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Abstract

This paper presents a method, which integrates image knowledge and Light Detection And Ranging (LiDAR) point

cloud data for urban digital terrain model (DTM) and digital building model (DBM) generation. The DBM is an

Object-Oriented data structure, in which each building is considered as a building object, i.e., an entity of the building

class. The attributes of each building include roof types, polygons of the roof surfaces, height, parameters describing the

roof surfaces, and the LiDAR point array within the roof surfaces. Each polygon represents a roof surface of building.

This type of data structure is flexible for adding other building attributes in future, such as texture information and wall

information. Using image knowledge extracted, we developed a new method of interpolating LiDAR raw data into grid

digital surface model (DSM) with considering the steep discontinuities of buildings. In this interpolation method, the

LiDAR data points, which are located in the polygon of roof surfaces, first are determined, and then interpolation via

planar equation is employed for grid DSM generation. The basic steps of our research are: (1) edge detection by digital

image processing algorithms; (2) complete extraction of the building roof edges by digital image processing and human–

computer interactive operation; (3) establishment of DBM; (4) generation of DTM by removing surface objects.

Finally, we implement the above functions by MS VC++ programming. The outcome of urban 3D DSM, DTM and

DBM is exported into urban database for urban 3D GIS.

r 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

There is an increasing need for urban three-dimen-

sional (3D) model for various applications such as town

planning, microclimate investigation, transmitter place-

ment in telecommunication, noise simulation, heat and

exhaust spreading in big cities, virtual city reality, etc.

Traditionally, photogrammetry is an important tool to

acquire the 3D data. During the past decade, digital

photogrammetric methods for providing automatic

digital surface model (DSM), or digital terrain model

(DTM) generation have become widely used due to the
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efficiency and cost effectiveness of the production

process. The performance of these systems is very good

for smooth terrain at small to medium scale when using

small and medium scale imagery. However, it decreases

rapidly for complex scenes in dense urban areas using

large-scale imagery. The degradation in the performance

of photogrammetric processes is mainly due to the

failures of image matching, which are primarily caused

by, for example, occlusions, depth discontinuities,

shadows, poor or repeated textures, poor image quality,

foreshortening and motion artifacts, and the lack of

model of man-made objects (Zhou et al., 1999). To

offset the effect of these problems, the extraction

of buildings and DTM generation in urban areas

are currently still done by human-guided interactive

operations, such as stereo compilation from a screen.
d.
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The whole process is both costly and time-consuming.

Over the past years, a lot of researchers in the fields

of photogrammetry and computer vision have been

striving to develop a comprehensive, high success

rate and reliable systems with either full automation or

semi-automation to ease human–computer interactive

operations. However, automatically extracting building

information is still an essentially unsolved problem. A

lot of efforts for overcoming the problems mentioned

above still are needed.

In the current years, Light Detection And Ranging

(LiDAR) is widely applied in urban 3D data analysis. A

variety of different methods have been proposed for this

purpose, some of which can be found from Tao and Hu

(2001). Baltsavias et al. (1995) discuss three different

approaches for this purpose, namely using an edge

operator, mathematical morphology, and height bins for

detection of objects higher than the surrounding topo-

graphic surface. These main approaches are also used by

other authors like Haala (1995), and Eckstein and

Munkelt (1995). They analyzed the compactness of height

bins, or used mathematical morphology (Eckstein and

Munkelt, 1995; Hug, 1997). Hug (1997) applies mathe-

matical morphology in order to obtain an initial

segmentation, and the reflectance data are used to discern

man-made objects from natural ones via a binary

classification. Other building extraction methods include

the extraction of plannar patches, some of which use

height, slope and/or aspect images for segmentation (e.g.,

Morgan and Tempfli, 2000; Haala et al., 1998; Morgan

and Habib, 2002). In general, these methods can be

grouped into two categories (Yoon et al., 2002):

classification approach and adjustment approach. The

classification approach detects the ground points using

certain operators designed based on mathematical mor-

phology (Lindenberger, 1993; Vosselman, 2000) or terrain

slope (Axelsson, 1999) or local elevation difference (Wang

et al., 2001). Refined classification approach uses Trian-

gulated Irregular Network (TIN) data structure (Axels-

son, 2000; Vosselman and Mass, 2001) and iterative

calculation (Axelsson, 2000; Sithole, 2001) to consider the

discontinuity in the LiDAR data or terrain surface. The

adjustment approach essentially uses a mathematical

function to approximate the ground surface, which is

determined in an iterative least adjustment process while

outliers of non-ground points are detected and eliminated

(Kraus and Pfeifer, 1998, 2001; Schickler and Thorpe,

2001). Although of efforts have been made in urban 3D

data analysis, difficulties still remain. The DTM genera-

tion from LiDAR data is not yet mature (Vosselman and

Maas, 2001; Yoon et al., 2002). It has been realized, also

by many other photogrammetrists, that methods based on

single terrain characteristic or criterion can hardly obtain

satisfactory results in all terrain types.

In this study, we propose to combine LiDAR data

and orthoimage data for urban 3D DBM, DSM and
DTM generation. First, the image processing for edge

detection is conducted from orthoimages; image inter-

pretation is performed to recognize the building, tree,

road, etc., and then to integrate the image knowledge

into LiDAR point cloud for the 3D models of DSM,

DBM and DTM. Finally, we realize these functions with

Microsoft Visual C++. An urban 3D DTM, DBM and

DSM are exported to urban database for urban 3D GIS.
2. Building detection and extraction

2.1. Edge detection from orthoimage

As described above, the building extraction based on

either images or LiDAR data cannot reach a satisfactory

result. One of main causes is because of breaklines for

urban building. It is thus very important to extract the

breaklines of building before applying any interpolation

technique because the breaklines can be used to identify

the sudden change in slope or elevation. Therefore,

detecting breaklines will serve both interpolation and

building extraction. In urban areas most of the

breaklines represent parts of artificial objects such as

building. In digital image, a breakline (edge) is a sharp

discontinuity in gray-level profile. Thus, simplest edge

detection method is to inspect the change of the digital

number of each pixel in a neighboring region with the

first derivative or the second derivative of the brightness.

A lot of edge detection methods have been developed in

the past decades in image processing community.

However, the situation is complicated by the presence

of noise, image resolution, object complexity, occlusion,

shadow, etc. Our implementation of building edge

detection is that the zero-cross edge detection operator

is first employed, and then some post-processing, such as

merging line segment into line, deleting isolated point

and line segment is carried out. Finally, an human–

computer interactive operation is employed for extrac-

tion of complete edges of objects. These extracted edges

of objects, associated with the planimetric coordinates

are coded and saved in files in vector format for the

interpretation and interpolation of objects (see the

description in Section 2.2).

2.2. Image interpretation and building extraction

After the complete edges of buildings have been

detected, the algorithms for extraction of the building

geometrical parameters for interpretation of objects will

be performed. The LiDAR data interpretation is based

on the two facts: (1) The buildings are higher than the

surrounding topographic surface; (2) The ability of the

laser to penetrate vegetation, thus giving echo from

several heights, makes it possible to distinguish between

the two classes: man-made objects and vegetation. The
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Fig. 1. LiDAR footprints on building and vegetation.
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extraction procedures are based on an implementation

of the minimum description length (MDL) criterion for

robust estimation (Rissanen, 1983; Axelsson, 1992).

Thus, main steps are (1) linking the 2D complete image

edges of building with 3D LiDAR data using horizontal

coordinates, (2) determining the three-dimensional

building breaklines from image edges and exactly

estimating the building boundary via integrating image

edges and LiDAR, and (3) interpreting the LiDAR data

for buildings or vegetation using two facts and MDL.

Internal breaklines can be determined by intersecting the

adjacent planar facades within the building. It is known

that the laser points are not selective, and they do not

match building boundary. Therefore, one cannot

determine the building boundary with only height data

unless the density of LiDAR point cloud is like image

gray representation. Fig. 1 shows a portion of a building

near its boundary. Some laser data points are located on

the building, while others are located on the ground. The

segments of LiDAR data therefore is from the image

segments, which describe various building. Therefore,

we have selected the geo-referenced images whose 2D

geodetic coordinates are known. We can directly use the

planimetric coordinates of the boundary edges to obtain

each 3D building model. The building boundary in

addition to the internal fa@ade parameters and the

internal 3D breaklines will be the results of the building

extraction process. The topological relationships of

building facades is described in Section 3.
3. Digitally modeling buildings

In our research, an object-oriented data structure has

been developed for the description of digital building

model (DBM). During the development of this model,

we mainly think of making best use of the data sets for

better creating DBM for buildings, for instance the roof,

which we have obtained from the geo-referenced image

providing the information of roof, and the LiDAR data,

which provide information of the height of building. In

this model, each building is an object of the building

class, i.e., an entity of the class. One building object

consists of the attributes of the Building ID, roof type

ID, and the series of the roof surfaces. Each surface in

the surface series of a building object is also considered
an object. The surface’s class is comprised of the

surface’s boundary, the LiDAR footprints within

the surface and planar equation parameters describing

the surface by fitting LiDAR footprints. The boundary

is composed of a set of points. One of advantages of this

model is its flexibility for future expanding, e.g., adding

other building attributes, such as wall surfaces, texture,

etc. (see Fig. 2). We implement this data structure as

follows:
typedef struct{ double dx;
double dy;

double dElevation;
} LiDARPoint;

class CBuilding : public CObject

{

protected: unsigned m nBID; // Building ID
unsigned m nRoofType; //Roof Type

ID
public: CTypedPtrListoCObList,

CSurface�> m surfaceList;

//Surfaces series in one building
yy.

yy.

yy.

};

class CSurface : public Cobject

{

public: //Planar equation parameters
double m dP1;

double m dP2;

double m dP3;
public: CArrayoCPoint, CPoint>
m ptEdgeArray;

//Point array on behalf of the surface

boundary

CArrayoLiDARPoint, LiDAR-

Point> m ptLiDARArrayIn;

//Series of LiDAR points within the

footprint of the surface

yyyy.

yyyy

yyyy.

};
4. Creation of digital surface model (DSM)

4.1. Establishment of the relationship between images and

LiDAR point cloud data

The orthoimages are stored as raster data, while the

LiDAR point cloud is collected along track. The linkage



ARTICLE IN PRESS

Fig. 2. Object-oriented DBM.

Fig. 3. Determination of inside footpoints in building using

filling algorithm.
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of the two data sets is implemented by the planimetric

coordinates. Thus, we have to determine which LiDAR

footprints are inside of boundary of a building. We use

filling algorithm, whose steps are (note that a rectangle is

selected as a sample in Fig. 3):

* Create polygon of roof’s surface: The edge of a roof

surface that we extracted from the orthoimage is a set

of point coordinates like (x1; y1; x2; y2;y; xn; yn). We

can obtain the surface polygon by connecting the

edge points orderly in this step.
* Obtain the boundary of the polygon of the roof surface:

For a given roof surface, for example, the coordi-

nates of 4 corner points of its boundary rectangular

can be obtained by (see Fig. 3):
Corner 1: (X1; Y1)

Corner 2: (X2; Y2)

Corner 3: (X3; Y3)

Corner 4: (X4; Y4)

* Obtain the reduced LiDAR points within the boundary

rectangular: For speeding up the calculation, we

reduce the LiDAR points via the test to see whether

these points are in the roof surface or not. By simple

comparison of the LiDAR point coordinates and the

rectangular corners, we can obtain the reduced

LiDAR points.
* Determine the LiDAR footpoints in the reduced points:

The determination of the LiDAR footprints in the

reduced points are inside or outside is carried out by

filling algorithm. This algorithm was realized by

Microsoft MFC function, i.e., CRgnHPtInRegion in
MS VC++.

This procedure is then repeated for roof plane of each
building until all buildings are implemented.
4.2. Interpolation algorithm via planar equation

After we obtained a complete extraction of the roof

surfaces, we will be able to obtain the LiDAR points

within the footprint of the roof surfaces and store them

into an array in a surface object of a building, whose

procedure was described in Section 4.1. Now, each

building object has its LiDAR point data, associated

with boundary information. We use the information to

generate the DSM of urban areas. There are many

interpolation methods available. However, these meth-

ods cannot meet the accuracy requirement, such as

Inverse Distance Weight (IDW) method, which calculate

the unknown elevation by using the close known

neighbors, and give them different weight on the basis

of the distance between them and the unknown points.

We here suggest an innovative method for LiDAR data

interpolation. The basic principle is to fit the roof

surfaces of building using planar equation. The equation

is solved by the LiDAR footprints within roof boundary

that we already obtained in Section 4.1. The planar

equation is

AX þ BY þ CZ ¼ 1; ð1Þ

where A; B; and C are unknown parameters, and X ; Y

and Z are coordinates of LiDAR data. At least three

LiDAR footprints are requested to determine the planar

equation (surface of building). However, usually, more

than three footprints are measured in each surface.

Least-squares method is thus employed to calculate the

parameters of the planar equation. The equation is
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where m is the number of LiDAR points in a surface.
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This interpolation method for DSM generation via

planar equation and the surface boundary can reach

higher accuracy than the method via LiDAR raw data

array interpolation within the boundary.
5. Creation of digital terrain model (DTM)

LiDAR data presents two aspects: ground and

buildings. Thus, the data could be segmented into two

types of regions corresponding, on one hand, to a

surface linked to the ground, and, on the other hand, to

a surface linked to surface objects. Therefore, DTM can

be generated by separation of the surface objects from

the DSM. The DBM has been generated above, and the

DTM can be generated by removing the surface objects.

The steps are:
(1)
 Based on the extracted boundary of building in

image processing, we can get the planimetric

coordinates of these boundary points.
(2)
 Seeking for corresponding LiDAR footprints ac-

cording to planimetric coordinates.
(3)
 Removing those LiDAR footprints whose plani-

metric coordinates are same the one of building

boundary.
(4)
 Interpolating the DTM via the IDW method.
6. Experiments

6.1. Data sets

The Virginia Department of Transportation (VDOT),

contracting to Woolpert LLC at Richmond, Virginia,

has established a high-accuracy test field in Wytheville,
Fig. 4. Geodetic control test
Virginia. It consists of approximately 21 targeted

ground points placed specifically for airborne LiDAR

data collection and accuracy test purposes. The field

extends from the west side of Wytheville east approxi-

mately 114 miles, with a north–south extent of

approximately 4.5 miles centered on Wytheville, i.e.,

from latitude, 36�5401600 to 36�5905400 North, and from

longitude, 81�0802300 to 81�4900800 West (see Fig. 4). The

target points are spaced at least several kilometers apart

and distributed in a generally east–west direction (see

Fig. 4). The point accuracy can attain standard

deviations better than 0.02, 0.02, and 0.10m in X ; Y

and Z; respectively. This level of accuracy is comparable
with geodetic accuracy standard for Order C (1.0 cm

plus 10 ppm). This control field will be used for our test

of orientation parameter determination.

6.1.1. Lidar data

The LiDAR data were obtained by using an Optech

1210 LiDAR system in September 2000. The LiDAR

data have accuracy (on hard surfaces) of 2.0-feet at least

and point sampling density is sufficient to provide an

average post spacing of 7.3-feet in the raw DSM. It was

provided in raw text format. The LiDAR parameters

used for this project are as follows:

* Aircraft speed: 202 ft/s
* Flying height: 4500 ft above ground level
* Scanner field of view (half angle): 716�

* Scan frequency: 14Hz
* Swath width: 2581 ft (1806 ft with a 30% sidelap)
* Pulse repetition rate: 10 kHz
* Sampling density: average 7.3 ft

6.1.2. Aerial image data

To aid planimetric compilation, quality control of

the LiDAR data, the analog black-and-white aerial
field in Wytheville, VA.
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photography was acquired along east–west flight lines

over the project area on September 19, 2000 at a scale of

1:1000. Woolpert camera number 5099 was used. Kodak

2405 file was used with a 525-nm filter and 153.087mm

focal length. A total of 96 exposures were acquired over

4 equal length flight lines (see Fig. 4). Aerial photo has a

pixel resolution of 2.0-feet, and the orthoimage was

produced using fully differential rectification techniques

and the LiDAR DTM. All the elevation data were

referenced to NAVD88 datum; and horizontal data were

referenced to NAD83/93 Virginia State Plane Coordi-

nate system. The city of Wytheville, Virginia, lies in the

west part of the data coverage. As the availability of

data and its precision, we selected the data of southern

part of the city for our study (Fig. 5).

6.2. System development

We developed a system of semi-automation urban 3D

model generation from LiDAR data and image data

using Microsoft Visual C++ platform. The system

consists of the following modules (Fig. 6):
(1)
Fig.

indic
New/open a project: This module opens an existing

or create new project.
(2)

Fig. 6. Semi-automatic urban 3D model generation system, in

which dot points are LiDAR point cloud; and lines are

extracted edges of buildings.
LiDAR data check: This module is to check the

systematic error of LiDAR data via various

methods, such as overlay LiDAR data onto

georeferenced image, ground control points checks,

etc.
(3)
 Data input (image and LiDAR): This module

contains LiDAR data input, image display, data

format conversion (e.g., for raw image to bmp

image, tiff image format, etc.) (see Fig. 7).
(4)
 Image processing and interactive edit: This module

contains image filtering, enhancement, edge detec-

tion, line feature and area detection and description,

image interpretation, interactive operation, etc.
(5)
Fig. 7. Patch of original image.
Topology generation of building and DBM: This

module is to implement the functions of topologic

description of building and of DBM using object-

oriented data structure.
5. Configuration for aerial image and LiDAR data collection (s

ates ID of aerial images).
(6)
hado
Urban DSM and DTM generation: This module is to

generate high-accuracy of DSM by applying the

surface equation; some conventional interpolation

methods, such as IDW, are available. The DTM is

generated by removing surface objects.
By this software, a group of experimental results are

listed in Figs. 8–13, Fig. 8 is the result of automatic

detection of building edge, and Fig. 9 depicts the

detected buildings after human–computer interactive
wed areas indicate coverage of LiDAR data, and number
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Fig. 8. Automatically detected building edges.

Fig. 9. Detected building edges by human–computer interac-

tion operation.

Fig. 10. Result of raw LiDAR data interpolated by IDW.

Fig. 11. Result of raw LiDAR data interpolated by Spline

(Spline parameters are: weight=0.1, number of points=12,

type is regularized).

Fig. 12. Result of raw LiDAR data interpolated by our

software.
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operation. Fig. 12 depicts the DSM, which is generated

by our algorithm. In order to compare the interpolation

accuracy between our method and other interpolation

methods, e.g., the IDW method and Spline method, the

results from IDW and Spline methods are shown in

Figs. 10 and 11. As we can see, the two interpretation

methods cannot reach high accuracy. The building edges

are not very clear. It appears that there are dim slopes to

the ground. Also, the roof surfaces are rough, but the

most of real roof surfaces are planar. Obviously, our
interpolation result is much better than IDW and Spline

methods. The edges and the roof surfaces are clearer.

Fig. 13 is DBM.
7. Conclusion

In this paper, we presented the generation of urban

3D model, including 3D DSM, DBM and DTM via

integrating image knowledge and LiDAR. A human–

computer interactive operation system has been devel-

oped for this purpose. The main contributions of this

paper are to develop a high-accuracy interpolation

method for DBM/DTM/DSM generation and to devel-

op an object-oriented building model. In this model, we

defined the roof types, roof surfaces, planar equation

parameters, etc. Especially, the model consisted of roof

surface’s boundary and their planar equations, which

are from the combined processing of the LiDAR data

and orthoimage data. For planar equation of each roof

surface, we firstly extract the LiDAR point data lying

within it by their spatial relationship, and then calculate

the planar equation’s parameters with these LiDAR

points by least-square method. We use the planar

equation to calculate the gird value within the roofs.
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Fig. 13. Urban DBM generated by our software system.

G. Zhou et al. / Computers & Geosciences 30 (2004) 345–353352
The experiment demonstrated that the high accuracy of

DSM, DBM and DTM in urban areas has been reached

via our software system.
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