,jx H = maxi<i,j<n, Hi’j,
and My, ; C LQ(FM) be the mortar space al; ;, containing at least either the

continuous or discontinuous piecewise linearsZgp; ;. The velocity, pressure and
mortar mixed finite element spaces are defined as follows:

ny npy
V), = @VM, Wy, = EBWM My = @ M.
i=1 =1

1<i<j<np



Using the expanded mixed finite element method (ExpMFEM)BAR], we let
U, = —Vp,; thenu, = k.o (Sa)K/1a(0n + pagV D). The gradienta, is dis-
cretized in the spaci’h,i, which is the spacé&/;, ; without imposing the no-flow
boundary condition. This choice, with appropriate quaghetules, eliminatesi,,
andu,, reducing the method to cell-centered finite differencestfe subdomain pri-
mary variableg;,, andS}, coupled with the mortar primary variablgg andSy;, see
[ARB 97] for details.

Let0 =ty < t1 < ta < ..., let At™ = t,, — t,,—1, and letf™ = f(t,), Af™ =
f(tn)—f(tn—1). Inthe backward Euler multiblock ExpMFEM for [1]-[2] we dedor
1<i<j<mpandn=1,2,3...,u u i\ DY

Shla; € Whi, 0., € Muij, andS’}} r.; € MH,M- such that, fory = w andn,
A(ppa,nSan)" "
<A—tn7w o (V Pah B,y W ) (Qa 27111)% , wE Wiy,
(3]
(ﬁg,ha V)Qi = (pg h> V. V)Qi - <pZ,Ha v ni>1—\ia v E Vh,iv [4]
n = kra h n n = ~ /
(ua,h’ V)Qi = T [ Uy n + pa,hQVD] vV , VE Vh,i7 [5]
a,h Qs
< [uZ’h ' n} i, ’§>F7:,_,~ =0, C&€Mp,;. (6]

2.1. Domain decomposition

Let My = My x My be the space of mortar primary variables. Then define
a non-linear interface bi-variate forb® : My x My — R as follows. Fory =
(P2 5. Se ) € My andn = (nw,n0) € My (where the mortar primaries are
chosen to be water phase pressure and saturation); let

LUEEDS / ([0 0 () ] s+ [0 () -] ) s,
1<i<j<ng s,

whereu , is obtained from the solution to the sub-domain problemagisnixed
finite elements given in equations [3]-[6], with Dirichizaundary data}, ().

Define a non-linear interface operatst : My — My by
(B"p,n)y =b"(1p,n), Vne Mpy,

where< ,-) istheL? inner productinMi ;. It can be checked tha, pl. ,, (1), S& ;. (¥),
o.n (1)) solves the system [3]-[6] whef € My is the solution of

B"(¢) = 0. [7]

The system of non-lineanterfaceequations [7] is solved by an inexact Newton
method. Each Newton stepis computed by a forward difference GMRES iteration



for solving (B™)'(v))s = —B™(v). On each GMRES iteration, the action of the Jaco-
bian(5™)' (1) on a vectory, is approximated by a forward difference approximation.
Hence, it requires only one additional evaluation of therafme 5". See [YOT 01]
for more details.

3. The reactive transport problem

Consider the reactive transport problem described by

(pCiaSa)

ot +V. (Ciaua - SDSaDiavcia) = T(Cia)a [8]

D;oaVeiq -n = 07 [9]

whereD;, = D{iff + D™ is the sum ofmolecular diffusionand hydrodynamic
dispersion DUF = 7 dyy, io I, SaDYY = dy oun|T + (dio — dio)/|ua] uqul.
Herer, is the “tortuousity” of flow of phasev, du, ia, di.«, dt,« are themolecular
diffusion longitudinal andtransverse dispersion coefficientesp. The source takes
the general formy(cio) = 7/, + ©Sarf, + ¢ia Where the terms!, andrg, model
the influx (or efflux) from other phases and the chemical rdgecay (or formation)
of speciesi in phasex, resp. The terny;, models a source (or sink) for species
in phasex. Further, note that the net interchange of species betwieases is zero;
i.e.,> ., ria +7ir = 0. Here,r;r is the influx (efflux) of speciesinto the stationary
phases (for e.g., the rock matrix). For simplicity, assuheze is no adsorption, hence
TiR = 0.

3.1. A time-split scheme

We present a “phase-summed” formulation of [8]-[9]. An ditpuium partitioning
of the species among the phases is assumed, given by centaso thate;,, =
finCing, Whereag is a reference phase, say, the water phase. Then summing the
equations [8] and [9] over, for a given species reduces it to,

HEiCi) 4 G (euu; — D} V) = r* (), [10]
Dchm -n = 0. [ll]

The phase-summed asterisked (*) terms are defined as follojvs= ¢ " 6iaSa,
u;k - Za aiauay D;k = @Za Sozez()/Dz()/a r* (Ciw) =@ Za Tic(; +7rir + Za Qic-

Assume that at timeé = 7,,,, the concentrations of all species are known. Assume
also that(7,,, Tm+1) C (tn, tn+1) and that the values aff andy; are known at the
old and new flow time-steps, i.€,, andt,,.;. A direct discretization of the equation
[10] yields,

Tt -1,

Ao TV (2 Dt = (@) 2]

Tw



Here, Ar™*! = 7,, .1 — 7, andT; = p}c;,,. Note also thap; andu; are eval-
uated at time € (7,,, Tn+1) by linear interpolation between the known valueg,at
andt, ;1. Direct solution of equation [12] is impractical. Hence,iad-split algo-
rithm is employed in which the advection, chemical reactiod diffusion-dispersion
components are solved “independently” of each other. Eantponent delivers inter-
mediate values fof, labelledT;, 7} and7;"**. The individual steps of this algorithm
are described below.

3.2. Advection

Let the true and approximate solution spaces for speciesettration be the same
as those defined for pressure (or saturation) defined ind@e2ti The advection step
is then given forl < j < n by

aw;‘ciw *
< 5 ,w> o + (V- (ciwu]), w)o, = <za: qm,w> w e Wj. [13]

Q;

Equation [13] is solved by applying a first order Godunov seheising upstream
weighted concentrations. This eliminates any instabilitphe solution owing to the
convectiontermy - (¢;,,u}) thatis known [CHA 84] to introduce spatial oscillations.
Setting7;™ = ¢; "¢}, an explicit in time approximation of the time derivative in
[13] yields the weak form,

T, —Tm

i m,upw__*,m+1/2 o ‘ ‘

<7A7m+1 w) o+ > (e ey np,w),, = Giaw)a,, wE W,
Qi EBeTy; a

for T; from which the intermediate value of concentratiep,,, can be calculated

L a ym+1
usingch, iw = E/@r .

3.3. Chemical Reaction

After the advection step is completed, we solve the chem@dtion component
of [12] given by
8@?01'11; o C

ot Tia

Explicit ODE integration can be used to solve [14], even dydn some cases (de-
pending on the right hand side). Approximations can be abthby numerical inte-
gration; for e.g., with the first order forward-Euler scherfiel] reduces to

(14]

T, —T c
W:‘Pzrm

For more accurate approximations, higher-order Rungdadategration schemes
are used in our simulator. For details on reaction laws, B&S[01].



3.4. Diffusion-Dispersion

Next, we solve the diffusion-dispersion equation. Thietthe form,

a(@r Ciw)
ot

This is solved fully implicitly using ExpMFEM with the fultensorD as discussed in
Section 2. In the discretized weak form of [15], introducihg: —Vc andz = D}z,
an ExpMFEM seek)'! '[o, € Vi z;'to o, € Vi, 't la, € Wi, such that,
for1 <j <my,

—V-D:Vei, = 0. [15]

*,m+1 m-+1 *,mcm
1 hyiw ?
Armt y

. c. Tt — (. .
Pi h,iw Pi h,zw7w> + (V . Zm+1 w)Q _ 07 w E th’ [16]
Q;

(Z;:fj;},v)gj = (c;:fj'wl,v V)a, = (Pjchiw, V- nj>rj’ veVy;, [17]

(Z i) V), = (D" Mg V), VeV, [18]

i h,iw
Here,P; : L?(I';) — L*(T') is anL?-orthogonal projection satisfyingy € L?(T';)
(¢ —Pio,v- Ilj)p,w. =0, VveVy,; Vksuch that;, N ﬁj £ 0.

Following [ARB 97], suitable quadrature rules can be defiteedpproximate the in-
tegrals appearing in [16]-[18], thereby eliminatifg;,, andzy, ;,, in terms ofcy, ;.

4. Numerical experiments

Here, we present a NAPL remediation example. A square-shadpeain is con-
sidered with dimensiong0 ft x 400 ft x 400 ft. The permeability and flow field
(superimposed on tracer profile for a multiblock case) amwhin figure 1. The two
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Figure 1. Permeability and flow fields for NAPL remediation problem.

barriers obstructing the flow render it challenging for ctaaiflow and transport. The



species interacting in this problem are NAPL (toluene)saligedO-, Ny, microbes,
bio-degraded products (water and carbon dioxide) and aradivactive tracer. There
are two wells arranged in a quarter-five spot pattern thatinjater and produce oil.
No-flow and zero diffusive flux boundary conditions are assdrnm this problem.

At initial time, the tracer, toluene and the microbes occaykin strip on the left-
end of the domain, i.eq < y < 40’ in figure 1 whileO, andN, occupy the rest of
the domaind0’ < y < 400’. The microbial kinetics and other reactions occurring in
this system are governed by equations presented in [PEST@&]problem is solved
first assuming a single-domain with a firi) (x 40 x 40) grid.
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Figure 2. Microbe conc. at = 40 days: multiblock (left) and single block (right).

Then the problem is repeated by partitioning the domain thtee sub-domains
(one fine and two coarse) along tiae direction. This is done in three different ways
by placing the sub-domain with the fine grid differently irckaase. The single- and
multi- block solutions are then compared. Comparison oficrobe concentrations
at timet = 40 days for the single-domain and a multiblock case is showrgimré 2.

It is noted that the front has crossgd= 280'(I'2 3). Similar comparison at = 40
days is shown in figure 3 for the NAPL concentration. It is aled that the spread
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Figure 3. NAPL conc. at = 40 days: multiblock (left) and single block (right).



of NAPL has been checked to some extent by the reaction withrticrobes. The
microbes “feed” on the NAPL in the presence@$ andN,, reducing them to rela-
tively harmless by-products. This illustrates the impodaof using bio-remediation
methods in treating hazardous wastes.

5. Conclusions

In the numerical experiments described, it was observead/trably refined sub-
domains (one fine and two coarse with the fine sub-domaindddaiifferently in each
case) performed upta% faster than the single domain “fine-everywhere” case. This
justifies the use of mortars in such problems. However, itoted that coarser sub-
domain grid results in increased grid dispersion effects laence, dynamic meshing
strategy is recommended. Further, an implicit-in-timetneent of the interface term
in [17] remains to be tested as in [WHE 02].
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