Totally bounded metric spaces and the Axiom of Choice

Gonçalo Gutierres – CMUC/Universidade de Coimbra

A metric space is *totally bounded* if it has a finite ϵ -net for every $\epsilon > 0$. One can prove that a metric space is topologically equivalent to a totally bounded metric space if and only if it has a countable ϵ -net for every $\epsilon > 0$ if and only if it is a Lindelöf space if and only if it is second countable if and only if it is separable if and only if ...

These equivalences do not remain valid in ZF (*Zermelo-Fraenkel set theory without the Axiom of Choice*). In this talk we will discuss the set-theoretic status of these equivalences as well as of the other results related with totally boundness.

ZF – Zermelo-Fraenkel set theory without the Axiom of Choice. ZFC – Zermelo-Fraenkel set theory with the Axiom of Choice.

ZF – Zermelo-Fraenkel set theory without the Axiom of Choice. ZFC – Zermelo-Fraenkel set theory with the Axiom of Choice.

CC – the Axiom of Countable Choice. Every countable family of non-empty sets has a choice function.

 $CC(\mathbb{R})$ — Every countable family of non-empty subsets of \mathbb{R} has a choice function.

ZF – Zermelo-Fraenkel set theory without the Axiom of Choice. ZFC – Zermelo-Fraenkel set theory with the Axiom of Choice.

CC – the Axiom of Countable Choice. Every countable family of non-empty sets has a choice function.

 $CC(\mathbb{R})$ – Every countable family of non-empty subsets of \mathbb{R} has a choice function.

CUC – Countable Union Condition. The countable union of countable sets is countable.

$$\mathbf{CC}(2^{\aleph_0}) \Rightarrow \mathbf{CUC} \Rightarrow \mathbf{CC}(\aleph_0)$$

(i) Lindelöf (L);

- (i) Lindelöf (L);
- (ii) Separable (S);

- (i) Lindelöf (L);
- (ii) Separable (S);
- (iii) Second Countable (SC);

- (i) Lindelöf (L);
- (ii) Separable (S);
- (iii) Second Countable (SC);
- (iv) Topologically Totally Bounded (TTB) it is equivalent to a totally bounded space;

- (i) Lindelöf (L);
- (ii) Separable (S);
- (iii) Second Countable (SC);
- (iv) Topologically Totally Bounded (TTB) it is equivalent to a totally bounded space;
- (v) Countable Chain Condition every collection of disjoint open sets is countable;

- (i) Lindelöf (L);
- (ii) Separable (S);
- (iii) Second Countable (SC);
- (iv) Topologically Totally Bounded (TTB) it is equivalent to a totally bounded space;
- (v) Countable Chain Condition every collection of disjoint open sets is countable;
- (vi) Topologically Sequentially Bounded every sequence has a Cauchy subsequence;

- (i) Lindelöf (L);
- (ii) Separable (S);
- (iii) Second Countable (SC);
- (iv) Topologically Totally Bounded (TTB) it is equivalent to a totally bounded space;
- (v) Countable Chain Condition every collection of disjoint open sets is countable;
- (vi) Topologically Sequentially Bounded every sequence has a Cauchy subsequence;
- (vii) Weakly Lindelöf every open cover has a countable open refinent;

- (i) Lindelöf (L);
- (ii) Separable (S);
- (iii) Second Countable (SC);
- (iv) Topologically Totally Bounded (TTB) it is equivalent to a totally bounded space;
- (v) Countable Chain Condition every collection of disjoint open sets is countable;
- (vi) Topologically Sequentially Bounded every sequence has a Cauchy subsequence;
- (vii) Weakly Lindelöf every open cover has a countable open refinent;
- (viii) Super Second Countable every base for the open sets contains a countable base;

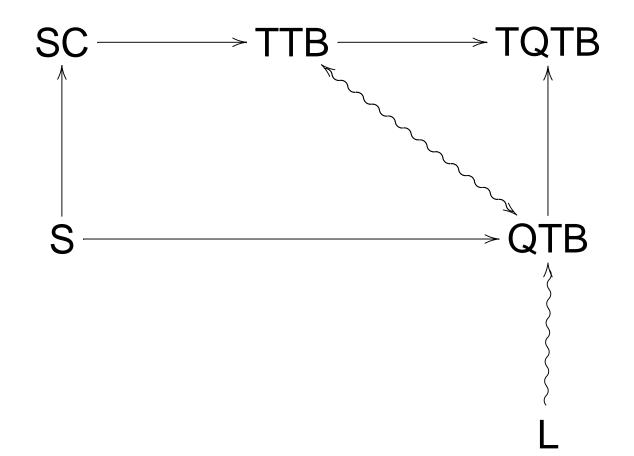
$L \Rightarrow (\forall \epsilon > 0) (\exists A \text{ countable}) \bigcup_{x \in A} B(x, \epsilon) = X \Rightarrow S$

$$L \Rightarrow (\forall \epsilon > 0) (\exists A \text{ countable}) \bigcup_{x \in A} B(x, \epsilon) = X \Rightarrow S$$

(ix) Quasi Totally Bounded (QTB) – for every $\epsilon > 0$, there is a countable ϵ -net;

$$L \Rightarrow (\forall \epsilon > 0) (\exists A \text{ countable}) \bigcup_{x \in A} B(x, \epsilon) = X \Rightarrow S$$

- (ix) Quasi Totally Bounded (QTB) for every $\epsilon > 0$, there is a countable ϵ -net;
- (x) Topologically Quasi Totally Bounded (TQTB).



Theorem.[ZF] Equivalent are:

Theorem.[ZF] Equivalent are:

(i) CC;

Theorem.[ZF] Equivalent are:

(i) **CC**;

(ii) TQTB \Rightarrow QTB;

Theorem.[ZF] Equivalent are:

(i) **CC**;

(ii) TQTB \Rightarrow QTB;

(iii) $QTB \Rightarrow S$;

Theorem.[ZF] Equivalent are:

(i) **CC**;

- (ii) TQTB \Rightarrow QTB;
- (iii) $QTB \Rightarrow S;$

(iv) $SC \Rightarrow S$;

Theorem.[ZF] Equivalent are:

(i) CC;

- (ii) TQTB \Rightarrow QTB;
- (iii) $QTB \Rightarrow S;$
- (iv) $SC \Rightarrow S$;
- (v) TTB \Rightarrow QTB;

Theorem.[ZF] Equivalent are:

(i) **CC**;

- (ii) TQTB \Rightarrow QTB;
- (iii) QTB \Rightarrow S;
- (iv) $SC \Rightarrow S$;

- (v) TTB \Rightarrow QTB;
- (vi) SC \Rightarrow QTB.

Metric spaces

Metric spaces

(1) (TQTB \Rightarrow QTB) \Rightarrow CC(\mathbb{R})+ CUC.

(1) (TQTB \Rightarrow QTB) \Rightarrow CC(\mathbb{R})+ CUC.

(2) $(QTB \Rightarrow S) \Rightarrow CC(\mathbb{R})+CUC.$

(1) $(TQTB \Rightarrow QTB) \Rightarrow CC(\mathbb{R})+CUC.$ (2) $(QTB \Rightarrow S) \Rightarrow CC(\mathbb{R})+CUC.$ (3) $(QTB \Rightarrow L) \Rightarrow CC(\mathbb{R})+CUC.$

(1) $(TQTB \Rightarrow QTB) \Rightarrow CC(\mathbb{R})+CUC.$ (2) $(QTB \Rightarrow S) \Rightarrow CC(\mathbb{R})+CUC.$ (3) $(QTB \Rightarrow L) \Rightarrow CC(\mathbb{R})+CUC.$ (4) $(TB\Rightarrow SC) \Rightarrow CC(fin).$

(1)
$$(TQTB \Rightarrow QTB) \Rightarrow CC(\mathbb{R})+CUC.$$

(2) $(QTB \Rightarrow S) \Rightarrow CC(\mathbb{R})+CUC.$
(3) $(QTB \Rightarrow L) \Rightarrow CC(\mathbb{R})+CUC.$
(4) $(TB\Rightarrow SC) \Rightarrow CC(fin).$

(5) (SC \Rightarrow QTB) \Leftrightarrow CC(\mathbb{R}).

Theorem.[Herrlich, 2002] Every Lindelöf T_1 -space is compact if and only if $CC(\mathbb{R})$ fails.

Theorem.[Herrlich, 2002] Every Lindelöf T_1 -space is compact if and only if $CC(\mathbb{R})$ fails.

Corollary. Every Lindelöf space for which the T_0 -reflection is T_1 is compact if and only if $CC(\mathbb{R})$ fails.

Theorem.[Herrlich, 2002] Every Lindelöf T_1 -space is compact if and only if $CC(\mathbb{R})$ fails.

Corollary. Every Lindelöf space for which the T_0 -reflection is T_1 is compact if and only if $CC(\mathbb{R})$ fails.

Theorem. Every Lindelöf pseudometric space is Quasi Totally Bounded if and only if CC holds or $CC(\mathbb{R})$ fails.

References

H. L. Bentley and H. Herrlich, *Countable choice and pseudometric spaces*, Topology Appl. **85** (1997).

G. Gutierres, On first and second countable spaces and the axiom of choice, Topology Appl. **143** (2004).

H. Herrlich, *Products of Lindelöf* T_2 -spaces are Lindelöf – in some models of ZF, Com. M. U. Carolinae **43** (2002).

P. Howard and J. E. Rubin, *Consequences of the Axiom of Choice*, American Mathematical Society, 1998. http://consequences.emich.edu/conseq.htm.

K. Keremedis, *Disasters in topology without the axiom of choice*, Arch. Math. Logic **40** (2001).