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iophysical materials and human-made features on the surface of Barth are
inventoried using remote sensing and in situ techniques. Some of the data are
fairly static; they do not change over time. Conversely, some biophysical
_ materials and human-made features are dynamic, changing rapidly. It is
~ important that such changes be inventoried accurately so that the physical
and human processes at work can be more fully understood (Lunetta and
Elvidge, 2000; Zhan'éﬁ al., 2002). In fact, it is believed that land-use/land-
cover change is a major component of global change with an impact perhaps
greater than that of climate change (Skole, 1994; Foody, 2001). It is not sur-.
prising, therefore, that significant effort has gone into the development of
~ change detection methods using remotely sensed data (e.g., Jensen et al.,
1997; Maas, 1999; Song et al., 2001; Arzandeh and Wang, 2003; Lunetta and
Lyons, 2003). This chapter reviews how change information is extracted
. from digital remotely sensed data. It summarizes the remote sensor system
~ and environmental parameters that must be considered when change detec-
. tion takes place. Several of the most widely used change detection algorithms
are introduced and d_emonstrated. v

< Steps Ré‘c\]uired to Perform Change‘iDé‘téction‘

The éeﬁerél sfep's-réquired to perform digitaﬂ change detection using remotely
sensed data are summarized in Figure 12-1. :

Change etézcti'Ohﬁéeographic"Regidh of Interest

The dimensions of the change detection region of interest (ROI) must be
carefully identified and held constant throughout a change detection projec

The geographic ROI (e.g., a county, state, or watershed) is especially im'porl .
tant in a change detection study because it must be completely cov&;red by n
dates of imagery. Failure to ensure that each of the multiple-date images cov-

ers the geographic area of interest results in change detection maps with data
voids that are problematic when computing change statisﬁcé, -

. Change Detection Time Period

_ Sometimes change detection studies are overly ambitious in their attempt to
~ monitor changes in the landscape. Sometimes the time period selected ove
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which change is to be monitored is too short or too long to
capture the information of interest. Therefore, the analyst
must be careful to identify the optimal change detection time
period(s). This selection, of course, is dictated by the nature
of the problem. Traffic transportation studies might require a
change detection period of just a few seconds or minutes.
Conversely, images obtained monthly or seasonally might
be sufficient to monitor the greening of a continent. Careful
selection of the change detection time period can ensure that
resource analysis funds are not wasted.

Select an Appropriate Land-use/Land-cover
Classification System

As discussed in Chapter 9, it is wise to use an established,
standardized land-cover/land-use classification system for
change detection, such as the following:

¢ American Planning Association Land-Based Classifica-
tion Standard (LBCS),

» U.S. Geological Survey Land Use/Land Cover Classifica-
tion System for Use with Remote Sensor Data,

o U.S. National Vegetation Classification System (NVCS),

» U.S. Fish and Wildlife Service Classification of Wetlands
and Deepwater Habitats of the United States, and

* International Geosphere-Biosphere Program Land Cover
Classification System.

The use of standardized classification systems allows
change information to be compared with other studies.

Hard and Fuzzy Change Detection Logic

Most change detection studies have been based on the com-
parison of multiple-date hard land-cover classifications of
remotely sensed data. The result is the creation of a hard
change detection map consisting of information about the
change in discrete categories (e.g., change in forest, agricul-
ture). This is still very important and practical in many
instances, but we now recognize that it is ideal to capture
both discrete and fuzzy changes in the landscape (refer to
Chapter 9 for a discussion about fuzzy land-cover classifica-
tion).

Land-cover changes may range from no landscape alteration
whatsoever, through modifications of variable intensity, to a
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full transformation or conversion to an entirely new clasg
(e.g., the Denver, CO, example later in this chapter). Scien-
tists now believe that replacing the Date » and Date n + |
hard classification maps typically used in a change detection
project with fuzzy classification maps will result in more
informative and accurate land-cover change information
(Foody, 2001; Woodcock et al., 2001).

Per-pixel or Object-oriented Change Detection

The majority of digital image change detection has been
based on processing Date » and Date n + I classification
maps pixel by pixel. This is commonly referred to as per
pixel change detection. Object-oriented change detection
involves the comparison of two or more scenes consisting of
many relatively homogenous image objects (patches or seg-
ments) that were identified using the techniques discussed in
Chapter 9. The smaller number of relatively homogeneous
image objects in the two scenes are then subjected to change
detection techniques discussed in this chapter.

Remote Sensing System Considerations

Successful remote sensing change detection requires careful
attention to:

* remote sensor system considerations, and
* environmental characteristics.

Failure to understand the impact of the various parameters
on the change detection process can lead to inaccurate
results (Dobson et al., 1995; Yuan and Elvidge, 1998). Ide-
ally, the remotely sensed data used to perform change detec-
tion is acquired by a remote sensor system that holds the fol-
lowing resolutions constant: temporal, spatial (and look
angle), spectral, and radiometric. It is instructive to review
each of these parameters and identify why they can have a
significant impact on the success of a remote sensing change
detection project.

Temporal Resolution

Two important temporal resolutions should be held constant
during change detection using multiple dates of remotely
sensed data. First, the data should be obtained from a sensor
system that acquires data at approximately the same time of
day. For example, Landsat Thematic Mapper data are
acquired before 9:45 a.m. for most of the conterminous
United States. This eliminates diurnal Sun angle effects that




468

which change is to be monitored is too short or too long to
capture the information of interest. Therefore, the analyst
must be careful to identify the optimal change detection time
period(s). This selection, of course, is dictated by the nature
of the problem. Traffic transportation studies might require a
change detection period of just a few seconds or minutes.
Conversely, images obtained monthly or seasonally might
be sufficient to monitor the greening of a continent. Careful
selection of the change detection time period can ensure that
resource analysis funds are not wasted.

Select an Appropriate Land-use/lLand-cover
Classification System

As discussed in Chapter 9, it is wise to use an established,
standardized land-cover/land-use classification system for
change detection, such as the following:

* American Planning Association Land-Based Classifica-
tion Standard (LBCS),

* U.S. Geological Survey Land Use/Land Cover Classifica-
tion System for Use with Remote Sensor Data,

* U.S. National Vegetation Classification System (NVCS),

* U.S. Fish and Wildlife Service Classification of Wetlands
and Deepwater Habitats of the United States, and

* International Geosphere-Biosphere Program Land Cover
Classification System.

The use of standardized classification systems allows
change information to be compared with other studies.

Hard and Fuzzy Change Detection Logic

Most change detection studies have been based on the com-
parison of multiple-date hard land-cover classifications of
remotely sensed data. The result is the creation of a hard
change detection map consisting of information about the
change in discrete categories (e.g., change in forest, agricul-
ture). This is still very important and practical in many
instances, but we now recognize that it is ideal to capture
both discrete and fuzzy changes in the landscape (refer to
Chapter 9 for a discussion about fuzzy land-cover classifica-
tion).

Land-cover changes may range from no landscape alteration
whatsoever, through modifications of variable intensity, to a

CHAPTER 1 2 Digital Change Detection

full transformation or conversion to an entirely new class
(e.g., the Denver, CO, example later in this chapter). Scien-
tists now believe that replacing the Date n and Date n + |
hard classification maps typically used in a change detection
project with fuzzy classification maps will result in more
informative and accurate land-cover change information
(Foody, 2001; Woodcock et al., 2001).

Per-pixel or Object-oriented Change Detection

The majority of digital image change detection has been
based on processing Date » and Date »n + [ classification
maps pixel by pixel. This is commonly referred to as per
pixel change detection. Object-oriented change detection
involves the comparison of two or more scenes consisting of
many relatively homogenous image objects (patches or seg-
ments) that were identified using the techniques discussed in
Chapter 9. The smaller number of relatively homogeneous
image objects in the two scenes are then subjected to change
detection techniques discussed in this chapter.

Remote Sensing System Considerations

Successful remote sensing change detection requires careful
attention to:

» remote sensor system considerations, and
» environmental characteristics.

Failure to understand the impact of the various parameters
on the change detection process can lead to inaccurate
results (Dobson et al., 1995; Yuan and Elvidge, 1998). Ide-
ally, the remotely sensed data used to perform change detec-
tion is acquired by a remote sensor system that holds the fol-
lowing resolutions constant: temporal, spatial (and look
angle), spectral, and radiometric. It is instructive to review
each of these parameters and identify why they can have a
significant impact on the success of a remote sensing change
detection project.

Temporal Resolution

Two important temporal resolutions should be held constant
during change detection using multiple dates of remotely
sensed data. First, the data should be obtained from a sensor
system that acquires data at approximately the same time of
day. For example, Landsat Thematic Mapper data are
acquired before 9:45 a.m. for most of the conterminous
United States. This eliminates diurnal Sun angle effects that

Steps Required to Perform Change Detection

General Steps Used to Conduct Digital
Change Detection Using Remote Sensor Data

State the nature of the change detection problem.
* Specify change detection geographic region of interest.
* Specify change detection time period (e.g., daily, seasonal, yearly).
* Define the classes of interest in a classification system.
* Select hard and/or fuzzy change detection logic.
* Select per-pixel or object-oriented change detection.
Considerations of significance when performing change detection.
* Remote sensing system considerations: .
- Spatial, spectral, temporal, and radiometric resolution
* Environmental considerations:
- Atmospheric conditions
- Soil moisture conditions
- Phenological cycle characteristics
- Tidal stage, etc.
Process remote sensor data to extract change information.
* Acquire appropriate change detection data:
- In situ and collateral data
- Remotely sensed data:
- Base year (time n)
- Subsequent year(s) (time n - 1 orn+ 1)
* Preprocess the multiple-date remote sensor data:
- Geometric correction
- Radiometric correction (or normalization)
* Select change detection algorithm.
* Apply appropriate image classification logic if necessary:
- Supervised, unsupervised, hybrid
* Perform change detection using GIS algorithms: .
- Highlight selected classes using change detection matrix
- Generate change-map products
- Compute change statistics
Perform accuracy assessment.
* Select method:
- Qualitative confidence building
- Statistical measurement
* Determine number of samples required by class.
* Select sampling scheme.
* Obtain ground reference test information.
* Create and analyze change detection error matrix:
- Univariate and multivariate statistical analysis
Accept or reject previously stated hypothesis.
Distribute results if accuracy is acceptable.

Figure 12-1 The general steps used to perform digital change detection of remotely sensed data.
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can cause anomalous differences in the reflectance proper-
ties of the remotely sensed data. Second, whenever possible
it is desirable to use remotely sensed data acquired on anni-
versary dates, for example, February 1, 2004, and February
1, 2005. Using anniversary date imagery minimizes the
influence of seasonal Sun-angle and plant phenological dif-
ferences that can negatively impact a change detection
project (Jensen et al., 1993a).

Spatial Resolution and Look Angle

Accurate spatial registration of at least two images is essen-
tial for digital change detection. Ideally, the remotely sensed
data are acquired by a sensor system that collects data with
the same instantaneous field of view on each date. For
example, Landsat Thematic Mapper data collected at
30 x 30 m spatial resolution on two dates are relatively easy
to register to one another. It is possible to perform change
detection using data collected from two different sensor sys-
tems with different IFOVs, for example, Landsat TM data
(30 x 30 m) for Date 1 and SPOT HRV XS data (20 X 20 m)
for Date 2. In such cases, it is usually necessary to decide on
a representative minimum mapping unit (e.g., 20 X 20 m)
and then resample both datasets to this uniform pixel size.
This does not present a significant problem as long as the
image analyst remembers that the information content of the
resampled data can never be greater than the IFOV of the
original sensor system (i.e., even though the Landsat TM
data may be resampled to 20 x 20 m pixels, the information
was still acquired at 30 X 30 m resolution and we should not
expect to be able to extract additional spatial detail from the
dataset).

Geometric rectification algorithms discussed in Chapter 6
are used to register the images to a standard map projection
(Universal Transverse Mercator for most U.S. projects).
Rectification should result in the two images having a root
mean square error (RMSE) of < 0.5 pixel. Misregistration of
the two images may result in the identification of spurious
areas of change between the datasets. For example, just one
pixel misregistration may cause a stable road on the two
dates to show up as a new road in the change image. Gong et
al. (1992) suggest that adaptive grayscale mapping (a form
of spatial filtering) be used in certain instances to remove
change detection misregistration noise.

Some remote sensing systems like SPOT, IKONOS, and
QuickBird collect data at off-nadir look angles as much as
+20°; that is, the sensors obtain data of an area on the ground
from an oblique vantage point. Two images with signifi-
cantly different look angles can cause problems when used
for change detection purposes. For example, consider a
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maple forest consisting of very large, randomly spaced trees,
A SPOT image acquired at 0° off-nadir will look directly
down on the top of the canopy. Conversely, a SPOT image
acquired at 20° off-nadir will record reflectance information
from the side of the canopy. Differences in reflectance from
the two datasets may cause spurious change detection
results. Therefore, the data used in a remote sensing digital
change detection should be acquired with approximately the
same look angle, if possible.

Spectral Resolution

A fundamental assumption of digital change detection is that
a difference exists in the spectral response of a pixel on two
dates if the biophysical materials within the IFOV have
changed between dates. Ideally, the spectral resolution of the
remote sensor system is sufficient to record reflected radiant
flux in spectral regions that best capture the most descriptive
spectral attributes of the object. Unfortunately, different sen-
sor systems do not record energy in exactly the same por-
tions of the electromagnetic spectrum (i.e., bandwidths). For
example, the Landsat multispectral scanner (MSS) recorded
energy in four relatively broad multispectral bands. SPOT 1,
2, and 3 HRV sensors collect data in three relatively broad
multispectral bands and one panchromatic band. The Land-
sat 7 Enhanced Thematic Mapper Plus (ETM™) collects data
in six relatively broad optical bands, one thermal infrared
band, and one broad panchromatic band (Chapter 2). Ideally,
the same sensor system is used to acquire imagery on multi-
ple dates. When this is not possible, the analyst should select
bands that approximate one another. For example, Landsat
MSS bands 4 (green), 5 (red), and 7 (near-infrared) and
SPOT bands 1 (green), 2 (red), and 3 (near-infrared), can be
used successfully with Landsat ETM" bands 2 (green), 3
(red), and 4 (near-infrared). Many of the change detection
algorithms do not function well when bands from one sensor
system do not match those of another sensor system (e.g.,
utilizing the Landsat TM band 1 (blue) with either SPOT or
Landsat MSS data may not be wise).

Radiometric Resolution K

An analog-to-digital conversion of the satellite remote sen-
sor data usually results in 8-bit brightness values ranging
from 0 to 255 (Table 2-2). Ideally, the sensor systems collect
the data at the same radiometric precision on both dates.
When the radiometric resolution of data acquired by one
system (e.g., Landsat MSS 1 with 6-bit data) is compared
with data acquired by a higher radiometric resolution instru-
ment (e.g., Landsat TM with 8-bit data), the lower-resolu-
tion data (e.g., 6 bits) should be decompressed to 8 bits for
change detection purposes. The precision of decompressed

Steps Required to Perform Change Detection

brightness values can never be better than the original, non-
compressed data. Ideally, the brightness values associated
with both dates of imagery are converted to apparent surface
reflectance, which eliminates the problem.

Environmental Considerations of Importance When
Performing Change Detection

Failure to understand the impact of various environmental
characteristics on the remote sensing change detection pro-
cess can lead to inaccurate results. When performing change
detection, it is desirable to hold environmental variables as
constant as possible.

Atmospheric Conditions

There should be no clouds (including stratus) or extreme
humidity on the days that remote sensing data are collected.
Even a thin haze can alter spectral signatures in satellite
images enough to create the false impression of spectral
change between two dates. Obviously, 0% cloud cover is
preferred for satellite imagery and aerial photography. At the
upper limit, cloud cover >20% is usually unacceptable. It
should also be remembered that clouds not only obscure ter-
rain, but the cloud shadow also causes major image classifi-
cation problems. Areas obscured by clouds or affected by
cloud shadow will filter through the entire change detection
process, limiting the utility of the change detection product.
Therefore, analysts must use good judgment in evaluating
such factors as the specific locations affected by cloud cover
and shadow and the availability of timely surrogate data for
obscured areas. Substituting information derived from the
interpretation of aerial photography for a cloud-shrouded
area might be an option. Even when the stated cloud cover is
0%, it is advisable to browse the proposed image to confirm
the cloud cover estimate.

Assuming no cloud cover, the use of anniversary dates helps
to ensure general, seasonal agreement between the atmo-
spheric conditions on the two dates. However, if dramatic
differences exist in the atmospheric conditions on the z dates
of imagery to be used in the change detection process, it may
be necessary to remove the atmospheric attenuation in the
imagery. Radiative transfer-based atmospheric correction
algorithms may be used to radiometrically correct the
remote sensor data (Kim and Elman; 1990; Song et al.,
2001). For mountainous areas, topographic effects may also
have to be removed (Civco, 1989). If it is not possible to per-
form an absolute radiometric correction, then image-to-
image normalization might be a viable alternative as dis-
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cussed in Chapter 6 (Eckhardt et al., 1990; Jensen et al.,
1995; Du et al., 2002).

Soil Moisture Conditions

Ideally, the soil moisture conditions should be identical for
the » dates of imagery used in a change detection project.
Extremely wet or dry conditions on one of the dates can
cause serious change detection problems. Therefore, when
selecting the remotely sensed data to be used for change
detection, it is very important not only to look for anniver-
sary dates, but also to review precipitation records to deter-
mine how much rain or snow fell in the days and weeks prior
to remote sensing data collection. When soil moisture differ-
ences between dates are significant for only certain parts of
the study area (perhaps due to a local thunderstorm), it may
be necessary to stratify (cut out) those affected areas and
perform a separate change detection analysis, which can be
added back in the final stages of the project.

Phenological Cycle Characteristics

Natural ecosystems go through repeatable, predictable
cycles of development. Human beings often modify the
landscape in repeatable, predictable stages. These cycles of
predictable development are often referred to as phenome-
nological or phenological cycles. Image analysts use these
cycles to identify when remotely sensed data should be col-
lected to obtain the maximum amount of usable change
information. Therefore, analysts must be intimately familiar
with the biophysical characteristics of the vegetation, soils,
and water constituents of ecosystems and their phenological
cycles. Likewise, it imperative that they understand the phe-
nological cycles associated with human-made development,
such as residential expansion at the urban/rural fringe.

Vegetation Phenology: Vegetation grows according to rel-
atively predictable diurnal, seasonal, and annual phenologi-
cal cycles. Obtaining near-anniversary images greatly mini-
mizes the effects of seasonal phenological differences that
may cause spurious change to be detected in the imagery.
When attempting to identify change in agricultural crops, the
analyst must be aware of when the crops were planted. Ide-
ally, monoculture crops (e.g., corn, wheat) are planted at
approximately the same time of year on the two dates of
imagery. A month lag in planting date between fields of the
same crop can cause serious change detection error. Second,
the monoculture crops should be the same species. Different
species of a crop can cause the crop to reflect energy differ-
ently on the multiple dates of anniversary imagery. In addi-
tion, changes in row spacing and direction can have an
impact. These observations suggest that the analyst must
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Figure 12-2 Yearly phenological cycle of cattails and waterlilies in Par Pond, SC.

know the crop’s biophysical characteristics as well as the
cultural land-tenure practices in the study area so that the
most appropriate remotely sensed data can be selected for
change detection.

Natural vegetation ecosystems such as wetland aquatic
plants, forests, and rangeland have unique phenological
cycles. For example, consider the phenological cycle of cat-
tails and waterlilies found in lakes in the southeastern United
States (Figure 12-2). Cattails persist year round in lakes and
are generally found in shallow water adjacent to the shore
(Jensen et al., 1993b). They begin greening up in early April
and often have a full, green canopy by late May. Cattails
senesce in late September to early October, yet they are
physically present and appear brown through the winter
months. Conversely, waterlilies and other nonpersistent spe-
cies do not live through the winter. They appear at the outer-
most edge of the cattails in early May and reach full emer-
gence 6 to 8 weeks later. The waterlily beds usually persist
above water until early November, at which time they disap-
pear. The phenological cycles of cattails and waterlilies dic-
tate the most appropriate times for remote sensing data
acquisition. The spatial distribution of cattails is best derived
from remotely sensed data acquired in the early spring

(April or early May) when the waterlilies have not yet devel-
oped. Conversely, waterlilies do not reach their full develop-
ment until the summer, thus dictating late summer or early
fall as a better period for remote sensing data acquisition and
measurement. It will be shown later in this chapter that
SPOT panchromatic imagery collected in April and October
of most years may be used to identify change in the spatial
distribution of these species in southeastern lakes.

Urban—Suburban Phenological Cycles: Urban-suburban
landscapes also have phenological cycles. For example, con-
sider the residential development from 1976 to 1978 in the
6-mi2 portion of the Fitzsimmoéns 7.5-minute quadrangle
near Denver, CO. Aerial photographs obtained on October 8,
1976, and October 15, 1978, reveal dramatic changes in the
landscape (Figures 12-3). Most novice image analysts
assume that change detection in the urban—rural fringe will
capture the residential development in the two most impor-
tant stages: rural undeveloped land and completely devel-
oped residential. Jensen (1981) identified 10 stages of resi-
dential development taking place in this region based on
evidence of clearing, subdivision, transportation, buildings,
and landscaping (Figure 12-4). The remotely sensed data
will most likely capture the development in all 10 stages of
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a. October 8,A1ﬂ976.

Residential Development near Denver, CO, from October 8, 1976 to October 15, 1978
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b. October 15, 1978.

“ Figure 12-3 a) Panchromatic aerial photograph of a portion of the Fitzsimmons 7.5-minute quadrangle near Denver, CO, on October 8§,
1976. The original scale was 1:52,800. The land cover was visually photo-interpreted and classified into 10 classes of residen-
tial development using the logic shown in Figure 12-4. b) Panchromatic aerial photograph of a portion of the Fitzsimmons 7.5-
minute quadrangle on October 15, 1978. The original scale was 1:57,600. Comparison with the 1976 aerial photograph reveals
substantial residential land development since October 8, 1976.

_development. Many of these stages may appear spectrally
-similar to other phenomena. For example, it is possible that
_stage 10 pixels (subdivided, paved roads, building, and com-~
f pletely landscaped) may look exactly like stage 1 pixels
(original land cover) in multispectral feature space if a rela-

tively coarse spatial resolution sensor system such as the

iLandsat MSS (79 X 79 m) is used. This can cause serious
_change detection problems. Therefore, the analyst must be
intimately aware of the phenological cycle of all urban phe-

‘nomena being investigated, as well as the natural ecosys-
tems.

Effects of Tidal Stage on Change Detection

Tidal stage is a crucial factor when conducting change detec-
tion in the coastal zone. Ideally, the tidal stage is identical on
multiple-date images used for change detection. Sometimes
this severe constraint can rule out the use of satellite remote
sensing systems that cannot collect data off-nadir to meet the
stringent tidal requirements. In such cases, the only way to
obtain remote sensor data in the coastal zone that meets the
stringent tidal requirements is to use suborbital sensors that
can be flown at the exact time required. For most regions,
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Dichotomous Key Used to Identify Progressive Stages of Residential Development
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Figure 12-4 Dichotomous key used to identify progressive stages of residential development. Such development in Denver, CO, normally
begins by clearing the terrain of vegetation prior to subdivision. In many geographic areas, such as the eastern and southeastern
United States, however, some natural vegetation is usually left as landscaping. The absence or existence of natural vegetation
dramatically affects the range of signatures that a parcel of land undergoes as it progresses from natural vegetation (1) to fully

landscaped residential housing (10).

images to be used for change detection acquired at mean low
tide (MLT) are preferred, 1 or 2 ft above MLT are accept-
able, and 3 ft or more are generally unacceptable (Jensen et
al., 1993a).

| Selection of a Change Detection
=4 Algorithm

The selection of an appropriate change detection algorithm is
very important (Jensen et al., 1995; 2002). First, it will have
a direct impact on the type of image classification to be per-
formed (if any). Second, it will dictate whether important

“from-to” change information can be extracted from the
imagery. Many change detection projeets require that “from—
to” information be readily available in the form of maps and
tabular summaries. Change detection algorithms commonly
used include:

» write function memory insertion

» multi-date composite image

image algebra (e.g., band differencing, band ratioing)

* post-classification comparison

Selection of a Change Detection Algorithm

* binary mask applied to date 2

» ancillary data source used as date 1
* spectral change vector analysis

* chi-square transformation

* cross-correlation

* visual on-screen digitization

» knowledge-based vision systems.

It is instructive to review these change detection alternatives
and provide specific examples where appropriate.

Change Detection Using Write Function Memory
Insertion

A simple yet powerful method of visual change detection
involves the use of the three write function memory (WFM)
banks found on the graphics card of every digital image pro-
cessing system (see Chapters 3 and 5). Basically, individual
bands (or derivative products) from multiple dates may be
inserted into each of the three WFM banks (red, green, or
blue) (Figure 12-5) to identify change in the imagery. To
appreciate the technique, consider the change that has taken
place on the shoreline of Lake Mead, NV. Lake Mead’s
watershed had experienced a severe drought for the past 5
years, resulting in a significant drawdown of the lake. Figure
12-6a depicts Landsat ETM" imagery (band 4; 0.75 — 0.90
um) obtained on May 3, 2000. Figure 12-6b is an ASTER
image (band 3; 0.76 — 0.86 um) of the same geographic area
obtained on April 19, 2003. Color versions of these two
images are found in Celor Plate 12-1a,b. Note that both
datasets record approximately the same near-infrared radiant
flux and that the images are within 14 days of being anniver-
sary dates. The ETM* and ASTER images were resampled
to 30 X 30 m (nearest-neighbor; RMSE + 0.5 pixel).

It is possible using write function memory insertion to view
multiple dates of registered imagery at one time on the dis-
play screen to highlight changes. For example, Color Plate
12-1c is a WFM insertion change detection that highlights
the land exposed by the drawdown of Lake Mead. It was
produced by placing the 2003 ASTER image (band 3; 0.76 —
0.86 um) in the red image plane and the 2000 ETM" image
(band 4; 0.75 — 0.90 pm) in both the green and blue memory
planes, respectively. The result is a dramatic display of the
area that has changed from 2000 to 2003 highlighted in red.
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Write Function Memory Insertion
Change Detection
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Figure 12-5 Advantages and disadvantages of write function
memory insertion change detection.

Placing the 2003 ASTER image in the green function mem-
ory plane and the 2000 ETM" data in the red and blue image
memory planes results in the change being displayed in
shades of green (not shown).

WEM insertion may be used to visually examine virtually
any type of registered, multiple-date information. For exam-
ple, Franklin et al. (2002) placed Landsat TM Kauth-Tho-
mas wetness index images from different years in the red,
green, and blue function memories to visually highlight for-
est structure changes.

Advantages of write function memory insertion change
detection include the possibility of looking at two and even
three dates of remotely sensed imagery (or derivative prod-
ucts) at one time. Also, it is generally not necessary to atmo-
spherically correct the remote sensor data used in write func-
tion memory insertion (unless the data are NDVI-related).
Unfortunately, the technique does not provide quantitative
information on the amount of hectares changing from one
land-cover category fo another. Nevertheless, it is an excel-
lent analog method for qualitatively assessing the amount of
change in a region, which might help with the selection of
one of the more quantitative change detection techniques.

Multidate Composite Image Change Detection

Numerous researchers have rectified multiple dates of
remotely sensed imagery (e.g., selected bands of two
IKONOS scenes of the same region) and placed them in a
single dataset (Figure 12-7). This composite dataset can then
be analyzed in a number of ways to extract change informa-
tion. First, a traditional classification using all » bands (six in
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Multiple-Date Composite Image Change Detection
Based on Principal Components Analysis

Lake Mead, NV, dataset consists of
* Landsat ETMT data obtained on May 3, 2000 (bands 2, 3, 4)
* ASTER data obtained on April 19, 2003 (bands 1, 2, 3)

“bPrincipal component 2. ‘ Principal component 3.

cipal component 5. f. Principal component 6.

Figure 12-8 Principal components derived from a multiple-date dataset consisting of Landsat ETM" and ASTER imagery. Principal com-
ponent 2 contains change information. The first three principal components were placed in various write function memory
banks to highlight more subtle changes, as shown in Color Plate 12-2.
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Lake Mead, Nevada

a. Landsat ETM+ band 4 (NIR) May 3, 2000.

CHAPTER 1 2 Digital Change Detection

b. ASTER band 3 (NIR) April 19, 2003.

Figure 12-6 a) Landsat ETM" imagery of a portion of Lake Mead in Nevada obtained on May 3, 2000. b) ASTER data of Lake Mead ob-
tained on April 19, 2003 (images courtesy NASA Earth Observatory).

the example in Figure 12-7) may be performed. Unsuper-
vised classification techniques will result in the creation of
change and no-change clusters. The analyst must then label
the clusters accordingly.

Other researchers have subjected the registered composite
image dataset to principal component analysis (PCA) to
detect change (Fung and LeDrew, 1988; Eastman and Fulk,
1993; Bauer et al., 1994; Yuan and Elvidge, 1998; Maas,
1999). A PCA based on variance-covariance matrices or a
standardized PCA based on analysis of correlation matrices
is then performed. This results in the computation of eigen-
values and factor loadings used to produce a new, uncorre-
lated PCA image dataset. The major components of the
derived PCA dataset tend to account for variation in the
image data that is not due to land-cover change, and they are
termed stable components. Minor components tend to
enhance spectral contrasts between the two dates, and they
are termed change components (Collins and Woodcock,
1996). The difficulty arises when trying to interpret and

Multiple-date Composite Image Change Detection

1
% IKONOS bands

> TKONOS bands
3

6 Principal

. components
Traditional

classification

Advantages

Disadvantages
* Requires single classification * Difficult to label change classes

* Does not normally require

* Little “from—to” change class
atmospheric correction

information available

Figure 12-7 Diagram of multiple-date composite image change
detection.

TR
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label each component image. Nevertheless, the method is of
value and is used frequently. The advantage of this technique
is that data do not have to be atmospherically corrected and
only a single classification is required. Unfortunately, it is
often difficult to label the change classes, and from—to
change class information may not be available.

An example of a multiple-date composite image change
detection is shown in Figure 12-8. The two three-band Lake
Mead, NV, datasets (Landsat ETM* and ASTER) were
merged into a single six-band dataset and subjected to a prin-
cipal components analysis. This resulted in the creation of
the six principal component images shown in Figure 12-8.
Note that principal component 2 is a change component
image (Figure 12-8b) containing detailed information about
the area exposed by the lake drawdown. More subtle change
information can be visually extracted from the multiple-date
component dataset by placing the first three principal com-
ponents in various write function memory banks, as shown
in Color Plate 12-2.

Image Algebra Change Detection

It is possible to identify the amount of change between two
rectified images by band ratioing or image differencing
(Green et al., 1994; Maas, 1999; Song et al., 2001). Image
differencing involves subtracting the imagery of one date
from that of another (Figure 12-9). If the two images have
almost identical radiometric characteristics (i.e., the data
have been normalized or atmospherically corrected), the
subtraction results in positive and negative values in areas of
radiance change and zero values in areas of no change. The
results are stored in a new change image. When 8-bit data
are analyzed in this manner, the potential range of difference
values found in the change image is —255 to 255 (Figure 12-
10). The results can be transformed into positive values by
adding a constant, ¢ (e.g., 127). The operation is expressed
as:

ABVj = BVy(1) ~ BV(2) + (12-1)
where
ABV ;= change pixel value
BV(1) = brightness value on date 1
BV;;(2) = brightness value on date 2

¢ = a constant (e.g., 127)

i = line number

j = column number

k = a single band (e.g., IKONOS band 3).

The change image produced using image differencing usu-
ally yields a BV distribution approximately Gaussian, where
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Rectified Thematic
Mapper bands
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Image Differencing Change Detection:
Scaling Alternatives and Placement of User-specified
Thresholds in the Change Image Histogram

n

User-specified
change/no change
threshold

Pixels that :
changed
substantially
between
dates

Frequency

0
® Floating point —~ -255
@ Rescaled to integer —#=0

Pixels that
did not change
much between
dates hover
; about the mean
! and are often
{ displayed in
i shades of gray

255
255

Change Image Output Value

Figure 12-10 Image differencing change detection using two dates of 8-bit remote sensor data results in an output change image that can
range from —255 to 255. The entire data range may be preserved if the data are stored in floating point format. The data may
also be rescaled to 8-bit (0 to 255) data using Equation 12-1 and a constant. Pixels that had approximately the same brightness
value (or reflectance if the data were radiometrically corrected) on both dates will produce change image pixel values that

* Efficient method of identifying
pixels that have changed in

Advantages Disadvantages
* Normally does not require * No “from—to” change
atmospheric correction information available

* Requires careful selection of the
“change/no change” threshold

hover around 0 or 127, depending upon the scaling. Pixel values that changed dramatically between the two dates will show
up in the tails of the change image histogram. Analysts can highlight certain types of change by identifying thresholds in one
or both of the tails in the change image. The user-specified thresholds are usually not symmetrical about the mean.

brightness value between dates

Figure 12-9 Diagram of image algebra change detection.

pixels of no BV change are distributed around the mean and
pixels of change are found in the tails of the distribution
(Song et al., 2001). It is not necessary to add the constant ¢
in Equation 12-1 if the image differencing output file is
allowed to be floating point, i.e., the differenced pixel values
can range from -255 to 255 (Figure 12-10). Band ratioing
involves exactly the same logic, except a ratio is computed
1

with values ranging from ;L to 255 and the pixels that did

not change have a ratio value of 1-in the change image.

Image differencing change detection will be demonstrated
using two datasets. The first example involves the Landsat
ETM' imagery (band 4; 0.75 — 0:90 1m) obtained on May 3,
2000, and the ASTER imagery (band 3; 0.76 — 0.86 um) of
Lake Mead obtained on April 19, 2003 (Figure 12-11a and
b). These two images were differenced, resulting in the
change image histogram shown in Figure 12-11c. Note that
the change image histogram is symmetrical, suggesting that
one image was histogram-matched to the other. Note that
most of the scene did not change between 2000 and 2003;
therefore, the vast majority of the pixels are found around
the value 0 in the histogram. However, where the lake was
drawn down, exposing bedrock, and where new vegetation
has grown on the exposed terrain has resulted in significant
change documented in the change image in Figure 12-11d.

There are actually two types of change in Figure 12-11d,
bright white and black. All pixels in the change histogram
below the first analyst-specified threshold were assigned
black and all those above the second threshold were
assigned white. The effect is even more dramatic when these
two types of change are color-coded red and green, as shown
in Color Plate 12-1d.

Figure 12-12 depicts the result of performing image differ-
encing on April 26, 1989, and October 4, 1989, SPOT pan-
chromatic imageéry of Par Pond in South Carolina (Jensen et
al., 1993b). The data were rectified, normalized, and masked
using the methods previously described. The two files were
then differenced and a change detection threshold was
selected. The result was a change image showing the water-
lilies that grew from April 26, 1989, to October 4, 1989
highlighted in gray (Figure 12-12c¢). The hectares of water-
lily change are easily computed. Such information is used to
evaluate the effect of various industrial activities on inland
wetland habitat.

A critical element of both image differencing and band ratio-
ing change detection is deciding where to place the threshold
boundaries between “change” and “no-change” pixels dis-
played in the change image histogram. The threshold bound-
aries are rarely known a priori, but have to be found empiri-
cally. Sometimes a standard deviation from the mean is

selected and tested. Conversely, most analysts prefer to
experiment empirically, placing the threshold at various
locations in the tails of the distribution until a realistic
amount of change is encountered (Figures 12-10 and 12-11).
Thus, the amount of change selected and eventually recoded
for display is often subjective and must be based on familiar-
ity with the study area. Unfortunately, image differencing
simply identifies the areas that may have changed and pro-
vides no “from—to” change information. Nevertheless, the
technique is valuable when used in conjunction with other
techniques such as the multiple-date change detection using
a binary change mask.

Differencing Vegetation Index Images: Image differenc-
ing does not have to be based on just the individual bands of
remote sensor data. It may also be extended to comparing
vegetation index information derived from multiple dates of
imagery. For example, scientists have computed a normal-
ized difference vegetation index (NDVI) on two dates and
then subtracted one from another to determine change (Yuan
and Elvidge, 1998; Lyon et al., 1998; Song et al., 2001):

ANDVI,; = NDVI,; (1)~ NDVI,; (2) +c, (12-2)

where

ANDV],; = change in NDVI value
NDVI],; (1) = NDVI value on Date 1
NDVI;(2) =NDVI value on Date 2
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Image Differencing Change Detectio

" a. SPOT panchromatic image April 26, 1989.

?

“b. SPOT panchromatic

meters
P
2000 0 2000

c. Waterlily growth from April 26, 1989, to October 4, 1989,
identified using image differencing change detection.

Figure 12-12  a) Rectified and masked SPOT panchromatic data of Par Pond located on the Savannah River Site in South Carolina ob-
tained on April 26, 1989. b) SPOT panchromatic data of Par Pond located on the Savannah River Site in South Carolina
obtained on October 4, 1989. ¢) A map depicting the change in waterlilies from April 26, 1989, to October 4, 1989, using
image differencing logic (Jensen et al., 1993b).
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Image Differencing Change Detection

Lake Mead, Nevada
2003 ASTER — 2000 ETM™

76814
Change Image
Histogram
-¢— Most of the pixels
in the change image
have a value near 0,
1=1.981 whictqu ;s assigniﬁ a
_ neutral gray in the
0=137.44 output image —-
User-specified ji¢ User-specified
threshold threshold
—<¢— black l l white —~
0+ = | ;
-208 (min) 0 255 (max) i~ = :
¢. Histogram of the floating point image created by d. Image differencing change detection based on
subtracting 2000 ETM™ data from 2003 ASTER Landsat ETMT band 4 May 3, 2000 data and

data. The symmetrical distribution confirms thatthe ~ ASTER band 3 April 19, 2003 data.
images were histogram-matched prior to processing.

Figure 12-11  a) Landsat ETM" imagery of a portion of Lake Mead in Nevada obtained on May 3, 2000. b) ASTER data of Lake Mead
obtained on April 19, 2003. (c) The histogram of a change image produced by subtracting the ETM' 2000 data from the
ASTER 2003 data. d) Map showing the change as a function of the two thresholds identified in the change image histogram.
Values near 0 are shown in shades of gray. Values below the threshold are in black and those above the threshold are in white

(images courtesy NASA Earth Observatory).
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i = line number

j = column number

¢ = a constant.
It is not necessary to use the constant ¢ in Equation 12-2 if
the image differencing output file is allowed to be floating
point. The individual images used to perform NDVI change
detection should be atmospherically corrected. Change
detection based on differencing multiple-date Kauth-Tho-
mas transformations (e.g., change in brightness, greenness,
and/or wetness) have also been widely adopted (Ridd and
Liu, 1998; Franklin et al., 2002).

Post-classification Comparison Change Detection

Post-classification comparison change detection is a heavily
used quantitative change detection method (e.g., Jensen et
al., 1995; 2002; Yuan and Elvidge, 1998; Maas, 1999; Song
et al., 2001; Civco, 2002; Arzandeh and Wang, 2003). It
requires rectification and classification of each remotely
sensed image (Figure 12-13). The two maps are then com-
pared on a pixel-by-pixel basis using a change detection
matrix, to be discussed. Unfortunately, every error in the
individual date classification map will also be present in the
final change detection map (Rutchey and Velcheck, 1994).
Therefore, it is imperative that the individual classification
maps used in the post-classification change detection
method be as accurate as possible (Arzandeh and Wang,
2003).

To demonstrate the post-classification comparison change
detection method, consider the Kittredge (40 river miles
inland from Charleston, SC) and Fort Moultrie, SC, study
areas (Jensen et al., 1993a) (Color Plate 12-3). Nine land-
cover classes were inventoried on each date (Color Plate
12-4). The 1982 and 1988 classification maps were then
compared on a pixel-by-pixel basis using an n X 7 GIS
matrix algorithm whose logic is shown in Color Plate 12-
5a. This resulted in the creation of a change image map con-
sisting of brightness values from 1 to 81. The analyst then
selected specific “from—to” classes for emphasis. Only a
select number of the 72 possible off-diagonal “from-to”
land-cover change classes summarized in the change matrix
(Color Plate 12-5a) were selected to produce the change
detection maps (Color Plate 12-6a and b). For example, all
pixels that changed from any land cover in 1982 to Devel-
oped Land in 1988 were color coded red (RGB = 255, 0, 0)
by selecting the appropriate “from—to” cells in the change
detection matrix (10, 19, 28, 37, 46, 55, 64, and 73). Note
that the change classes are draped over a Landsat TM band 4
image of the study area to facilitate orientation. Similarly, all
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2 Rectified Thematic
2 Mapper bands

Classification map
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Advantages Disadvantages
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atmospheric correction individual date classifications
* Provides “from—to” change * Requires two separate
class information classifications
* Next base year map is

already completed

Figure 12-13 Diagram of post-classification comparison change
detection.

pixels in 1982 that changed to Estuarine Unconsolidated
Shore by December 19, 1988 (cells 9, 18, 27, 36, 45, 54, 63,
and 72), were depicted in yellow (RGB = 255, 255, 0). If
desired, the analyst could highlight very specific changes
such as all pixels that changed from Developed Land to
Estuarine Emergent Wetland (cell 5 in the matrix) by assign-
ing a unique color look-up table value (not shown). A colot-
coded version of the change detection matrix can be used as
an effective “from—to” change detection map legend.

Post-classification comparison change detection is widely
used and easy to understand. When conducted by skilled
image analysts, it represents a viable technique for the cre-
ation of change detection products. Advantages include the
detailed “from—to” information that can be extracted and the
fact that the classification map for the next base year is
already complete (Arzandeh and Wang, 2003). However, the
accuracy of the change detection depends on the accuracy of
the two separate classification maps.

Se¢
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i = line number

j = column number

¢ = a constant.
It is not necessary to use the constant ¢ in Equation 12-2 if
the image differencing output file is allowed to be floating
point. The individual images used to perform NDVI change
detection should be atmospherically corrected. Change
detection based on differencing multiple-date Kauth-Tho-
mas transformations (e.g., change in brightness, greenness,
and/or wetness) have also been widely adopted (Ridd and
Liu, 1998; Franklin et al., 2002).

Post-classification Comparison Change Detection

Post-classification comparison change detection is a heavily
used quantitative change detection method (e.g., Jensen et
al., 1995; 2002; Yuan and Elvidge, 1998; Maas, 1999; Song
et al., 2001; Civco, 2002; Arzandeh and Wang, 2003). It
requires rectification and classification of each remotely
sensed image (Figure 12-13). The two maps are then com-
pared on a pixel-by-pixel basis using a change detection
matrix, to be discussed. Unfortunately, every error in the
individual date classification map will also be present in the
final change detection map (Rutchey and Velcheck, 1994).
Therefore, it is imperative that the individual classification
maps used in the post-classification change detection
method be as accurate as possible (Arzandeh and Wang,
2003).

To demonstrate the post-classification comparison change
detection method, consider the Kittredge (40 river miles
inland from Charleston, SC) and Fort Moultrie, SC, study
areas (Jensen et al., 1993a) (Color Plate 12-3). Nine land-
cover classes were inventoried on each date (Color Plate
12-4). The 1982 and 1988 classification maps were then
compared on a pixel-by-pixel basis using an n X n GIS
matrix algorithm whose logic is shown in Color Plate 12-
5a. This resulted in the creation of a change image map con-
sisting of brightness values from 1 to 81. The analyst then
selected specific “from-to” classes for emphasis. Only a
select number of the 72 possible off-diagonal “from—to”
land-cover change classes summarized in the change matrix
(Color Plate 12-5a) were selected to produce the change
detection maps (Color Plate 12-6a and b). For example, all
pixels that changed from any land cover in 1982 to Devel-
oped Land in 1988 were color coded red (RGB = 255, 0, 0)
by selecting the appropriate “from—to” cells in the change
detection matrix (10, 19, 28, 37, 46, 55, 64, and 73). Note
that the change classes are draped over a Landsat TM band 4
image of the study area to facilitate orientation. Similarly, all
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Figure 12-13 Diagram of post-classification comparison change
detection.

pixels in 1982 that changed to Estuarine Unconsolidated
Shore by December 19, 1988 (cells 9, 18, 27, 36, 45, 54, 63,
and 72), were depicted in yellow (RGB = 255, 255, 0). If
desired, the analyst could highlight very specific changes
such as all pixels that changed from Developed Land to
Estuarine Emergent Wetland (cell 5 in the matrix) by assign-
ing a unique color look-up table value (not shown). A color-
coded version of the change detection matrix can be used as
an effective “from—to” change detection map legend.

Post-classification comparison change detection is widely
used and easy to understand. When conducted by skilled
image analysts, it represents a viable technique for the cre-
ation of change detection products. Advantages include the
detailed “from—to” information that can be extracted and the
fact that the classification map for the next base year is
already complete (Arzandeh and Wang, 2003). However, the
accuracy of the change detection depends on the accuracy of
the two separate classification maps.
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Change Detection Using a Binary Change Mask
Applied to Date 2

This method of change detection is very effective. First, the
analyst selects the base image referred to as Date 1 at time .
Date 2 may be an earlier image (» — 1) or a later image (n +
1). A traditional classification of Date 1 is performed using
rectified remote sensor data. Next, one of the bands (e.g.,
band 3 in Figure 12-14) from both dates of imagery is placed
in a new dataset. The two-band dataset is then analyzed
using various image algebra change detection functions
(e.g., band ratio, image differencing) to produce a new
change image file. The analyst usually selects a threshold
value to identify areas of “change” and “no change” in the
new image, as discussed in the section on image algebra
change detection. The change image is then recoded into a
binary mask file consisting of areas that have changed
between the two dates. Great care must be exercised when
creating the “change/no change” binary mask (Jensen et al.,
1993a).The change mask is then overlaid onto Date 2 of the
analysis and only those pixels that were detected as having
changed are classified in the Date 2 imagery. A traditional
post-classification comparison can then be applied to yield
“from-to” change information.

This method may reduce change detection errors (omission
and commission) and provides detailed “from—to” change
class information. The technique reduces effort by allowing
analysts to focus on the small amount of area that has
changed between dates. In most regional projects, the
amount of actual change over a 1- to 5-year period is proba-
bly no greater than 10% of the total area. The method is
complex, requiring a number of steps, and the final outcome
is dependent on the quality of the “change/no change”
binary mask used in the analysis. Nevertheless, this is a very
useful change detection algorithm.

Change Detection Using an Ancillary Data Source as
Date 1

Sometimes there exists a land-cover data source that may be
used in place of a traditional remote sensing image in the
change detection process. For example, the U.S. Fish and
Wildlife Service conducted a National Wetland Inventory
(N'WI) of the United States at 1:24,000 scale. Some of these
data have been digitized. Instead of using a remotely sensed
image as Date 1 in a coastal change detection project, it is
possible to substitute the digital NWI map of the region (Fig-
ure 12-15). In this case, the NWI map is recoded to be com-
patible with the classification scheme being used. Next, Date
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Change Detection Using a
Binary Change Mask Applied to Date 2
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Figure 12-14 Diagram of change detection using a binary
change mask applied to Date 2.

2 of the analysis is classified and then compared on a pixel-
by-pixel basis with the Date 1 information using post-classi-
fication comparison methods. Traditional “from-to” infor-
mation can then be derived.

Advantages of the method include the use of a well-known,
trusted data source (e.g., NWI) and the possible reduction of
errors of omission and commission. Detailed “from—to”
information may be obtained using this method. Also, only a
single classification of the Date 2 image is required. It may
also be possible to update the NWI map (Date 1) with more
current wetland information (this would be done using a GIS
dominate function and the new wetland information found in
the Date 2 classification). The disadvantage is that the NWI
data must be digitized, generalized to be compatible with a
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end points through n-dimensional change space (Michalek et

Spectral Change Vector Analysis
al., 1993):

Change Detection Using an
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Figure 12-15 Diagram of change detection using ancillary data
source as Date 1.

classification scheme, and then converted from vector to ras-
ter format to be compatible with the raster remote sensor
data. Manual digitization and subsequent conversion intro-
duce error into the database, which may not be acceptable
(Lunetta et al., 1991).

Spectral Change Vector Analysis

When land undergoes a change or disturbance between two
dates, its spectral appearance normally changes. For exam-
ple, consider the red and near-infrared spectral characteris-
tics of a single pixel displayed in two-dimensional feature
space (Figure 12-16a). It appears that the land cover associ-
ated with this particular pixel has changed from Date 1 to
Date 2 because the pixel resides at a substantially different
location in the feature space on Date 2. The vector describ-
ing the direction and magnitude of change from Date 1 to
Date 2 is a spectral change vector (Malila, 1980; Chen et al.,
2003). The total change magnitude per pixel (CM,) is
computed by determining the Euclidean distance between

tion for each pixel is specified by whether the change is pos-
itive or negative in each band. Thus, 2" possible types of
changes can be determined per pixel (Virag and Colwell,
1987). For example, if three bands are used there are 2* or 8
types of changes or sector codes possible (Table 12-1). To
demonstrate, let us consider a single registered pixel mea-
sured in three bands (1, 2, and 3) on two dates. If the change
in band 1 was positive (€.8., BV} i(date 2) = 455 BV 1date 1) =
38; BV jpange = 45 — 38 = 7), and the change in band 2 was
positive (e'g'a BVi,j,Z(date2) = 203 BVI’,j,Z(datel) = 10; BVchange =
20 — 10 = 10), and the change in band 3 was negative (e.g.,
BV 3(aate2) = 255 BV j3(dater) = 305 BV change = 25 — 30 =-3),
then the change magnitude of the pixel would be CM;, =
72+ 10% — 5% = 174, and the change sector code for this pixel
would be “+, +, = and have a value of 7, as shown in Table
12-1 and Figure 12-17. For rare instances when pixel values
do not change at all between the two dates, a default direc-
tion of + may be used to ensure that all pixels are assigned a
direction (Michalek et al., 1993).

Change vector analysis outputs two geometrically registered
files; one contains the sector code and the other contains the
scaled vector magnitudes. The change information may be
superimposed onto an image of the study area with the
change pixels color-coded according to their sector code.
This multispectral change magnitude image incorporates
both the change magnitude and direction information (Fig-
ure 12-16a). The decision that a change-has occurred is made
if a threshold is exceeded (Virag and €olwell, 1987). The
threshold may be selected by examining deep-water areas (if
present), which should be unchanged, and recording their
scaled magnitudes from the change vector file. Figure 12-
16b illustrates a case in which no change would be detected
because the threshold is not exceeded. Conversely, change
would be detected in Figures 12-16¢ and d because the
threshold was exceeded. The other half of the information
contained in the change vector, that is, its direction, is also
shown in Figure 12-16¢ and d. Direction contains informa-
tion about the type of change. For example, the direction of
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for subdivision)
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Classification map of Date 2 A scale factor (e.g.,. 5) can be z?pphe'd to each band to mag-
nify small changes in the data if desired. The change direc-
Red Reflectance

Change (e.g., regrowth
of vegetation)

hd Date 2

Date User threshold Daie::
Red Reflectance Red Reflectance Red Reflectance
b. d.

Figure 12-16  Schematic diagram of the spectral change detection method.

change due to clearing should be different from change due
to regrowth of vegetation.

Change vector analysis has been applied successfully to for-
est change detection in northern Idaho (Malila, 1980) and for

‘monitoring changes in mangrove and reef ecosystems along

the coast of the Dominican Republic (Michalek et al., 1993).
It is the change detection algorithm of choice for producing
the MODIS Vegetative Cover Conversion (VCC) product
being compiled on a global basis using 250 m surface reflec-
tance data (Zhan et al., 2002). The method is based on mea-
suring the change in reflectance in just two bands, red
(Ap,q) and near-infrared (Ap;), between two dates and

* using this information to compute the change magnitude per

pixel,
2 2
CMpixel = A/ZApred) + (Apmr) (12-4)
and change angle (0):

Table 12-1. Sector code definitions for change vector analysis
using three bands (+ indicates pixel value increase
from Date 1 to Date 2; — indicates pixel value de-
crease from Date 1 to Date 2) (Michalek et al.,
1993).

Change Detection

Sector

Code Band 1 Band 2

Band 3
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Spectral Change Vector Analysis

Figure 12-17 = Possible change sector codes for a pixel mea-
sured in three bands on two dates.

arctan ( Ap

(12-5)

pixel — ]
nir

The change magnitude and angle information is then ana-
lyzed using decision-tree logic to identify important types of
change in the multiple-date MODIS imagery (Zhan et al.,
2002). Chen et al. (2003) developed an improved change
vector analysis methodology that assists in the determination
of the change magnitude and change direction thresholds
when producing land-cover change maps.

Chi-square Transformation Change Detection

Ridd and Liu (1998) introduced a chi-square transformation
change detection algorithm. It will work on any type of
imagery but let us for the moment apply it to six bands of
Landsat TM data obtained on two dates. The chi-square
transformation is:

Yiixel = (X= M X -M (12-6)

where Y, is the digital value of the pixel in the output
change image, X is the vector of the difference of the six dig-
ital values between the two dates for each pixel, M is the
vector of the mean residuals of each band for the entire
image, T is the transverse of the matrix, and ! is the
% inverse covariance matrix of the six bands between the two
| dates. The usefulness of the transformation in this context
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rests on the fact that Y is distributed as a chi-square random
variable with p degrees of freedom where p is the number of
bands. ¥ = 0 represents a pixel of no change. The user creates
the output change image and highlights pixels with varying
amounts of ¥,

Cross-correlation Change Detection

Cross-correlation change detection makes use of an existing
Date 1 digital land-cover map and a Date 2 unclassified mul-
tispectral dataset (Koeln and Bissonnette, 2000). The Date 2
multispectral dataset does not need to be atmospherically
corrected or converted to percent reflectance: the original
brightness values are sufficient. Several passes through the
datasets are required to implement cross-correlation change
detection. First, every pixel in the Date 1 land-cover map
associated with a particular class ¢ (e.g., forest) out of m pos-
sible classes is located in the Date 2 multispectral dataset
(Figure 12-18). The mean (u,;) and standard deviation (G,,)
of all the brightness values in each band £ in the Date 2 mul-
tispectral dataset associated with class ¢ (e.g., forest) in the
Date 1 land-cover map are computed. Next, every pixel
(BV}) in the Date 2 scene associated with class ¢ is com-
pared with the mean (U ) and divided by the standard devi-
ation (o). This value is summed and squared over all &
bands. This is performed for each class. The result is a Z-
score associated with each pixel in the scene:

n (BV—n,)?
Z. = Z(—J" “k} (12-7)
1

ije
k= Ca

where

Z, is the Z-score for a pixel at location i,/ in the Date 2
multispectral dataset associated with a particular class ¢
found in the Date 1 land-cover map;

c is the Date 1 land-cover claSZéjunder investigation,

n is the number of bands in the Date 2 multispectral
image;

k is the band number in the Date 2 multispectral image;

BV is the brightness value of a pixel (or reflectance) at
location i,j in band k of the Date 2 multispectral dataset
associated with a particular class found in the Date 1
land-cover map;
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Cross-correlation Change Detection

Date 1 land-cover map derived using in
situ or remote sensing data. Each pixel in
class ¢ of m possible classes in Date 1 is
located in Date 2.

2
Date 2 5> 3 Remote sensor data consisting of £ bands
4

Mean and standard deviation of pixels in &
bands in Date 2 associated with each class
¢ in the Date 1 land-cover map are used to
compute a Z-score for each pixel in Date 2.

File containing Z-scores for each pixel

A threshold can be applied to create a
¢ “change/no change” map.

Advantages Disadvantages
* Not necessary to atmospherically * Depends on quality of
correct or normalize Date 2 image data ~ Date 1 classification
* Requires a single classification * Does not provide “from—to”
change class information

Figure 12-18 Diagram of cross-correlation change detection.

WU, is the mean of all pixel brightness values found in
band k& of the Date 2 multispectral dataset associated
with a particular class ¢ in the Date 1 land-cover map;

O, 1s the standard deviation of all pixel brightness values
found in band & of the Date 2 multispectral dataset asso-
ciated with a particular class ¢ in the Date 1 land-cover
map.

The mean (u,,) and standard deviation (c,;) values derived
from the cross-correlation of a Date 1 four-class land-cover
map with a Date 2 three-band multispectral dataset would be
stored in a table like Table 12-2 and used in Equation 12-7.

The Z-statistic describes how close a pixel’s response is to
the expected spectral response of its corresponding class
value in the land-cover map (Civco et al., 2002). In the out-
put file, the greater the Z-score of an individual pixel, the
greater the probability that its land cover has changed from
Date 1 to Date 2. If desired, the image analyst can examine
the Z-score image file and select a threshold that can be used
to identify all pixels in the scene that have changed from
Date 1 to Date 2. This information can be used to prepare a
“change/no change” map of the area.

Advantages associated with cross-correlation change detec-
tion include the fact that it is not necessary to perform an
atmospheric correction on any dataset. It also eliminates the

Table 12-2. Hypothetical mean and standard deviations associ-
ated with a cross-correlation change detection anal-
ysis of a Date 1 land-cover map with four classes
and a Date 2 multispectral image that contains three
bands.

Land Cover
Class Band 1

Band 2 Band 3

G2 MHz3 O

4 Ber  Ogr Hgz Og2 Mgz  Oys

problems associated with phenological differences between
dates of imagery. Unfortunately, this change detection
method is heavily dependent upon the accuracy of the Date
1 land-cover classification. If it has serious error, then the
cross-cotrelation between Date 1 and Date 2 will contain
error. Every pixel in the Date 1 land-cover map must be
assigned to a class. The method does not produce any
“from-to” change detection information.

Knowledge-based Vision Systems for Detecting
Change

The use of expert systems to detect change automatically in
an image with very little human interaction is still in its in-
fancy. In fact, most scientists attempting to develop such sys-
tems have significant human intervention and employ many
of the aforementioned change detection algorithms in the
creation of a knowledge-based change detection vision sys-
tem. For example, Wang (1993) used a preprocessor to (1)
perform image differencing, (2) create a change mask (using
principal components analysis), (3) perform automated
fuzzy supervised classification, and (4) extract attributes.
Possible urban change areas were then passed to a rule-based
interpreter, which produced a change image.

Visual On-screen Change Detection and Digitization

A considerable amount of high-resolution remote sensor
data is now available (e.g., IKONOS and QuickBird 1 x 1 m,
U.S.GS. National Aerial Photography Program). Much of
these data are being rectified and used as planimetric base
maps or orthophotomaps. Often the aerial photography data
are scanned (digitized) at high resolutions into digital image
files (Light, 1993). These photographic datasets can then be
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registered to a common base map and compared to identify
change. Digitized high-resolution aerial photography dis-
played on a CRT screen can be easily interpreted using stan-
dard photo interpretation techniques and the fundamental
elements of image interpretation including size, shape,
shadow, texture, etc. (Jensen, 2000). Therefore, it is becom-
ing increasingly common for analysts to visually interpret
both dates of aerial photography (or other type of remote
sensor data) using heads-up on-screen digitizing and to com-
pare the various images to detect change. The process is
especially easy when 1) both digitized photographs (or
images) are displayed on the CRT at the same time, side by
side, and 2) they are topologically linked through object-ori-
ented programming so that a polygon drawn around a fea-
ture on one photograph will also be drawn around the same
object on the other photograph.

A good example of this methodology is shown in Figure 12-
19. Hurricane Hugo with its 135-mph winds and 20-ft. storm
surge struck the South Carolina coastline near Sullivan’s
Island on September 22, 1989. Vertical black-and-white
aerial photographs obtained on July 1, 1988, were scanned at
500 dots per inch resolution using a Zeiss drum microdensi-
tometer, rectified to the South Carolina State Plane Coordi-
nate System, and resampled to 0.3 x 0.3 m pixels (Figure 12-
19a). Aerial photographs acquired on October 5, 1989, were
digitized in a similar manner and registered to the 1988 dig-
ital database (Figure 12-19b). Image analysts then per-
formed on-screen digitization to identify the following fea-
tures (Figure 12-20):

* buildings with no damage

* buildings partially damaged

¢ buildings completely damaged

* buildings that were moved

» buildings that might not be able to be rebuilt because they
fell within certain SC Coastal Council beachfront manage-
ment setback zones (base, 20-year, and 40-year)

« areas of beach erosion due to Hurricane Hugo

» areas of beach accretion due to Hurricane Hugo.

Digital classification of the digitized aerial photography on

each date, performing image arithmetic (image differencing

or band ratioing), or even displaying the two dates in differ-
ent function memories did not work well for this type of
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data, The on-screen digitization procedure was the most use-
ful for identifying housing and geomorphological change
caused by Hurricane Hugo.

On-screen photo interpretation of digitized aerial photogra-
phy, high-resolution aircraft multispectral scanner data, or
high-resolution satellite data (e.g., SPOT panchromatic
10 x 10 m; QuickBird panchromatic 61 x 61 cm) is becom-
ing very important for correcting or updating urban infra-
structure databases. For example, the Bureau of the Census
TIGER files represent a major resource for the development
of GIS databases. For several reasons, the Bureau of the
Census was forced to make a number of compromises dur-
ing the construction of these nationwide digital cartographic
files. As a result, the users of these files must develop their
own procedures for dealing with some of the geometric
inconsistencies in the files. One approach to solving these
problems is to use remotely sensed image data as a source of
current and potentially more accurate information (Cowen et
al., 1991). For example, Figure 12-21a depicts U.S. Bureau
of the Census TIGER road information draped over SPOT
10 x 10 m panchromatic data of an area near Irmo, SC. Note
the serious geometric errors in the TIGER data. An analyst
used heads-up, on-screen digitizing techniques to move
roads to their proper planimetric positions and to add
entirely new roads to the TIGER ARC-Info database (Figure
12-21b). All roads in South Carolina were updated using this
type of logic and SPOT panchromatic data.

Finally, it is sometimes useful to simply visually examine
multiple dates of remotely sensed imagery to appreciate pro-
cesses at work. For example, consider the change in the Aral
Sea in Kazakhstan from 1973 to 2000. The shoreline for a
portion of the Aral Sea recorded by the Landsat MSS in
1973 and 1987 and the Landsat ETM" in 2000 is shown in
Color Plate 12-7.

The Aral Sea is actually a lake, a body of fresh water. Unfor-
tunately, more than 60 percent of the lake has disappeared in
the last 30 years. Farmers and state-offices in Uzbekistan,
Kazakhstan, and Central Asian states*began diverting river
water to the lake in the 1960s to irrigate cotton fields and rice
paddies. In 1965, the Aral Sea received about 50 cubic kilo-
meters of fresh water per year—a number that fell to zero by
the early 1980s. Concentrations of salts and minerals began
to rise in the lake. The change in chemistry led to alterations
in the lake’s ecology, causing precipitous drops in the fish
population. The commercial fishing industry employed
60,000 people in the early 1960s. By 1977, the fish harvest
was reduced by 75 percent, and by the early 1980s the com-
mercial fishing industry was gone.
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Figure 12-19

Hurricane Hugo Impacts Sullivan’s Island, SC, in 1989

b. Post-Hurricane Hugo orthophoto October 5, 1989.

a) Panchromatic orthophotomap of Sullivan’s Island, SC, obtained on July 1, 1988, prior to Hurricane Hugo. The data were
rectified to State Plane Coordinates and resampled to 0.3 X 0.3 m spatial resolution. b) Panchromatic aerial photograph of
Sullivan’s Island obtained on October 5, 1989, after Hurricane Hugo. The data were rectified to State Plane Coordinates and
resampled to 0.3 x 0.3 m spatial resolution.
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a. ified SPOT 10 x 10 m panchromatic data
of an area near Irmo, SC, overlaid with the TIGER
road network.

b. Adjustment of the TIGER road network using
visual on-screen digitization.
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Figure 12-21 a) U.S. Bureau of the Census TIGER road network data overlaid on SPOT 10 x 10 m panchromatic data of an area near Irmo,
SC. b) Correction of the TIGER data based on visual on-screen movement of roads in error and digitization of entirely new

roads.

Environmental experts agree that the current situation can-
not be sustained. Yet, driven by poverty and their depen-
dence upon exports, officials in the region have failed to take
any preventive action, and the Aral Sea continues to shrink
(NASA Aral Sea, 2004).

- Atmospheric Correction for Change

: -
W Detection

Now that many of the most widely adopted change detection
algorithms have been identified, it is useful to provide some
general guidelines about when it is necessary to atmospheri-
cally correct the individual dates of imagery used in the
change detection process.

When Atmospheric Correction Is Necessary

Atmospheric correction of multiple-date remote sensor data
is required when the individual date images used in the
change detection algorithm are based on linear transforma-
tions of the data, e.g., a normalized difference vegetation
index image is produced for Date 1 and Date 2. The additive
effects of the atmosphere on each date contaminate the

NDVI values and the modification is not linear (Song et al.,
2001). Contributions from the atmosphere to NDVI values
are significant and can amount to 50% or more over thin or
broken vegetation cover (McDonald et al., 1998; Song et al.,
2001). Similarly, the imagery should be atmospherically cor-
rected if the change detection is based on multiple-date red/
near-infrared ratioed images (e.g., Landsat TM 4/TM 3).
This suggests that it may be necessary to normalize or atmo-
spherically correct the multiple-date imagery used to com-
pute the linearly transformed data (e.g., NDVI) when the
goal is to identify biophysical change characteristics through
time rather than just land-cover change through time (Yuan
and Elvidge, 1998; Song et al., 2001; Du et al., 2002).

A change/no change map produced using image differencing
logic and atmospherically corrected data normally looks dif-
ferent from a change/no change map produced using image
differencing logic and non-atmospherically corrected data if
the threshold boundaries are held constant in the change
image histograms. However, if the analyst selects the appro-
priate thresholds in the two tails of the change detection
image histogram, it doesn’t really matter whether the change
detection map was produced using atmospherically cor-
rected or non-atmospherically corrected data. But, if the ana-
lyst desires that all stable classes in the change image have a
value of 0 in the change histogram (refer to Figures 12-10
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Impact of Hurricane Hugo Extracted Using Visual On-screen Change Detection

Figure 12-20  Change information overlaid on October 5, 1989, post-Hurricane Hugo aerial photograph, Sullivan’s Island, SC. Complete-
ly destroyed houses are outlined in white. Partially destroyed houses are outlined in black. A white arrow indicates the di-
rection of houses removed from their foundations. Three beachfront management setback lines are shown in white (base,
20 year, 40 year). Areas of beach erosion are depicted as black lines. Areas of beach accretion caused by Hurricane Hugo

are shown as dashed black lines.

The shrinking Aral Sea has also had a noticeable effect on
the region’s climate. The growing season is now shorter,
causing many farmers to switch from cotton to rice, which
requires even more diverted water. A secondary effect of the
reduction in the Aral Sea’s overall size is the rapid exposure
of the lake bed. Strong winds that blow across this part of

Asia routinely pick up and deposit tens of thousands of tons
of now-exposed soil every year. This process has caused a
reduction in air quality for nearby residents and affected
crop yields due to the heavily salt-laden particles falling on
arable land.
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and 12-11), then it is useful to normalize one image to
another or atmospherically correct both images to percent
reflectance values prior to performing image differencing.

Obtaining quality training data is very expensive and time-
consuming because it usually involves people and field-
work. Therefore, it will become increasingly important to be
able to extend training data through both time and space. In
other words, training data extracted from a Date 1 image
should be able to be extended to a Date 2 image of the same
geographic area (signature extension through time) or per-
haps even to a Date 1 or Date 2 image of a neighboring geo-
graphic area (signature extension through space). Extending
training data through space and time will require that each
image evaluated be atmospherically corrected to surface
reflectance whenever possible using one of the techniques
described in Chapter 6. Nevertheless, it is not always neces-
sary to correct remote sensor data when classifying individ-
ual dates of imagery or performing change detection.

When Atmospheric Correction Is Unnecessary

A number of studies have documented that it is unnecessary
to correct for atmospheric effects prior to image classifica-
tion if the spectral signatures characterizing the desired
classes are derived from the image to be classified (e.g.,
Kawata et al., 1990). This is because atmospherically cor-
recting a single date of imagery is often equivalent to sub-
tracting a constant from all pixels in a spectral band. This
action simply translates the origins in multidimensional fea-
ture space. The class means may change, but the variance—
covariance matrix remains the same irrespective of atmo-
spheric correction. In other words, atmospheric correction is
unnecessary as long as the training data and the data to be
classified are in the same relative scale (corrected or uncor-
rected) (Song et al., 2001). This suggests that it is not neces-
sary to atmospherically correct Landsat TM data obtained on
Date 1 if it is going to be subjected to a maximum likelihood
classification algorithm and all the training data are derived
from the Date 1 imagery. The same holds true when a Date 2
image is classified using training data extracted from the
Date 2 image. Change between the Date 1 and Date 2 classi-
fication maps derived from the individual dates of imagery
(corrected or uncorrected) can easily be compared in a post-
classification comparison.

Atmospheric correction is also unnecessary when change
detection is based on classification of multiple-date compos-
ite imagery in which the multiple dates of remotely sensed
images are rectified and placed in a single dataset and then
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classified as if it were a single image (e.g., multiple-date
principal components change detection). Only when training
data from one time and/or place are applied in another time
and/or place is atmospheric correction necessary for image
classification and many change detection algorithms.

A one-time inventory of natural resources is often of limited
value. A time series of images and the detection of change
provides significant information on the resources at risk and
may be used in certain instances to identify the agents of
change. Change information is becoming increasingly
important in local, regional, and global environmental mon-
itoring (Woodcock et al., 2001). This chapter identifies the
remote sensor system and environmental variables that
should be considered whenever a remote sensing change
detection project is initiated. Several useful change detection
algorithms are reviewed. Scientists are encouraged to care-
fully review and understand these principles so that accurate
change detection can take place.
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