On (co)normal closure operators

Gonçalo Gutierres - CMUC/Universidade de Coimbra

Joint work with Maria Manuel Clementino

Given a class of groups $\mathbb{A} \subseteq \mathsf{Grp}$, the normal closure induced by \mathbb{A} is given by $\operatorname{norm}_{G}^{\mathbb{A}}(H) := \bigcap \{ N \mid H \subseteq N \lhd G, \ G/N \subseteq A \in \mathbb{A} \} = \bigcap \{ f^{-1}(0) \mid f : G \to A \in \mathbb{A}, \ f(H) = 0 \}$

It is easy to see that the normal closure can be defined in any category with a 0-object and an \mathcal{M} -right factorization, where \mathcal{M} contains all normal monomorphisms.

It is patent that the constructions of the normal and the regular closure are very similar. Accordingly, we will define the conormal closure - in parallel with the coregular closure - and, using a unifying setting, we will generalize results obtained for regular/coregular closures in [CT]. X - category with finite limits and a factorization system $(\mathcal{E}, \mathcal{M})$ with $\mathcal{M} \subseteq MonoX$.

X - category with finite limits and a factorization system $(\mathcal{E}, \mathcal{M})$ with $\mathcal{M} \subseteq MonoX$.

X - category with finite limits and a factorization system $(\mathcal{E}, \mathcal{M})$ with $\mathcal{M} \subseteq MonoX$.

A closure operator c on \mathbb{X} w.r.t. \mathcal{M} is a family of functions $(c_X : \mathcal{M}/X \to \mathcal{M}/X)_{X \in \mathbb{X}}$:

- 1. $m \leq c_X(m)$;
- 2. if $m \leq m'$ then $c_X(m) \leq c_X(m')$;
- **3.** $f(c_X(m)) \leq c_Y(f(m))$ for $f: X \to Y$, $m \in \mathcal{M}/X$.

A closure operator c on \mathbb{X} w.r.t. \mathcal{M} is a family of functions $(c_X : \mathcal{M}/X \to \mathcal{M}/X)_{X \in \mathbb{X}}$:

- **1.** $m \le c_X(m)$;
- 2. if $m \leq m'$ then $c_X(m) \leq c_X(m')$;
- **3.** $f(c_X(m)) \leq c_Y(f(m))$ for $f: X \to Y$, $m \in \mathcal{M}/X$.

 $c_X(f^{-1}(m)) \leq f^{-1}(c_Y(m))$ for $f: X \to Y$, $m \in \mathcal{M}/Y$

A closure operator c on \mathbb{X} w.r.t. \mathcal{M} is a family of functions $(c_X : \mathcal{M}/X \to \mathcal{M}/X)_{X \in \mathbb{X}}$:

- **1.** $m \le c_X(m)$;
- 2. if $m \leq m'$ then $c_X(m) \leq c_X(m')$;
- **3.** $f(c_X(m)) \leq c_Y(f(m))$ for $f: X \to Y$, $m \in \mathcal{M}/X$.

$$c_X(f^{-1}(m)) \leq f^{-1}(c_Y(m))$$
 for $f: X \to Y$, $m \in \mathcal{M}/Y$

c is idempotent if c(c(m)) = c(m) for all $m \in \mathcal{M}$.

c is weakly hereditary if $c(j_m) = 1_{cM}$ for all $m \in \mathcal{M}$ with $c(m) \cdot j_m = m$.

 $\mathbb X$ - category with a 0 object and $\mathcal M\supseteq$ <code>NormalMonos</code>

 $\mathbb X$ - category with a 0 object and $\mathcal M\supseteq$ <code>NormalMonos</code>

$$\operatorname{norm}_{X}^{\mathbb{A}}(m) = \bigwedge \{ f^{-1}(0) \, | \, f : X \to A \in \mathbb{A}, \ m \le f^{-1}(0_A) \}$$

X - category with a 0 object and $M \supseteq NormalMonos$

$$\operatorname{norm}_{X}^{\mathbb{A}}(m) = \bigwedge \{ f^{-1}(0) \, | \, f : X \to A \in \mathbb{A}, \ m \le f^{-1}(0_A) \}$$

$$\mathcal{F}(c) = \{X \mid c_X(0) = 0\}$$

X - category with a 0 object and $M \supseteq NormalMonos$

$$\operatorname{norm}_{X}^{\mathbb{A}}(m) = \bigwedge \{ f^{-1}(0) \, | \, f : X \to A \in \mathbb{A}, \ m \le f^{-1}(0_A) \}$$

$$\mathcal{F}(c) = \{X \mid c_X(0) = 0\}$$

$$\mathcal{T}(c) = \{X \mid c_X(0) = 1_X\}$$

$$\operatorname{conorm}_{X}^{\mathbb{A}}(m) = m \vee \bigvee \{ f(1_{A}) | f : A \to X, A \in \mathbb{A}, f(0) \le m \}$$

$$R(\mathbb{A}) = \{ X \mid (\forall f : X \to A, \ A \in \mathbb{A}) \ f(X) = 0 \}$$
$$L(\mathbb{A}) = \{ X \mid (\forall f : A \to X, \ A \in \mathbb{A}) \ f(A) = 0 \}$$

$\mathcal{M} \supseteq \textit{RegularMonos}$

$$\mathcal{M} \supseteq RegularMonos$$

$$\operatorname{reg}_X^{\mathbb{A}}(m) = \bigwedge \{ f^{-1}(\delta_A) \, | \, f : X \to A^2, \, A \in \mathbb{A}, \, m \le f^{-1}(\delta_A) \}$$

$$\operatorname{coreg}_X^{\mathbb{A}}(m) = m \vee \bigvee \{ f(1_{A^2}) | f : A^2 \to X, A \in \mathbb{A}, f(\delta_A) \le m \}$$

$$\mathcal{M} \supseteq RegularMonos$$

$$\operatorname{reg}_{X}^{\mathbb{A}}(m) = \bigwedge \{ f^{-1}(\delta_{A}) \mid f : X \to A^{2}, A \in \mathbb{A}, m \leq f^{-1}(\delta_{A}) \}$$

$$\operatorname{coreg}_{X}^{\mathbb{A}}(m) = m \vee \bigvee \{ f(1_{A^{2}}) | f : A^{2} \to X, A \in \mathbb{A}, f(\delta_{A}) \leq m \}$$

$$\Delta(c) = \{ X \,|\, c(\delta_X) = \delta_X \} \quad \nabla(c) = \{ X \,|\, c(\delta_X) = 1_{X^2} \}$$

$$\mathcal{M} \supseteq \operatorname{RegularMonos}$$

$$\operatorname{reg}_{X}^{\mathbb{A}}(m) = \bigwedge \{ f^{-1}(\delta_{A}) \mid f : X \to A^{2}, A \in \mathbb{A}, m \leq f^{-1}(\delta_{A}) \}$$

$$\operatorname{coreg}_{X}^{\mathbb{A}}(m) = m \lor \bigvee \{ f(1_{A^{2}}) \mid f : A^{2} \to X, A \in \mathbb{A}, f(\delta_{A}) \leq m \}$$

$$\Delta(c) = \{ X \,|\, c(\delta_X) = \delta_X \} \qquad \nabla(c) = \{ X \,|\, c(\delta_X) = 1_{X^2} \}$$

 $r(\mathbb{A}) = \{X \mid (\forall f : X \to A, \ A \in \mathbb{A}) \ f(X) \text{ is preterminal} \}$ $l(\mathbb{A}) = \{X \mid (\forall f : A \to X, \ A \in \mathbb{A}) \ f(A) \text{ is preterminal} \}$

 $r(\mathbb{A}) = \{X \mid (\forall f : X \to A, \ A \in \mathbb{A}) \ f(X) \text{ is preterminal} \}$ $l(\mathbb{A}) = \{X \mid (\forall f : A \to X, \ A \in \mathbb{A}) \ f(A) \text{ is preterminal} \}$

A point of X is $(x : 1 \rightarrow X) \in \mathcal{M}$ with 1 the terminal object.

$$r(\mathbb{A}) = \{X \mid (\forall f : X \to A, \ A \in \mathbb{A}) \ f(X) \text{ is preterminal} \}$$
$$l(\mathbb{A}) = \{X \mid (\forall f : A \to X, \ A \in \mathbb{A}) \ f(A) \text{ is preterminal} \}$$

A point of X is $(x : 1 \rightarrow X) \in \mathcal{M}$ with 1 the terminal object.

 $1_X = \bigvee \{x \mid x \text{ is a point of } X\}$ for all $X \in \mathbb{X}$ \mathcal{E} is closed under the formation of squares.

$$D_{\mathcal{N}}(c) = \{X \mid \forall n \in \mathcal{N}/X \ c(n) = n\}$$
$$T_{\mathcal{N}}(\mathbb{A})_X(m) = \bigwedge \{f^{-1}(n) \mid f : X \to A \in \mathbb{A}, \ n \in \mathcal{N}/A, \ m \leq f^{-1}(n)\}$$

$$I_{\mathcal{N}}(c) = \{ X \mid \forall n \in \mathcal{N}/X \ c(n) = 1_X \}$$
$$J_{\mathcal{N}}(\mathbb{A})_X(m) = m \lor \bigvee \{ f(1_A) \mid f : A \to X, A \in \mathbb{A}, \ (\exists n \in \mathcal{N}) \ f(n) \le m \}$$

Examples

$$\mathcal{Z} = \{ 0_X \mid 0_X : 0 \to X \}$$

 $T_{\mathcal{Z}} = \text{norm and } J_{\mathcal{Z}} = \text{conorm.}$

 $D_{\mathcal{Z}} = \mathcal{F} \text{ and } I_{\mathcal{Z}} = \mathcal{T}.$

Examples

$$\mathcal{Z} = \{ 0_X \mid 0_X : 0 \to X \}$$
$$T_{\mathcal{Z}} = \text{norm and } J_{\mathcal{Z}} = \text{conorm.}$$
$$D_{\mathcal{Z}} = \mathcal{F} \text{ and } I_{\mathcal{Z}} = \mathcal{T}.$$

$$\mathcal{D} = \{ \delta_X \mid \delta_X : X \to X^2 \}$$
$$\mathbb{A} \subseteq \mathbb{X} \qquad \mathbb{A}^2 = \{ A^2 \mid A \in \mathbb{A} \}$$
$$T_{\mathcal{D}}(\mathbb{A}^2) = \operatorname{reg}^{\mathbb{A}} \text{ and } J_{\mathcal{D}}(\mathbb{A}^2) = \operatorname{coreg}^{\mathbb{A}}.$$
$$A \in \Delta(c) \Leftrightarrow A^2 \in D_{\mathcal{D}}$$
$$A \in \nabla(c) \Leftrightarrow A^2 \in I_{\mathcal{D}}$$

$$D(c) = \{m \mid c(m) = m\}$$
$$T(\mathcal{A})_X(m) = \bigwedge \{f^{-1}(n) \mid f : X \to A \in \mathbb{A}, \ n \in \mathcal{A}, \ m \le f^{-1}(n)\}$$

$$I(c) = \{X \mid c(m) = 1_X\}$$
$$J(\mathcal{A})_X(m) = m \lor \bigvee \{f(1_A) \mid f : A \to X, A \in \mathbb{A}, \ (\exists n \in \mathcal{A}) \ f(n) \le m\}$$

$$\mathbf{S}(\mathcal{M})^{op} \xrightarrow[]{T} \longrightarrow \\ \subset \mathbf{D} \mathbf{CL}(\mathbb{X}, \mathcal{M}) \xrightarrow[]{I} \longrightarrow \\ \subset \mathbf{J} \mathbf{S}(\mathcal{M})$$

c = TD(c) if and only if c is idempotent.

$$\mathbf{S}(\mathcal{M})^{op} \xrightarrow[]{I} \longrightarrow \\ \subset D \mathbf{CL}(\mathbb{X}, \mathcal{M}) \xrightarrow[]{I} \longrightarrow \\ \subset J \mathbf{S}(\mathcal{M})$$

c = TD(c) if and only if c is idempotent.

 $\mathcal{A} = IJ(\mathcal{A})$ iff \mathbb{A} is an \mathcal{M} -coreflective subcategory of \mathcal{M}/\mathbb{X} .

$$\mathbf{S}(\mathcal{M})^{op} \xrightarrow[]{T} \longrightarrow \\ \mathbf{CL}(\mathbb{X}, \mathcal{M}) \xrightarrow[]{I} \longrightarrow \\ \mathbf{S}(\mathcal{M})$$

c = TD(c) if and only if c is idempotent.

 $\mathcal{A} = IJ(\mathcal{A})$ iff \mathbb{A} is an \mathcal{M} -coreflective subcategory of \mathcal{M}/\mathbb{X} .

 $\mathcal{A} = DT(\mathcal{A})$ iff and only if \mathbb{A} is an *Iso*X-reflective subcategory of \mathcal{M}/\mathbb{X} .

Two morphisms $m, n \in \mathcal{M}$ are orthogonal $m \perp n$ if $f(m) \leq n \Rightarrow f(1_X) \leq n$ for $f: X \to Y$, $m \in \mathcal{M}/X$, $n \in \mathcal{M}/Y$.

Two morphisms $m, n \in \mathcal{M}$ are orthogonal $m \perp n$ if $f(m) \leq n \Rightarrow f(1_X) \leq n$ for $f: X \to Y$, $m \in \mathcal{M}/X$, $n \in \mathcal{M}/Y$.

A 'torsion theory' in $\mathcal M$ is a pair $(\mathcal A,\mathcal B)$ such that:

1. for all
$$a \in \mathcal{A}$$
, $b \in \mathcal{B}$, $a \perp b$;

2. for every $m \in \mathcal{M}$, there is $a \in \mathcal{A}$, $b \in \mathcal{B}$ such that $m = b \cdot a$.

Two morphisms $m, n \in \mathcal{M}$ are orthogonal $m \perp n$ if $f(m) \leq n \Rightarrow f(1_X) \leq n$ for $f: X \to Y$, $m \in \mathcal{M}/X$, $n \in \mathcal{M}/Y$.

A 'torsion theory' in \mathcal{M} is a pair $(\mathcal{A}, \mathcal{B})$ such that:

1. for all
$$a \in \mathcal{A}$$
, $b \in \mathcal{B}$, $a \perp b$;

2. for every $m \in \mathcal{M}$, there is $a \in \mathcal{A}$, $b \in \mathcal{B}$ such that $m = b \cdot a$.

2 is equivalent to saying that $J(\mathcal{A}) = T(\mathcal{B})$.

Two morphisms $m, n \in \mathcal{M}$ are orthogonal $m \perp n$ if $f(m) \leq n \Rightarrow f(1_X) \leq n$ for $f: X \to Y$, $m \in \mathcal{M}/X$, $n \in \mathcal{M}/Y$.

A 'torsion theory' in \mathcal{M} is a pair $(\mathcal{A}, \mathcal{B})$ such that:

1. for all $a \in \mathcal{A}$, $b \in \mathcal{B}$, $a \perp b$;

2. for every $m \in \mathcal{M}$, there is $a \in \mathcal{A}$, $b \in \mathcal{B}$ such that $m = b \cdot a$.

2 is equivalent to saying that $J(\mathcal{A}) = T(\mathcal{B})$.

The pair $(\mathcal{A}, \mathcal{B})$ is a torsion theory if and only if there is an idempotent weakly hereditary closure operator c such that $\mathcal{A} = I(c)$ and $\mathcal{B} = D(c)$.

$$R(\mathcal{A}) = \{ m \in \mathcal{M} \mid \forall a \in \mathcal{A} \ m \perp a \}$$
$$L(\mathcal{A}) = \{ m \in \mathcal{M} \mid \forall a \in \mathcal{A} \ a \perp m \}$$

$$\theta(\mathbb{A}) = \{ m \in \mathcal{M} \mid \operatorname{codom}(m) \in \mathbb{A} \}$$
$$\gamma(\mathcal{A}) = \{ A \mid (\forall m \in \mathcal{M}/A) \ m \in \mathcal{A} \}$$

$$\theta(\mathbb{A}) = \{ m \in \mathcal{M} \mid \operatorname{codom}(m) \in \mathbb{A} \}$$
$$\gamma(\mathcal{A}) = \{ A \mid (\forall m \in \mathcal{M}/A) \ m \in \mathcal{A} \}$$

 $\mathcal{N} \subseteq \mathcal{M} \qquad T_{\mathcal{N}}(\mathbb{A}) = T\left(\theta(\mathbb{A}) \cap \mathcal{N}\right)$

$$\mathcal{D} = \{\delta_X \,|\, \delta_X = X \to X^2\}$$

$$\mathcal{D} = \{\delta_X \,|\, \delta_X = X \to X^2\}$$

When is
$$l(\mathbb{A})^2 = L_{\mathcal{D}}(\mathbb{A}^2) \cap \mathbb{X}^2$$
?

$$\mathcal{D} = \{\delta_X \,|\, \delta_X = X \to X^2\}$$

When is
$$l(\mathbb{A})^2 = L_{\mathcal{D}}(\mathbb{A}^2) \cap \mathbb{X}^2$$
?

 $X \parallel Y \text{ if } (\forall f : X \to Y) f(X) \text{ is preterminal.}$

$$\mathcal{D} = \{ \delta_X \, | \, \delta_X = X \to X^2 \}$$

When is
$$l(\mathbb{A})^2 = L_{\mathcal{D}}(\mathbb{A}^2) \cap \mathbb{X}^2$$
?

 $X \parallel Y \text{ if } (\forall f : X \to Y) f(X) \text{ is preterminal.}$

We need to compare $X \parallel Y$ with $\delta_X \perp \delta_Y$.

If \mathcal{E} is closed under the formation of squares, then $\delta_X \perp \delta_Y \Rightarrow X \parallel Y$.

If \mathcal{E} is closed under the formation of squares, then $\delta_X \perp \delta_Y \Rightarrow X \parallel Y$.

If for all $X \in \mathbb{X}$ $1_{X^2} = \bigvee \{ 1_X \times x \mid x \text{ is a point of } X \} \lor \bigvee \{ x \times 1_X \mid x \text{ is a point of } X \},$ then $X \parallel Y \Rightarrow \delta_X \perp \delta_Y.$ If \mathcal{E} is closed under the formation of squares, then $\delta_X \perp \delta_Y \Rightarrow X \parallel Y$.

If for all $X \in \mathbb{X}$ $1_{X^2} = \bigvee \{ 1_X \times x \mid x \text{ is a point of } X \} \lor \bigvee \{ x \times 1_X \mid x \text{ is a point of } X \},$ then $X \parallel Y \Rightarrow \delta_X \perp \delta_Y.$

Under the conditions above $r(\mathbb{A}) = \Delta(\operatorname{coreg}^{\mathbb{A}})$ and $l(\mathbb{A}) = \nabla(\operatorname{reg}^{\mathbb{A}})$.

Top with the (surjections, embeddings) factorization. $\mathcal{P} = \{x \mid x : 1 \rightarrow X\}$

Top with the (surjections, embeddings) factorization. $\mathcal{P} = \{x \mid x : 1 \rightarrow X\}$

 $\operatorname{fib}^{\mathbb{A}} = T_{\mathcal{P}}(\mathbb{A}) \text{ and } \operatorname{fib}^{\mathcal{A}} = T(\mathcal{A})$ fibre $\operatorname{cofib}^{\mathbb{A}} = J_{\mathcal{P}}(\mathbb{A}) \text{ and } \operatorname{cofib}^{\mathcal{A}} = J(\mathcal{A})$ co

fibre closure cofibre closure

Top with the (surjections, embeddings) factorization. $\mathcal{P} = \{x \mid x : 1 \rightarrow X\}$

fib^A = $T_{\mathcal{P}}(\mathbb{A})$ and fib^A = $T(\mathcal{A})$ fibre closure cofib^A = $J_{\mathcal{P}}(\mathbb{A})$ and cofib^A = $J(\mathcal{A})$ cofibre closure

k is the fibre closure of the class of the closed points.

$$\begin{split} &I_{\mathcal{P}}(k) \text{ is the class of the indiscrete spaces.} \\ &D_{\mathcal{P}}(k) = \mathsf{Top}_1 \\ &D_{\mathcal{P}}(\mathrm{cofib}^{I_{\mathcal{P}}(k)}) = \mathsf{Top}_0 \\ &\mathsf{Top}_2 = D_{\mathcal{P}}(c) \text{ for } c \text{ such that} \\ &c_X(M) = \{x \in X \mid \forall U, V \in \mathcal{T} \ (x \in U \text{ and } M \subseteq V \Rightarrow U \cap V \neq \emptyset\} \end{split}$$

Top with the (surjections, embeddings) factorization. $\mathcal{P} = \{x \mid x : 1 \rightarrow X\}$

fib^A = $T_{\mathcal{P}}(\mathbb{A})$ and fib^A = $T(\mathcal{A})$ fibre closure cofib^A = $J_{\mathcal{P}}(\mathbb{A})$ and cofib^A = $J(\mathcal{A})$ cofibre closure

k is the fibre closure of the class of the closed points.

 $I_{\mathcal{P}}(k) \text{ is the class of the indiscrete spaces.}$ $D_{\mathcal{P}}(k) = \mathsf{Top}_{1}$ $D_{\mathcal{P}}(\mathrm{cofib}^{I_{\mathcal{P}}(k)}) = \mathsf{Top}_{0}$ $\mathsf{Top}_{2} = D_{\mathcal{P}}(c) \text{ for } c \text{ such that}$ $c_{X}(M) = \{x \in X \mid \forall U, V \in \mathcal{T} (x \in U \text{ and } M \subseteq V \Rightarrow U \cap V \neq \emptyset\}$

$$R_{\mathcal{P}}(\mathbb{A}) = r(\mathbb{A}) \text{ and } L_{\mathcal{P}}(\mathbb{A}) = l(\mathbb{A})$$

The same Example

 Top_{\star} - pointed topological spaces.

```
\mathcal{P}/\mathsf{Top}\simeq\mathsf{Top}_\star\text{ and }S(\mathcal{P})\simeq S(\mathsf{Top}_\star)
```

The same Example

Top_{*} - pointed topological spaces. $\mathcal{P}/\text{Top} \simeq \text{Top}_*$ and $S(\mathcal{P}) \simeq S(\text{Top}_*)$ $\mathcal{A} \subset \mathcal{P}$

 $\operatorname{fib}^{\mathcal{A}}$ in Top is equal to $\operatorname{norm}^{\mathcal{A}}$ in Top_{*}.

The same Example

$$\begin{split} &\text{Top}_{\star} \text{ - pointed topological spaces.} \\ &\mathcal{P}/\text{Top}\simeq \text{Top}_{\star} \text{ and } S(\mathcal{P})\simeq S(\text{Top}_{\star}) \end{split}$$

 $\mathcal{A}\subseteq \mathcal{P}$

 $\mathrm{fib}^\mathcal{A}$ in Top is equal to $\mathrm{norm}^\mathcal{A}$ in $\mathsf{Top}_\star.$

k is a normal closure.