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Given a class of groupsA ⊆ Grp, the normal closure induced byA is given by

normA

G(H) :=
⋂

{N |H ⊆ N ⊳ G, G/N ⊆ A ∈ A} =
⋂

{f−1(0) | f : G → A ∈ A, f(H) = 0} .

It is easy to see that the normal closure can be defined in any category with a0-object and

anM-right factorization, whereM contains all normal monomorphisms.

It is patent that the constructions of the normal and the regular closure are very similar.

Accordingly, we will define the conormal closure - in parallel with the coregular closure -

and, using a unifying setting, we will generalize results obtained for regular/coregular

closures in [CT].
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A closure operator c on X w.r.t. M is a family of functions
(cX : M/X → M/X)X∈X :

1. m ≤ cX(m) ;

2. if m ≤ m′ then cX(m) ≤ cX(m′) ;

3. f(cX(m)) ≤ cY (f(m)) for f : X → Y , m ∈ M/X.



A closure operator c on X w.r.t. M is a family of functions
(cX : M/X → M/X)X∈X :

1. m ≤ cX(m) ;

2. if m ≤ m′ then cX(m) ≤ cX(m′) ;

3. f(cX(m)) ≤ cY (f(m)) for f : X → Y , m ∈ M/X.

cX(f−1(m)) ≤ f−1(cY (m)) for f : X → Y , m ∈ M/Y



A closure operator c on X w.r.t. M is a family of functions
(cX : M/X → M/X)X∈X :

1. m ≤ cX(m) ;

2. if m ≤ m′ then cX(m) ≤ cX(m′) ;

3. f(cX(m)) ≤ cY (f(m)) for f : X → Y , m ∈ M/X.

cX(f−1(m)) ≤ f−1(cY (m)) for f : X → Y , m ∈ M/Y

c is idempotent if c(c(m)) = c(m) for all m ∈ M.

c is weakly hereditary if c(jm) = 1cM for all m ∈ M with
c(m) · jm = m.
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{f−1(0) | f : X → A ∈ A, m ≤ f−1(0A)}
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T (c) = {X | cX(0) = 1X}

conormA

X(m) = m∨
∨

{f(1A)|f : A → X, A ∈ A, f(0) ≤ m}
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R(A) = {X | (∀f : X → A, A ∈ A) f(X) = 0}

L(A) = {X | (∀f : A → X, A ∈ A) f(A) = 0}
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r(A) = {X | (∀f : X → A, A ∈ A) f(X) is preterminal}

l(A) = {X | (∀f : A → X, A ∈ A) f(A) is preterminal}

A point of X is (x : 1 → X) ∈ M with 1 the terminal object.

1X =
∨
{x |x is a point of X} for all X ∈ X

E is closed under the formation of squares.
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DN (c) = {X | ∀n ∈ N /X c(n) = n}

TN (A)X(m) =
∧

{f−1(n)|f : X → A ∈ A, n ∈ N /A, m ≤ f−1(n)}

IN (c) = {X | ∀n ∈ N /X c(n) = 1X}

JN (A)X(m) = m∨
∨

{f(1A)|f : A → X, A ∈ A, (∃n ∈ N ) f(n) ≤ m}
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Examples

Z = {0X | 0X : 0 → X}

TZ = norm and JZ = conorm.

DZ = F and IZ = T .

D = {δX | δX : X → X2}

A ⊆ X A
2 = {A2 |A ∈ A}

TD(A2) = regA and JD(A2) = coregA.

A ∈ ∆(c) ⇔ A2 ∈ DD

A ∈ ∇(c) ⇔ A2 ∈ ID
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D(c) = {m | c(m) = m}

T (A)X(m) =
∧

{f−1(n)|f : X → A ∈ A, n ∈ A, m ≤ f−1(n)}

I(c) = {X | c(m) = 1X}

J(A)X(m) = m∨
∨

{f(1A)|f : A → X, A ∈ A, (∃n ∈ A) f(n) ≤ m}
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c = JI(c) if and only if c is weakly hereditary.

c = TD(c) if and only if c is idempotent.

A = IJ(A) iff A is an M-coreflective subcategory of M/X.

A = DT (A) iff and only if A is an IsoX-reflective subcategory
of M/X.
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A Torsion Theory?

Two morphisms m,n ∈ M are orthogonal m ⊥ n if
f(m) ≤ n ⇒ f(1X) ≤ n for f : X → Y , m ∈ M/X, n ∈ M/Y .

A ’torsion theory’ in M is a pair (A,B) such that:

1. for all a ∈ A, b ∈ B, a ⊥ b;

2. for every m ∈ M, there is a ∈ A, b ∈ B such that m = b · a.

2 is equivalent to saying that J(A) = T (B).

The pair (A,B) is a torsion theory if and only if there is an
idempotent weakly hereditary closure operator c such that
A = I(c) and B = D(c).
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R(A) = {m ∈ M|∀a ∈ A m ⊥ a}

L(A) = {m ∈ M|∀a ∈ A a ⊥ m}
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θ(A) = {m ∈ M| codom(m) ∈ A}

γ(A) = {A | (∀m ∈ M/A) m ∈ A}
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θ(A) = {m ∈ M| codom(m) ∈ A}

γ(A) = {A | (∀m ∈ M/A) m ∈ A}

N ⊆ M TN (A) = T (θ(A) ∩ N )
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D = {δX | δX = X → X2}

TD(A2) = regA and JD(A2) = coregA.

A ∈ ∆(c) ⇔ A2 ∈ DD

A ∈ ∇(c) ⇔ A2 ∈ ID

When is l(A)2 = LD(A2) ∩ X
2?

X ‖ Y if (∀f : X → Y ) f(X) is preterminal.

We need to compare X ‖ Y with δX ⊥ δY .
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If E is closed under the formation of squares, then
δX ⊥ δY ⇒ X ‖ Y .

If for all X ∈ X

1X2 =
∨
{1X ×x |x is a point of X}∨

∨
{x× 1X |x is a point of X},

then X ‖ Y ⇒ δX ⊥ δY .

Under the conditions above
r(A) = ∆(coregA) and l(A) = ∇(regA).
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Another Example

Top with the (surjections, embeddings) factorization.
P = {x |x : 1 → X}

fibA = TP(A) and fibA = T (A) fibre closure
cofibA = JP(A) and cofibA = J(A) cofibre closure

k is the fibre closure of the class of the closed points.

IP(k) is the class of the indiscrete spaces.
DP(k) = Top1

DP(cofibIP (k)) = Top0

Top2 = DP(c) for c such that
cX(M) = {x ∈ X | ∀U, V ∈ T (x ∈ U and M ⊆ V ⇒ U ∩ V 6= ∅}

RP(A) = r(A) and LP(A) = l(A)
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The same Example

Top⋆ - pointed topological spaces.

P/Top ≃ Top⋆ and S(P) ≃ S(Top⋆)

A ⊆ P

fibA in Top is equal to normA in Top⋆.

k is a normal closure.
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