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Given a class of group& C Grp, the normal closure induced lByis given by
norme(H) = {N|HCN<G, GINCAcA={f0)|f:G—AcA, f(H)=0}

It is easy to see that the normal closure can be defined in degad with a0-object and
an M-right factorization, whereV1 contains all normal monomorphisms.

It is patent that the constructions of the normal and theleggilosure are very similar.
Accordingly, we will define the conormal closure - in parbWath the coregular closure -
and, using a unifying setting, we will generalize resultsagked for regular/coregular
closures in [CT].



X - category with finite limits and a factorization
system (£, M) with M C MonoX.



X - category with finite limits and a factorization
system (£, M) with M C MonoX.

X 4 %
Xf(X / \ /<m>



X - category with finite limits and a factorization
system (£, M) with M C MonoX.

X 4 % M- x Ty
f(X) f(M)
fH (M) M
£ (m) m




A closure operator ¢ on X w.r.t. M is a family of functions
(CX : M/X —> M/X)X6X :

1. m <cx(m);

2. ifm < m/thencx(m) < cx(m');

3. flex(m)) <cy(f(m))forf: X —-Y, me M/X.



A closure operator ¢ on X w.r.t. M is a family of functions
(CX : M/X —> M/X)X6X :

1. m<cx(m);
2. ifm < m/thencx(m) < cx(m');

3. flex(m)) <cy(f(m))forf: X —-Y, me M/X.

cx(f7Hm)) < fHey(m))forf: X - Y, me M/Y



A closure operator ¢ on X w.r.t. M is a family of functions
(CX : M/X —> M/X)X6X :

1. m <cx(m);

2. ifm < m/thencx(m) < cx(m');

3. flex(m)) <cy(f(m))forf: X —-Y, me M/X.

cx(f7Hm)) < fHey(m))forf: X - Y, me M/Y

c is idempotent if ¢(c(m)) = ¢(m) for all m € M.

c I1s weakly hereditary if ¢(j,,) = 1.as for all m € M with
c(m) « jm = m.
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T(c) ={X|cx(0) = 1x}

conorm’y (m) = mV\/{f(1a)|f : A — X, A€ A, f(0) <m}
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R(A) = {X| (Vf: X - A AcA)f(X)
LA) = {X| (Vf: A — X, AcA)f(A)
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regy(m) = N{f 7 (0a) | f: X - A%, Ac Am < f'(64)}

coreghy (m) = m\/\/{f(lAz)]f A7 — X, A€ A, f(54) <m}
A() = {X |e(6x) = bx}  V(e) = {X | c(dx) = Ly}
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r(A)={X|(Vf: X - A AecA) f(X) is preterminal}
[(A)={X| (Vf:A— X, A€ A) f(A)is preterminal}

A pointof X is (z: 1 — X) € M with 1 the terminal object.

lx = V{z|zisapointof X} forall X € X
£ 1s closed under the formation of squares.
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Dy (c) ={X|¥n e N/X c(n)=n}
=N/ ')f: X > AcA neN/A m< f(n)}

In(c) ={X|Vn e N/X c¢(n) =1x}

=mV\/{f(1u)|f: A— X, A€ A, 3neN) f(n) <m}
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Examples
Z={0x|0x:0— X}

Tz = norm and Jz = conorm.

DZ:]:and]Z:T.

D:{(5X|5XIX%X2}
ACX A?={A%| A e A}

Tp(A?) = reg” and Jp(A?%) = coreg?.

Ae Alc) & A% € Dp
AEV(C)@AQEID
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c = JI(c) if and only if ¢ is weakly hereditary.

c =TD(c) if and only if ¢ is idempotent.

A=1J(A)iff A is an M-coreflective subcategory of M /X.

A= DT(A) iff and only if A is an IsoX-reflective subcategory
of M/X.
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A Torsion Theory?

Two morphisms m,n € M are orthogonal m L n If
flm)<n= f(lx)<nforf: X =Y, meM/X,ne M/Y.
A ‘torsion theory’ in M is a pair (A, B) such that:

1. forallae A, be B,a L b;

2. forevery m € M, thereisa € A, be Bsuchthatm =b-a.

2 is equivalent to saying that J(A) = T'(B).

The pair (A, B) is a torsion theory if and only if there is an
idempotent weakly hereditary closure operator ¢ such that
A= 1(c)and B = D(c).
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A(A) ={m € M| codom(m) € A}
v(A) ={A|(VYm € M/A)m € A}

N CM Ty (A) =T (0(A)NN)
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D:{5Xy5X:X—>X2}

Tp(A?) = reg® and Jp(A?%) = coreg®.
AeAlc) s A* € Dp
AeV(c) & A% e Ip

When is [(A)? = Lp(A%) N X*?

X||YiE(Vf: X —=Y) f(X)is preterminal.

We need to compare X || Y with 6x L dy.
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If £ Is closed under the formation of squares, then

If forall X € X
lx2 = V{lx xz|xzisapointof X}V \/{zx1x|zisapointof X},
then X || Y = dx L dy.

Under the conditions above
r(A) = A(coreg®) and [(A) = V(regh).
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k i1s the fibre closure of the class of the closed points.

Ip(k) is the class of the indiscrete spaces.

Dp(k) = Top,

Dp(cofib»® = Top,

Topy, = Dp(c) for ¢ such that

cx(M)={ze X|VUVeT (xeUand M CV=UNV #0}

Rp(A) = r(A) and Lp(A) = [(A)



The same Example

Top, - pointed topological spaces.

P /Top =~ Top, and S(P) ~ S(Top,)



The same Example

Top, - pointed topological spaces.
P /Top ~ Top, and S(P) ~ S(Top,)
ACP

fib* in Top is equal to norm* in Top, .



The same Example

Top, - pointed topological spaces.

P /Top =~ Top, and S(P) ~ S(Top,)
ACP

fib* in Top is equal to norm* in Top, .

k1S a hormal closure.
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