
 

Kgs. Lyngby 2004 

IMM-THESIS-2004-50 

Morten Ødegaard Nielsen 

True orthophoto generation 

master thesis

IMM / Informatics and Mathematical Modelling





 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

True orthophoto 

generation 

 

 

Morten Ødegaard Nielsen  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Kgs. Lyngby 2004

 
 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Technical University of Denmark 

Informatics and Mathematical Modelling 

Building 321, DK-2800 Lyngby, Denmark 

Phone +45 45253351, Fax +45 45882673 

reception@imm.dtu.dk 

www.imm.dtu.dk 

 

 

 

 

 

IMM-THESIS: ISSN 1601-233X 



Preface  i 

 

Preface 

This master thesis is the culmination of my study at the Technical University of 
Denmark. The thesis investigates methods for creating digital true orthophotos. 

The thesis is divided into consecutive numbered chapters. Located at the last pages 
are the appendixes and an index. References are given as numbers in square brackets, 
and a list of the references can be found at the back. Throughout the thesis, 
illustrations, tables and figures are labeled with two numbers. The first number 
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Abstract 

This Master Thesis investigates methods for generating true orthophoto imagery from 
aerial photographs and digital city models. 

The thesis starts by introducing the theory for generating orthophotos, followed by a 
comparison of orthophotos with true orthophotos. Methods and problems that arise 
when extending the theory to true orthophotos are treated. On the basis of the 
investigation, an overall method for creating true orthophotos is devised. The 
remaining chapters treat the steps of the method in details, and evaluate the results. 

The true orthophoto rectification is divided into four general steps: Rectification, 
color matching, mosaicking and feathering. Creating the image mosaic is found to be 
the most crucial part of the process. 

Three methods for mosaicking source images are tested. They all rely on simple pixel 
score techniques used for assigning pixels from the source images. The best method 
found uses a method where the score is calculated as a combination of the distance to 
the source images’ nadir points and the distance to obscured areas. A histogram 
matching algorithm is used for giving the source images the same radiometric 
properties, and feathering is applied along the seamlines to hide remaining 
differences. 

The method is tested on a range of areas, and the overall result shows that the 
method gives reasonable results, even if the surface model is inaccurate or incomplete. 
It is furthermore assessed that the method can be applied to large-scale true 
orthophoto projects. 

Keywords: Orthophoto, Digital Surface Models, Aerial photography, Photogrammetry, 
Color matching. 
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Chapter 1 Introduction 

This chapter gives an overview of the general objectives in this thesis. The basis and 
goals of the project are presented along with a brief description of the contents of the 
thesis. 

1.1 Motivation 
With today’s developments in GIS and digital processing, the digital orthophoto has 
become a very common part of spatial datasets. The demand for greater detail and 
resolution of the imagery is increasing, which at the same time creates an increasing 
demand for greater quality and accuracy of the orthophoto. 

The orthophoto has some limitations that can cause problems in its everyday use. 
Displacements in the orthophoto create inconsistent accuracy and scale, which 
especially shows when combined with vectorized GIS data. The limitations can cause 
problems for the user who is unaware of them, and incorrectly uses them as a true 
and accurate map. 

The increasing detail of orthophotos makes the limitations more evident to everyone. 
The demand for greater accuracy therefore involves trying to overcome limitations of 
the orthophotos. Accurate true orthophotos that can be used without considering any 
reservations are a field of great interest. The ever increasing computer processing 
power has today made it feasible to create true orthophotos on a larger scale and 
commercial applications for creating them have already been introduced. 

1.2 Problem definition 
This master thesis will investigate methods for creating orthophotos and extend this 
knowledge to true orthophoto imagery. The method for creating true orthophoto 
imagery on basis of aerial images and a digital city model needs to be as fully 
automatic as possible. 
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The overall goals of this thesis are: 

- Devise a method for creating true orthophoto imagery. 
- Investigate the quality of source data needed and the expected coverage and 

accuracy of the final true orthophotos. 
- Investigate problems and test methods for generating true orthophotos. 
- Implement methods in an application that is capable of creating true 

orthophoto imagery fully automated. 

1.3 Outline and structure 
This master thesis is partially based on studies from a preparatory thesis [4]. 
Whenever the preparatory thesis is referenced, the important results are presented, 
and can therefore be read without the prior knowledge of [4]. 

In the first chapters the thesis presents the difference between orthophotos and true 
orthophotos and covers the basic theory needed for generating orthophotos. A 
method for creating true orthophotos is afterwards devised. The crucial steps in the 
method are introduced, tested and evaluated independently in the following chapters. 

During the study, software has been developed that is able to produce true 
orthophoto imagery. Code snippets and documentation for using the software are 
presented in the appendixes. The software is available on the companion CD-ROM. 

1.3.1 General overview of the chapters 

Chapter 2, Orthophotos: Introduces the concept of orthophotos and the process of 
creating them. Afterwards this is extended to true orthophotos, and the differences 
are pointed out. The expected accuracy of an orthophoto is also treated. 

Chapter 3, Digital Surface Models: The concept of digital surface models is treated 
and the different model representations are presented. A description of Copenhagen’s 
3D city model, that were used during this study, is lastly included. 

Chapter 4, Coverage analysis: The detailed surface models are used to identify the 
expected coverage of a true orthophoto. This is done on basis of different source 
image setups and different kinds of built-up areas. 

Chapter 5, Design description: A step-by-step method for creating true orthophotos 
is devised and described. 

Chapter 6, The Camera Model: A mathematical model of a camera lens system and 
the colinearity equations are presented. The model is split up in two parts: The 
exterior and interior orientations. 
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Chapter 7, Raytracing the surface model: Methods for effectively tracing rays 
between the camera and the surface model are treated in this section. Performance is 
an important issue, due to the vast amount of calculations needed. 

Chapter 8, Color matching: The concept of color and color adjustment are 
introduced. Color adjustment techniques are applied to the imagery to make the 
images share the same radiometric properties. 

Chapter 9, Mosaicking: Different methods for mosaicking an image as seamlessly as 
possible are presented, tested and evaluated. 

Chapter 10, Test results: The method devised was tested on a set of data. Pros and 
cons of the method are illustrated with close-ups and commented. 

Chapter 11, Conclusion: The overall results of the master thesis are summarized and 
the final conclusions are drawn. It furthermore presents suggestions for future work in 
this field. 
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Chapter 2 Orthophotos 

When a photograph is taken, it shows an image of the world projected through a 
perspective center onto the image plane. As a result of this, the image depicts a 
perspective view of the world. For an aerial image - that normally is shot vertically - 
objects that are placed at the same point but at different heights will therefore be 
projected to different positions in the photograph (figure 2.1). As an effect of these 
relief displacements, objects that are placed at a high position (and closer to the 
camera) will also look relatively bigger in the photograph. 

The ortho rectification process is a process that tries to eliminate the perspectiveness 
of the image. The result is an orthographic projection where the rays are parallel as 
opposed to the perspective projection where all the rays pass a common perspective 
center. 

As a result of the rectification, 
the orthophoto is an image 
where the perspective aspect of 
the image has been removed. It 
has a consistent scale and can be 
used as a planimetric map [2]. 
This makes it useable for 
combining with spatial data in 
GIS systems or as part of 3D 
visualizations, where the 
orthophoto can be draped over a 
3D model. Orthophotos can 
function as a reference map in 
city planning, or as part of 
realistic terrain visualizations in 
flight simulators. The 
orthophoto has a reference to a 
world coordinate system, and 

Relief displament

Perspective center

Perspective image

Orthoimage

Terrain surface

Datum plane

Figure 2.1 - Perspective and orthographic image geometry,
illustrating the cause of relief displacements [2] 
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can therefore function as an un-interpreted map. The orthophotos can be merged into 
one large photo of an enormous area. An example of this is the company Cowi’s 
Kortal (www.kortal.dk) where orthophotos have been merged to form one large 
mosaic that covers all of Denmark. 

2.1 Creating orthophotos 
In order to create the orthophotos, knowledge of the terrain is needed. A terrain 
model can be created in several ways, but the most common is using 
photogrammetry. Furthermore the position and orientation of the camera during the 
exposure is needed. These parameters can be derived using either a bundle 
adjustment or by fitting the image over some known ground control points. 

2.1.1 Reprojection 

The orthophoto rectification is done by reprojection, where rays from the image are 
reprojected onto a model of the terrain. The reprojection can be done in two ways: 
Forward and backward projection. 

The forward projection projects the source image back on to the terrain (figure 2.1). 
The point where the projected point intersect the terrain (X,Y,Z) is then stored in 
the orthophoto. If the corner of the orthoimage is placed at X0,Y0  the pixel 
coordinate in the orthoimage is found by [2]:  

⎥
⎦

⎤
⎢
⎣

⎡
−
−

⋅=⎥
⎦

⎤
⎢
⎣

⎡
YY
XX

GSDrow
column

0

01  

Where GSD is the Ground Sample Distance, which is the distance between each 
pixel. This is also referred to as the pixel size. Notice that the equation takes into 
account that a pixel coordinate system has the Y-axis downwards, and the world 
coordinate system has the Y coordinate upwards / north. 

Fo
rw

ar
d 

pr
oje

cti
on

Backward projection

Terrain

Orthophoto

(X,Y,Z)

X0,Y0

GSD

Figure 2.2 - The basic idea of
forward and backward projection. 

The forward projection projects regularly spaced points in the source 
image to a set of irregular spaced points, so they must be interpolated 
into a regular array of pixels that can be stored in a digital image. 
This is why the backward projection is often preferred. In a 
backward projection, the pixel in the output image is projected 
back to the source image. Instead of interpolating in the 
orthoimage, the interpolation is done in the source image. 
This is easier to implement, and the interpolation can be 
done right away for each output pixel. Furthermore only 
pixels that are needed in the orthoimage are reprojected. 
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When using the backward projection, a row/column coordinate of a pixel in the 
orthophoto is converted to the world coordinate system, and the Z coordinate is 
found at this point in the terrain. The pixel-to-world transformation is given by [2]: 

⎥
⎦

⎤
⎢
⎣

⎡
−

⋅+⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
row

column
GSD

Y
X

Y
X

0

0  

The position in the source image that corresponds to the found X,Y,Z coordinate can 
be found by modeling the camera. A description of the camera model and the 
equations needed for this calculation can be found in chapter 6. 

2.1.2 Mosaicking 

Large orthophoto projects will require rectification of several source images, which 
are afterwards put together. This process is known as mosaicking. Mosaicking images 
involves several steps: 

- Seamline generation 
- Color matching 
- Feathering and dodging 

The seamlines in a mosaic defines where the images are stitched together. The 
seamline generation can either be done automatically or manually. The goal is to 
mosaic the images along places where they look very similar. A manual seamline 
placement can preferable be placed along the centerlines of the roads. If the 
orthophotos are reprojected onto a surface model that doesn’t include the buildings, 
these will have uncorrected relief displacements, and placing a seamline through a 
building will create a poor match. 

There exist several methods to place the seamlines automatically. One method is to 
subtract the images and place the lines along a least-cost trace, where the cost is the 
difference between the two images. A simpler approach places the seamlines along the 
centre of the overlap. 

 

Figure 2.3 - Example of seamline placement in six orthophotos. 
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The images mosaicked should have the same color characteristics near the seamlines. 
If the color or brightness of the images are very different, the result of mosaic will be 
very poor, and the placement of the seamlines visible. There are several tricks that 
can be performed to hide the seamlines. Color matching and dodging techniques tries 
to remove the radiometric differences in the images, by analyzing and comparing the 
overlapping sections. Feathering tries to hide the remaining difference by making a 
smooth cut that slowly fades from one image to the other. 

2.2 Relief displacements 
The lower the flight altitude is, the higher are the relief displacements. In the nadir 
point there are no relief displacements, but these increase with the distance to nadir. 
If h is the height of an object on the ground (ie. a building), H is the flight altitude 
above the base of the object, and rt is the distance to the image centre, the relief 
displacements in the image is calculated by [2]:  

H
rh

r t⋅=∆  

Figure 2.4 illustrates that a high flying altitude results in smaller relief displacements. 
A real-world example is illustrated on figure 2.5. 

Relief displacement - 20m building
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Figure 2.4 – Relief displacements increase towards the edge of the image or when the flight altitude is 
decreasing. The displacements are always oriented away from the nadir point. 

 



Chapter 2: Orthophotos  9 

 

 
Altitude 1500m (Normal angle lens) 

 
Altitude 750m (Wide angle lens) 

Figure 2.5 – The two images above are taken from approximately the same position, but at different 
altitudes. The relief displacements are significant smaller when the flight altitude is higher. The 
church on the image is approximately 70 meters tall. 

2.3 True orthophotos 
A general problem for normal orthophoto generation is that it cannot handle rapid 
changes in elevation. The relief displacements can be so large that they will obscure 
the terrain and objects next to them (figure 2.6). 

A normal orthophoto is made on basis of a model of the terrain. The terrain model 
doesn’t include the buildings, vegetation etc. This results in an image where buildings 
are leaning away from the image centre, and doesn’t get corrected, and only objects 
that are in level with the terrain are reprojected correctly. 
Roads running over bridges will look like they “bend down” 
to follow the terrain below it. A true orthophoto reprojects 
the source images over a surface model that includes 
buildings, bridges and any other object that should be 
taken into account. When the buildings are included 
they will surely obscure objects close to them, since the 
walls of the buildings can be thought of as a rapid 
change in elevation. 

Figure 2.6 - Tall objects and rapid 
elevation changes will hide objects 
behind them due to the relief 
displacements caused by the perspective 
projection. 

An orthophoto application does not detect these 
obscured areas, and instead creates “ghost 
images”. If a building in a DSM is 
orthorectified, the building will get rectified 
back to its original position, but it will also 
leave a “copy” of the building on the terrain. 
This is illustrated on figure 2.9B. The reason 
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for this is that during the reprojection, rays are reprojected back to both the 
obscured area and the obscuring object, without detecting that obscured data is being 
rectified. Therefore the “wrong” image data is rectified in the obscured areas. 

In common terms the true orthophoto is “true” when it tries to restore any obscured 
objects, and at the same time include as many objects as possible in the surface 
model. A true orthophoto should be based on a surface model that include anything 
that is visible in the source images, but it would be an incomprehensible task to 
create a full model including vegetation, people, cars, traffic lights etc. In general 
when talking about true orthophotos, they are based on surface models that only 
include terrain, buildings and bridges. A similar definition is found in [15]: 

»[...] the term true orthophotos is generally used for an orthophoto where surface 
elements that are not included in the digital terrain model are also rectified to the 
orthogonal projection. Those elements are usually buildings and bridges.« 

A very different definition is found in [25]. It only defines the true orthophoto on 
basis of removing ghost-image artifacts caused: 

»[...] the term “True Ortho” means a processing technique to compensate for double 
mapping effects caused by hidden areas. It is possible to fill the hidden areas by data 
from overlapping aerial photo images or to mark them by a specified solid colour.« 

In order to restore the obscured areas, or blindspots, imagery of these missing areas 
are needed. These supplemental images can be created by using pictures of the same 
area taken from different locations (figure 2.7). This will result in different relief 
displacements in each image, and by combining the images full coverage can be 
obtained. In aerial photography it is normal to let the images overlap as illustrated 
on figure 2.8. 

The task is to locate the blindspots and automatically fill 
them with data from other images where the areas are 
visible. The number of seamlines needed for true 
orthophotos is therefore much higher than that of an 
ordinary orthophoto. Seamlines must be generated around 
every blindspot, and this makes the mosaic process more 
demanding. It also increases the demand for a good color 
matching algorithm, since the match must be good around 
all the numerous seamlines.  

Figure 2.7 – Combining 
several images to get full 
coverage. 

True orthophotos gives a much better fit when used as 
backdrop for a digital map. A building outline will match 
perfectly with the true orthophoto. True orthophotos are 
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also useful for draping over a complex surface model for use in 3D visualizations. The 
rooftops in the image match perfect with the surface model. Examples of some of the 
advantages of true orthophotos over ordinary orthophotos are illustrated at figure 
2.10 and figure 2.11. 

Aerial images taken from a high altitude resulting in a small scale and low resolution 
will have relatively smaller relief displacements, or more correctly: less visible relief 
displacements. Furthermore orthophotos based on small scale source images will 
usually be used to produce a corresponding low resolution in the orthophoto. 
Therefore it is up for discussion if the problems of relief displacements are large 
enough in a low resolution orthophoto, to make it justifiable to create true 
orthophoto imagery instead. The resolution must either be of high detail, the 
buildings tall or the terrain very rough. This can be directly related to the pixel size 
of the true orthophoto. If the relief displacements are at the subpixel level, obscuring 
relief displacements can clearly be ignored. Displacements of 2-3 pixels will probably 
not matter either. The relief displacements can be decreased further by using images 
created with a normal-angle lens shot from a higher altitude, or only use the central 
part of the images. 
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Figure 2.8 – Aerial photography with 60% forward overlap and sidelap. The four images above, all 
cover the same yellow area, but viewed from different locations. Buildings in the yellow area will all 
have relief displacements in different directions, so that blindspots hidden in one image is likely 
visible in another. 

A) 

 

B) 

 
C) 

 

D) 

 
Figure 2.9 – A) An orthophoto rectified over a terrain model. The church is not moved to its correct 
position. B) Orthophoto based on a city model. The church is rectified to its correct location, but a 
“ghost image” is left on the terrain. C) Same as B but the obscured area has been detected. D) True 
orthophoto where the obscured area has been replaced with imagery from orther images. 

 



Chapter 2: Orthophotos  13 

 

 
 

 
Figure 2.10 – Orthophoto (top) and true orthophoto (bottom) overlaid with a vector map of the 
building outlines. The orthophoto has a good fit with objects in level with the terrain, but not with 
objects like the rooftops that wasn’t included in the rectification. With the true orthophoto this is not 
a problem. 
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Figure 2.11 - Orthophoto (top) and true orthophoto (bottom) draped over a 3D city model. The 
orthophoto doesn’t fit well with the 3D model. Parts of the roof are visible on the ground and the 
remaining image of the roof is draped wrongly onto the surface. The true orthophoto has a perfect fit 
with the roof construction. 
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2.4 Accuracy of orthophotos 
The accuracy of an orthophoto is affected by several different parameters. Since 
orthophotos are a product derived from other data, they are dependent of the quality 
of these base data. Specifically these are: 

- The quality and resolution of the source images 
- The inner and outer orientation of the images. 
- The accuracy of the digital terrain/surface model. 

The general visual quality of a true orthophoto depends greatly on the source images. 
Some of the parameters that affect the quality of the images are: 

- Quality of the negative (grain size) 
- Quality of the camera and lens 
- Resolution, precision and overall quality of digital scanning 

The metric cameras used today for mapping are of a very high quality, as is the 
scanners that convert the photographs to digital images. The images used in this 
project are scanned in 15 microns, which is around twice the grain size of the 
negative. 

The accuracy of the inner orientation is with modern aerial cameras so small that the 
remaining errors can be ignored. For the outer orientation, the standard deviation 
remaining from the bundle adjustment is of some significance. The standard deviation 
in the image σob will have an effect in the terrain proportional to the scale M of the 
image1: 

c
HM ob

obo
σσσ ⋅

=⋅=  

The standard deviation σob is normally between 10 and 20 microns, depending on the 
accuracy needed. BlomInfo, who produced the images and surface model, has a 
standard demand for the residuals of maximum 14 microns. If the scale is 1:5000 the 
accuracy on the ground is 14µm · 5,000 = 0.069 m. 

A few examples of planar mean errors based on the individual specifications are 
shown at table 2.1.  

 

                                     

1 From personal consultancies with Keld Dueholm 
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Mapping standard Scale σo σob 
Danish Road Directorate 1:4,000 4 cm 10 µm 
TK99 1:10,000 14 cm 14 µm 
TOP10DK 1:25,000 49 cm 20 µm 

Table 2.1 - Examples of accuracy of bundle adjustments. 

 
Errors in the DSM will introduce horizontal 
errors which are caused by “uncontrolled” 
relief displacements. The horizontal error ∆hor 
can be found by a geometric analysis of a 
vertical offset ∆ver as illustrated on figure 2.12. 
From this figure the following relation can be 
derived: 

Figure 2.12 - Relief displacements. 
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Isolating ∆hor gives: 
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This means that the inaccuracies caused by a poor DSM increase linearly away from 
the nadir point, and therefore a constant error doesn’t apply to orthophotos. 
Orthophotos will often not use the edges of the image, since the neighbor image will 
overlap, and it is preferable to use the central part of the image. This reduces the 
worst part of the effect. With true orthophotos - that are heavily mosaicked - it is 
hard to give a good overall estimate of the mean accuracy. It will all depend on the 
final mosaic pattern. 

The DSM used in this project has a mean vertical error of 15 cm for well-defined 
points. At the corner of the image, the error for a normal angle lens is: 

( ) ( )
cm

mm
cmmmmm

hor 8
303

15115115 22

=
⋅+

=∆  

For a wide angle lens where the focal length is approximately 150 mm, the error will 
be twice as large.  

One method to give an estimate of a mean standard deviation integrated over the 
entire image area is given by [24]: 
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where 2a and 2b are the length of the sides of the image. Because of the overlap, an 
ordinary orthophoto a and b will be smaller than the size of the photograph since 
only the central part will be used. For a true orthophoto this is not the case as 
mentioned above, and therefore the effective area is much larger. Chances are that 
the edges of the image will not be used as much as the central parts, but the final 
mosaic is not known beforehand, and therefore it is hard to predict a good measure 
for the standard deviation. 

Combining the two errors σo and σdg gives2: 
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An estimated accuracy for the project data is given below. The full image area is used 
as the effective area. As mentioned earlier chances are that central parts of the image 
will more often be used. This example doesn’t take this fact into account, which 
means that the actual mean standard deviation is probably smaller3: 

mogns 083.00693.00465.0000014.0
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When using smaller scale images and wide angles lenses, the errors from relief 
displacements will usually be larger than the orientation. Example: 

Photograph of scale 1:25,000, wide angle lens with a mean vertical error of 1m: 

mogns 71.035.0618.0000014.0
152.0

38000,1
3152.0
115.0115.0 22
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2 Based on personal consultancies with Keld Dueholm 

3 The result is based on the accuracy of a DSM with well-defined points only and therefore some larger 
errors might occur. 
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2.5 Summary 
This chapter introduced the concept of orthophotos, along with an explanation of the 
cause of relief displacements and the problems they create both before and after 
orthophoto rectification. True orthophotos was then defined as an ortho rectification 
that not only includes the terrain for reprojection, but also at least the buildings and 
bridges. Orthophotos was then compared to the advantages of true orthophoto 
imagery. At last the expected accuracy of an orthophoto was described, though only 
a rough estimate of the standard deviations could be obtained. 
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Chapter 3 Digital Surface Models 

The ortho rectification requires a good knowledge of the geometric shape of the 
objects that the photograph contains. The photograph and knowledge of how the 
camera was oriented during the exposure is only enough to reconstruct in which 
direction the objects in the image are, but not how far they are located from the 
camera. With a model of the objects, the distance to the objects can be found by 
intersecting the rays with the model. 

3.1 Surface models 
The digital terrain model (DTM) is a representation of the shape of the earth, 
disregarding buildings and vegetation. It is the most common form of elevation 
model, and is available in both global sparse datasets or in local often denser and 
more accurate datasets. 

The digital building model (DBM) contains the surfaces of the buildings. The level of 
detail in the DBM varies. Some only contain the roof edges and therefore the roof 
construction is missing. Most maps already contain the roof edges and a height of the 
roof. This can be used for creating the simple DBM. More advanced DBMs also 
contain the ridges on the roof and is thus a more exact representation of the surface. 

Eaves and details on the walls would require terrestrial photogrammetry, so a large 
DBM with this amount of detail would be very expensive. Furthermore the wall 
details are somewhat unimportant for creating true orthophotos, since only the top 
most objects would be visible. For instance if the eaves cover objects below them, 
these objects will not be visible in a correct true orthophoto. The DBM can therefore 
be simplified as illustrated on figure 3.1-center. 
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Roof edges 

 
Roof ridges and edge of eaves 

 
Wall details and eaves 

Figure 3.1 - Three levels of detail in the DBM. 

In theory the digital surface model (DSM) should 
contain all static objects on the ground, including 
terrain, vegetation and buildings. The vegetation can be 
very hard to model, so often a DSM will only contain 
terrain and buildings as is the case with the DSM used in this project. Thus the 
combination of the DTM and DBM is a DSM. Using a laser scanner that sweeps the 
surface, a DSM resembling the real surface more closely can be attained, but the 
density and accuracy is normally not comparable to what can be attained by 
standard photogrammetric measurements. Furthermore there is no automatic edge 
detection which makes the generated DSM poor along sharp edges like the edge of a 
roof.  

 
DTM 

 
DSM 

Figure 3.2 - Example of a DSM generated with a laserscanner [14]. It is possible to “shave off” 
buildings and vegetation and thereby create a DTM. 

3.2 Surface representation 
There are several methods of representing the shape of a terrain. The most well-
known is contour lines in a map, where each line follows a constant height in the 
terrain. The closer the lines are to each other the hillier are the terrain. 

For data processing purposes two surface representations are the most common: The 
Triangulated Irregular Network and the grid. 
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3.2.1 Triangulated Irregular Network 

A Triangulated Irregular Network (TIN) consists of a series of height measurements 
throughout the surface. These points are afterwards connected to a network of 
triangles. This means that the height at a given point is found by interpolating 
between the vertices of the enclosing triangle. This gives a rough description of the 
surface as illustrated on figure 3.3. 

Terrain

DTM

 

Figure 3.3 - By interpolating points on the terrain, a rough representation of the terrain can be 
obtained. 

There is a large amount of ways that the points can be connected to form a network 
of triangles. The Delaunay triangulation algorithm tries to connect the points so that 
it maximizes the minimum angles in all the triangles [6]. This triangulation will also 
have the smallest possible total edge length. Delaunay triangulation has the benefit of 
not creating triangles that are long and narrow, but triangulates between the nearest 
points. 

٪ √ 

Figure 3.4 –The circumcircle in any triangle in a correct Delaunay triangulation does not contain any 
points within the circumcircle. The triangulation on the left is therefore not a valid Delaunay 
triangulation [6]. 

The basic Delaunay triangulation cannot handle abrupt changes in the surface like 
cliffs, without a very dense network. A modified algorithm is able to handle 
breaklines which supplements the points in the surface with lines. The breaklines are 
placed along “edges” in the terrain where the sudden elevation changes runs. The 
vertices of the breaklines are included as points in the triangulation. A constraint is 
added that prevents edges of the triangles to traverse the breaklines. This will 
generate triangles whose edges will only follow the breaklines without crossing them. 
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Figure 3.5 - An example of a TIN created with points and breaklines. 

A limitation for triangulation algorithms is that it can’t handle vertical objects, since 
this would require more than one height at the same point. It cannot handle 
overhanging surfaces either as illustrated on figure 3.6. This poses a problem for 
DSMs that include buildings where walls and eaves can’t be triangulated correctly. 
There is nothing that prevents a TIN from containing these surfaces, but standard 
triangulation algorithms cannot create these TINs. A TIN that only has one height in 
any point is often referred to as a 2½D TIN, as opposed to a 3D TIN that can be of 
any complexity. 

 
Correct TIN 
(3D TIN) 

 
TIN from triangulation 

(2½D TIN) 

Figure 3.6 - Cross sectional view of two triangulations of the same points. The Delaunay algorithm 
(right) triangulates to the closest points (measured horisontally), and therefore can’t handle 
overhanging surfaces like the one to the left. 

Another aspect of TINs is thinning. In very flat terrains a very dense network of 
points is not necessary. For instance can a football ground be represented by four 
points and any points inside it can be removed. This is relevant for laser scanned 
data where the surface is covered with a huge amount of dense points. Thinning can 
typically reduce laser scanned data with 80-90 % depending on the type of terrain 
and the required accuracy of the DSM. 

3.2.2 Grid 

The grid is, oppose to the TIN, a regular net of points. It consists of points with 
regular spacing in both the x and y direction. The grid can be compared to a matrix, 
where each cell represents the height in the cell. It can be overwhelming or impossible 
to measure all the heights in a regularly spaced grid, so the grid is usually created on 
basis of other datasets like TINs or contour lines in existing maps. Missing grid 
points can also be interpolated by various methods, for instance linear interpolation 
or kriging. 
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The grid has some computational benefits since it can be handled like a matrix or 
processed as a raster image. It does have limitations in accuracy since the detail level 
is dependent of the grid size. For instance rapid elevation changes cannot occur 
within the grid size, and has the same limitations that a 2½D TIN has compared to a 
3D TIN. 

The grid can easily be converted to a TIN by triangulating the pixels and if necessary 
reduce the points with a thinning. A TIN can also get converted to a grid by 
sampling the points on the TIN. An example of the 3D city model converted to a grid 
is illustrated on figure 3.8. 

An advantage over the TIN is that it is easier to find the height at a given location. 
Only a simple calculation is required to locate the nearest grid points and interpolate 
between them. In a TIN the triangle that surrounds the location must first be 
identified followed by an interpolation between the triangle’s vertices [2]. 

 
TIN 

 
Grid 

 
Triangulated grid 

Figure 3.7 – Converting from a TIN to a grid can cause a loss of accuracy. The grid to TIN is on the 
other hand exact. 

 
Figure 3.8 – Grid of a part of Copenhagen, where the intensity of each pixel corresponds to the height 
at the centre of the pixel. A low intensity (dark) represents taller buildings. The grid is created from 
a TIN by sampling pixel by pixel. 
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Figure 3.9 – A Grid DSM (left) is not sufficient to give a good description of the buildings, without 
using a very dense grid. The TIN (right) gives a much better approximation [9]. 

3.3 Copenhagen’s 3D city model 
BlomInfo A/S has created a detailed 3D city model of Copenhagen that is a good 
foundation for creating true orthophotos. It contains all buildings larger than 10m2, 
and has most of the details on the rooftops. The model does have some limitations in 
relation to completeness, detail and accuracy. These limitations are related to the 
production method and production cost. For instance small bay windows are only 
included if they extent out to the edge of the wall. The edges of the roof are 
measured at the position of the wall. This is because the buildings in the existing 
map are measured to the walls by a surveyor and a direct spatial relation between 
the base and top of the buildings was wanted. The roof construction is traced along 
the outline of the existing map. This results in a model where the eaves are not 
included, and the roof only extends out to the walls of the building (figure 3.10). 
Since these details aren’t included, the eaves will risk being “left” on the terrain 
during the rectification, and smaller objects on the rooftops will not get rectified 
either. The missing eaves are only a problem for a few of BlomInfo’s 3D city models, 
since most of the models are measured to the actual edge of the roof. 

The trees are also included during the registration. They are represented by a circle, 
where the centre of the circle is placed at the highest point in the centre at the tree, 
and the radius defines an approximate width. This is a rough approximation and 
since they are only represented as circles and not as surfaces, they aren’t part of the 
DSM. An example of the level of detail in the model can be seen on figure 3.11. Some 
variations do occur on request of the client. BlomInfo has also produced city models 
where the walls are placed at the edge of the eaves, and where all roof windows are 
included. The 3D city model standard is based on the Danish TK3 mapping 
standard. The accuracy and registration detail is therefore comparable to that of 
TK3.  
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The Copenhagen city model is created photogrammetrically by digitizing the 
contours of the rooftop construction as lines. BlomInfo has developed a method that 
is able to handle a triangulation to 3D TINs. The lines are used as breaklines in a 
specially adapted TIN triangulation based on the Delaunay triangulation. 

Real world 

 

3D city model  

 
Figure 3.10 – The building on the right illustrates some of the simplifications that are done to the 
model. Eaves are removed, and small constructions on the roof is only included if it is a part of the 
edge of the building. 

The breaklines in the model are categorized, and on the basis of the categories, the 
triangulation method is able to detect what kind of surface a triangle belongs to. The 
triangles in the city model are categorized in four object types: 

- Building bottom 
- Building wall 
- Building roof 
- Terrain (excluding building bottom) 

The categories can be used for enhancing a visualization. It is easier to interpret the 
model if the categories are assigned different colors, and when orthophotos are draped 
on the model, only roof and terrain are assigned the colors of the orthophoto leaving 
the walls with a neutral color. 

3.4 Summary 
This chapter introduced the concept of digital surface models. Two basic kinds of 
surface models were described; the irregular triangulated network and the grid. The 
surface model was described as a combination of a terrain model and the objects 
located on the terrain, for instance buildings and vegetation. Lastly the 3D city 
model of Copenhagen was introduced and analyzed. Simplifications and limitations of 
the city model were described where it was pointed out that certain features were left 
out of the model, such as eaves and roof windows. 
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Figure 3.11 - Example of the detail in BlomInfos 3D city model. On the left a view of the TIN. On the 
right the triangles in the TIN have been shaded. 
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Chapter 4 Coverage analysis 

The imagery that are available for use in this project is somewhat ideal to use for 
true orthophotos, it is not what is normally used for photogrammetric mapping. It 
would be appropriate to reuse existing imagery instead. The imagery that was used 
for producing the 3D city model was taken with a different camera lens and from a 
different altitude as shown in table 4.1. This section tests different photo shooting 
setups, to determine what amount of coverage that can be expected from different 
setups. 

 Production images Project images 
Flight Altitude 750 m 1,500 m 
Lens type Wide angle Normal angle 
Focal length (field of view) 153 mm (94°) 303 mm (56°) 
Forward overlap 60 % 60 % 
Sidelap 20 % 60 % 

Table 4.1 – The production image column describes the images that were used for creating the 3D 
city model. Some additional normal angle images (right column) were made for testing their practical 
uses for true orthophoto creation. 

4.1 Overlapping 
Since the relief displacements of buildings cause blindspots, especially in dense 
suburban areas, it is important to have images that sufficiently overlap. The 
overlapping images will have relief displacements in different directions and often of 
different magnitude. By combining the images, they will supplement each other so 
that data obscured in one image most likely is visible in another.  

For photogrammetric uses, the most common imagery is made with a 60 % overlap in 
the flight direction (forward overlap) and 20 % to the sides (sidelap) with a wide 
angle lens. This has some benefits when compared to imagery taken from a higher 
altitude with a normal angle lens. The lower flight altitude results in better 
measuring accuracy in Z, but as shown in figure 2.4 also larger displacements.  
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Since the sidelap is only 20%, the area just outside the overlap will have a lot of 
obscured areas that aren’t supplemented by the neighboring images. This is worst 
farthest from the flight lines and outside the overlaps, since the relief displacements 
increase away from the nadir point. This can be reduced by adding additional flight 
lines, and thus increasing the sidelap to 60 %. This is more expensive to produce, but 
should result in lesser obscured areas. 

 

Figure 4.1 - Overlapping in the flight direction is usually around 60 % to provide sufficient data for 
stereo measurements. The sidelap is commonly 20 %, but can be supplemented by a flight line in-
between, thus increasing sidelap to 60 % [7] 

4.2 Test setup 
To test the amount of obscured data, a comparison was made between seven 
scenarios, each in two types of built-up areas. These scenarios are based on the 
previous reflections on relief displacements, sidelap and cost. Therefore different 
sidelap, lenses and flight altitude are tested. Except for scenario 3, the forward 
overlap is 60 %. The seven scenarios are: 

Wide angle lens (f=152mm): 

1. 20 % sidelap 
2. 60 % sidelap 
3. 20 % sidelap and 80% forward overlap 

Normal angle lens (f=304mm): 

4. 20 % sidelap 
5. 60 % sidelap 

Normal angle lens (f=304mm) – Double flight altitude: 

6. 20 % sidelap 
7. 60 % sidelap 

Scenario 1 is the most common used setup, and scenario 7 corresponds to the imagery 
that is available in this project. The coverage of each image is the same in scenario 1, 
2, 6 and 7. Case 4 and 5 requires many more images, since the coverage is smaller. 
Adding extra images on a flight line is more cost effective than adding extra flight 
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lines. Scenario 3 tests if adding extra images along the flight line will have any 
profitable benefit. 

The test areas are of very different built-up character; especially regarding building 
heights and density. One area is the central part of Copenhagen, which mostly 
consists of five story buildings and narrow backyards. The other area is the central 
part of Ribe, which in general consists of smaller buildings and larger backyards. 

The image data is constructed so that the overlapping is exact, and that case 6 and 7 
perfectly aligns with case 1 and 2. This is due to the fact that the focal length is 
doubled as well as the flying height. The area selected for processing is the part of 
the overlapping pattern that is repeated in both the flight direction and across it, if 
the flight lines were extended or additional lines were added. This area is illustrated 
at figure 4.2, where the grey area, is the area that will be processed. Because of the 
smaller coverage of the imagery in case 4 and 5, many more images are needed to 
cover the same area with this setup. 

Flight
direction

  

Figure 4.2 – Illustration of the overlapping pattern used for the test. The gray area is to be processed 
for visibility. The left image have three flight lines with 20 % sidelap; the right, five flight lines and 60 
% sidelap. The center image is shown with thick lines. 

      

Wide angle 
Focal length: 152 mm 

Low altitude 

Normal angle 
Focal length: 304 mm 

Low altitude 

Normal angle 
Focal length: 304 mm 

High altitude 

Figure 4.3 – The different flight altitudes and focal lengths give different coverages. The right and left 
setups results in the same coverages. Angles and horisontal distances are in the diagonal of the image. 
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Figure 4.4 – Visibility map. The 
black areas are obscured from the 
camera. They resemble shadows from 
a light source placed at the camera 
point. 

The testing was done by checking for the 
visibility from every camera. This results in a 
visibility map for each camera position, which 
shows the obscured areas as black parts in the 
map (figure 4.4). This actually resembles the 
shadows that would be thrown if a light source 
would be placed in the camera point. By 
combining all the visibility maps generated, the 
resulting image will only contain black pixels 
where they are obscured for all the cameras. The 
number of black pixels remaining will give an 
idea of how good or bad a given case will be 
compared to the other cases. Again if a light 
source were placed in all the camera points, only those areas that are not lit up by 
any light source are completely obscured areas. 

4.3 Test results 
The test area is 1135 x 681 meters. The resolution used for this test is 0.25 meters, 
resulting in approximately 12.4 million samples per source image. Table 4.2 shows 
some statistical results. 

 Obscured pixels 
 Focal length 

Forward 
overlap Sidelap Altitude Images Copenhagen Ribe 

1 152 mm 60 % 20 % 750 m 9 592,016 47.90 ‰ 90,032 7.28 ‰ 
2 152 mm 60 % 60 % 750 m 15 95,707 7.77 ‰ 4,356 0.35 ‰ 
3 152 mm 80 % 20 % 750 m 15 420,799 34.05 ‰ 69,742 5.64 ‰ 
4 304 mm 60 % 20 % 750 m 15 183,885 14.88 ‰ 42,634 3.45 ‰ 
5 304 mm 60 % 60 % 750 m 35 12,864 1.04 ‰ 1,029 0.08 ‰ 
6 304 mm 60 % 20 % 1500 m 9 197,752 16.00 ‰ 42,665 3.45 ‰ 
7 304 mm 60 % 60 % 1500 m 15 12,980 1.05 ‰ 1,090 0.09 ‰ 

Table 4.2 – Results of the visibility tests. Results are given in number of obscured pixels and per 
mille of total. 

It is likely that there will be more occluded pixels far from a flying line where there is 
only little overlap. Since the flight lines have been placed so that they are parallel to 
the columns in the image, summarizing the columns gives an estimate of the obscured 
areas with respect to the flight lines and the sidelap. The results of this are visualized 
in Figure 4.7. Figure 4.7c particularly illustrates this problem. The obscured pixel 
count falls significantly around the 20 % sidelap. Furthermore the number of 
obscured pixels is also very low close to the flight line. In figure 4.7e, this is also 
illustrated, where the image centers are at 10 %, 50 % and 90 %, and the overlaps 
around 30 % and 70 %. The extra forward lap in scenario 3 didn’t give any 
significant decrease in obscured areas. 
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One thing to note is that a big overlap with a wide angle lens (scenario 2) is better 
than a normal angle high-altitude flight with lesser sidelap (scenario 6). In general 
the extra sidelap is much more effective than using a combination of lenses and flight 
altitudes that cause less relief displacement. 

The areas that were obscured were compared to a map, in order to determine what 
kind of areas that were left obscured. Some typical examples are illustrated on figure 
4.8. When comparing figure 4.8a-d the influence of the extra overlap is significant. 
The normal angle lens only decreases the size of the obscured area. Figure 4.8e-f 
illustrates the problem with a wide angle lens, where the relief displacements are so 
large that each photograph only barely covers the sidewalks on each side. 

Though the two areas show the same tendencies for each scenario, they also display a 
significant difference. The Ribe test area is much “better”, which is something that 
could be expected. Therefore the density and height of buildings in the area that is to 
be generated true orthophoto for should also be taken into account when planning 
the photographing. Scenario 1 would often be sufficient in an area like Ribe with less 
than 1 % obscured areas, but in Copenhagen the corresponding number is ≈ 5 %. 

4.4 Summary 
On the basis of DSMs of Copenhagen and Ribe, an analysis of the expected coverage 
where generated. Tests results were based on seven combinations of forward overlap, 
sidelap, low/high altitude and normal/wide angle lenses. It was concluded that an 
increased sidelap provides better coverage than shooting from a higher altitude with a 
narrower lens. 

The test showed that with the standard imagery used for photogrammetric mapping, 
using wide angle lenses and 20 % side lap, an area of almost 5 % can be expected to 
be obscured for the central part of Copenhagen, but only 0.7 % of Ribe. If sufficient 
coverage should be obtained for Copenhagen, 60% sidelap should be considered. 
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Figure 4.5 Overview map of the Copenhagen test area. 

 

 
Figure 4.6 - Overview map of the Ribe test area. 
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Figure 4.7 - Cross sectional view perpendicular to the flight directions of the Copenhagen test area. 
The sidelap is very evident in the 20% sidelap images, where the pixel count is much higher in the 
non-overlapping areas. The width corresponds to the width of the full test area in percent. (a) and (c) 
have overlap between 0-20 and 80-100. (b) and (d) have overlap everywhere and double overlap 
between 40-60. (e) have overlap between 25-35 and 65-75. (f) has six double overlaps and five triple 
overlaps. The Ribe test area shows the exact same tendencies but at a much lower scale. 
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(a) Wide angle camera, 20% sidelap (outside 
sidelap) 

 
(b) Wide angle camera, 60% sidelap 

 
(c) Normal angle, 20 % sidelap (outside sidelap) 

 
(d) Normal angle camera, 60 % sidelap 

 
(e) Wide angle, 20 % sidelap (inside sidelap) 

 
(f) Normal angle, 20 % sidelap (inside sidelap) 

Figure 4.8 – Map of the buildings overlayed with the completely obscured areas (Copenhagen test 
area) 
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Chapter 5 Design description 

This section outlines the general method for creating true orthophotos that is used in 
this project. The method is a step-by-step procedure, and each step is further 
explored in other chapters. The method is partly based on approaches of other true 
orthophoto applications, while their limitations are sought to be overcome. Several of 
the applications capable of creating true orthophotos to different extents were 
described in [4]. 

5.1 Limits of other True Orthophoto applications 
In [4] it was pointed out that many true orthophoto applications were based on 
orthophoto software that was extended to be able to create true orthophotos. This 
caused a general limitation in that they were only able to handle 2½D TINs. The 
limitation rules out any vertical surface; for instance walls. It also makes it impossible 
to handle complex objects like eaves. 

Some applications handle vertical walls by slightly tilting them inwards at the top. 
The only reason for doing this is to be able to create a 2½D TIN by standard 
triangulation methods. As long as the offset is much smaller than the output 
pixelsize, a 2½D TIN is sufficient, but converting from 3D TIN to a valid 2½D TIN is 
not always a trivial task. 

The undersides of the eaves are not necessary for creating true orthophotos, since an 
orthophoto wouldn’t show what is beneath the eaves anyway. They still pose a 
problem for applications not able to handle 3D TINs, since many 3D city models will 
contain eaves. Reusing this data would require a pre-process that removes eaves by 
removing the undersides and moving the walls to the edge of the eaves. 

One of the design goals in this project is to be able to handle 3D TINs. Investigations 
in [4] showed that there actually were no large obstacles in handling 3D TINs over 
2½D, since the 2½D limitation only lay in the triangulation of the surface model. 
Triangulation is not a part of this project, but instead has its starting point at the 
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already triangulated DSM. Both 2½D and 3D TINs can still be created using existing 
software for the triangulation. The city model that is used in this project is an 
existing 3D TIN of Copenhagen. It generally doesn’t contain eaves, but still have 
vertical objects, like building walls. 

 
2½ D TIN 

 
3D TIN 

Figure 5.1 - 2½D vs. 3D TINs. The 3D TIN can contain vertical surfaces or several surfaces over the 
same point. 

One of the most difficult tasks in creating true orthophotos is placing the seamlines 
during the mosaicking. One of the most promising applications was the Sanborn 
METRO True Orthophoto application ([8],[9]) that uses several methods for 
determining the best image to use in each pixel. It uses a score-method for each pixel, 
and the pixel with the highest score is assigned anywhere where a master image 
doesn’t provide coverage. This is a method that is fairly simple to implement, yet 
giving many ways of calculating the score and thus affecting the final mosaic. The 
method has many similarities with maximum likelihood classifications, and several 
well-known methods from this field can possibly be applied to enhance the final 
mosaic. Having one master image and several slave images is a limitation, especially 
when creating large true orthophotos whose extents are far larger than that of the 
master image. Instead by just treating each image equally this limitation can be 
overcome. 

The method used here requires that all input images are ortho rectified and visibility 
tests created for each image. Another approach would be to rectify only one “master” 
image, and afterwards only rectify pixels from other images where pixels were 
obscured in the master. This would decrease the amount of processing time, but also 
limit the options of creating a good mosaic. 

5.2 Creating true orthophotos – Step by step 
The overall true orthophoto generation process can be boiled down to the following 
crucial steps: 

1. Rectify images to orthophotos. 
2. Locate obscured pixels (visibility testing) 
3. Color match orthophotos. 
4. Create mosaic pattern and feathering of seamlines. 
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5.2.1 Rectification 

The orthophoto rectification is a standard well-known method where each output 
pixel is traced back to the pixel in the input image. When tracing back to the input 
image, the ray rarely hits in the center of a pixel. This is normal when resampling an 
image. The are several methods for interpolating between pixels, and some of them 
are: Bicubic, bilinear and Nearest neighbor and can all be found in [1]. Nearest 
Neighbor were used in this project due to its simplicity, but any other could be 
selected for better results. Nearest neighbor selects the pixel value from the pixel 
whose center is closest to the incoming ray. 

The rectification method is described in chapter 2. Knowledge of the camera and the 
mathematics needed are described in chapter 6. The actual raytracing 
implementation is described in chapter 7. 

5.2.2 Locating obscured pixels 

Locating the obscured pixels is crucial to a true orthophoto. We 
need to register any ray that gets “blocked” by other objects in 
the DSM on its path from a point on the surface to the camera. 
If it is blocked, the point on the DSM is not visible from the 
camera, and should be registered as obscured. Since we are 
already processing rays from the DSM to the camera during the 
rectification step, it would be appropriate to check for visibility 
at the same time. This means that the rectification and visib
simultaneously. The visibility test is part of the raytracing and is described in 
chapter 7. 

ility test will run 

5.2.3 Color matching 

When the images are mosaicked, any relatively large differences in color between each 
orthophoto will make the seamlines visible and the final result poor. This process 
could be done before the rectification, but by using the orthophotos and the 
knowledge of visibility, the color matching can be strengthened by only analyzing 
pixels that are spatially comparable amongst the orthophotos. The radiometric 
differences are investigated and methods to compensate for them are dealt with in 
chapter 8. 

5.2.4 Mosacking and feathering 

The mosaic process creates a pattern of classes for the final 
true orthophoto, where each class corresponds to the 
orthophoto from where pixels should be inserted at. As 
mentioned earlier, each pixel has a score for each class. The 
score can rely on several parameters like distance to nadir or 
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distance to any obscured pixels. The score functions are treated in chapter 9. 

Feathering the orthophotos along the seamlines to conceal them is the last step 
before the actual orthophotos are merged to a final true orthophoto mosaic. This will 
ensure that any remaining differences from the color matching will be less visible. 
The feathering method is described in chapter 9. 

The true orthophoto process is illustrated on the diagram below. 

 
Figure 5.2 – Principle sketch of the true ortho rectification process. 
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5.3 Implementation 
The true ortho application are implemented in two parts. The first part is basically 
an orthophoto application that also identifies the obscured pixels. It also included 
loading, indexing and preparing the TIN. This application is a Microsoft Windows 
application written in C#.NET. The second part of the implementation handles the 
steps from orthophotos to true orthophoto. This includes color matching, mosaicking 
and feathering. This part has been developed using MATLAB. 

Initially the goal was to have one application written in C#.NET that could handle 
the whole true orthophoto process. Since MATLAB is a very strong tool for raster 
data processing, a portion of the implementation was instead moved to this platform. 
With MATLAB it was easy to test several methods and change the parameters 
during testing. The MATLAB code is easy to read and understand, and is therefore 
also good for illustrating the methods used. 

It is possible to compile the MATLAB code at a later stage and incorporate it into 
the C#.NET environment. It is very hard though, and several time-consuming 
problems arose with this, and was therefore dropped from this project. The basics of 
how to implement MATLAB scripts in C#.NET can be found in [11], [12] and [13]. 

The orthophoto application can be found on the companion CD and a userguide in 
Appendix C. MATLAB code snippets is also available on the CD and in Appendix B. 
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Chapter 6 The Camera Model 

In order to relate an image of the world to a world coordinate system, it is necessary 
to be able to model the light rays in order to determine where the light rays came 
from. To do this, knowledge of the position and orientation of the camera and the 
inner geometry of the camera is needed. This model is normally described in two sets 
of orientations: the interior and exterior orientations. 

The simplest camera is the pinhole camera that lets light in through a small hole and 
projects it onto a surface at the back of the camera (figure 6.1). The image projected 
to the back side is an image of the world scaled down to f/H, where f is the distance 
from the pinhole to the backside, and H is the distance from the pinhole to the object 
imaged. f is also known as the focal length or the camera constant. 

The smaller hole a pinhole camera has, the better is the resolution, but the exposure 
time can also increase to several hours, which makes it practically unsuitable for most 
types of photography. Instead of a pinhole, a large lens is used that lets in more light, 
but due to inaccuracies in the lens also makes the camera model much more complex. 
The parametric description of the more complex thick lens camera is described in the 
“inner orientation” section below.  

 
Pinhole camera 

 
Thick lens camera 

Figure 6.1 – The rays parsing through a pinhole camera is simple to model. The thick lens camera lets 
in more light because of the larger “hole” which decreases the exposure time significantly but also 
adds distortions due to inaccuracies in the lens and has a lower depth of field. 
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6.1 Exterior orientation 
The exterior orientation of a camera specifies the position of 
the camera in the object space. This can be described by a 
position of the camera center (X0, Y0, Z0), and three rotation 
parameters (Ω, Φ, κ) for the orientation as illustrated on 
figure 6.2. These parameters are found by a bundle 
adjustment or by fitting the image over a set of 
ground control points. The absolute orientation 
between the image coordinate system and the object 
coordinate system can be written as [2]: 

Y=µMX+T 
Figure 6.2 - The outer 
orientation parameters of a 
photograph. The principal point 
(PP) is located directly below 
the projection center. 

where Y is the vector of known world coordinates, µ 
is the scale factor, M is the rotation matrix from 
model coordinate to object coordinate system, X is 
the vector of model coordinates and T is the 
translation vector. 

The solution is nonlinear, so approximations are used as initial parameters. The 
initial X0,Y0,Z0 parameters can be derived from a GPS receiver, and the rotations Ω, 
Φ (the tilt) can for a vertical photograph be approximated to zero. κ is approximated 
by the direction of the flight, which again can be found by relating the photograph to 
the position of preceding or subsequent photographs [2].  

The relation between the camera space (xc,yc) and object space (X,Y,Z) consists of a 
scale, a translation and a rotation in three dimensions. These operations are 
expressed in the colinearity equations [1]: 
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 The equation above uses a rotation matrix r, whose elements are: 
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The reverse calculation from camera to object coordinate system can be done if at 
least one coordinate is known in the object coordinate system. This is handy for 
approximating the footprint of a photograph. When calculating the footprint, the 
coordinates of the corners of the photograph are used as input to find the 
approximate corners of the footprint. The Z-coordinate is approximated to a mean 
level of the area, and the X and Y coordinates are then calculated by [2]: 
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6.2 Interior orientation 
The lens in a camera doesn’t have a single point where all rays parses through, but 
has a relatively large area to let in more light during the shot exposure time. The lens 
hasn’t got a “perfect” surface, which means that the image gets somewhat distorted. 
Therefore the rays parsing from the object space to the image space, isn’t a simple 
calculation. The interior orientation is trying to model the bundle of rays passing 
through the lens to the image plane. This includes the lens distortion, the focal 
length, and the distance between the principal point in the image plane and the 
image center.  All these parameters are included in the Camera Calibration 
Certificate available for all metric cameras.  

The center of the photograph is found by intersecting lines between opposite pairs of 
fiducial marks, also referred to as the fiducial center. The Principal Point is given 
with respect to the center of the photograph, as illustrated at figure 6.3. The 
Principal Point of Autocollimation (PPAC) is determined using a multicollimator, 
and is located very close to the principal point. PPAC serves as the origin of the 
image coordinate system [7]. 
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Figure 6.3 – The principal point isn’t 
placed exactly over the image center, 
though it is greatly exaggerated in 
this illustration. 

When the image space rays aren’t parallel to the incoming 
object space rays, it is caused by a distortion in the lens. 
The distortion consists of several components, where the 
radial distortion usually is the largest in a metric aerial 
camera. The radial distortion is modeled as an odd 
polynomial, describing the distortion with respect 
to the distance r to the Principal Point of Best 
Symmetry (PPBS). PPBS is the origin of the 
radial distortion and is determined during the 
calibrating process. In a metric aerial camera 
this point is located very close to the fiducial 
center and PPAC. 

A sufficient model of the radial distortion is 
described by an odd polynomial [1]: 
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The coordinate corrected for radial distortion can be found by: 

cr

cr

yy
xx

)1(
)1(

∆+=
∆+=

 

where:  6
7

4
5

2
31 rararaa +++=∆

When determining the radial distortion the distortion is measured in several points 
throughout the image during the calibration process. The result is a set of distortions 
with respect to the distance to PPBS. An example of a set of distortion data is given 
in table 6.1. 

r (mm) 10 20 30 40 50 60 70 80 90 100 110 120 130 140 148 
dr (µm) 0 -0.4 -0.3 0.3 0.7 1.3 1.7 1.8 1.6 1 0.1 -0.9 -1.7 -2.6 -0.1 

Table 6.1 - Distortion measurements for a normal angle camera used in this project. 

The an parameters can then be calculated by using a least squares regression. The 
regression can be described as four equations with four unknowns [4]: 
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or on matrix form: 
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The parameters given in table 6.1 have been applied to this equation and are 
illustrated at figure 6.4.  
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Figure 6.4 – The curve for the measured distortions from table 6.1 shown as a line to the left. The 
calculated distortion curve is shown as a dotted line, and the estimated parameters are given below. 
To the right is an illustration of the corresponding distortion in 3D throughout the image area. 

The focal length f is determined during the calibration process, and is the length that 
produces a mean overall distribution of lens distortion [7]. The focal point it therefore 
located directly above PPBS at a distance corresponding to the focal length. 

The photograph is scanned to a digital image consisting of pixels. Therefore a relation 
between the image coordinate system (xr,yr) and the pixel coordinate system (xp,yp) is 
needed for the ortho rectification process. When the image is scanned, it is highly 
likely that the process will add both rotation and affinity to the image. This makes it 
necessary to apply both scaling, rotation, translation and affine transformations in 
the conversion between the two coordinate systems. The relation between the two 
coordinate systems can be described by two vectors, where their origin corresponds to 
the principal point, the directions corresponds to the axis direction and the length to 
the scale along each axis. This relation is illustrated on figure 6.5, and can be written 
as: 
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Xpp,Ypp

(Xpp,Ypp)

xp

yp

yr

xr

V2

V1

yr

xr

 

Figure 6.5 –The relation between the image coordinates (left) and the pixel coordinates (middle) is 
specified by two vectors V1, V2 and the principal point. It is worth noting that the pixel coordinate 
system is a left oriented coordinate system as opposed to most world coordinate systems. 

An example of transformation parameters are given below: 

(Xpp, Ypp)=   
V1 = 
V2 = 

(7889.625 , 7708.232)  
(-66.6759 , -0.1604)  
(-0.1542 , 66.6788) 

pixels 
pixels / mm 
pixels / mm 

These parameters specify that the principal point can be found at pixel (7890, 7708), 
and that each millimeter in the image covers approximately 67 pixels. It can also be 
seen that the angle between the two vectors isn’t exactly 90°, which shows that a 
small amount of affinity is present. These transformation parameters are estimated 
by measuring the fiducial marks in the digital image. Since the locations of the 
fiducial marks are known in the image coordinate system, it is a simple process to 
locate the center, rotation and scale of the digital image. 

The distortion data given in table 6.1 has its largest distortion around 140 mm from 
PPBS at 2.7µm. Since the transformation parameters given above is around 
67pixels/mm, the distortions for this particular digital image is at the subpixel level. 

6.3 Summary 
The theory of the camera model was introduced. The model of the camera was split 
up in two parts: the exterior and interior orientations. The two combined makes it 
possible to trace a ray from the object space to the camera, through the lens and 
onto the image plane with great accuracy, taking especially the distortion of the lens 
into account. 
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Chapter 7 Raytracing the surface model 

When generating an orthophoto, the 
output pixels are traced from the 
world coordinates back through the 
camera lens and onto the image plane 
along two rays. The first ray finds the 
Z coordinate above the output pixel, 
and the second ray traces back from 
this point to the camera. When 
creating a true orthophoto, the second 
ray should also check whether the 
point is visible from the camera or 
not. These two steps are illustrated at 
figure 7.1. 

A 15cm resolution true orthophoto of 
1 km2 would contain roughly 67 
million pixels and twice the number of 
ray traces, so an efficient way of 
performing the ray tracing is needed. 
Some orthophoto applications speed 
up this process by doing a ray trace for every 2-3 pixels only and then interpolating 
between them. This can result in jagged lines along the roof edges where there are 
rapid changes of height in the surface model. The method is sufficient with DTMs 
where the surface is smoother and it increases the speed significantly. 

ray 2

ray 1

Topmost
surface point

Output pixel  

Figure 7.1 - When raytracing from a coordinate back to 
the image, the first ray finds the topmost surface point 
above a given coordinate. The second checks for visibility 
between the point and the camera. The leftmost ray is 
obscured by the tower. 

The raytracing process has been implemented with two very different methods. -One 
using a database approach, and the other using a binary tree data structure. 
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7.1 Raytracing using a database 
The first raytracer implementation was done using a Microsoft SQL Server database. 
A surface model may contain millions of triangles, so testing all the triangles for 
intersection one by one is very inefficient. Most databases has the option of indexing 
simple datatypes like numbers and strings, which makes searching very fast. Since all 
the triangles are stored as a set of three coordinates, each consisting of three numbers 
X, Y and Z, it is possible to limit the intersection tests to those triangles that are 
within a given extent. The use of indexes on these coordinates makes the process 
much faster and can eliminate most of the candidate triangles, before the much more 
processor demanding intersection test is done. 

It is straightforward to do intersection tests with a vertical ray. Since the ray is 
parallel to the Z axis the problem can be seen as a 2D problem between a point and a 
flat triangle. Therefore checking only triangles whose vertices are within a given 
distance from the point in the X and Y directions is simple. If an intersection is 
found, the Z coordinate can afterwards be calculated. This approach isn’t possible 
with rays that are not parallel to one of the axes. Therefore limiting the search extent 
by the triangles’ vertices isn’t possible, since the extent of possible intersectionpoints 
can be very large. 

In order to do the visibility testing efficiently, the complex 3D triangle intersection 
test would have to be simplified into the simpler 2D triangle test. This is done by 
transforming the triangles to image coordinates. The transformation is a simple 
matter of updating the database once for each image. The Z coordinates are given a 
value equivalent to the euclidian distance to the camera. When this transformation 
has been done, the same 2D triangle intersection test can be repeated, and the actual 
X,Y,Z intersection can be calculated afterwards. The simplification process is 
illustrated in figure 7.2 and figure 7.3. 

 

 

 

Figure 7.2 - Original surface model of building seen from above. The red dot is actually hidden from 
the camera as illustrated to the right and on the next illustration. 

ray 
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Figure 7.3 - Transformed surface model of the same building seen from above. This view corresponds 
to a perspective view, and is equivalent to how a camera “sees” the model. The red dot is the same as 
on the previous illustration, but here it is obvious that it is obscured by the building. 

 

Figure 7.4 - Image of the same building as illustrated on the two previous figures. The transformed 
surface model has been superimposed. 

ray 

The method has some limitations, since it only tests triangles 
where at least one vertex is within a given extent (a boundary 
box). The search extent has to be large enough to ensure that 
all the correct triangles are tested, but not so large that too 
many triangles has to be tested for intersections, causing a 
drop in performance (figure 7.5). The method is very easy to 
implement, and seemed very promising, but when put to the 
test it didn’t perform very well. Even though the data 
searched are limited by a boundary box, a lot of triangles were 
still left for a time consuming intersection test. Each ray trace 
required around 1 second of processing time. The 1 km2 
orthophoto mentioned above would then require more than 
150 days of processing, making this approach highly infeasible. 

Figure 7.5 - Limiting the
search extent in X and Y
direction (limits illustrated as
dashed lines) will not ensure
that all triangles within the
extents are checked for
intersection. The gray
triangles are the ones that
have one or more vertices
inside the extent. 
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7.2 Binary Trees 
Instead of using a database, techniques used in 3D computer games were tested. 
Computer games are often highly optimized to provide the player with a vast amount 
of graphics and gameplay. Examples of ray tracing in computer games are collision 
detection used to prevent the player from walking through the walls or to calculate 
where a bullet would hit when fired. Computer Graphics Renderers used for creating 
photo realistic visualisations are also an area where raytracing are heavily used. 

A common way of optimizing a raytracer in games is by using a binary tree structure 
which can be searched very quickly. The idea is to pre-compute the binary tree, 
before the ray tracing is needed. This only has to be done once for a 3D model.  

A tree structure consists of a root node, 
several nodes below this, and at the bottom 
of the tree, the leaves. Every node can then 
have several sub nodes. A common tree 
structure is the binary tree that has at most 
two sub nodes at every node. In a tree 
designed to store geometric objects, each 
node and sub node stores a bounding box 
large enough to hold all the objects in the 
sub nodes. When the tree is being used for 
ray tracing, the bounding box is tested for intersection with the ray. If the ray 
intersects the bounding box, then the sub nodes are recursively tested for 
intersection. Testing a bounding box for intersection is very fast compared to testing 
a complex 3D object for intersection. The 3D object intersection calculations are done 
only at the leaves that are reached by the search. Some variations of the tree-
structures not only store objects at the leaves, but also stores 3D objects in the 
nodes. Popular binary trees are the Binary Space Partion Tree (BSP tree) and the 
Axis Aligned Bounding Box tree (AABB tree). Only the AABB tree will be covered 
here. 

 

Figure 7.6 - A schematic view of a binary tree 
with one root node, four leaves and seven 
nodes in total. 

7.3 Axis Aligned Bounding Box Tree 
The Axis Aligned Bounding Box Tree is easy to implement, and the tree structure 
can be build from bottom up, which has some implementation benefits when 
initializing the size and structure of the tree. It is regarded to be almost as efficient 
as the BSP tree. For these reasons the AABB tree was implemented in this project 
[5]. 
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The AABB tree contains all the triangles at the leaves of the tree, along with the 
minimum AABB. A minimum AABB is the minimum size bounding box which can 
contain an object, and whose sides are aligned to the three axes. By aligning the 
bounding box to the axes, only two points need to be stored in memory to represent 
the bounding box. Each leaf are then paired with another leaf, and their common 
AABB are then stored at a super node. The super nodes are then again paired in 
another super node, until the root of the tree is reached. Each node will then hold 
two points to represent the AABB and a left and right pointer that points to the two 
sub nodes, or if it is a leaf, a triangle. 
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Figure 7.7 - A 2D case of an AABB tree. Five triangles have been joined in bounding boxes and the 
resulting tree is illustrated to the right. 

7.3.1 Creating the tree 

The AABB tree is very similar to an R-tree structure used to index 2D GIS data. 
The method described here are inspired by the R tree structure [10], but adapted to a 
bottom-up creation process. 

To start with, the tree is initialized to a size that will fit the complete binary tree 
structure. Since the bottom nodes in the tree (the leaves) will contain all the 
triangles, the width of the tree will be n, where n is the number of triangles. 
Combining the nodes two and two, will require a tree with a total of 2n-1 nodes. All 
the leaves are then filled with an AABB enclosing each triangle (figure 7.8). 

Initialize tree: 

Create a list A of length (2n-1) 
For each triangle ‘i’: 
   Calculate AABB  for triangle i i
   Insert AABBi in list A at position (i+n-1), and mark it as non-paired 
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Figure 7.8 - The initialized tree. All triangles are enclosed in bounding boxes at the leaves and all the 
non-leaves nodes are still empty. 

The algorithm that creates the rest of the tree is crucial for doing efficient searches. 
Since intersection tests are processor-consuming, we want to be able to search as few 
nodes as possible to find all the intersections along a ray. Therefore, combining the 
nodes must be done in such a way that the parent bounding boxes are as small as 
possible, thereby reducing the chance that a ray will intersect with it. There are 
several ways to do this, but two of the simplest are: 

1. Combine the two bounding boxes whose centres are as close to each other as 
possible. 

2. Combine the two bounding boxes that will result in the least increase in the 
combined bounding box surface area. 

Calculating the centres and the distance between the two centres in method 1 turned 
out to be very processor demanding, and made the process of creating the tree three 
times slower than with method 2. This is only due to the fact that the distance 
calculatings are more complex than the area calculations. When searching for 
intersections at the leaves, method 2 usually had 1.3 – 1.5 more intersections in the 
tree than method 1, making a tree created with method 1 the most efficient, but also 
the slowest to create. Why this method generated the most efficient tree, can have 
something to do with the triangles in a DSM. Many triangles are vertical (walls) or 
horizontal (ground) and therefore the bounding boxes tend to be very flat, possibly 
making method 2 less appropriate to use. 

The algorithm described below will process each level in turn, starting with the leaf-
level. When all nodes have been paired at a given level, all their super-nodes will be 
paired. A special case is when there are an odd number of nodes in a level; the one 
non-paired node remaining at a level will be promoted to a higher level and paired 
with one of the objects in the next level. 
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Fill tree: 

Set k = n  
Set d = maximum depth of tree. 
While k > 0: 
   AABB  = Next_Non-paired_AABB. j
   Select nearest non-paired AABBi located at depth d. 
   If AABB  found: j
      Calculate AABB of AABBj+AABBi and insert in list A at position k. 
      Set k = k-1 
      Mark AABBj and AABBi as paired. 
   Else 
      If the width of the current depth d is an odd number: 
         Regard AABBj as being at depth d-1. 
      Set d = d-1 

 

Figure 7.9 - The filled tree. Each node contains bounding boxes that encloses the bounding boxes in 
its subnodes. 

After the process has completed, the root node will contain an AABB that describes 
the complete extents of the model, and each node will describe the extents of all the 
sub nodes. 

7.3.2 Intersecting the tree 

Finding intersections between a ray and the triangles is a matter of traversing the 
tree, and process all sub nodes where a node’s AABB are intersecting the ray. When 
a leaf is reached, it is checked whether the object at the leaf actually intersects the 
ray. Because we’re using a binary tree structure, the processing time required finding 
the intersections are dependent of the depth of the tree. This means that the 
intersections can be performed with a complexity4 of only O(log n), compared to O(n) 
if we where to check all objects for intersection. This makes it very robust to large 
terrain models, since the depth is only increased one level each time the number of 

                                     

4 The Big-O notation is used to describe the asymptotic behaviour of an algorithm. It specifies an 
upper bound complexity of the algorithm compared in terms of another algorithm: Ref: Wikipedia. 
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objects are doubled. The recursive method for finding all the intersections along a ray 
is described below: 

IntersectTree ( node, Ray ): 

if (AABBnode is a leaf): 
 if Ray Intersects AABB ->Triangle: node
  Add PointOfIntersection to IntersectionList; 
else if Ray intersects AABB de : no
 IntersectTree(AABBnode->LeftNode, Ray) 
 IntersectTree(AABBnode->RightNode, Ray) 

Finding the intersections between a ray and an AABB is very fast. The slabs method 
is a simple ray/AABB intersection algorithm. A slab is two parallel planes described 
by the two sides that are opposite each other in the AABB. In the 3D object space, a 
bounding box will have three slabs. This is illustrated in the 2D case at figure 7.10.  

By calculating the distance from the ray origin to the two intersections ti
min and ti

max 
the test can quickly reject if there are any AABB intersections. The trick is to 
calculate: 
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Testing whether tmin ≤ tmax is true determines if the ray intersects the AABB. This is 
also illustrated at figure 7.10. Since this 
test would be done on two axes in turn, 
rejection of intersection can often be 
done early in the loop causing the test 
to finish earlier [5]. 

When a leaf in the AABB tree has been 
found, the next step is to test if the 
triangle stored at the leaf is intersected 
by the ray. This is a more processing-
intensive calculation than the 
ray/AABB intersection test, but is 
fortunately only done at the relatively 
few leaves that are reached. Therefore 
the optimization of this algorithm isn’t 
that dependent of fast calculation. 
Standard trigonometry can be used for 
finding the intersection point on the 
triangle. The actual implementation the 
that were used for the raytracer is based 
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Figure 7.10 - Intersecting ray and slab planes. 
When the intersections of the two slabplanes 
are compared, tmin and tmax can be used to 
determine if the ray intersects the bounding 
box. 
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on a simple intersection algorithm described by [16], and will not be covered here. 

7.3.3 Performance evaluation 

The tree was tested with a DSM containing the same 270.000 triangles that were 
used for testing the database approach. Each ray trace usually required between 60 
and 80 ray-AABB intersections and at most ten ray/triangle intersections. Using the 
same reference computer as was used for testing the database approach, a raytrace 
used approximately 5ms of processing time. This method proved superior to the 
database approach, with a performance gain of around 20.000 times! As mentioned 
earlier the tree structure ensures that even though the number is doubled or even 
tripled, the processing time will not increase significantly. Worst case processing time 
is O(log n). An estimated time for a DSM twice the size can be found by: 

mst
t
ms 3.55

199.13
506.12

)000,540log(
)000,270log(

=⇒==  

Other properties have to be considered though. Large memory consumptions causing 
disk swapping can significantly increase processing time. 

The AABB tree has been implemented as a separate raytracer library using C# and 
is included on the companion CD-ROM. It can be useful for other projects that need 
to raytrace a TIN. An implementation description can be found in Appendix D. 

7.4 Summary 
Two methods of intersecting a surface model were introduced. The first one, using a 
database was quickly abandoned due to its poor performance. Using an advanced tree 
structure, the axis aligned bounding box tree, performance of the raytracing was 
increased with a factor of 20.000 compared to the database approach.  
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Chapter 8 Color matching 

The images that the orthophotos are based on takes three basic steps to create; the 
exposure, the develop process and the digital scanning. All three steps can have 
influence on the quality of the final image, and can make the images look very 
different in color. With the advent of digital cameras, the two last steps can be 
disregarded. At the time of this project, only a few digital cameras useful for mapping 
have been sold, but it would be reasonable to think that in the near future these 
cameras will replace analog cameras. 

Some of the imagery available in this project changes a lot between the flight lines 
and even between the images in the same flight line. Some looks yellowish and other 
very bluish (figure 8.1). A uniform color shade throughout the image like that in 
figure 8.1 is usually due to errors in the scanning. Color differences can also occur if 
the images are from two different rolls of film. If these images were to be mosaicked 
without any color-correction, the seamlines would be highly visible and the general 
overall orthophoto result would be very poor. 

Local radiometric differences also occur in the image. Since the images rely on light 
from the sun, the relative angle to the sun may also have great influence as 
illustrated on figure 8.2. The different surfaces also reflect the light differently. A 
lambertian surface has special characteristics. The brightness radiance of a lambertian 
surface is invariant regardless of the angle from which it is viewed. Surfaces like soil 
are close to be a lambertian surface, whereas water is at the opposite end. It would 
be wrong to assume the ground to be close to lambertian, and therefore the 
luminance is often brighter in the southern part of the image if the sun is to the 
south during the exposure. If the sun was at zenith, the central part of the image 
would be the brightest. 
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Figure 8.1 – Two neighboring images. The image on the left has a very bluish look compared to the 
image on the right. Since the original analog images doesn’t have this color difference, it must originate 
from the scanning. 

 

Figure 8.2  - The overall brightness of the image rely on the reflection of the surfaces. “Bumps” in 
the terrain and different reflection characteristics makes this pattern more complex. The gray-scale 
below shows the amount of reflected light received at the camera from the locations. 

The sun only directly lights up one side of the buildings, and therefore these will look 
brighter. In a vertical photograph, half of the image (opposite the sun) will contain 
the lit walls and the other half the walls hidden in shadow. This will make the image 
look like there is a big difference in brightness in the two halves. Fortunately the 
walls aren’t visible in a true orthophoto, so this effect should only be evident in 
ordinary orthophotos. 

The image can also tend to look brighter in the centre of the image where the 
distance to the ground and objects is the shortest. Especially the blue colors are 
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affected. The worst part of this radiometric distortion is corrected with a filter on the 
lens that is darker in the centre of the image and thus reduces this effect.  

Normal orthophoto imagery tries to match the colors of the neighboring images in the 
overlapping regions, and the seamlines are few and simple enough to manually place 
them where the radiometric differences are smaller. To hide the remaining small 
differences, feathering can be used along the seamlines to blur the edges. Feathering 
is covered in chapter 9. 

For true ortho imagery the images will be replacing each other everywhere in the 
image, requiring the images to be much more uniform in color throughout the entire 
image. Furthermore automatic seamline-generation is required because of the large 
number of parts the mosaic consists off. 

8.1 Color spaces 
There are several ways of describing the color of a pixel. Usually colors are described 
in a three dimensional color space, and can be divided into three general color space 
coordinates [3]: 

- Tristimulus coordinates 
- Perceptual color spaces 
- Chromaticity coordinates 

The tristimulus coordinates are a 
rectangular space and used for the most 
common color space: the Red/Green/Blue 
(RGB) color space, named after the three 
primary colors. A color coordinate describes 
the mixture of the three colors red, green 
and blue. For instance (1 , 0 , 0) is pure 
red, and (½ , ½ , ½) is gray. It is widely 
used in monitors, computers, TVs, digital 
cameras and most digital image formats. 
For digital images, the three primaries are 
usually divided into 256 levels each, which 

give around 16.7 million combinations within the color space. 

Figure 8.3 - The RGB color cube. 

The perceptual color space is based on variables like hue, purity, brilliance, 
brightness and saturation [3]. The most common is the Intensity/Hue/Saturation 
(IHS) color space. It is based on two vectors and a rotation, and has the form of two 
cones as illustrated on figure 8.4. It is useful for adjusting the brightness by 
increasing the intensity or adding more color by increasing the saturation. 
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If compared to the RGB color cube at figure 8.3, the intensity axis 
corresponds to the line between (0,0,0) and (1,1,1) in the RGB 
cube. The direct relation between the RGB and IHS color 
spaces is described below [1]: 
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The inverse color transformation is: 
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     where:     Figure 8.4 - The IHS color 
space. 

The chromaticity coordinate system consists of a luminance and two chromatic 
coordinates. The color space covers a much larger space than the RGB and IHS color 
space, and can therefore describe many more colors, though most computer monitors 
can’t display all of them. One of them is the standardized CIE5 L*a*b color space has 
which three coordinates: Luminance (L), 
redness/greenness (a) and blueness/yellowness 
(b). It is rarely used for digital analysis since 
the coordinate system is harder to comprehend. 
It is mostly used for offsetting where special 
colors are needed. For instance the Danish bills 
contain colors outside the RGB space, which 
makes them much harder to copy using a 
standard scanner and PC. Figure 8.5 - The CIE L*a*b color space. 

8.2 Histogram analysis 
Since the three types of color spaces all have different principal components, they can 
be useful for analyzing and correcting different properties of an image. Histogram 
analysis is a simple method for analyzing the colors of an image by counting the 
principal components in each pixel and interpret them in a histogram. 

 

5 CIE : Commission Internationale de l'Eclairage (International Commission on Illumination) 
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Image 1  

Image 2 

Figure 8.6 – Histogram of ortho images. Each curve corresponds to one of the red, green and blue 
primary colors. Any pixel obscured in any of the two images is excluded from both histograms.  

Figure 8.6 shows a RGB histogram of an orthophoto made from the two source 
images shown on figure 8.1. Since they both are orthophotos of the same area, any 
pixel i,j in both images depict the same object. Nevertheless the histograms are very 
different. The histograms also shows that the full color spectrum isn’t utilized, since 
there doesn’t exist any pixel with an intensity above ≈ 230. By stretching / scaling 
the intensities, the full dynamics of the RGB color space can be used for increased 
contrast. This method is called a histogram stretch. 

Image 2 has a high intensity peak and a green “plateau” which is probably why the 
image looks warmer. The blue peak around intensity 140 in image 1 is probably what 
makes it look bluer. 

The RGB histogram does have some 
limitations, since is lack the spatial 
relations. For instance it doesn’t tell 
you how many blue pixels there are, 
only how many pixels that have a 
certain amount of blue in it. If most 
of the pixels with a high blue 
intensity also have similar high red 
and green intensities, they are 
actually different shades of gray. By 
analyzing the images in another 
color space that has the hue as one 
of the principal components, this 
relation can be drawn out.  

Figure 8.7  - The hue histogram of the two 
different images. Image 1’s bluish shade is cleary 
visible in this histogram. 
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Figure 8.7 shows the hue of the same two images from figure 8.6. Here it is clearly 
visible that image 1 contains more pixels with blue shades than image 2 that 

8.3 Histogram matching 
out the differences in two images on the basis of the 

make the two histograms match each other 

ing tries to take an input histogram h0(vin) and transform it, so that 
it will resemble a reference histogram h (v ), where v is a given value in the 

n be written as: 

The histogram matchin

obviously has a more greenish look to it. The hue histogram only gives a very narrow 
view on the images, since it doesn’t say anything about the saturation or intensity, 
but it does display a tendency. 

The previous section pointed 
histogram. It would be natural to try to 
in order to make them have similar radiometric properties. Histogram matching is 
such a method. 

Histogram match
1 out

histograms. 

The relation between the two histograms ca

)()(  , where c is the cumulated histogram:01 inout vcvc = ∑=
jv

jiji vhvc
0

)()(  

g equation can then be written as [3]: 

))(( 0
1

1 inout vccv −=  

 

Figure 8.8 – The histogram matching method. The left histogram h0(vin) is to be mapped to h out). 
Note that the scale of the histogram and cummulated histogram is different. 

1(v

The reference histogram h1(vout) can have any appropriate shape. A gauss-shaped 
histogram will increase the contrast in shadows and highlights, while a constant level 
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will increase the total dynamic range. The latter is also referred to as a Histogram 
Equalization. 

8.4 Histogram matching test on orthophotos 
In this specific case we want to match images to eac
refer nce histogram and match other images to it, is 

h other, so using one image as 
e one approach. In this case two 

G and B color band, a Lookup 
table (LUT) is constructed that maps every input intensity to the output intensity 

I

orthophotos based on the aerial photos from figure 8.1 are used. The two ortho 
photos are shown at figure 8.9. Both images could be matched to a common mean 
histogram, but since visual inspection shows that the colors in image 2 looks fine, it 
would be appropriate to match image 1 to image 2.  

For each intensity value from 0 to 255 in each R, 

by using the histogram matching equation. Afterwards the LUT is used to assign new 
intensity values to the input image. A MATLAB histogram match implementation 
can be found in Appendix B. 

nput 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 … 255 

Output 0 2 2 4 5 5 6 7 7 7 8 9 11 14 14 15 18 19 20 … 240 

Table 8.1 - Example of a LUT (Lookup Table) 

shown in figure 8.9 gives a very good 
result. The color and intensity matches very good as illustrated on figure 8.11. The 

ld perform in an image mosaic, this method 
was applied to all images that were to be incorporated in the mosaic, and the with- 

Applying the histogram match to the images 

cumulated histogram matches very closely, and the differences are due to the 
intensities doesn’t have floating precision but is integer. An example of this can be 
seen on figure 8.12, where the cumulated histogram for blue input, output and 
reference is illustrated. The histogram matching could also have been applied to other 
color spaces, for instance IHS. This doesn’t seem to be necessary, when looking at the 
IHS histograms for the RGB-histogram matched image. The fit is quite good as 
shown on figure 8.13, even though the fit wasn’t done in the IHS color space. Note 
that the scale on the histogram is much smaller than on the cumulated histogram, 
and therefore the deviations looks worse. 

To test how the histogram matching wou

and without-match results are compared. Figure 8.14 shows the true orthophoto 
based on the unmatched images. The different colors are very obvious, and even if 
feathering were applied to smear the seamlines, it wouldn’t make the image look 
much better. Figure 8.15 shows the same mosaic, but based on color matched images. 
The seamlines are almost invisible after applying feathering and are generally only 
detectable if you know where to look for the seamlines. 
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The histogram matching was also tested on some images with very different 
properties. The reference image on figure 8.16 was taken in October 2003 where 
leaves on the trees were still present and with a normal angle lens from 1500m. The 

n the two images are the vegetation in 
the reference image which makes the colors looks very vibrant. Looking at more 

This chapter introduced three basic methods for describing colors in a computer 
o analyze the radiometric properties of an image using a histogram. 

ges was 

colors and contrast in the image are very high. As input, the same image 1 from 
figure 8.9 was used. The input image was taken in May same year before the trees 
had leaves using a wide angle lens from a lower altitude. The shadows are also 
shorter in this image, and the higher sun angle slightly decreases the contrast 
difference between shadows and sunlit areas.  

The result of this test can be seen on figure 8.17 and compared to the reference image 
on figure 8.16. The biggest differences betwee

consistent objects like rooftops and ground, the colors match fairly well. Especially in 
the reference image some rooftops that are positioned oblige to the sunrays seem very 
bright. This means that even if the images are taken under very different 
circumstances, the same objects can come to look more or less the same, but the 
fairly large differences in vegetation and shadows will probably cause problems along 
seamlines anyway 

8.5 Summary 

system, and how t
Sources of radiometric errors in aerial photographs were described and ima
analyzed and compared by their histograms. A concept of histogram matching was 
introduced and the method was tested on imagery with different radiometric 
properties. The method proved very successful for matching the colors of one image 
to another. 
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Image 1 (input) 

 

Image 2 (reference) 

 
Figure 8.9 –Two orthophotos of the same area, based on different images. 

 
Figure 8.10 – Input and reference histogram for the 
blue band. 

 
Figure 8.11 - Image 1 after histogram-match 
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Figure 8.12 – Cumulated histogram of the input, 
output and reference images. The output curve is 
‘choppy’ because of the integer mapping. 
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Figure 8.13 – Even if the histogram matching was 
done on the RGB color space, the hue histogram is 
affected and gives a very good fit. 
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Figure 8.14 –True orthophoto mosaic. The original imagery are very different in color and intensity 
which causes a poor mosaic with very visible seamlines. Because of the big differences in color, 
feathering the seamlines isn’t enough to hide the differences. 

 
Figure 8.15 - Mosaic of histogram matched orthophotos. With a little feathering to smooth the edges, 
the seamlines are almost invicible. 
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Figure 8.16 – Reference image taken at fall with 
normal angle lens from 1500m altitude. 

 

 
Figure 8.17 – Image 1 matched to the reference 
image. Image is taken in spring with a wide angle 
lens from a 750m altitude. The biggest difference to 
the reference image is the vegetation and less 
contrast between sunlit and shadowed areas. 
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Chapter 9 Mosaicking 

When generating large scale ortho imagery, multiple images have to be merged to 
form a mosaic of images. Neighboring images are usually assembled along seamlines 
that run roughly along the centre of the overlapping areas. The exact path of the 
seamlines can be generated both automatically and manually. Placing the seamlines 
along the roads often gives the best results, compared to cutting over buildings that 
have different relief displacements. This is often only visible in the final result, where 
buildings will have relief displacements in different directions.  

With true orthophotos, one advantage is that the relief displacements are non-
existing for all the objects that are modeled by the DSM, so forcing the seamlines to 
run along the roads isn’t necessary. Usually the most visible relief displacements left 
will be those originating from objects like vegetation that isn’t included in the DSM. 
Even though, the problem is more complex, because the images doesn’t only have to 
be mosaicked with neighboring images, but also any place where the obscured pixels 
in one image has to be replaced by pixels from other images. 

At figure 9.1 an analysis of the visibility from four normal-angle images illustrates 
that everywhere along the buildings; one or more images have obscured data at the 
ground. Making the final true orthophoto look as seamless as possible requires a lot of 
image processing due to all the seamlines needed.  

9.1 Mosaicking methods 
The mosaicking methods presented in this section all rely on a pixel-by-pixel score 
method, inspired by the methods presented in [8]. Each method is tested and 
evaluated using the same test area, which is a part of the central Copenhagen. It 
contains both narrow backyards and tall buildings which are expected to cause 
problems during the mosaicking. 
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Figure 9.1 - Visibility analysis for four images. White is visible in all images, and black means 
obscured in all images. The three levels of gray specify that it is obscured in respectively 1, 2 or 3 
images. 

9.1.1 Mosaicking by nearest-to-nadir 

The simplest way of mosaicking the images, are by assigning a pixels its color from 
the image whose nadir point is closest. If the pixel is obscured in that image, the 
second closest is selected and so forth. If the pixel is close to the nadir point, the 
relief displacements are smaller, and therefore also less likely to hit a blindspot. Using 
this approach for the same case shown at figure 9.1 is illustrated at figure 9.2. 

 
Figure 9.2 - Mosaic pattern generated by selecting nearest-to-nadir non-obscured pixel. Each gray-
level corresponds to a different source image. 
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The nearest-to-nadir approach is fast and simple 
to implement. One of the biggest disadvantages 
to this approach is that inaccuracies in the 
surface model are very noticeable in the final 
mosaic. Since the surface model used in this 
project doesn’t contain the eaves, this causes a 
major problem in the final result. During the 
rectification, they are projected onto the terrain 
and left there on the ground (cf. figure 9.3). 

An example of implementation in MATLAB can 
be found in Appendix B: Mosaic_nadir.m. 

9.1.2 Mosaicking by distance to blindspots 

To reduce the problem with an inaccurate surface 
model, another method should be used. The approach used here, is to use the pixels 
from a source image that are the farthest from data obscured in the image. This 
would mean that the seamlines would be placed between the blindspots in the 
images. Usually this would roughly be at the roof ridges and between the buildings. 

 

Figure 9.3 – The surface model doesn’t 
contain the eaves, and therefore leaves 
them visible at the ground. 

The method with which to calculate the distance from a pixel to the nearest 
blindspot can be done by using Distance Transformations (DT) as described in [1]. 
It’s a method that maps binary images into a gray-level image, where the distance to 
the nearest object corresponds to the gray-level. In this case, the visibility map is the 
binary image, where the objects in the image are the blindspots. 

 

 
Figure 9.4 – Euclidean distance transformation of blindspot image with the blindspot image 
superimposed as white. The brighter gray the longer is the distance to a blindspot. 
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The Euclidian distance is very time consuming, so another simpler distance 
transformations can be used. The hexagonal distance doesn’t calculate the exact 
distance to the nearest objects, but the approximation is very good, and much faster 
to calculate. The difference between the two transformations is illustrated at figure 
9.5 and figure 9.6. 

  

Figure 9.5 – Hexagonal distance transformation. Figure 9.6 – Euclidian distance transformation. 

Basically hexagonal transformations are implemented by shifting every other row a 
half pixel to the left or right and apply convolution of the masks shown at figure 9.7. 
Another approach is to shift the masks at every other row, as illustrated at figure 9.8. 

 

Figure 9.7 - Calculating  the hexagonal distance 
transformation can be done by applying the masks 
above, after shifting every other row a half pixel 
[1]. 

 

Figure 9.8 – Instead of shifting every other row a 
half pixel, the masks can be shifted instead. For 
instance apply all odd rows with mask 1a and 2a, 
and 1b and 2b on all even rows. 

For each source image, a visibility map is created along with a corresponding distance 
map. The distance map can then be used to determine which source image data 
should be taken from. This is determined by a score function for each pixel, where 
the score is corresponding to the brightness (distance) of the pixel in the distance 
map. The principle is illustrated in figure 9.9. An example of a mosaic can be seen in 
figure 9.10. 
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Figure 9.9 - Score functions for two images along a pixel-row. The score determines which image data 
should be used in the mosaicked image, as indicated by the numbers below the score.  

 

 
Figure 9.10 – Image mosaic created from four euclidian distance maps (building outlines are 
superimposed). 

 

Figure 9.11 – Close-up of true 
orthophoto generated with the mosaic 
at figure 9.10. Compare this with the 
nearest-to-nadir result illustrated at 
figure 9.3. 

It turned out that the mosaics generated with the 
two types of DTs where almost identical. The 
main differences are that seamlines tends to be 
more “straight” with the hexagonal distance 
map. 

An example of implementation in MATLAB can 
be found in Appendix B: Mosaic_blindspots.m 

The mosaics are also much more fragmented than 
the simple nearest-to-nadir mosaic at figure 9.2. 
An advantage is that the eaves are now 
completely gone from the ground, as illustrated 
on figure 9.11. Unfortunately seamlines are 
sometimes running through moving objects like 
cars, and half cars often occur in the image. This 
is a tradeoff, since having a lot of seamlines 
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increases the chance of cutting through unrectified objects or objects that have 
moved between the shooting of images. This problem is treated in section 9.3.2. 

9.1.3 Mosaicking by distance to nadir and distance to blindspots 

The two previous methods described both have some nice properties. Close proximity 
of the nadir point makes the blindspots small and minimizes distortion of objects that 
are not modeled, such as cars and vegetation. Keeping distance to the blindspots 
decreases the chance of leaving the eaves on the ground, and also leaves room for a 
overlap necessary for feathering. 

It would be natural to try to combine these two methods. By placing a buffer around 
the blindspots, the nearest image will be used everywhere where there is a certain 
distance to the blindspots. This basically works as thresholding the distance. Within 
the bufferzone the score is lowered the closer it is to the blindspot. This method 
should be able to deal with the missing-eaves problem illustrated at figure 9.3. 
Furthermore by increasing the distance to the blindspot, feathering can be applied in 
the overlapping regions (see section 9.2) without risking to feather into the obscured 
areas. 

dB

dN

Total score

Distance to
blindspots (dB)

Distance to
nadir (dN)

Combined 
score (dB*dN)

Blindspot BufferBuffer

The implementation of this function can be done by multiplying the distance-to-nadir 
score (dN) with a distance to the blindspots (dB). The distance to blindspots should 
be between 0 and 1, where 0 is at the blindspot and 1 is at 
the preferred minimum distance to the blindspots. Between 
these two values, a fraction is linearly interpolated. The 
score function is illustrated on figure 9.12. Figure 9.13 
is an example of the score for one of the source 
orthophotos. It is here illustrated how the score 
decreases when moving away from the 
principal point or when getting close to 
blindspots. 

 

0

1

0

 

Figure 9.12 . Principle of the combined score method.  
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Figure 9.13 - Score function for one of the source images. Bright represents a high score. The nadir 
point is located to the right of the image. 

The size of the buffer should not be so large that they will cover the entire mosaic. If 
it is too large, dN will have almost no effect. Still it has to be large enough to provide 
a good distance to the blindspots, leaving room for feathering and the missing eaves. 
Tests showed that a buffer distance of 5 meters generally gives good results. Figure 
9.14 shows an example of the mosaic pattern and figure 9.15 the final true 
orthophoto. 

The mosaic generated with this method is by far the best of the three methods 
presented so far. It is the less fragmented while able to deal with some of the 
inaccuracies in the DSM. The mosaic at figure 9.14 mostly use the two images that 
are the closest ones, and is only supplemented by the remaining source orthoimages 
at the few spots that are obscured in the two “main” images. A pattern this 
homogeneous will also be less likely to cause cut-throughs like the half car from figure 
9.11. 

 
Figure 9.14 - Mosaic pattern based on the combined nearest-to-nadir and blindspot-buffer score 
function. Blindspot buffer is 5 meters. Compare this pattern with the simple mosaic at figure 9.2. 
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Figure 9.15 - True orthophoto based on the combined nearest-to-nadir and farthest-from-blindspots 
score function. 

9.2 Feathering 
Seamlines can be further hidden by the use of feathering. Feathering smears the 
seamline edges by gradually shifting from one image to another. One method for 
feathering a mosaic is by applying a mean-filter to the mosaic. The mean filter is 
normally used to smooth digital images by averaging the pixels. It eliminates pixels 
that are unrepresentative of their surroundings, and is therefore often used for 
removing noise in an image. It belongs to the family of convolution filters, which is 
able to multiply arrays of different sizes but of the same dimensionality. 

When used on the mosaic pattern, the mean filter will even out the edges gradually 
between the images. The mean filter is an n x n filter where the pixel in the center 
kernel is assigned the mean value of the filter values. 

1/9 1/9 1/9 

1/9 1/9 1/9 

1/9 1/9 1/9 

 
 

3 x 3 mean filter 

1/25 1/25 1/25 1/25 1/25 

1/25 1/25 1/25 1/25 1/25 

1/25 1/25 1/25 1/25 1/25 

1/25 1/25 1/25 1/25 1/25 

1/25 1/25 1/25 1/25 1/25 

5 x 5 mean filter 

There is two ways of increasing the size of the feathering; -either by using a larger 
filter or by applying the same mean filter several times. The final results are very 
similar. Performance tests in MATLAB showed a small gain in speed by applying the 
small filter n times, instead of applying one large filter. 
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If a 3 x 3 mean filter is applied once, the feathering will be 2 pixels wide. When 
applied n times, the feathering will be 2n pixels wide. This is illustrated on figure 
9.16. 

Seamline feathering
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Figure 9.16 – The effect of a mean filter on the seamline when applied to the mosaic. The curves are a 
3x3 mean filter applied 1, 2, 3, 5 and 12 times. The curve shows the fraction of the pixel value to 
include from one image. A similar mirrored curve will exist for the image on the opposite side of the 
seamline, and combined they will sum to 1. 

 

No feathering 

 

Feathering 

 
Figure 9.17 – The effect of feathering the mosaic. The fraction of a class that is present in the 
feathered mosaic is the fraction to include from the corresponding orthophoto. 

The mosaic is split up in n separate binary images/layers, one for each image, where 
a value of 1 means include pixels from this image and 0 means exclude. The filter is 
then applied to each of the n images. The fraction in pixel i,j from layer m in the 
mosaic specifies the amount to include from pixel i,j from the orthophoto m. If the 
fraction in a pixel is 0.5 for two adjacent images, the resulting pixel value will be the 
sum of half of the intensities in each band in the two images. This can be written as: 
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The feathering is implemented in the MATLAB mosaic code in Appendix B 
(Merge.m). An effect of the mosaic can be seen on figure 9.18.  

No feathering Feathering 

  
Figure 9.18 – Left: No feathering. Some of the visible edges are marked with red. Right: Feathering 
applied. Also notice the feathering on the half car at the center bottom of the images. 

9.3 Enhancing the mosaic 
The mosaic is crucial for a good final product, and the combined score method 
presented in section 9.1.3 has shown some good results. This section presents some 
methods and ideas for further development of the automatic mosaicking. 

9.3.1 Changing the scores 

The scoring method used in this project is easy to change or extend with other 
properties. As of now, the score only consist of the distance to 
the nadir point and the distance to blindspots.  

Low
 

resolution

H
igh 

resolutionA property that could be nice to include, is by assigning higher 
scores to images where the surfaces are more perpendicular to 
the camera. If the surface is perpendicular, the resolution in the 
image is higher than a surface with a narrow angle (cf. figure 
9.22).  This is a method that is used with the Sanborn METRO 
software [8]. 

Figure 9.19 - Different
resolution due to inter-
section angle. 
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The true orthophoto application developed in this project is already capable of 
creating an “angle-map” that can be used for this method. Figure 9.20 shows an 
example of an angle-map. 

 
Figure 9.20 - Angle map of the surface model. Bright surfaces are more perpendicular to the camera 

shows a similarity map, which is created by subtracting one image 
from the other. 

than darker surfaces. 

The seamlines are preferable placed where the source images look most alike. Placing 
the seamlines along similar “routes” in the image decreases the change of cutting 
through vegetation that isn’t included in the DSM, or through cars that is only 
present in one of the source images. The seamlines can be placed by using a 
weighted-graph search algorithm which finds where the images are the most similar 
[8]. Figure 9.21 

 
Figure 9.21 – Similarity map between two source images. Similar pixels have white shades. 

9.3.2 Reducing mosaic fragmentation 

The results generated with the method described in section 9.1.2 with feathering 
applied are all in all very good, but the very fragmented mosaic increases that chance 
of having seamlines running through cars, trees and anything else that is not included 
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in the DSM. These types of cut-throughs are very visible in the image. Although this 
is only a smaller problem with the combined method presented in section 9.1.3, there 
also exist small fragments in this mosaic. 

at if the neighboring pixels refers to 
image A, the pixel-in-question should also be A. 

1.2 basically is a maximum 
likelihood method, some of these methods can be applied. 

 that 
the filter should be aware of is not to assign any obscured pixels to the mosaic. 

ced 
methods for strengthening an image classification which will not be covered here. 

A method for decreasing the fragmentation and thereby further decreasing the chance 
of creating these unfortunate cuts could be a sufficient solution. When looking at 
figure 9.9, it is obvious that even though the score function says that image 2 is the 
best to select, it could just as well still select image 1, if this is not obscured. A 
neighborhood analysis could help determine whether it wouldn’t be better to select 
one image over the other. The general idea is th

Image classifications that use maximum likelihood estimators usually give a certain 
amount of noise. There exist several methods for removing noise in an image 
classification, and since the method described in section 9.

A very simple filter for removing noise in a classification is the mode filter. The filter 
looks for the most common class around a pixel, and assigns this class to the center 
pixel [3]. For instance if a pixel refers to image A, but is mostly surrounded by pixels 
referring to image B, the center pixel will be assigned to B. The filter ignores the 
scores for the classes, which doesn’t really matter in this context. The only thing

The size of the filter also determines how large clusters that can be removed. The 
centre pixel in the mosaic at figure 9.22 will be classified as class 5 in a 3x3 search 
window, but as class 2 in a 5x5 window. All class 5 pixels would also disappear in a 
5x5 window. If class 2 is obscured in the centre pixel, the class would instead be 
changed to class 3 which is the next-best class. Unfortunately the objects in the 
mosaic can be rather large, which will demand fairly large search windows, thus 
increasing the number of computations needed. There exist several other advan
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1 3 5 5 3 

1 3 5 5 3 

2 2 2 2 3 

2 2 2 3 3 

Figure 9.22 - Part of a mosaic pattern. The numbers functions as a reference to the source image. 

9.4  Summary 
In this chapter, a process for mosaicking images together to form a seamless true 
orthophoto was sought after. Three pixel-score methods were devised that selected 
source images by a score in each pixel. The best method found, was based on a score 
scheme combined by the distance to a nadir point and the distance to obscured areas. 
A method based on a mean convolution filter was used for feathering the seamlines to 
hide small differences at the seamlines. 
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Chapter 10 Test results 

The methods devised in the previous chapters, are here put to the test on some 
different areas of Copenhagen. Problems are drawn out as examples and commented. 
The mosaic method used in all the examples are the combined score function 
described in section 9.1.3. Most are generated with normal angle imagery and the 
Copenhagen 3D City model. A few is also generated on basis on a simpler DSM, and 
with both wide and normal angle images for comparison. 

Due to the size and resolution of the true orthophotos, it is not possible to show the 
full images here. Instead detailed close-ups will be used. The images can be found on 
the companion CD-ROM in full resolution and extent. They are supplemented by 
images of the mosaic patterns and ESRI world files for spatial reference in GIS 
applications.  

Below are shown an overview of the generated true orthophotos evaluated. 

Central Copenhagen 

 
0.5 km2. Pixelsize: 0.15 m 

Tivoli 

 
0.195 km2. Pixelsize: 0.15 m 
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Christiansborg 

 
0.214 km2. Pixelsize: 0.15 m 

Marmorkirken 

 
0.02 km2. Pixelsize: 0.10 m 

Wide/normal angle and simple/complex DSM 

 
0.08 km2. Pixelsize: 0.25 m 

10.1 Performance 
As mentioned in chapter 7, the speed of the orthorectification was somewhat crucial 
to make it feasible to orthorectify larger areas. When the true orthophotos was 
created, the processing time was registered. The testing was done on what is 
comparable to a standard home computer at the time of writing this report. The 
overall specifications were: 

Processor: Pentium 4, 2.8Ghz, 800Mhz system bus. 
Memory: 768 MB DDR RAM 

Operating System: Windows 2000 SP4 

The largest true orthophoto was done on an area of size 730m x 700 m which is 
approximately a half square kilometer. The pixel resolution was 0.15 m creating 
roughly 22.7 million pixels. 10 input images were used, which all needed to be 
rectified over the same area. The processing time is given below:  

Orthorectification and locating blindspot: 10 hours (≈ 1 hour per image) 
Mosaicking and feathering: 20 minutes. 
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To speed up the process, the rectification can be distributed among several 
computers, letting each computer rectify one or more of the source images. Using this 
approach to let available computers rectify over night, would enable the option of 
creating much larger true orthophotos. The rectifier application that was created for 
this project does currently have a small bug, which means that it sometimes runs out 
of memory after rectifying several images. It hasn’t been possible to locate the error, 
since it is not persistent, but needs to be resolved before relying on long unsupervised 
rectifications. 

10.2 Pros... 
The overall results of the true orthophoto rectification are very good. Most of the 
narrow backyards are fully visible, all rooftops are moved to their correct position 
and no walls are visible in the final result. Figure 10.1 and figure 10.2 shows a few 
examples. 

Tall objects with enormous relief displacements are still rectified perfectly, and the 
large areas they obscure are filled with data from other images. The very tall 
chimney below is rectified so that it is actually possible to look down the chimney. 

 
Figure 10.1 - Rectified chimney. (67 meters tall) 

 
Figure 10.2 - Tower at the Danish Westminster. 
(100 meters tall) 

The narrow backyards of central Copenhagen are clearly visible. In normal 
orthophotos visible backyards was only available very close to the nadir point. 
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Figure 10.3 - Narrow backyards visible in a true orthophoto. 

10.3 ...and cons 
Some minor problems still occur in the true orthophoto generation. Some of them 
were expected based on the theoretic conclusions, and are visualized below, along 
with some new ones. It should be emphasized that most of these remaining errors are 
small and usually only noticeable if looking hard for them. 

A problem treated earlier is the chance of cutting through objects not included in the 
DSM or has moved between the shooting of the source images. This still occurs, but 
they are rare, and feathering often makes them less visible. Compared to the number 
of cars in the image, only a relatively few cases of cut-through cars were found. 
Figure 10.4 shows an example of a bus placed around the seamline. On of the more 
curious incidents is the red and white car at figure 10.15. When looking closer, it is 
revealed that it is actually two cars mosaicked together. 

 
Figure 10.4 - Seamline running through bus. 

 
Figure 10.5 - Two cars mosaicked together. 

The same unfortunate cut-throughs can also happen to vegetation. Merging images 
with different relief displacements can cause a tree to look weird if a seamline runs 
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through it. Often the structure of a tree combined with the feathering hides the 
seamlines. Furthermore the trees are usually placed a few meters from the buildings 
outside the blindspot buffers, thus the image used should be the one that causes the 
least relief displacements. Below is the two cases found. The errors aren’t that 
noticeable after all. 

  
Figure 10.6 - Mosaicking of non-rectified trees is weird-looking, though hardly noticable. 

Deviations in the DSM can cause a poor fit along the seamlines. The dome on the 
church below isn’t measured that exact. This results in a similar poor correction of 
the relief displacements. The gold-decoration on the dome should look like straight 
lines in the true orthophoto, but they bend and leap, especially at the edge of the 
dome. 

 
Figure 10.7 - Errors in DSM causes inaccurate rectification.  

Because the surface model doesn’t contain eaves, they are cut off rather hard. During 
the rectification, the roof is rectified back to its correct position, but the eaves are 
not moved with them, and therefore the edge of the roof sometimes gets completely 
removed. This results in a pixilated (aliased) cut between roof and the terrain. This is 
illustrated on the image below. Compare this with roof-edge at the right half of the 
image where the pixilation doesn’t occur. 
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Figure 10.8 - Hard cut-off of roof eaves (pixilation exagerated). 

Minor differences in color can cause some visible seamlines. This is especially the case 
with surfaces that reflects the light very differently depending on the angle of the 
surface to the camera and the sun. An illustration of this problem is shown below. 
Notice that there is no visible color difference on the ground though the seamlines 
continues here, so the difference must come from the roof surface’s reflectance. 

 
Figure 10.9 - Color match not perfect caused by light reflected differently in the source images. 

Some areas are still completely obscured; especially where there isn’t a sufficient 
overlap available. This also reveals another problem with the left-out eaves in the 
DSM. The blindspots are detected correctly but they don’t extend enough. The 
blindspots are too small to cover the “real” blindspot. Below edges of the roof can be 
seen just outside the detected blindspot (marked with red). Normally this doesn’t 
pose a problem for the mosaic, since the score methods tries to use images located far 
from the blindspots. 
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Figure 10.10 - Incorrectly detected blindspots caused by eaves missing in the DSM. 

An insufficient overlap pose a large problem as illustrated below. The rollercoaster in 
Tivoli has many obscured pixels, because only one image provides coverage here. 
Furthermore it is illustrated how the vegetation is completely ignored when locating 
blindspots. 

 
Figure 10.11 - Insufficient overlap causes many blindspots. 

10.4 Using simpler DSMs and wide angle imagery 
The method devised in this project has also been tested on other sets of source data. 
Images created with a wide angle lens taken from a lower altitude should create 
images with larger relief displacements. Errors in the DSM should therefore be more 
noticeable than in the true orthophotos based on normal angle imagery. An example 
of this is the church where the dome isn’t correctly modeled. The problem illustrated 
at figure 10.7 is much more evident on the image below: 
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Figure 10.12 - Inaccuracies in the DSM cause inaccurate rectification and are even more evident with 
wide angle imagery. 

The wide angle imagery also generates many more and larger blindspots where none 
of the images provides coverage, especially in narrow backyards. This was expected 
from the coverage analysis in chapter 4, where almost 5% would be obscured. 

A simpler DSM was generated using the national Danish topographic map 
TOP10DK. In TOP10DK, the buildings are registered as outlines along the roof 
edges. Only changes larger than 1 meter in both the horizontal and vertical directions 
are registered. Even though these changes can happen sudden, the changes are 
registered with less detail, often only at the corners of the buildings, as illustrated on 
figure 10.13. 

 

Figure 10.13 – Simplification in TOP10DK (thick lines) 

A copy of the building outlines are pulled down to the terrain level, and using the 
two sets of outlines as breaklines combined with the terrain model gives a much 
simpler DSM, where the roof construction is missing. This is a cheap and fast way of 
creating a DSM based on existing data. 

As shown earlier, an inaccurate DSM will generate larger relief displacements 
especially when wide-angle imagery is used. Especially the roof tops not modeled by 
the TOP10DK DSM will be much more distorted, as illustrated below.  
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Figure 10.14 - True orthophoto based on 
TOP10DK DSM with wide angle imagery. 

 
Figure 10.15 - True orthophoto based on 
TOP10DK DSM with normal angle imagery. 

The edges of the roof are moved to the correct position, but the “center” of the roof 
is not placed at the actual center of the building. This is illustrated at figure 10.14 to 
figure 10.16. 

 
Figure 10.16 - Roof ridge not rectified to correct position. 

Generally the errors are most evident with the wide angle imagery. Below is 
illustrated some of the worst parts of the true orthophoto. The wide angle-based true 
orthophoto (figure 10.17) are much more distorted and the mosaic is extremely poor. 
The normal angle-based true orthophoto (figure 10.18) doesn’t give as poor a mosaic, 
because of the much smaller relief displacements. The normal angle images it thus 
less sensitive to the level of detail and accuracy of the DSM. It should also be noted 
that the nadir point of some of the normal angle images are located closer to the area 
in question. The wide angle images available for comparison only had the same nadir 
points in half of the source images. The reason for this is that the wide-angle images 
are only shot with 20 % sidelap, causing the second flight line to be placed farther 
away. 
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Figure 10.17 – Mosaic based on TOP10DK DSM 
and wide angle imagery. 

 
Figure 10.18 - Mosaic based on TOP10DK DSM 
and normal angle imagery. 

10.5 Creating large-scale true orthophotos 
It was interesting to see what the mosaic pattern would look like on a larger scale. 
Because an image is given a higher score close to its nadir point, the mosaic pattern 
should reflect this. Figure 10.19 shows that this is actually true. Even though the 
mosaic is generated from ten images, six images are generally selected and are 
roughly covering each of their square-like area. The remaining four images are only 
filled in at a few places towards the top-right and bottom-left corners. 

 
Figure 10.19 - Large true orthophoto mosaic pattern based on 10 source images. 
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The large area and the large number of source images gave some memory problems 
for MATLAB when trying to mosaic the images. Therefore the images were split up 
in smaller images of 1000x1000 pixels and processed separately. To make sure that 
the mosaic pattern would fit together, an overlap between the subimages were added. 
Only the buffers around the blindspots are influenced by neighboring pixels, so an 
overlap of the buffer size is sufficient. This proved to work very well, and the mosaic 
patterns fitted perfectly when they were merged back together. This entire 
split/merge process can easily be done fully automatic in MATLAB, where splitting 
and merging of matrices are standard functions. 

10.6 Summary 
The methods described in the previous chapters were tested on different areas of 
Copenhagen. The overall result was quite good, but small remaining errors was 
pointed out and described. These errors were usually caused by limitations or 
inaccuracies of the DSM used. The model was furthermore tested on a less detailed 
DSM, which mostly caused problems with unrectified relief displacements. The errors 
caused by a poor DSM were found to be much more evident when using low-altitude 
wide-angle imagery, where these relief displacements are much larger than 
corresponding high-altitude normal-angle imagery. 
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Chapter 11 Conclusion 

The overall aim of this project was to devise a method for generating true orthophoto 
imagery. The method was divided in four steps: Rectification, color matching, 
mosaicking and feathering. The rectification was implemented in an easy to use 
stand-alone application, and the color matching, mosaicking and feathering in simple 
MATLAB scripts. 

11.1 Evaluation 
The rectification was done by raytracing from the surface model back to the camera, 
taking lens distortions into account and registering rays that were blocked by objects 
in the surface model. To improve the speed of which the rectification was done, a 
binary search tree was used. Using the search tree structure, tracing from a surface 
model back to a camera, and checking for blindspots could be done several thousand 
times per second.  

The histogram matching algorithm proved useful for matching the colors of one 
image to a reference image. Using the rectified orthophotos and the knowledge of 
obscured areas, pixels representing the same objects in the images were used for 
finding the look-up table needed for color correction. 

Three methods for mosaicking were devised, which all were based on a pixel-score 
method. One method showed some very good properties. It primarily increased the 
score for the source images that had the closest nadir point measured from the pixel-
in-question. Within a buffer distance around obscured areas, the score was lowered 
linearly towards these spots. A buffer distance of 5 meters was found to be sufficient. 
Compared to the two first methods, this approach created a very homogeneous 
mosaic pattern, and only few visible errors remained. The score method was able to 
assign images, so inaccuracies of, or missing objects in the surface model were less 
likely to create problems in the final result. 
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Feathering was based on a mean convolution filter, and was able to hide most 
remaining differences in the mosaicked images, as well as making visible mosaic errors 
less noticeable. 

It was assessed that the methods devised is able to be applied on larger scale true 
orthophoto mosaics. 

A thorough investigation of the coverage that different setups of aerial photography 
provide was conducted. The test results showed that with imagery created with a 
wide-angle lens from an altitude of 750 meters, and with 60 % forward lap and 20 % 
sidelap, the coverage of the central parts of Copenhagen was approximately 95 %, 
and a provincial town like Ribe, the coverage was above 99 %. By primarily 
increasing the sidelap and secondarily increasing the flight altitude and focal length 
proved effective to increase the coverage. Increasing the sidelap to 60 % and doubling 
both altitude and focal length provides coverage of almost 99.9 % in central 
Copenhagen. 

11.2 Outlook 
Improvements to the true orthophoto process can still be made. As pointed out in the 
test results, it is not fortunate to have seamlines run through objects like cars and 
vegetation. Using difference maps, it should be possible to direct the seamlines 
around differences to prevent cut-throughs. 

In all the test results, the completely obscured areas were painted black. Finding a 
method that is able to make these areas less striking could provide a visually better 
product. One approach to hide the blindspots could be to interpolate colors from the 
edges of the obscured areas. 

Especially in the October images, the contrasts between areas in sun and shadow are 
very high. Since the exact position and time of the photograph is known, the surface 
model makes it possible to calculate where shadows from the buildings are thrown. It 
should be possible to reduce the effect of the shadows and brighten these shadowed 
areas. Histogram matching could be a method to improve these areas, either by 
equalizing the histogram or by matching to the histogram of the sunlit areas. 

The rectification process is by far the slowest part of the true orthophoto generation. 
A recent article in the Danish “PC World” discusses using the new processors on the 
3D graphic cards for fast calculations as an alternative to using super computers. 
These processors are highly optimized for a few set of calculations. Since raytracing is 
an essential part of a 3D graphic processor, it may be possible to speed up the 
process significantly by this hardware-based approach. 
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Today an alternative to the true orthophoto is normal orthophotos created on 
imagery with a large overlap, for instance 80 %. Using only the central part of the 
images, the worst part of the relief displacements can be removed. This method is 
expensive in flight hours and image preprocessing, but most likely cheaper than 
creating a detailed DSM first. In the near future the true orthophoto will probably be 
seen as a cheap add-on product for the digital city models, or the city model as a nice 
bi-product of the true orthophoto. 
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Appendix A Contents of companion CD-ROM 

During this project several applications and scripts have been developed to test the 
methods described. As a result of the tests, several true orthophotos have been 
created, and many of them are used throughout the report. All these items are 
included on a CD-ROM for reference. 

Below is a listing of the contents: 

Folder Description 

\MATLAB MATLAB scripts used for color matching and mosaicking. 
These are also available in Appendix B. 

\Raytracer A raytracer class library used for raytracing a surface model. A 
class library reference is found in Appendix D. 

\Rectify_setup Setup files for installing the orthophoto rectifier application. 
Appendix C contains a user guide. 

\Source Source code for the rectifier application 

\True_Orthophotos Several true orthophotos created using the rectifier application 
and MATLAB scripts. Format: Tiff. Coordinate reference 
system: System 34 Sjælland. 
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Appendix B MATLAB scripts 

This appendix contains the full MATLAB code scripts used for color matching and 
mosaicking. 

Chapter 8 covers color matching, which is implemented using the following scripts: 

HistogramMatch.m: Matches the histogram of one image to another image. 

GetIndex.m Sub-function used by HistogramMatch.m 

Chapter 9 covers mosaicking and feathering, which are implemented using the 
following scripts: 

Mosaic_nadir.m Mosaicking script that assigns score by distance to nadir and 
visibility. 

Mosaic_blindspot.m Mosaicking script that assigns score by distance to obscured 
areas. 

Mosaic_combined.m Mosaicking script that assigns score by a combination of the 
two previous methods. 

Merge.m Merges images on basis of a mosaic pattern. 

All the scripts are also available on the companion CD-ROM in the folder 

\MATLAB \ 
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HistogramMatch.m 

The histogram matching algorithm matches an input image to the histogram of a 
reference image. Masks are added to both the input and output image, so that only 
pixels unmasked in both images are compared. 

The algorithm is described in section 8.3. 

Iin = imread('input.tif');           %Load input image 
Iref = imread('reference.tif');      %Load output image 
Vin = imread('input_mask.tif');      %Load input mask 
Vref = imread('reference_mask.tif'); %Load reference mask 
 
Iout = Iin;             %Initialize output image 
Levels = 256;           %Number of intensity levels 
bins = [0:Levels-1];    %Create histogram bins 0->Levels-1) 
LUT = zeros(Levels);    %Initialize LUT 
 
%Create list of pixels that isn't black and isn't masked: 
ValidPixels = find(Vin>0 & Vref>0 & sum(Iin,3)>0 & sum(Iref,3)>0); 
 
%Process color bands. Band 1=red, 2=green, 3=blue 
for Band=1:size(Iin,3) 
    B = Iref(:,:,Band);    %Extract color band 
    B = B(ValidPixels);    %Exclude black/masked pixels 
    PixCountRef = size(B); %Pixels remaining in reference image 
    histRef = hist(double(B(:)), bins); %Creates reference histogram 
 
    B = Iin(:,:,Band);     %Extract color band 
    B = B(ValidPixels);    %Exclude black/masked pixels 
    PixCountIn = size(B);  %Pixels remaining in reference image 
    histIn = hist(double(B(:)), bins); %Creates histogram 
 
    %Build cummulated histograms 
    c1 = cumsum(histRef)'; 
    c0 = cumsum(histIn)'; 
     
    %Create Look-Up Table 
    for i=1:Levels 
        LUT(i) = GetIndex(c0(i),c1); %see GetIndex.m 
    end 
     
    %Apply LUT 
    for i=1:size(Iin,1) 
        for j=1:size(Iin,2) 
            Iout(i,j,Band) = LUT(double(Iout(i,j,Band))+1); 
        end 
    end 
end 
 
imwrite(Iout, 'output.tif'],'tiff'); %Save output image 
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GetIndex.m 

This function is used by the histogram matching routine to create a Lookup-table. It 
returns the corresponding reference value based on an input value in the cumulated 
histograms. 

function [GetIndex] = GetIndex(value,Histogram) 
tmp = Histogram(1); 
out=0; 
for i=2:size(Histogram,1) 
    if(Histogram(i)>value) 
        if abs(tmp-value)>abs(Histogram(i)-value) 
            out = i; 
            break; 
        else 
            out = i-1; 
            break; 
        end 
    end 
    tmp = Histogram(i); 
end 
GetIndex = out; 
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Mosaic_nadir.m 

Creates an image mosaic based on distance to nadir. 

%Nadir of source images: 
centers = [-70650.334 141936.475; 
           -70910.641 141636.566; 
           -70548.996 141371.670; 
           -70288.263 141677.705]; 
%Upper left corner of output image 
X0 = -70875; 
Y0 = 141600; 
 
%Visibility maps: 
masks = ['5420V.tif';'5421V.tif';'5432V.tif';'5433V.tif']; 
%Orthophoto images: 
images = ['5420O.tif';'5421O.tif';'5432O.tif';'5433O.tif']; 
 
Width=2000; %Width of images (pixels) 
Height=1000; %Height of images (pixels) 
GSD = 0.10; %Ground Sample Distance (PixelSize) 
 
%Maximum score at nadir point. Should be the largest 
%possible distance from principal point to a corner (WCS units) 
ImgExtent = 850; 
MaxDist = 5; %Buffer distance from blindspots(WCS units) 
 
NoOfImages = size(centers,1); 
img = zeros(Height,Width,NoOfImages); 
 
for image=1:NoOfImages 
    x = centers(image,1); 
    y = centers(image,2); 
 
    %Create distance matrix for image 
    row = [X0-x : GSD : X0+GSD*(Width -1)-x+GSD]; %Horisontal distance 
    col = [Y0-y :-GSD : Y0-GSD*(Height-1)-y-GSD]; %Vertical distance 
    row = row.*row; 
    col = col.*col; 
    for i=1:Height 
        img(i,:,image) = col(i)+row; 
    end 
    img(:,:,image) = abs(ImgExtent-sqrt(img(:,:,image))); 
 
    mask = imread(masks(image,:)); %Load mask 
    img(:,:,image) = img(:,:,image) .* mask; %Set score=0 when masked 
end 
 
%Create mosaic by maximum score 
[dummy, mosaic] = max(img,[],3); 
 
%Merge images 
TO = Merge(images,mosaic,10); %see Merge.m 
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Mosaic_blindspot.m  

Creates an image mosaic based on the distance to any blindspots. 

%Orthophoto images: 
images = ['5420O.tif';'5421O.tif';'5432O.tif';'5433O.tif']; 
%Visibility maps: 
masks = ['5420V.tif';'5421V.tif';'5432V.tif';'5433V.tif']; 
 
FeatherSize=10; %width of feathering in pixels 
 
NoOfImages = size(masks,1); 
 
width=2000; %Width of images 
height=1000; %Height of images 
 
%Read visibility maps 
I = zeros(width,height,NoOfImages); 
for i=1:NoOfImages 
    I(:,:,i) = ~imread(masks(i,:)); 
end 
 
%Distance transform mask images 
for i=1:NoOfImages 
    I(:,:,i) = bwdist(I(:,:,i)); 
end 
 
%Create mosaic by maximum likelihood 
[dummy, mosaic] = max(I,[],3); 
 
%Merge images (see Merge.m) 
output = Merge(images, mosaic, FeatherSize); %See Merge.m 
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Mosaic_combined.m 

Creates an image mosaic based on distance to nadir and distance to blindspots. 

%Nadir of source images: 
centers = [-70650.334 141936.475; 
           -70910.641 141636.566; 
           -70548.996 141371.670; 
           -70288.263 141677.705]; 
%Upper left corner of output image: 
X0 = -70875; 
Y0 = 141600; 
 
%Visibility maps: 
masks = ['5420V.tif';'5421V.tif';'5432V.tif';'5433V.tif']; 
%Orthophoto images: 
images = ['5420O.tif';'5421O.tif';'5432O.tif';'5433O.tif']; 
 
Width=2000;  %Width of images (pixels) 
Height=1000; %Height of images (pixels) 
GSD = 0.10;  %Ground Sample Distance (PixelSize) 
 
%Maximum score at nadir point. Should be the largest 
%possible distance from principal point to a corner (WCS units) 
ImgExtent = 850; 
MaxDist = 5; %Buffer distance from blindspots (WCS units) 
 
NoOfImages = size(centers,1); 
img = zeros(Height,Width,NoOfImages); 
 
for image=1:NoOfImages 
    x = centers(image,1); 
    y = centers(image,2); 
 
    %Create distance-to-nadir score (dN) 
    row = [X0-x : GSD : X0+GSD*(Width -1)-x+GSD]; %Horisontal distance 
    col = [Y0-y :-GSD : Y0-GSD*(Height-1)-y-GSD]; %Vertical distance 
    row = row.*row; 
    col = col.*col; 
    for i=1:Height 
        img(i,:,image) = col(i)+row; 
    end 
    img(:,:,image) = abs(ImgExtent-sqrt(img(:,:,image))); 
    
    %Create buffer and calculate blindspot score (dB) 
    mask = ~imread(masks(image,:));     %Load visibility map 
    mask = bwdist(mask);          %Distance transform 
    mask = mask*GSD;             %Normalize distance 
    mask(find(mask>MaxDist)) = MaxDist; %Threshold score above MaxDist   
    mask=mask/MaxDist;          %Normalize scores to 0..1 
    img(:,:,image) = img(:,:,image) .* mask; %Multiply dN by dB 
end 
 
%Create mosaic by maximum score 
[dummy, mosaic] = max(img,[],3); 
 
%Merge images 
TO = Merge(images, mosaic, 10); %see Merge.m 
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Merge.m 

Based on a mosaic pattern, this function can merge several images. Feathering is 
applied along the seamlines. The function is used by the mosaic scripts. 

Parameters: 

images List of filenames of the source images. This is a matrix with each row 
containing a filename. 

mosaic Integer matrix. Each cell refers to the index of a source image in 
“images”. The mosaic is generated with some of the previous functions. 

FeatherSize The width of feathering in pixels. 

Example: 

images= ['5420O.tif';'5421O.tif';'5432O.tif';'5433O.tif']; 

img = Merge(images, mosaic, 10); 

function [output] = Merge(images, mosaic, FeatherSize) 
 NoOfImages = size(images,1); 
 width = size(mosaic,1); 
 height = size(mosaic,2); 
 
 %Seperate mosaic in a binary image for each source image 
 I = zeros(width,height,NoOfImages); 
 for i=1:width 
    for j=1:height 
        I(i,j,mosaic(i,j)) = 1; 
    end 
 end 
 
 %Feather mosaic pattern 
 if FeatherSize>0 
    F = ones(3,3)/9; 
    for i=1:FeatherSize 
        for j=1:size(I,3) 
            I(:,:,j) = imfilter(I(:,:,j),F,'replicate'); 
        end 
    end 
 end 
 
 %Create output image 
 output = zeros(width,height,3); 
 for j=1:NoOfImages 
    img = imread(images(j,:)); 
    for i=1:3 
        output(:,:,i) = output(:,:,i) + im2double(img(:,:,i)) .* I(:,:,j); 
    end 
 end 
 %Cut off values above 1 (rounding can cause values of 1+eps): 
 output(find(output>1)) = 1; 
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Appendix C True orthophoto generator - Users 
guide 

The true orthophoto rectification application developed during this project is capable 
of ortho rectifying aerial images and locate blindspots. The output of the application 
can later be used in the included MATLAB scripts to create a true orthophoto. The 
rectification is done on basis of a TIN. Tools for converting and preparing the TIN is 
also included with the application. 

The application has been written using Visual C#.NET. Full source code is provided 
on the CD-ROM. 

NB: The application uses a lot of memory. 1 GB of memory is recommended for 
rectification of large source images. 

Installation 

The companion CD-ROM contains a setup file used for installation in the folder: 

\Rectify_Setup\setup.exe 

When the setup file is executed, a welcome screen is presented. Click the Next button 
and follow the instructions on the screen. 

After installation, the tools can be started from: 

Start → Programs → True orthophoto generator 

Three tools have been installed: 

DSFL2Triangles 
converter 

Converts the 3D City models from DSFL format to a triangle-
file usable by the true orthophoto creator and DSM indexer. 
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DSM indexer Builds a tree structure of the surface model for fast raytracing. 

True Orthophoto 
creator 

Ortho rectifies images and locates blindspots.  

Uninstallation 

The application can be completely uninstalled using Add/Remove Programs from the 
control panel. 

Preparing the surface model 

The rectifier needs a surface model consisting of triangles and an index file 

The triangles should be supplied in a text file of the following format: 

X1,Y1,Z1,X2,Y2,Z2,X3,Y3,Z3 <new line> 

Where Xi,Yi,Zi is the vertices of the triangles. An example of the file format is given 
below, showing five triangles: 

-72072.4,139931,24.5,-72060.9,139913.8,24.1,-72072.7,139930.7,24.1 
-72043.8,139890.2,24.3,-72060.9,139913.8,24.1,-72072.6,139931.4,24.5 
-72072.7,139929.3,20.6,-72073.0,139929.2,20.6,-72072.9,139930.6,24.0 
-72060.9,139913.8,24.1,-72072.7,139929.3,20.6,-72072.7,139930.7,24.1 
-72072.9,139930.6,24.0,-72073.0,139929.2,20.6,-72080.7,139940.5,20.6 

The triangle file should be saved with the extension ‘.tri’. 

The DSFL2Triangles converter is capable of converting a DSFL format surface model 
into a .tri file. The converter looks for 3D shapes defined by the %F1KR tag and 
converts the shapes to triangles. If the shapes have more than three vertices, they are 
split into separate triangles. 

Converting DSFL files is done by first selecting the DSFL files that needs to be 
converted: 

  

Afterwards, select File → Export to triangles. The files are converted to .tri files and 
saved as <input-filename>.tri. If you need to merge several surface models together, 

 



Appendix C: True orthophoto generator - Users guide  115 

 

this can afterwards be done using a text editor. Just copy/paste the contents of the 
.tri-files into one large file. 

Indexing surface model 

The triangle file needs a corresponding index file for the true orthophoto generator. 
The index is a binary search tree that significantly speeds up the rectification process. 
The indexing is only needed to be done once for each surface model. In order to do 
so, start the DSM indexer from the start menu. 

Start by loading the .tri file from the menu File → Load DSM. 

  

When the surface model has been loaded, select Index → Index surfacemodel. 

  

NB: The index file is saves as <input-file>.tree in the same directory as the .tri file. 
These two files need to be located in the same directory when the True Orthophoto 
generator loads the surface model. 

Prerequisites 

In order to successfully create an orthorectification, the following prerequisites are 
needed: 

- Surface model (.tri format) 
- Surface model index tree (.tree format) 
- Camera parameters 
- Photo parameters 

The surface model files are described in the previous sections. Camera and photo 
parameters should be located in two files named ‘\camera’ and ‘\photo’. The format 
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of these two files corresponds to the ImageStation project files, so selecting a project 
directory containing these files is sufficient. If the ImageStation project files aren’t 
available they can be constructed manually. 

The ‘camera’ file specifies parameters from the camera. These parameters should all 
be available in the camera calibration certificate. The format is as follows: 

begin camera_parameters [Camera name] 
 focal_length: [Focal length, millimetres] 
 ppac:  [Principal Point of Autocollimation, millimetres] 
 ppbs:  [Principal Point of Best Symmetry, millimetres] 
 film_format: [Size of image, millimetres] 
 distortion_spacing: [Distance of radial distortions, millimetres] 
 distortions:  [Corresponding radial distortions, microns] 
end camera_parameters 

Each parameter can be delimited by either tabs or spaces. The camera file can 
contain several cameras. All cameras that are referenced in the photo file should be 
present in the camera file. An example of data is provided below: 

begin camera_parameters C1713 
 focal_length: 303.192 
 ppac:  0.004   0.007 
 ppbs:  0.02   0.004 
 film_format: 230   230 
 distortion_spacing: 10 20 30 40 50 60 70 80 90 100 110 120 130 140 148 
 distortion_deltas: 0 .1 .2 .3 .7 1.3 1.7 1.8 1.6 1 0.1 -.9 -1.7 -2.6 .1 
 distortions: 0 .1 .2 .3 .7 1.3 1.7 1.8 1.6 1 0.1 -.9 -1.7 -2.6 .1 
end camera_parameters 

The photo parameter file contains the interior and exterior orientation parameters for 
each photograph. The format is as follows: 

begin photo_parameters [Image name] 
 camera_name: [Camera name] 
 image_id:  [Filename] 
 IO_parameters: [Inner orientation: Xh Yh VX1 VY1 VX2 VY2] 
 EO_parameters: [Exterior Orientation (angles in gon): X0 Y0 Z0 Ω Φ Κ ] 
 image_size: [Image size in pixels: Width Height] 
end photo_parameters 

Each parameter can be delimited by either tabs or spaces. The photo file should 
contain all photos that should be rectified. All cameras that are referenced in the 
photo file must be defined in the camera file. An example of data is provided below: 

begin photo_parameters 5420 
 camera_name: C1713 
 image_id:  C:\images\2003-79-01-5420.jpg 
 IO_parameters: 7889.6 7708.2 -66.6 -0.16 -0.15 66.678   
 EO_parameters: -70650.331 141936.475 1529.998 1.2640 2.1007 50.4569 
 image_size: 15577 15435 
end photo_parameters 
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Using the True Orthophoto Creator 

When the surface models have been prepared and the camera and photo description 
files are ready, the True Orthophoto Creator can be started from the start menu.  

 

The first time the application is started it needs to be told where to look for the 
camera/photo files and the surface model. To load the surface model, select DSM → 
Select surface model. Make sure that the .tri file you select has a corresponding and 
valid .tree file. To load the photo and camera files, select Imagery → Select project 
directory and locate the directory where the ‘photo’ and ‘camera’ files are located. 
The main window will show the number of images found in the camera file and the 
surface that will be used for rectification: 

 

To review the image data, you can select Imagery → Imagery info… from the menu. 
From here all specified and derived parameters are provided. A distortion curve of 
the camera is located at the bottom. The estimated footprints of the photos are 
calculated for an altitude of 0 meters. 
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Rectifying images 

To start rectifying images, select Orthophoto → Generate… This brings up the Ortho 
dialog, where the area for processing is selected along with the images that should be 
rectified. 

To add images to the rectification, double click them on the list to the left. When an 
image in the list is selected, it is highlighted with red dots in the overview map at the 
right. Images added to the rectification are shown in blue. 

NB: The overview map shows the estimated footprint of the images. The footprint is 
calculated as the coverage of the photograph on a flat surface at height = 0 metres. 

Selecting the output area is done by left-clicking the overview map and dragging the 
mouse. The output area can also be assigned by specifying the extents at the field 
“Process area” and clicking “Set”. 

The application is capable of creating orthophotos, visibility maps and angle maps: 

- Selecting orthophoto will orthorectify the selected input images and output a 
24bit color tiff image for each selected source image The filename will be 
<ImageName>O.tif 

- Selecting visibility maps will output binary tiff images, where any black pixels 
correspond to a blindspot. The filename will be <ImageName>V.tif 

- Selecting angle map will create greyscale tiff images, where the brightness of a 
pixel corresponds to the angle between the surface and the ray to the camera. 
White corresponds to “oblique” and black to parallel. The filename will be 
<ImageName>A.tif 
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The settings of this dialog can be saved and loaded from the File menu. 

 

Before rectification, color and output settings needs to be specified. This is done by 
selecting Setttings → Options. From here the output directory can be set. It is also 
possible to colorize the orthophoto if there is no coverage of either the DSM or the 
source image, or if the pixels are obscured. The recommended settings are to set all 
colors to black, and don’t mark obscured areas (blindspots). 

  

To start the ortho rectification, select Process → Process orthos from the menu. 
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When the rectification is done, the output directory will contain the selected types of 
output images, an Esri world-file for the orthophotos, and an XML file containing 
metadata about the images. 

The metadata contains the name of the source image, output filenames, projection 
center of the source image, pixelsize and coordinate of the upper left corner of the 
orthophoto. An example of the metadata created is shown below: 

<?xml version="1.0" standalone="yes" ?>  
 <OrthoData> 
    <OrthoImage> 
         <ImageName>5420</ImageName>  
         <Ortho>C:\temp\orthophotos\5420O.tif</Ortho>  
         <VisibilityMap>C:\temp\orthophotos\5420V.tif</VisibilityMap>  
         <AngleMap>C:\temp\orthophotos\5420A.tif</AngleMap>  
         <X>-70650.334380579938</X>  
         <Y>141936.47468315181</Y>  
         <Z>1529.9988160458161</Z>  
         <PixelSizeX>0.5</PixelSizeX>  
         <PixelSizeY>0.5</PixelSizeY>  
         <MinX>-70744.837</MinX>  
         <MaxY>141469.916</MaxY>  
    </OrthoImage> 
</OrthoData> 

 

Source code overview 

The source code for the applications is available on the CD-ROM in the folder 
\source\. A project file for Microsoft Visual Studio.NET 2003 is provided in 
\source\TrueOrthoRectifier.sln. 

The source code has been divided into six separate sub-projects: 

- DSFL2Triangles : The application that converts from DSFL to triangles. 
- DSMtool : Creates an index tree. 
- Geometry : Class library defining properties and methods of points, lines and 

triangles. 
- Raytracer : Class library that loads and raytraces a surface model.  
- Rectifier : The ortho rectification application. 
- SetupTO : Setup project that creates the install utility 

The raytracer class library can easily be incorporated into any application written in 
Microsoft .NET Framework compatible languages. Ideas of uses could be shadow 
studies of the city model, or predictions of GPS satellite visibility. The raytracer is 
therefore fully documented in Appendix D. 
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Appendix D Raytracer library 

The raytracer class library is useful for calculating intersections between a ray and a 
surface model. The surface model should consist of triangles, and indexed using the 
DSM tool described in Appendix C. The raytracer class contains functions for loading 
and raytracing the surface model and index tree. It has been tested with over 250.000 
triangles and was able to find all intersections in approximately 5ms on a Pentium 4 
2.8Ghz. 

The class library is written in C#, but can be referenced into any application written 
in Microsoft .NET Framework compatible languages, including C#, Visual 
Basic.NET and J#. Code examples have been provided in both C# and VB.NET. 

The raytracer library is located at the CD-ROM in folder: 

\raytracer\raytracer.dll 

In the same directory a Windows help-file “documentation.chm” contains a browsable 
and searchable class library reference. 

The source code for the raytracer is supplied in the folder. 

\source\raytracer\ 

Initializing the tree 

To use the raytracer class, the DLL library ‘Raytracer.dll’ should be added as a 
reference. The following command imports the library, and should be located at the 
top of the code which uses the raytracer: 

C#: VB.NET: 
using Raytracer; Imports Raytracer 
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Declaring a Raytracer object: 

C#: VB.NET: 
private Raytrace RT = new Raytrace(); Dim RT As Raytrace = New Raytrace() 

When the raytrace object has been declared, the surface model and tree can be 
loaded. This is done with the following command: 

C#: VB.NET: 
RT.LoadModel(filename_tri, filename_tree); RT.LoadModel(filename_tri, filename_tree) 

filename_tri is the path and filename of the triangle file and filename_tree is the 
path and filename of the tree index. 

Raytracing 

The intersection ray is defined by two points; an origin and a direction vector. 

C#: 
Raytracer.Point3d or = new Raytracer.Point3d(); //origin vector 
Raytracer.Point3d dir = new Raytracer.Point3d(); //direction vector 
or.x = 10450.301; 
or.y = 340520.33; 
or.z = 42.324; 
dir.x = 12.341; 
dir.y = 4.235; 
dir.z = 2.321; 
VB.NET: 
Dim or As Raytracer.Point3d = New Raytracer.Point3d() ‘origin vector 
Dim dir As Raytracer.Point3d = New Raytracer.Point3d() ‘direction vector 
or.x = 10450.301 
or.y = 340520.33 
or.z = 42.324 
dir.x = 12.341 
dir.y = 4.235 
dir.z = 2.321 
 

The raytracing can now be completed. Use the following to search for intersections: 

C#: 
ArrayList list = RT.FindIntersection(or,dir); 
VB.NET: 
Dim list As ArrayList = RT.FindIntersection(or,dir)
 

An array list is returned that contain a list of types Raytracer.IntersectList.  

Below is an example of how to run through the results: 

 

 



Appendix D: Raytracer library  123 

 

C#: 
if(list.Count>0) //Intersection found? 
{ 
   foreach(object o in list)  
   { 
      Raytracer.IntersectList isect = (Raytracer.IntersectList)o; 
      Raytracer.Point3d IntersectionPoint = isect.point; //Point of intersection 
      int FaceID = isect.FaceID; //ID of triangle intersected 
      float DistanceToIntersection = isect.Distance; //Distance between origin and intersection 
   } 
} 
VB.NET: 
If list.Count > 0 Then 'Intersection found? 
   For Each o As System.Object In list 
      Dim isect As Raytracer.IntersectList = CType(o, Raytracer.IntersectList) 
      Dim IntersectionPoint As Raytracer.Point3d = isect.point ‘Point of intersection 
      Dim FaceID As Integer = isect.FaceID ‘ID of triangle intersected 
      Dim DistanceToIntersection As Decimal = isect.Distance 
   Next 
End If 

It is also possible to get the minimum angle between the ray and a triangle. This is 
useful for rendering, where the angle determines the amount of light it receives and 
reflects: 

C#: 
float angle = RT.GetIntersectionAngle(dir, FaceID); 
VB.NET: 
Dim angle As Decimal = RT.GetIntersectionAngle(dir, FaceID)

Cleaning up 

When all the raytracing has been completed, it is a good practice to clean up the 
memory. This is done by disposing the raytracer object: 

C#: VB.NET: 
RT.Dispose(); RT.Dispose() 
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