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ABSTRACT.We formulate a cell-volume method (expanded MFEM) for coupling multiphase flow
and reactive transport in porous media. Multiphase flow is modeled using mortar mixed fi-
nite elements that allows for accurate and efficient parallel domain decomposition with non-
matching grids. The reactive transport equations are treated using operator splitting for decou-
pling transport and reactions. Computational results are presented. Theoretical results are not
provided owing to space restrictions.
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1. Introduction

Microbial bio-degradation plays an important role in rendering subsurface contam-
inants harmless. It is a naturally occurring process that can be accelerated to protect
potable water supply. Modeling this complex process is computationally challenging.
It involves both flow and transport that occur over varying spatial and temporal scales.
The transport is often characterized by advection, reaction and diffusion. The reaction
stage involves chemical interaction between hydrocarbons, microbes, oxygen, nitro-
gen and various other compounds. Therefore, simple and efficient numerical methods
are desirable in the simulation of these processes which is of critical importance in
designing adequate bio-restoration mechanisms.



2. Flow in porous media

We consider time-dependent two-phase immiscible flow in porous media on a do-
mainΩ, decomposed into non-overlapping subdomain blocksΩi so thatΩ = ∪nb

i=1Ωi.
The blocks need not form a conforming partition. LetΓi,j = ∂Ωi ∩ ∂Ωj , Γ =
∪1≤i<j≤nb

Γi,j , andΓi = ∂Ωi ∩ Γ = ∂Ωi\∂Ω. On Ωi the governing mass balance
and Darcy velocity equations [CHA 86] are:

∂(φραSα)

∂t
+ ∇ · (ραuα) = qα, [1]

uα = −
krα(Sα)K

µα
(∇pα − ραg∇D), [2]

whereα = w (wetting), n (non-wetting) denotes the phase,uα, pα, Sα, ρα(pα),
krα(Sα), µα, qα are the phase velocity, pressure, saturation, density, relative perme-
ability, viscosity, and source term, resp.;φ is the porosity,K is the rock permeability
tensor,g is the gravitational constant, andD is the depth. For the case of one flow-
ing phase,Sα ≡ 1. On eachΓi,j meaningful continuity conditions are imposed, i.e.,
pα|Ωi

= pα|Ωj
, [uα · n]i,j ≡ uα|Ωi

· ni + uα|Ωj
· nj = 0. Further, saturation and

capillary pressure constraints,Sw + Sn = 1, pc(Sw) = pn − pw, are imposed. We
assume that no flowuα · n = 0 is imposed on∂Ω, although more general types of
boundary conditions can also be treated. Two of the unknownsin [1]–[2] can be elim-
inated using these constraints. A common practice is to choose as primary variables
one pressure and one saturation which we denote byp andS.

Let Th,i be a conforming, quasi-uniform affine finite element partition ofΩi, 1 ≤
i ≤ nb, of maximal element diameterhi. Let h = max1≤i≤nb

hi. Note that we
allow for the possibility that the subdomain partitionsTh,i andTh,j need not align on
Γi,j . DefineTh = ∪nb

i=1Th,i. Let Vh,i ×Wh,i ⊂ H(div; Ωi) × L2(Ωi) be any of the
usual mixed finite element spaces defined onTh,i (see [BRE 91], Section III.3). The
most commonly used mixed spaces are the Raviart-Thomas spaces of orderk, RTk

[RAV 77, NED 80]. Our simulator uses RT0 space defined on a rectangular partition
Th,i by

Vh,i =
{

v : ∀E,F ∈ Th,i, (α1x1 + β1, α2x2 + β2, α3x3 + β3)
T , αl, βl ∈ R,

v · n is continuous across element faces andv · ni = 0 on∂Ωi ∩ ∂Ω
}

,

Wh,i =
{

w : ∀E ∈ Th,i, w|E = α, α ∈ R}.

Let TH,i,j be a non-degenerate, quasi-uniform finite element partition of Γi,j with
maximal element diameterHi,j , T Γ,H = ∪1≤i<j≤nb

TH,i,j , H = max1≤i,j≤nb
Hi,j ,

andMH,i,j ⊂ L2(Γi,j) be the mortar space onΓi,j , containing at least either the
continuous or discontinuous piecewise linears onTH,i,j . The velocity, pressure and
mortar mixed finite element spaces are defined as follows:

Vh =

nb
⊕

i=1

Vh,i, Wh =

nb
⊕

i=1

Wh,i MH =
⊕

1≤i<j≤nb

MH,i,j.
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Using the expanded mixed finite element method (ExpMFEM) [ARB 97], we let
ũα = −∇pα; thenuα = krα(Sα)K/µα(ũα + ραg∇D). The gradient̃uα is dis-
cretized in the spacẽVh,i, which is the spaceVh,i without imposing the no-flow
boundary condition. This choice, with appropriate quadrature rules, eliminates̃uα

anduα, reducing the method to cell-centered finite differences for the subdomain pri-
mary variablesph andSh, coupled with the mortar primary variablespH andSH , see
[ARB 97] for details.

Let 0 = t0 < t1 < t2 < ..., let ∆tn = tn − tn−1, and letfn = f(tn), ∆fn =
f(tn)−f(tn−1). In the backward Euler multiblock ExpMFEM for [1]-[2] we seek, for
1 ≤ i < j ≤ nb andn = 1, 2, 3..., un

α,h|Ωi
∈ Vh,i, ũn

α,h|Ωi
∈ Ṽh,i, pn

h|Ωi
∈ Wh,i,

Sn
h |Ωi

∈Wh,i, pn
H |Γi,j

∈MH,i,j , andSn
H |Γi,j

∈MH,i,j such that, forα = w andn,
(

∆(ϕρα,hSα,h)n

∆tn
, w

)

Ωi

+
(

∇ · ρn
α,hu

n
α,h, w

)

Ωi
=
(

q
n− 1

2

α , w
)

Ωi

, w ∈ Wh,i,

[3]

(ũn
α,h,v)Ωi

= (pn
α,h,∇ · v)Ωi

−
〈

pn
α,H ,v · ni

〉

Γi
, v ∈ Vh,i, [4]

(un
α,h, ṽ)Ωi

=

(

kn
rα,hK

µα,h

[

ũ
n
α,h + ρn

α,hg∇D
]

, ṽ

)

Ωi

, ṽ ∈ Ṽh,i, [5]

〈 [

u
n
α,h · n

]

i,j
, ζ
〉

Γi,j
= 0, ζ ∈MH,i,j . [6]

2.1. Domain decomposition

Let MH = MH × MH be the space of mortar primary variables. Then define
a non-linear interface bi-variate formbn : MH × MH → R as follows. Forψ =
(pn

w,H , S
n
w,H) ∈ MH andη = (ηw, ηw) ∈ MH (where the mortar primaries are

chosen to be water phase pressure and saturation); let

bn(ψ, η) =
∑

1≤i<j≤nb

∫

Γi,j

(

[

ρn
w,hu

n
w,h(ψ) · n

]

ij
ηw +

[

ρn
n,hu

n
n,h(ψ) · n

]

ij
ηn

)

ds,

whereu
n
α,h is obtained from the solution to the sub-domain problems using mixed

finite elements, given in equations [3]–[6], with Dirichletboundary datapn
α,H(ψ).

Define a non-linear interface operatorBn : MH → MH by
〈

Bnψ, η
〉

= bn(ψ, η), ∀η ∈ MH ,

where
〈

·, ·
〉

is theL2 inner product inMH . It can be checked that(ψ, pn
α,h(ψ), Sn

α,h(ψ),
u

n
α,h(ψ)) solves the system [3]–[6] whenψ ∈ MH is the solution of

Bn(ψ) = 0. [7]

The system of non-linearinterfaceequations [7] is solved by an inexact Newton
method. Each Newton steps is computed by a forward difference GMRES iteration
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for solving(Bn)′(ψ)s = −Bn(ψ). On each GMRES iteration, the action of the Jaco-
bian(Bn)′(ψ) on a vector,η, is approximated by a forward difference approximation.
Hence, it requires only one additional evaluation of the operatorBn. See [YOT 01]
for more details.

3. The reactive transport problem

Consider the reactive transport problem described by

∂(ϕciαSα)

∂t
+ ∇ · (ciαuα − ϕSαDiα∇ciα) = r(ciα), [8]

Diα∇ciα · n = 0, [9]

whereDiα = D
diff
iα + D

hyd
iα is the sum ofmolecular diffusionand hydrodynamic

dispersion, D
diff
iα = ταdm,iαI, ϕSαD

hyd
iα = dt,α|uα|I + (dl,α − dt,α)/|uα| uαu

T
α .

Hereτα is the “tortuousity” of flow of phaseα, dm,iα, dl,α, dt,α are themolecular
diffusion, longitudinal, andtransverse dispersion coefficients, resp. The source takes
the general form,r(ciα) = rI

iα + ϕSαr
C
iα + qiα where the termsrI

iα andrC
iα model

the influx (or efflux) from other phases and the chemical rate of decay (or formation)
of speciesi in phaseα, resp. The termqiα models a source (or sink) for speciesi
in phaseα. Further, note that the net interchange of species between phases is zero;
i.e.,

∑

α riα + riR = 0. Here,riR is the influx (efflux) of speciesi into the stationary
phases (for e.g., the rock matrix). For simplicity, assume there is no adsorption, hence
riR ≡ 0.

3.1. A time-split scheme

We present a “phase-summed” formulation of [8]–[9]. An equilibrium partitioning
of the species among the phases is assumed, given by constants θiα so thatciα

=
θiαciα0

, whereα0 is a reference phase, say, the water phase. Then summing the
equations [8] and [9] overα, for a given speciesi, reduces it to,

∂(ϕ∗
i ciw)

∂t
+ ∇ · (ciwu

∗
i − D

∗
i ∇ciw) = r∗(ciw), [10]

Diw∇ciw · n = 0. [11]

The phase-summed asterisked (*) terms are defined as follows: ϕ∗
i = ϕ

∑

α θiαSα,
u∗i =

∑

α θiαuα, D∗
i = ϕ

∑

α SαθiαDiα, r∗(ciw) = ϕ
∑

α r
C
iα + riR +

∑

α qiα.

Assume that at timet = τm, the concentrations of all species are known. Assume
also that(τm, τm+1) ⊂ (tn, tn+1) and that the values ofu∗

i andϕ∗
i are known at the

old and new flow time-steps, i.e.,tn andtn+1. A direct discretization of the equation
[10] yields,

Tm+1
i − Tm

i

∆τm+1
+ ∇ · (cmiwu

∗,m+1/2

i − D
∗,m
i ∇cm+1

iw ) = r∗(c
m+1/2

iw ). [12]
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Here,∆τm+1 = τm+1 − τm andTi = ϕ∗
i ciw. Note also thatϕ∗

i andu
∗
i are eval-

uated at timet ∈ (τm, τm+1) by linear interpolation between the known values attn
andtn+1. Direct solution of equation [12] is impractical. Hence, a time-split algo-
rithm is employed in which the advection, chemical reactionand diffusion-dispersion
components are solved “independently” of each other. Each component delivers inter-
mediate values forTi, labelledT̄i, T̂i andTm+1

i . The individual steps of this algorithm
are described below.

3.2. Advection

Let the true and approximate solution spaces for species concentration be the same
as those defined for pressure (or saturation) defined in Section 2. The advection step
is then given for1 ≤ j ≤ n by

(

∂ϕ∗
i ciw
∂t

, w

)

Ωj

+ (∇ · (ciwu
∗
i ), w)Ωj

=

(

∑

α

qiα, w

)

Ωj

w ∈ Wj . [13]

Equation [13] is solved by applying a first order Godunov scheme using upstream
weighted concentrations. This eliminates any instabilityin the solution owing to the
convection term,∇· (ciwu

∗
i ) that is known [CHA 84] to introduce spatial oscillations.

SettingTm
i = ϕ∗,m

i cmh,iw, an explicit in time approximation of the time derivative in
[13] yields the weak form,
(

T̄i − Tm
i

∆τm+1
, w

)

Ωj

+
∑

E∈Th,j

〈

cm,upw
h,iw u

∗,m+1/2

h,i ·nE , w
〉

∂E
= (
∑

α

qiα, w)Ωj
, w ∈ Wh,j

for T̄i from which the intermediate value of concentration,c̄h,iw can be calculated
usingc̄h,iw = T̄i/ϕ

∗,m+1
i .

3.3. Chemical Reaction

After the advection step is completed, we solve the chemicalreaction component
of [12] given by

∂ϕ∗
i ciw
∂t

= ϕ
∑

α

rC
iα [14]

Explicit ODE integration can be used to solve [14], even exactly in some cases (de-
pending on the right hand side). Approximations can be obtained by numerical inte-
gration; for e.g., with the first order forward-Euler scheme, [14] reduces to

T̂i − T̄

∆τm+1
= ϕ

∑

α

rC
iα

For more accurate approximations, higher-order Runge-Kutta integration schemes
are used in our simulator. For details on reaction laws, see [PES 01].
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3.4. Diffusion-Dispersion

Next, we solve the diffusion-dispersion equation. This takes the form,

∂(ϕ∗
i ciw)

∂t
−∇ · D∗

i∇ciw = 0. [15]

This is solved fully implicitly using ExpMFEM with the full-tensorD∗
i as discussed in

Section 2. In the discretized weak form of [15], introducingz̃ = −∇c andz = D
∗
i z̃,

an ExpMFEM seeks̃zm+1
h,iw |Ωj

∈ Ṽh,j, zm+1
h,iw |Ωj

∈ Vh,j , cm+1
h,iw |Ωj

∈ Wh,j , such that,
for 1 ≤ j ≤ nb,
(

ϕ∗,m+1
i cm+1

h,iw − ϕ∗,m
i cmh,iw

∆τm+1
, w

)

Ωj

+
(

∇ · zm+1
h,iw , w

)

Ωj

= 0, w ∈Wh,j , [16]

(z̃m+1
h,iw ,v)Ωj

= (cm+1
h,iw ,∇ · v)Ωj

−
〈

Pjch,iw,v · nj

〉

Γj
, v ∈ Vh,j , [17]

(zm+1
h,iw , ṽ)Ωj

= (D∗,m+1
i z̃

m+1
h,iw , ṽ)Ωj

, ṽ ∈ Ṽh,i. [18]

Here,Pj : L2(Γj) → L2(Γk) is anL2-orthogonal projection satisfying∀φ ∈ L2(Γj)

〈φ− Pjφ,v · nj〉Γk,j
= 0, ∀v ∈ Vh,i, ∀k such thatΩk ∩ Ωj 6= ∅.

Following [ARB 97], suitable quadrature rules can be definedto approximate the in-
tegrals appearing in [16]–[18], thereby eliminatingz̃h,iw andzh,iw in terms ofch,iw.

4. Numerical experiments

Here, we present a NAPL remediation example. A square-shaped domain is con-
sidered with dimensions20 ft × 400 ft × 400 ft. The permeability and flow field
(superimposed on tracer profile for a multiblock case) are shown in figure 1. The two

Figure 1. Permeability and flow fields for NAPL remediation problem.

barriers obstructing the flow render it challenging for coupled flow and transport. The
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species interacting in this problem are NAPL (toluene), dissolvedO2, N2, microbes,
bio-degraded products (water and carbon dioxide) and a non-radioactive tracer. There
are two wells arranged in a quarter-five spot pattern that inject water and produce oil.
No-flow and zero diffusive flux boundary conditions are assumed in this problem.

At initial time, the tracer, toluene and the microbes occupya thin strip on the left-
end of the domain, i.e.,0 ≤ y ≤ 40′ in figure 1 whileO2 andN2 occupy the rest of
the domain40′ ≤ y ≤ 400′. The microbial kinetics and other reactions occurring in
this system are governed by equations presented in [PES 01].The problem is solved
first assuming a single-domain with a fine (10 × 40 × 40) grid.

Figure 2. Microbe conc. att = 40 days: multiblock (left) and single block (right).

Then the problem is repeated by partitioning the domain intothree sub-domains
(one fine and two coarse) along they− direction. This is done in three different ways
by placing the sub-domain with the fine grid differently in each case. The single- and
multi- block solutions are then compared. Comparison of themicrobe concentrations
at timet = 40 days for the single-domain and a multiblock case is shown in figure 2.
It is noted that the front has crossedy = 280′(Γ2,3). Similar comparison att = 40
days is shown in figure 3 for the NAPL concentration. It is observed that the spread

Figure 3. NAPL conc. att = 40 days: multiblock (left) and single block (right).
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of NAPL has been checked to some extent by the reaction with the microbes. The
microbes “feed” on the NAPL in the presence ofO2 andN2, reducing them to rela-
tively harmless by-products. This illustrates the importance of using bio-remediation
methods in treating hazardous wastes.

5. Conclusions

In the numerical experiments described, it was observed that variably refined sub-
domains (one fine and two coarse with the fine sub-domain located differently in each
case) performed upto50% faster than the single domain “fine-everywhere” case. This
justifies the use of mortars in such problems. However, it is noted that coarser sub-
domain grid results in increased grid dispersion effects and hence, dynamic meshing
strategy is recommended. Further, an implicit-in-time treatment of the interface term
in [17] remains to be tested as in [WHE 02].
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