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This study presents a robust approach for characterization of multi-layered forests using airborne laser scan-
ning (ALS) data. Fuel mapping or biomass estimation requires knowing the diversity and boundaries of the
forest patches, as well as their spatial pattern. This includes the thickness of the main vegetation layers,
but also the spatial arrangement and size of the individual plants that compose each stratum. In order to
decompose the ALS point cloud into genuine 3-D segments corresponding to individual vegetation features,
such as shrubs or tree crowns, we apply a statistical approach based on the mean shift algorithm. The seg-
ments are progressively assigned to a forest layer: ground vegetation, understory or overstory. Our method
relies on a single biophysically meaningful parameter, the kernel bandwidth, which is related to the local for-
est structure. It is validated on 44 plots of a Portuguese forest, composed mainly of eucalyptus (Eucalyptus
globulus Labill.) and maritime pine (Pinus pinaster Ait.) trees. The number of detected trees varies with the
dominance position: from 98.6% for the dominant trees to 12.8% for the suppressed trees. Linear regression
models explain up to 70% of the variability associated with ground vegetation and understory height.

© 2012 Elsevier Inc. All rights reserved.
1. Introduction

Forests, woodlands, and shrub formations are very important eco-
systems because they provide foundations for life on Earth through
their ecological functions: regulation of climate and water, habitat
for animals, and supply of food and goods. They exhibit various cano-
py structures, from homogeneous to heterogeneous, and from single-
to multi-layered (Landsberg & Gower, 1997). Today we know the hori-
zontal structure that describes the patchiness in forest stands better
than the vertical structure, which is difficult to quantify and yet is
an important characteristic (Hall et al., 2011). The canopy layers
(overstory, understory, and ground vegetation) are distinct from each
other in their density, thickness, and water content. A better appraisal
of this vertical arrangement, at high spatial resolution, would be
valuable for many applications in forestry (Ares et al., 2010), carbon
ational, Laboratoire MATIS, 73
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cycle studies (Moore et al., 2007), and ecology (Brokaw & Lent, 2000;
Camprodon & Brotons, 2006). As an example, foresters use fuelmodels
for predictingfire behavior (Pyne et al., 1996), and fire behaviormodels,
such as FARSITE (Finney, 2004) or BehavePlus (Andrews et al., 2005),
require information about vegetation strata thickness to detect areas
where fire easily propagates and spreads (Anderson, 1982; Sandberg
et al., 2001).

Airborne laser scanning (ALS) is an active remote sensing tech-
nique that provides georeferenced distance measurements between
a remote sensing platform and the surface (Mallet & Bretar, 2009;
Shan & Toth, 2009). In recent years, it has been applied over natural
landscapes to extract terrain elevation (Bretar & Chehata, 2010; Kraus
& Pfeifer, 1998), classify land cover (Antonarakis et al., 2008; Asner et
al., 2008; Breidenbach et al., 2010; Hyyppä et al., 2008; Yoon et al.,
2008), evaluate wildlife habitat (Clawges et al., 2008; Martinuzzi et al.,
2009), estimate biomass (Asner et al., 2010; García et al., 2010; Zhao
et al., 2009), and assess fuel characteristics (Andersen et al., 2005;
Hollaus et al., 2006; Mutlu et al., 2008; Riaño et al., 2003). Depending
on the nature of the target, a single pulse emission may induce one or
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Fig. 1. Regular grid superimposed on the land cover map of the study area.

Table 2
Field inventory of ground vegetation and understory, all stands.

Mean height (m) % Cover

Ground
vegetation

Understory Ground
vegetation

Understory

Minimum 0.15 0 2 0
Maximum 1.3 6 100 95
Mean 0.53 2.41 52.1 15.6
Standard deviation 0.3 1.64 33 20.2

Fig. 2. Age class of the stands. The black bars correspond to the eucalyptus and the gray
bars to the pines.

Table 3
Field inventory statistics for trees in mature eucalyptus and pine stands.
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several backscattered echoes. As the laser beam penetrates down into
the forest canopy layers, an unstructured 3-D point cloud that is a dis-
crete model of the target is obtained. There are two main spatial scales
for tackling the extraction of forest parameters from ALS data: at the
plot scale, the biophysical variables are averaged over an area encom-
passing several trees (e.g. mean canopy height, biomass, stem density,
leaf area index), while at the individual scale, they are estimated for a
single tree (e.g. tree height, crown diameter, crown base height).

Vertical stratification has been assessed at the plot scale (Maltamo
et al., 2005; Riaño et al., 2003, 2004; Zimble et al., 2003). Morsdorf et
al. (2010) use the ALS intensity to discriminate different vegetation
strata. They apply a supervised cluster analysis, assuming that some
species have a better light reflection ratio than others. This method
works fairly well in forest ecosystems made of mono-species strata.
The intensity is somewhat difficult to analyze because it depends on
the sensor as well as on the geometry, orientation, and optical prop-
erties of the target (leaves, branches, trunks). Some authors delineate
vegetation strata by fitting continuous probability distributions, like
the Weibull distribution or mixture models, to the ALS density pro-
files (Coops et al., 2007; Dean et al., 2009; Jaskierniak et al., 2010;
Maltamo et al., 2004). However, plot-based methods are not the most
appropriatemeans to describe the vertical stratification of complex eco-
systems, such as Mediterranean forests that are characterized by an
open dominant canopy and a lush undergrowth made of herbaceous
and woody plants (Di Castri, 1981). These are often highly fragmented
forests, the stratification ofwhich varies locally due to small ownerships
administered according to different management rules (EEA, 2008).

So far, single-tree based methods rely on a canopy height model
(CHM), which is an oversimplified representation of reality in vertically
heterogeneous canopies (Hyyppä et al., 2004; Morsdorf et al., 2004;
Persson et al., 2004; Popescu & Wynne, 2004; Solberg et al., 2006). In
order to investigate the spatial pattern of dominated trees, some
Table 1
Biophysical characteristics of stand #30.

Height class (m) Species % Dominance Mean height (m) % Cover

0–2
Ferns 95

1.2 50Ulex 5

2–8
Acacia 70

6.0 8Pinus 30
>8 Eucalyptus 100 21.2 20
authors developed multi-stage approaches. For instance, Richardson
and Moskal (2011) first delineate groups of trees in the CHM and then
calculate the number of trees by fitting a statistical relationship to the
corresponding point cloud distribution. Reitberger et al. (2009) identify
the taller trees within each group, determine the stem position, and
apply a normalization-cut segmentation method to extract the smaller
ones. Despite good performance, these approaches are site-dependent
because they require several empirical parameters. Moreover, they do
not properly address the issue of vertical stratification in multi-layered
forests because, even if they delineate the topmost tree crowns, many
ALS points corresponding to ground or understory vegetation remain
unassigned.

Therefore, it seems that an approach that simultaneously seg-
ments vertical and horizontal structures of forest canopies is lacking.
This paper validates a segmentation method based on the mean shift
algorithm. This method has been tested on a 3-D point cloud acquired
with a small-footprint ALS in a multi-layered Mediterranean forest.
We first present the experimental data and the algorithm. The seg-
mentation of the forest into different strata and the derivation of
the geometry of individual vegetation features are then detailed.

2. Experiment

2.1. Study area

The study area is located near the city of Águeda in northwest
Portugal (40°36′ N, 8°25′ W). It covers 9 km2 and its altitude varies
DBH
(cm)

CBH
(m)

Total
height
(m)

Crown
depth
(m)

Atypical
shape
(%)

Eucalyptus Minimum 1.5 2.5 3.7 0.4

17.2
Maximum 70.0 22.5 35.4 14.2
Mean 9.7 9.4 13.3 3.9
Standard deviation 5.3 3.9 5.2 2.4

Pine Minimum 4.9 7.1 8 0.4

7.7
Maximum 41.4 22.3 25 9.0
Mean 23.5 13.7 17.5 3.8
Standard deviation 8.3 4.8 5.0 1.5

image of Fig.�1
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Fig. 3. Mean crown depth of dominant, codominant and dominated eucalyptus (black
bars) and pine (gray bars) trees per stand. Standard deviations are plotted above
each bar and the dots represent the minimum and maximum values.
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from 70 m to 220 m, with slopes ranging from 2.5% to 34.2%. The
landscape is predominantly composed of woodlands dominated by
eucalyptus (Eucalyptus globulus Labill.) with some stands of mari-
time pine (Pinus pinaster Ait.). Shrublands are also present, as well
as agricultural fields. The eucalypts grow in pure and mixed stands,
the management of which is mainly done by 3–4 short rotations of
about 10–12 years to supply raw materials to the Portuguese pulp
and paper industry. Despite a limited spatial extension, the study
area displays various kinds of stands and trees in terms of age and
canopy structure. The lower strata are composed mainly of suppressed
trees (eucalyptus, pine, acacia, and oak), gorse bush (Ulex spp.), heath
(Erica spp., Pterospartum spp.), ferns, and herbaceous plants.

2.2. Field data collection

The forest inventorywas performed in the framework of a Portuguese
research project, in accordance with a field protocol recommended
by the Portuguese National Forest Inventory (AFN, 2009). The super-
imposition of a 325 m×325 m regularly spaced grid on a land cover
map (DGRF, 2005) led to the selection of 45 plots covered mainly
by eucalypts and 2 plots covered mainly by pines (plots #100 and
#200, Fig. 1). The coordinates of the plot centers correspond to the
grid cell centers: they were staked out in the field using GPS or,
when the signal was too weak, traditional terrestrial surveying tech-
niques. If the plot center was inaccessible due to dense shrubby veg-
etation, it was shifted to one of the eight points located at a distance
of 50 m in all cardinal and intercardinal directions. Three eucalyp-
tus plots could not be sampled. Each plot actually consists of two
concentric circles, an outer (400 m2) and an inner (200 m2) circle,
hereafter called plot and subplot. They were delimited using a deca-
meter and the trees were numbered using a marker pen. The field
operators defined different forest stands, i.e., uniform plant
Table 4
ALS acquisition parameters.

ALS sensor RIEGL LMS-Q560

Wavelength 1550 nm
Scan angle 45°
Pulse rate 150 kHz
Effective measurement rate 75 kHz
Beam divergence 0.5 mrad
Ground speed 46.26 m/s
Flying height 600 m
Swath width 479 m
Swath overlap 70%
Nominal distance between two lines 150 m
Footprint diameter 30 cm
Single run density 3.3 pt/m2

Expected final point density 9.9 pt/m2
communities in terms of species, age, and spatial arrangement
(Stokes et al., 1989). We use stand and substand to designate the for-
est stands corresponding to plot and subplot. If a plot containedmore
than one stand, only the stand coincident with the plot center was
described. Among the forest biophysical variables measured during
the field work, the vertical structure (at the stand level) and the
size and shape of individual trees (at the substand level) were care-
fully investigated (Pereira et al., 2009).

The vertical structure of a stand was described by seven height
classes (0–0.6 m, 0.6–1 m, 1–2 m, 2–4 m, 4–8 m, 8–16 m and >16 m)
that could be aggregated in situ to better represent the vegetation strata
(Table 1). The mean height and percent cover of each stratum were
Fig. 4. Mean shift segmentation applied to (a) 2-D and (b) 3-D simulated tree crowns.
The initial kernel bandwidths with different vertical and horizontal components are
represented by cylinders. The mean shift vectors are represented by arrows that define
the successive positions of the kernel bandwidth (dashed cylinders). All the data points
that have converged to the same mode (filled gray sphere) are grouped together. The
gray lines in (c) correspond to the trajectory of random points.

image of Fig.�3
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Fig. 5. Mean shift segmentation of a simulated forest scene using (left) h*=(1.3,2)m (middle) h*=(3.3,5)m and (right) h*=(6,9)m. The cylinders correspond to the different
kernels and the gray spheres represent the calculated modes.
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visually estimated by the field operators. Note that one treemay belong
to several height classes.

All trees were assigned a class and a dominance position (domi-
nant, codominant, dominated, and suppressed). Calipers gave a direct
measurement of the diameter at breast height (DBH) whereas the
total height and the crown base height (CBH) were measured using
either a telescopic tape measure or a Vertex hypsometer. We only
considered trees higher than 2 m with a DBH larger than 5 cm. Note
that the forest inventory data are usually acquired with a lower geo-
metric accuracy than the ALS data. To improve the accuracy, a local
geodetic network made of 41 pairs of GPS-derived points was built
in the same map projection as the ALS data (Fig. 1) to survey the
tree positions using total stations (Gonçalves & Pereira, in press). All the
data were subsequently integrated into a single three-dimensional
geometry.
Fig. 6. Mean shift segmentation algorithm at the plot level (left) and subsequent histogram
are the ground vegetation, understory, and overstory thicknesses.
2.3. Characteristics of the stands

Table 2 sums up the main structural characteristics of ground veg-
etation and understory. The large range of percent cover indicates
that the canopy varies from sparse to very dense.

The forest is highly variable in terms of tree age, architecture, and
metrics. The eucalyptus stands are between 1 and 13 years old, while
the two pine stands are 30 and 60 years old (Fig. 2). In total there are
12 plots with juvenile stands (1–4 years) and 32 plots with mature
stands (> 4 years).

The plots contain one (59%) or more (41%) forest stands. They may
display an intrinsic structural heterogeneity: the architecture of the
trees differs depending on whether they grow in the middle of the
forest or near roads and clearings. In open space areas, the trees
tend to expand horizontally to search for light, reducing their apical
(right). htus and htos are the understory and overstory height thresholds. Agv, Aus and Aos

http://doi:10.1109/TGRS.2011.2180911
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Fig. 7. Horizontal (gs, Gaussian profile, surface) and vertical (gr, Epanechnikov profile,
curve) kernel profiles. The point and color bar indicates their weight in the calculation
of the kernel barycenter. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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dominance. Heterogeneity also influences ground vegetation and
understory since clearings let direct sunrays reach the lowest strata.
About 50% of the measured stands are considered to be heterogeneous.

The stands can also be sorted according to three regeneration
methods: forest planting produces the so-called high forests (euca-
lyptus and pine); coppicing, a traditional method of woodland man-
agement that consists in pruning trees to near the base, allows the
stumps to regenerate over-vigorous coppiced trees (eucalyptus); and
when after cutting, a stand contains trees that are left to grow to full
height, it belongs to the category coppice-with-standards (pine).
Twenty-five stands are allocated to high forest, 16 to coppice, and 3 to
coppice-with-standards. Table 3 summarizes the main structural char-
acteristics of mature eucalyptus and pine trees, as well as the percent-
age of trees with atypical shape: crooked, leaning, and broken trees.
Specimens belonging to juvenile stands are not processed as individuals
but as a forest stratum.

Fig. 3 details the crown depth in terms of minimum, maximum,
mean, and standard deviation for each stand. Suppressed trees that
are poorly represented in the point cloud are omitted.
2.4. Airborne laser scanning data

The data were acquired on July 14, 2008 in a full-waveform mode
using a LiteMapper 5600 airborne LiDAR system (Table 4), which dig-
itizes the waveform of the echo signal for every emitted laser pulse.
The company in charge of the airborne measurements delivered both
the raw and processed laser data. The digitized waveforms were con-
verted into echo signals, each laser pulse giving rise to 1–5 ALS points
(RiANALIZE, RIEGL, 2011a). The position and orientation of the plat-
form, which are given by onboard GPS/IMU measurements, were cor-
rected by analyzing overlapping laser strips from the calibration flight
lines (TerraMatch, Burman & Soininen, 2004). These parameters,
together with the GPS measurements acquired during the flight using
a reference ground station, provided a point cloud in the WGS84/UTM
zone 29N coordinate system for further processing (RiWORLD, RIEGL,
Fig. 8. (a) Original point cloud measured on plot #17; (b) MS algorithm applied using a
radially symmetric kernel and a 3 m bandwidth; (c) MS segments corresponding to
more than five ALS points.

image of Fig.�7
image of Fig.�8


Fig. 9. Workflow of the adaptive mean shift algorithm.
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2011b). Systematic height errors were finally removed by using ground
control data spread over the study area.

The average point density within each plot is of 9.5 pt/m2

(min=4.7 pt/m2, max=15.5 pt/m2, σ=1.9 pt/m2). To calculate the
effective height of the objects in the scene, ground and vegetation
points were separated (TerraScan, Soininen, 2010). A Delaunay trian-
gulation was then generated to produce a 0.3 m×0.3 m digital terrain
model, which was used to normalize the point cloud. Note that the
points filtered as ground were kept in the dataset.

3. Methodology: the mean shift algorithm

An ALS point cloud can be regarded as a multimodal distribution
where each mode, here defined as a local maximum both in density
and height, corresponds to a crown apex. In this study, we investigate
the ability of the mean shift (MS) algorithm to extract the modes of
the point cloud. Due to the complexity of the forest stands, which
mix shrubs, suppressed trees, and dominant trees, a single kernel
bandwidth is unsuitable. To improve the segmentation of individual
vegetation features, we propose to apply a bottom-up iterative meth-
od based on an adaptive MS algorithm, which sequentially segments
individual vegetation features.

3.1. Background

The mean shift has been primarily applied to image segmentation
(Comaniciu &Meer, 2002). Here we explore its potential for segment-
ing a three-dimensional point cloud. The Parzen window (or kernel
density estimation) technique is a method for estimating the proba-
bility density function (PDF) of a random variable X that is distributed
in a d-dimensional space Rd. Each point Xi contributes to the PDF
based on its distance from the center of the volume where the data
are distributed. The estimated PDF is

f̂ h;K Xð Þ ¼ 1
nhd

Xn
i¼1

K
X−Xi

h

� �
ð1Þ

where n is the number of samples of the random variable, K is the
chosen kernel function, and h, called the bandwidth, is the smoothing
parameter that determines the contribution of each sample. K is a
non-linear function of the distance from the data points to X. We
define a radially symmetric kernel that satisfies K(X)=ck,d×k(‖X‖2),
where ck,d is a normalization constant, which makes K integrate to
one, and k is called the kernel profile. The algorithm tries to determine
local maxima of the density function f(X), which correspond to the
zeros of the gradient ∇ f(X)=0. Assuming that g is the derivative of
the kernel profile, g(X)=−k ' (X), and G the corresponding kernel
defined by G(X)=cg,d×g(‖X‖2), where cg,d is another normalization
constant, Comaniciu and Meer (2002) calculate the density gradient
estimator as

∇f̂ h;K Xð Þ ¼ f̂ h;G Xð Þ 2ck;d
h2cg;d

mh;G Xð Þ ð2Þ

with mh,G(X) the mean shift vector:

mh;G Xð Þ ¼

Pn
i¼1

Xi g
X−Xi
h

��� ���2
� �

Pn
i¼1

g X−Xi
h

��� ���2
� � −X ð3Þ

The mean shift is the difference between the weighted mean
(G-distance), using the kernel G for weights, and X, the center of the
kernel. mh,G(X) can be inferred from Eq. (2)

mh;G Xð Þ ¼ h2cg;d
2ck;d

∇f̂h;K Xð Þ
f̂h;G Xð Þ

: ð4Þ

Eq. (4) shows that, at location X, the mean shift vector computed
with kernel G is proportional to the normalized density gradient esti-
mate obtained with kernel K. Thus, it always points toward the
direction of the maximum slope of the density function. The proce-
dure does not need to evaluate the density function f̂h;K itself, but
only the kernel profile g. In a multidimensional space, the kernel is
usually split into two or more kernels. Here we separate the horizon-
tal and vertical domains. The MS vector is then defined as

mh� ;G� Xð Þ ¼

Pn
i¼1

Xi g
s Xs−Xs

i
hs

��� ���2
� �

gr Xr−Xr
i

hr

��� ���2
� �

Pn
i¼1

gs Xs−Xs
i

hs

��� ���2
� �

gr Xr−Xr
i

hr

��� ���2
� � −X ð5Þ

where the superscripts s and r refer to the horizontal and vertical
domains. gs and gr are the two associated kernel profiles, hs and hr the
two bandwidths, and Xs and Xr the two components of the vectors. At
step t the iterative process can be written as

Xtþ1←Xt þmh�;G� Xt
� �

: ð6Þ

2-D and 3-D synthetic tree crowns were simulated to test the per-
formance of the MS algorithm. Fig. 4a and b shows that points con-
verge toward the modes. This procedure can be easily extended to a
distance-based segmentation technique if all the data points that con-
verge toward the same mode are grouped together (Fig. 4c). All the
modes inscribed in a sphere with radius 1 m are considered as a sin-
gle mode.

image of Fig.�9
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3.2. Determination of the bandwidth

The choice of the kernel bandwidth is critical because it strongly
impacts on the results. Setting a small value produces several distinct
modes (local basins of attraction), while setting a large one aggre-
gates small structures into larger ones (large basins of attraction).
The determination of an optimal value is actually a major challenge.
The thickness of the forest strata generally increases with height,
i.e., scrubby vegetation is typically thinner than overstory. Three
segmentations have been applied to a simulated scene using differ-
ent bandwidths (Fig. 5). The smaller bandwidth that is optimal for
ground vegetation tends to fragment the trees into numerous seg-
ments (Fig. 5a). Increasing the bandwidth definitely improves the
segmentation of the understory without effect on the taller trees
(Fig. 5b). Finally, the optimal bandwidth for the overstory causes
under-segmentation of the scene (Fig. 5c). Worse yet, dense ground
vegetation tends to attract a sparse understory, overestimating the
thickness of this layer. Thus, using a single scale over the entire space
is not suitable for the analysis of forest environments. The issue of
bandwidth selection has been studied for the purpose of multiscale
Fig. 10. Segmentation of plot #30 with htus=1m and htos=8m. The black dots correspond
next iteration. (a–b) First iteration: w=0m and hgv*=(1,1). (c–d) Second iteration: w=2
(a) and (f) respectively correspond to the field-measured and ALS-derived mean height of g
color in this figure legend, the reader is referred to the web version of this article.)
segmentation using either multispectral or hyperspectral images
(Bo et al., 2009; Comaniciu, 2003; Huang & Zhang, 2008). Variable
bandwidthMS has already been proved to converge, and even to sur-
pass, fixed bandwidth MS (Comaniciu & Meer, 2002).

In order to properly segment individual vegetation features, a dif-
ferent bandwidth is assigned to each vegetation stratum. The thicker
the forest layer the larger the bandwidth. Since vegetation volumes
are better predicted if the stratum thickness is known, the first stage
of the algorithm consists in plotting the height histograms of the forest
plots in order to identify the strata: overstory, understory, and ground
vegetation. A first pass of the MS algorithm is applied to the ALS point
cloud to compute their basins of attraction. Eq. (5) is applied to the
ALS points using the uniform kernel profile on both components:

gs Xs� � ¼ 1 if Xs�� ��≤1
0 otherwise

and gr Xr� � ¼ 1 if Xr�� ��≤1
0 otherwise

:

		
ð7Þ

Thus, in such a case, the ratio in Eq. (5) is simply the mean of the
ALS points contained within a cylinder of radius hs, height hr, cen-
tered in X. To remove the influence of the horizontal coordinates, hs
to the ALS points that remain unlabelled after an iteration and that are inputs for the
m and hus*=(2.3,3.5). (e–f) Third iteration: w=9.5m and hos*=(4.3,6.5). The lines in
round vegetation (green) and understory (red). (For interpretation of the references to

image of Fig.�10
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is set to the plot diameter (~22 m) and hr is defined as the value that
forces the ALS points to converge toward twomodes. We set hr=1 m
as an initial estimate and increment it to obtain these two modes
(Fig. 6a). The borderline between the basins of attraction of each
mode defines the overstory height threshold, htos (Fig. 6b). We as-
sume that a plot holds a single layer when htosb1 m and two layers
when htosb5 m; otherwise a third layer may exist. In this case, the
understory height threshold htus is set to 1 m. Afterwards one can eas-
ily compute the thickness of the overstory (Aos), understory (Aus), and
ground vegetation (Agv).

Finally, the kernel bandwidth h*=(hs,hr) corresponding to the
crown segmentation is adapted to the vegetation architecture to ac-
count for the aspect ratio of tree crowns, so the vertical (hr) and hor-
izontal (hs) components may be different (Morsdorf et al., 2004).
Based on the current ALS dataset, we find that the tree crown height
is at least two thirds larger than the crown diameter, while ground
vegetation is spherical (hgvs =hgv

r ). Then, equalizing the two vertical
bandwidths hos

r and hus
r to half the thickness of the layers avoids

under-segmentation in bilayered forests (Eqs. 8–9). Since ground
vegetation is always considered as a uniform layer, the bandwidth
hgv* is set to the corresponding thickness in both directions (Eq. 10).

h�os ¼
2hros
3

;
Aos

2

� �
ð8Þ

h�
us ¼

2hrus
3

;
Aus

2

� �
ð9Þ

h�gv ¼ Agv;Agv

� �
: ð10Þ

3.3. Adjustment of the kernel profile

We design a 3-D kernel profile as the product of two profiles
to compute the modes of the point cloud, i.e. the crown apices.
Fig. 11. Original point cloud for (a) plot #47 only composed of pine trees and (c) plot #16 m
heights of ground vegetation (green) and overstory (blue) are represented by the lines in t
ground vegetation, understory, and overstory calculated from the individual vegetation featu
in both figures. (For interpretation of the references to color in this figure legend, the reade
Whereas the horizontal profile searches for the local density max-
ima, the vertical one dealswith the local heightmaxima. The horizontal
kernel profile gs follows a Gaussian function,

gs xð Þ ¼ exp −γ xk k2
� �

ð11Þ

with γ=5. Isotropic kernels are standard in image segmentation
where emphasis is put on bandwidth selection (Comaniciu, 2003;
Singh & Ahuja, 2003). Asymmetric kernels have been used in video
tracking to adapt to the structure of moving targets, e.g. an airplane
or a human body (Wang et al., 2004; Yi et al., 2008; Yilmaz, 2007).
In this study, an asymmetric kernel is applied to the vertical compo-
nent in order to assign a higher weight to the highest points within
the bandwidth (Fig. 7). Therefore the MS vector converges toward
the local height maximum. Following Yilmaz (2007) and Yi et al. (2008)
we first create a mask of the foreground object,

mask Xið Þ ¼ 1 if Xr− h
4
≤Xr

i≤Xr þ h
2

0 otherwise
:

8<
: ð12Þ

And the kernel value is the distance between one data point and
the boundary of the mask:

dist Xið Þ ¼ min
Xr−hr

4

� �
−Xr

i

3hr

8

��������

��������
;

Xr þ hr

2

� �
−Xr

i

3hr

8

��������

��������

8>>><
>>>:

9>>>=
>>>;

if mask Xið Þ ¼ 1

0 otherwise

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

ð13Þ

where 3hr/8 is a normalizing factor equal to half the bandwidth of
the asymmetric kernel. Using an Epanechnikov profile, the weight of
ade of two stands. Both plots do not display understory layers and the measured mean
he figures. (b) MS individual vegetation features from (a). (d) Canopy height model of
res computed in (c). The surveyed tree metrics are also shown (line segments in black)
r is referred to the web version of this article.)
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Table 5
Linear regression parameters for ALS-derived versus field-measured vegetation mean
height. (*) The results only concern juvenile stands. Negative values mean an
underestimation.

Number of stands Outliers R2 RMSE (m) Δh (m)

Ground vegetation 44 3 0.70 0.15 0
Understory 32 5 0.68 0.96 0.44
Overstory (*) 10 2 0.92 0.31 −0.12
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each point is calculated using

gar Xið Þ ¼ 1− 1−dist Xið Þk k2 if mask Xið Þ ¼ 1
0 otherwise

:

	
ð14Þ

In the case of an asymmetric kernel, the MS vector in Eq. (5) can
be then rewritten as

mh� ;G� Xð Þ ¼

Pn
i¼1

Xi g
s Xs−Xs

i
hs

��� ���2
� �

gar Xið Þ
Pn
i¼1

gs Xs−Xs
i

hs

��� ���2
� �

gar Xið Þ
−X: ð15Þ
Fig. 12. Analysis of the R2 (left axis) and the RMSE (right axis) for height estimation, as a fun
plots used to calculate these statistics is inscribed in the bars.
Note that the profile is still radially symmetric (Eq. 14). The neigh-
borhoods accounted for in the calculation of mh*,G*(X) are selected as
a function of an asymmetric bandwidth. The weighted distance be-
tween points is the product of the two kernels, which makes the
method more robust (Fig. 7). For instance, overlapped crowns may
also correspond to local density maxima. Whereas the horizontal pro-
file tends to converge to such zones, the vertical profile forces the MS
vector to converge on the local height maximum, i.e. the crown apex.
Conversely, when undergrowth and overgrowth vegetation interpen-
etrate, the vertical profile tends to converge toward the upper plants.
In such a case, the horizontal profile helps the MS vector to stabilize
on the crown apex of the lower plants, which is supposed to be dens-
er than the crown base of the upper plants.
3.4. Pre-processing of the point cloud

In a forest canopy, the laser beams hit leaves, branches, and
trunks. Since the point cloud is very scattered, keeping all points sig-
nificantly overestimates the number of individual vegetation features,
as well as the estimation of the stratum height. In order to identify the
crown elements in the 3-D point cloud, the mean shift (Eq. 5) has
ction of the percent cover for (a) ground vegetation and (b) understory. The number of
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Fig. 13.Modeled vs. field-measured CBH for (a) eucalypts (∘ dominant, ◊ codominant, Δ
dominated, □ suppressed) and (b) pine trees.
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been applied to each plot using a uniform kernel (Eq. 7) and the
bandwidth h*=(hs,hr), with hs=(3,3)m and hr=3m. If all seg-
ments containing less than 5 points are removed from the data set,
because of their poor topological structure, the bandwidth is large
enough to keep the most significant vegetation features (Fig. 8). How-
ever, this technique may remove suppressed trees that are poorly
represented in the point cloud due to occlusion that masks some
parts of the canopy volume.

3.5. Extraction of individual trees and refinement of the forest strata

The algorithm involves two or three iterations (Fig. 9). It first com-
putes a set of mean shift vectors using the ALS points (Eq. 15), which
are all considered as seeds. The vectors search for the local highest
density direction with the appropriate bandwidth. The latter is select-
ed by calculating the 5th height percentile of the current point cloud,
w. In the first iteration, the bandwidth is set to hgv* (Fig. 10a) since
w always tends toward 0 m. A trajectory links every ALS point with
a certain mode. A vegetation feature having a mode lower than htus
is considered as ground vegetation (Fig. 10c, green ellipsoids). At
the end of the first iteration, the corresponding ALS points are re-
moved from the point cloud. The calculation of w in the second itera-
tion defines the bandwidth and therefore the number of iterations
(two or three). The bandwidth is hus* if wbhtos or/and htos* if w>htos.

The second iteration extracts the understory, which corresponds
to vegetation features with modes ranging between htus and htos
(Fig. 10e, red ellipsoids). The third iteration identifies the overstory
as vegetation features with modes higher than htos (Fig. 10f, blue el-
lipsoids). Applying a threshold to the mode space allows definition
of fuzzy frontiers between the strata. This is physically meaningful
compared to a simple vertical stratification based on height thresh-
olds. After each iteration, removing points already assigned improves
the segmentation by reducing the influence of the denser layers.
Thus, when two regions of different densities are close together, the
points belonging to sparser regions are likely to be aggregated by
those belonging to the denser ones. This effect is obvious in Fig. 5b
where the forest strata are either overestimated or underestimated.

4. Results

This section discusses the results of the algorithm over 44 plots.
They are validated in terms of the forest vertical stratification, as
well as the identification of individual trees.

4.1. Segmentation of forest strata

The mean height of ground vegetation is calculated as the 90th
height percentile (Riaño et al., 2007) of the corresponding laser points
(green ellipsoids of Figs. 10f and 11b). Unlike other approaches, we
keep all the points, including ground reflections, which justify such a
high value. The 50th height percentile is naturally used to calculate
the mean heights of understory (Fig. 10f, red ellipsoids) and overstory
(juvenile stands, Fig. 11d) (Peterson, 2005).

Linear regression analysis allows investigation of the strength of
the relationship between the ALS-derived and field-measured heights
of each forest stratum (Table 5). The outliers that represent about
7% and 16% of the plots in ground vegetation and understory, respec-
tively, are identified after Huber (1981) and removed from the linear
regressions. A linear model with a satisfactory RMSE explains 70% of
the variability associated with ground vegetation height. Note the
refinement accomplished by the algorithm: initially set to a 1 m
threshold (Fig. 6), the computed height ranges from 0.15 m to 1.25 m.
The number of retrieved layers is inherent to the forest pattern.
Although all mature plots were initially divided into three strata,
stands #9, #29, #45, #46 and #47 converge toward only two strata
(Fig. 11a–b), which means that the echoes reflected by the trunks
are successfully identified. Due to the lack of understory, the con-
dition w>htus is verified earlier in the second iteration and, con-
sequently, the kernel bandwidth is immediately optimal for the
overstory stratum. The MS algorithm also works on plots contain-
ing several stands, the vertical stratification of which varies radi-
cally (Fig. 11d). The mean height of the understory is overestimated.
The linear model explains 68% of the variance (Table 5). This may be
due to the assignment of suppressed trees to this layer, contrary to
field measurements. These trees can be considered as understory
since they grow below the canopy and do not receive direct sunlight.
As expected, the estimates of overstory mean height are more accurate
for the juvenile stands (Table 5).

Fig. 12 showshow the percent cover affects the estimation of ground
vegetation and understory height. Ground vegetation is surprisingly not
much affected with R2 varying from 0.70 to 0.80 and RMSE lower than
0.02 m (Fig. 12a). As for the understory, the percentage of explained
variance increases with the percent cover while the RMSE decreases
(Fig. 12b). A higher percent cover indicates more plant material and a
higher proportion of laser pulses hitting the canopy. Therefore, the
discrete model of vegetation generates a better estimate of forest pa-
rameters. The understory height is more accurate when the percent
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Fig. 14. Flowchart of the reference trees (RT) and ALS segments (S) linkage method.

Table 6
Tree identification. (*) In total there are 167 suppressed reference trees but 50 that
have been classified as understory are not taken into account.

Tree Dominance
position

Reference
trees

Identified FP

DT DT−FN

Eucalyptus Dominant 146 145 (99.3%) 144 (98.6%)

60 (9.2%)Codominant 176 163 (92.6%) 150 (85.2%)
Dominated 210 138 (65.7%) 129 (61.4%)
Suppressed* 117 17 (14.5%) 15 (12.8%)

Pine 52 50 (96.1%) 48 (92.3%) 0
Total 701 513 (73.2%) 486 (69.3%) 60 (8.6%)
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cover exceeds 10%, thus a post-processing analysis for identifying
sparse canopies may improve the results.

We are interested in comparing our results with CBH, which plays
a greater role in forest stratification. Fig. 13 compares the field-
measured CBHs with those modeled by selecting the lowest points
sorted out as overstory in 0.3 m×0.3 m areas (Fig. 10f and Fig. 11b,
blue and colored ellipsoids). The missing pixels were generated using
a Delaunay triangulation. Such a surface explains 76% of the variability
of the pine CBH but it poorly characterizes the eucalyptus stands,
which are more heterogeneous (Fig. 13).

4.2. Identification of individual tree crowns

As in Solberg et al. (2006) and Reitberger et al. (2009), the 3-D
segmentation of individual tree crowns is validated by comparing
field measurements with ALS segments (Figs. 11b and 14). A segment
is linked with a reference tree provided that i) the distance dS-RT is
lower than 70% of the mean distance dNT between eight neighboring
trees and, ii) the height values of at least 50% of the ALS points of S,
ZS 50, are contained between the CBH and the tree height.

If a segment is assigned tomore than one reference tree, the farthest
tree from the reference tree is considered a false negative (FN). In order
to quantify the remaining omission errors, the neighborhood of
unlinked reference trees was analyzed using a cylinder of radius
1.5 m. If there is at least one laser point linked with another refer-
ence tree within this volume, the current one is also called a false
negative. Thus, the FN class means that the tree crown was detected by
the ALS but the algorithm failed to see it as a tree. This is the case when
two crowns were clustered in the same segment. If no laser point be-
longs to this buffer area, a reference tree is declared as an undetected
tree (UT). Finally, segments linkedwith any reference tree are classified
as false positive (FP). This classmay contain vegetation features wrong-
ly assigned to the overstory, e.g. tall shrubs, but also trees located out-
side the substand boundary when their crowns fall inside and are not
surveyed. Thus, the detected trees (DT) quantify the performance of
ALS in characterizing the forest (Table 6).

As expected, the detection rate decreases with dominance position.
The estimation error of biomass or basal area should vary accordingly
(Persson et al., 2002). To report the number of trees missed by the
method, we can sum the omission errors introduced by the algorithm,
i.e., DT−FN. They are actually low compared to those introduced by
the ALS (0.7, 7.4, 4.3, 1.7, and 3.8 percentage points for dominant, co-
dominant, dominated, suppressed, and pine, respectively). The percent-
age of FP, or commission error, equals 8.6%, which is in good agreement
with other studies. In a forest mainly covered with Norway spruce,
European beech, fir, and sycamore maples, Reitberger et al. (2009)
detect 66% of the reference trees (upper layer 88%, intermediate
layer 35%, lower layer 24%) with a commission error of 11%. In a
Norway spruce forest, Solberg et al. (2006) announce a global detec-
tion rate of 66% (dominant trees 93%, codominant trees 63%, sub-
dominant trees 38%, and suppressed trees 19%) with a commission
error of 26%. It is unclear whether the omission errors reported by
other studies are due to the inability of the ALS to characterize
tree crowns or to the algorithm itself. Therefore, it is tricky to com-
pare our results with the literature since the forest architecture and
the ALS configuration both have an important effect on the accuracy
of the different methods.

Although the present method searches for local density maxima
in the point cloud, it is not affected by the point density variability
because the MS is a kernel gradient estimator, i.e., it does not evalu-
ate the density function itself but normalized local gradients. Thus,
provided that the local density and height gradients point toward
the crown apices, the point density at which the crowns are sampled
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has only a slight impact on the mode search, i.e., on the identification of
individual vegetation features.

4.3. Validation of tree height and CBH

Fig. 15 correlates the ALS-derived and field-measured tree height
(Fig. 15a and 15c) and CBH (Fig. 15b and 15d) for the identified trees.
Characterization of the CBH greatly improves in eucalyptus stands
when individual trees are first extracted (Figs. 13a and 15b), while it
is slightly better in pine stands (Figs. 13b and 15d). Table 7 shows
that ourmethod globally underestimates the tree height, with a limited
influence of the dominance position. The slopes of the linear regressions
almost equal 1, the R2 vary between 0.91 and 0.95, and the RMSE be-
tween 0.75 m and 0.90 m. These results are comparable with those of
other studies that show that ALS data tend to underestimate tree height
(Gaveau & Hill, 2003; Hyyppä et al., 2008).

Our method overestimates the CBH of 1.29 m for eucalyptus, and
a positive correlation with the dominance position is obvious. The
linear regressions follow the same trends, with an R2 increasing from
0.58 (dominant) to 0.71 (suppressed) and an RMSE decreasing from
2.80 m (dominant) to 1.30 m (suppressed). The crown base is not as
well delineated for eucalyptus as for pine. Suppressed trees are more
compact than taller trees, the shape of which is more complicated
with small dead branches lying on the stems. Moreover, the reflection
of the laser beam on a curved branch can be located under the field-
measured CBH. This variable is actually difficult to survey because of
its approximate definition: it can be viewed as the height of the first
branch along the stem or as the height where the crown bulk density
exceeds a critical threshold of 0.011 kg/m3 (Scott & Reinhardt, 2001).
The pine CBH is underestimated by 0.66 m, mainly because of dead
branches that were not measured in the field. Many ALS points corre-
sponding to trunks are also clustered together with crowns, particularly
in the old stands. Compared to eucalypts and young pines, trunks of old
Fig. 15. ALS-derived vs field-measured tree height (a–c) and CBH (b–d) for eucalyptus (
pines are well represented in the point cloud. Other methods are more
successful in removing their reflections (Popescu & Zhao, 2008) but it is
unclear whether they would improve the CBH estimation. Our results
agree with other studies: in a Scots pine forest, Riaño et al. (2004)
claim that ALS overestimates the CBH and obtain R2 values ranging
from 0.65 to 0.68. In Norway spruce and Scots pine forests, Holmgren
and Persson (2004) also notice an overestimation by 0.75 m (R2=0.84,
RMSE=2.82 m). Popescu and Zhao (2008) extract the CBH of pines
and deciduous trees with an RMSE of 2.08 m and an R2 of 0.78.
5. Conclusion

This study demonstrates the ability of our method to provide gen-
uine 3-D segments corresponding to individual vegetation features of
the main forest layers: ground vegetation, understory, and overstory.
Unlike other methods, our approach does not rely on a CHM and di-
rectly applies to the 3-D point cloud, which is an advantage in charac-
terizing heterogeneous forests. Segmentation occurs in the mode
space where vegetation features are more likely to be discriminated.
Our maps allow local calculation of specific statistics for each vegeta-
tion layer and consequently accurate delineation of forest areas with
similar horizontal and vertical structures, i.e., forest stands and conse-
quently fuel types. Moreover, our approach introduces a robust dis-
crimination between ground vegetation and taller plants.

We show that the mean shift algorithm is a reliable technique for
finding the modes in the multi-modal point cloud distribution of a
multi-layered Mediterranean forest. Due to the complex pattern of
the forest environment, we established a multi-scale approach where
modes are computed with an adaptive kernel bandwidth optimized
for each stratum. However, so far it can only handle forest structures
with a maximum of three layers. A more sophisticated method might
be developed to deal with highly stratified environments.
a–b, ○ dominant, ◊ codominant, Δ dominated, □ suppressed) and pine trees (c–d).
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Table 7
Linear regression parameters for data displayed in Fig. 15. Negative values mean an un-
derestimation while positive values mean an overestimation.

Tree Dominance
position

Δh (m) R2 RMSE (m)

TH CBH TH CBH TH CBH

Eucalyptus Dominant −0.23 1.44 0.95 0.58 0.85 2.80
Codominant −0.27 1.45 0.95 0.61 0.87 2.70
Dominated −0.17 1.03 0.93 0.67 0.90 1.92
Suppressed −0.22 0.73 0.91 0.71 0.75 1.30
All together −0.23 1.29 0.96 0.69 0.86 2.48

Pine −0.28 0.66 0.94 0.79 1.07 2.25
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Our approach relies on only one parameter, the three-dimensional
kernel bandwidth. Its vertical component is set as a function of the
stratum depth and its horizontal component is defined in relation to
the vertical one. Therefore, the kernel bandwidth has a biophysical
meaning: the width of a crown depends on its length and the depth
of a forest stratum on the length of the crowns. Note that these corre-
lations may vary significantly depending on the tree species and the
forest biome. Thus, it is necessary to determine the validity domain
of these kernel bandwidth settings. The robustness of the method
was assessed at four different levels:

a) Intra-plot. The method is able to depict the real nature of the stra-
ta, even when the vertical stratification varies within a plot (41%
of the plots have more than one stand, Fig. 11d).

b) Intra-stand. The bandwidth settings apply well to crowns with dif-
ferent volumes, from suppressed to dominant trees (Fig. 3 and
Table 6).

c) Inter-stand. The validated stands display structures with different
arrangements, from little to lush ground vegetation, combined with
either absent or luxurious understory that can co-exist with over-
growth vegetation at different growth stages (Fig. 2 and Table 2).

d) Inter-plot. Our forest is made up of many small properties that
lead to a fragmented landscape. The method does a good job of
handling the point density variability within the study area (Fig. 1
and Table 4).

Finally, the correlation between field measurements and ALS-
derived structural characteristics of ground vegetation and understo-
ry depends on the forest type and the ALS configuration. Such values
may be different in forests with more closed canopies or sparser point
clouds.
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