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A metric space istotally bounded if it has a finiteε-net for everyε > 0. One can prove that

a metric space is topologically equivalent to a totally bounded metric space if and only if it

has a countableε-net for everyε > 0 if and only if it is a Lindel̈of space if and only if it is

second countable if and only if it is separable if and only if ...

These equivalences do not remain valid inZF (Zermelo-Fraenkel set theory without the

Axiom of Choice). In this talk we will discuss the set-theoretic status of these equivalences

as well as of the other results related with totally boundness.
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ZFC – Zermelo-Fraenkel set theory with the Axiom of Choice.

CC – the Axiom of Countable Choice.
Every countable family of non-empty sets has a choice function.

CC(R) – Every countable family of non-empty subsets of R

has a choice function.

CUC – Countable Union Condition.
The countable union of countable sets is countable.

CC(2ℵ0) ⇒ CUC ⇒ CC(ℵ0)
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Theorem.[ZFC] For a (pseudo)metric space, the following
properties are equivalent:

(i) Lindelöf (L);

(ii) Separable (S);

(iii) Second Countable (SC);

(iv) Topologically Totally Bounded (TTB) – it is equivalent to a
totally bounded space;

(v) Countable Chain Condition – every collection of disjoint
open sets is countable;

(vi) Topologically Sequentially Bounded – every sequence
has a Cauchy subsequence;

(vii) Weakly Lindelöf – every open cover has a countable open
refinent;

(viii) Super Second Countable – every base for the open sets
contains a countable base;
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L ⇒ (∀ε > 0) (∃A countable )
⋃

x∈A

B(x, ε) = X ⇒ S

(ix) Quasi Totally Bounded (QTB) – for every ε > 0,
there is a countable ε-net;

(x) Topologically Quasi Totally Bounded (TQTB).
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Pseudometric spaces

Theorem.[ZF] Equivalent are:

(i) CC;

(ii) TQTB ⇒ QTB;

(iii) QTB ⇒ S;

(iv) SC ⇒ S;

(v) TTB ⇒ QTB;

(vi) SC ⇒ QTB.
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Metric spaces

(1) (TQTB ⇒ QTB) ⇒ CC(R)+ CUC.

(2) (QTB ⇒ S) ⇒ CC(R)+ CUC.

(3) (QTB ⇒ L) ⇒ CC(R)+ CUC.

(4) (TB⇒ SC) ⇒ CC(fin).

(5) (SC ⇒ QTB) ⇔ CC(R).
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Theorem.[Herrlich, 2002] Every Lindelöf T1-space is
compact if and only if CC(R) fails.

Corollary. Every Lindelöf space for which the
T0-reflection is T1 is compact if and only if CC(R)
fails.

Theorem. Every Lindelöf pseudometric space is
Quasi Totally Bounded if and only if CC holds or
CC(R) fails.
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