
Marine Pollution Bulletin 169 (2021) 112594

Available online 9 June 2021
0025-326X/© 2021 Elsevier Ltd. All rights reserved.

Detecting stranded macro-litter categories on drone orthophoto by a 
multi-class Neural Network 
Luis Pinto a, Umberto Andriolo b,*, Gil Gonçalves b,c 

a University of Coimbra, CMUC, Department of Mathematics, Coimbra, Portugal 
b INESC Coimbra, Department of Electrical and Computer Engineering, Coimbra, Portugal 
c University of Coimbra, Department of Mathematics, Coimbra, Portugal   

A R T I C L E  I N F O   

Keywords: 
Drone 
Machine learning 
Beach pollution 
Remote sensing 
Coastal monitoring 

A B S T R A C T   

The use of Unmanned Aerial Systems (UAS, aka drones) images for mapping macro-litter in the environment 
have been exponentially increasing in the recent years. In this work, we developed a multi-class Neural Network 
(NN) to automatically identify stranded plastic litter categories on an UAS-derived orthophoto. 

The best results were assessed for items that did not have substantial intra-class colour variability, such as 
octopus pots and fishing ropes (F-score = 61%, on average). Instead, performance was poor (37%) for plastic 
bottles and fragments, due to their changing intra-class colours. On average, the performance improved 24% 
when the binary detection (litter/non-litter, F-Score = 73%) was considered, however this approach did not 
discriminate the litter categories. 

This work gives a new perspective for the automated litter detection on drone images, suggesting that colour- 
based approach can be used to improve the categorization of stranded litter on UAS orthophoto.   

1. Introduction 

Marine litter is defined as the set of items that have been deliberately 
discarded, unintentionally lost, or transported by winds and rivers, into 
the sea and stranded on coast (GESAMP, 2019). Nowadays, the amount 
of litter in coastal environments has become a global issue of major 
concern due to its significant potential impact on marine ecosystems, 
marine life and human health (e.g., Werner et al., 2016). Marine litter 
consists of various materials, such as metal, glass, rubber and paper, 
nonetheless plastic represents the largest proportion (up to 80%) (Gal-
gani et al., 2015). Plastic production increased 43% over the last decade 
(Ritchie and Roser, 2018), and evidence suggests that plastic pollution 
will be a persistent global environmental issue in the near future (Adyel, 
2020). 

The use of Unmanned Aerial Systems (UAS) images for character-
izing the abundance of marine litter on beaches (Andriolo et al., 2020b; 
Deidun et al., 2018; Gonçalves et al., 2020b; Hengstmann and Fischer, 
2020; Martin et al., 2018; Merlino et al., 2020) and coastal dunes 
(Andriolo et al., 2020a, 2021), along with floating on river (Geraeds 
et al., 2019) and sea waters (Garcia-Garin et al., 2020b, 2020a; Top-
ouzelis et al., 2019), have been exponentially increasing in the last 

years. 
The identification and detection of marine litter on images can be 

performed by manual image screening (Andriolo et al., 2021a), never-
theless the automatization of the process would permit faster and 
standardized procedure, avoiding the subjectivity and tedium of the 
manual marking task. The main efforts dedicated to the automated 
detection of stranded marine litter on drone images focused on the bi-
nary (litter/non-litter) classification approach, feasible to describe the 
items abundance and identify hotspots. The detection performance, 
expressed in terms of F-score statistical measure, ranged between 49% 
and 75% depending on the different machine learning classifiers used 
for the aim, such as pixel-based random forest (RF, Gonçalves et al., 
2020c; Martin et al., 2018), convolutional neural network (CNN, Duarte 
et al., 2020; Fallati et al., 2019), and object-based RF, k-nearest neigh-
bors (KNN) and support-vector machines (SVM) (Gonçalves et al., 
2020a). 

The recognition of the marine litter categories is, however, funda-
mental to understand their origin, in order to implement proper miti-
gation measures (Galgani et al., 2013; Veiga et al., 2016). Hence, 
advances in the automated identification of the specific litter categories 
are required. The RF classifier based on histogram of oriented gradients 
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(HOG) features proposed by Martin et al. (2018) was shown to be not 
appropriate (F-score 14%), due to the high variability of litter items 
types, that can also be found with undefined shape (fragments), semi- 
buried, broken or crumpled (e.g., bottles). Therefore, it is of interest to 
investigate novel automated solutions that may allow to recognize the 
type of litter items on UAS-derived orthophoto. 

This work developed a multi-class machine learning Neural Network 
for the automated identification of different stranded macro-litter items 
on drone images. We investigated the feasibility of a colour-based 
strategy for the distinction of litter categories, and compared the effi-
ciency of the multi-class approach with the manual image screening and 
the binary (litter/non-litter) detections. For the aim, we used the 
orthophoto produced from a UAS flight over a beach-dune system on the 
North Atlantic Portuguese coast. 

This work describes a new perspective to advance the automated 
categorization of marine litter on aerial images, for improving the use of 
UAS for marine litter mapping in the environment. 

2. Methods 

2.1. Study site and UAS data 

A multirotor quadcopter DJI Phantom 4 RTK (DJI-P4RTK), equipped 
with a 20MP camera, was used to collect high-resolution images 
perpendicular to the direction of the flight on Leirosa beach 
(40◦03′16.6′′N 8◦53′33.1′′W), a sandy coastal stretch located on the 
North Atlantic coast of Portugal (Fig. 1) on 11 March 2020. 

The drone flight altitude was set at 30 m above mean sea level (MSL), 
obtaining a ground sample distance (GSD) of 0.9 cm, suitable for the 
detection of marine macro-litter items (>2.5 cm, GESAMP, 2019). The 
orthophoto was produced with the Agisoft Metashape (v1.5.3) software, 
applying the Structure from Motion - MultiView Stereo (SfM-MVS) 
photogrammetric processing to the acquired image (5472 × 3648 
pixels) block. The combination of flight altitude and battery autonomy 
allowed to cover an area extending 460 m long-shore and 120 m cross- 
shore (Fig. 1). 

Fig. 1. Study site characterization. a) Study site location (red square); b–c) pictures taken prior the flight, with the drone take-off position (white-black target) and 
detail of marine litter on the beach, taken from the southern limit of the monitored area looking northward; d) study area (red rectangle) on satellite image; e) DSM 
(upper) and orthophoto (lower) produced from the UAS- image sequence, with sub-areas division (numbered rectangles from 1 to 10) for the application of machine 
learning algorithm. Magenta and blue frames indicate NN training and testing areas, respectively. (For interpretation of the references to colour in this figure legend, 
the reader is referred to the web version of this article.) 
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2.2. Manual image screening 

The produced RGB orthophoto was first visually screened and 
manually processed by three operators in GIS environment, to mark the 
identified marine macro-litter items. In this work, we refer to this 
technique as manual image screening (hereinafter, MS). 

The orthophoto was tiled with a 2 m × 2 m rectangular grid to make 
the MS procedure regular and organized. The operator marked each 
object recognized as marine litter in GIS environment, and tagged each 
item with the related OSPAR code number (OSPAR Commission, 2010) 
and its colour. The items with undefined shapes, which could not be 
related to specific categories, were labelled as “fragments”. The final 
outputs were i) the marine litter map and ii) the correspondent attribute 
table, with geolocation (longitude and latitude), category and colour of 
each item. An inter-observer reliability test was conducted among the 
MS of three operators to assess the consistency of the results. 

2.3. The colour strategy 

Stranded marine litter items can be recognized from their colours, as 
these much differ from the surrounding beach sand background. On the 
RGB orthophoto, each pixel had a red (R), green (G) and blue (B) value. 
However, in digital image processing, the conventional RGB colour 
space has been shown to be not perceptually uniform, as the colour 
spectrum values are highly correlated (Fairchild, 2013; Shaik et al., 
2015). For this reason, previous works devoted to colour-based marine 
litter detection (Biermann et al., 2020; Gonçalves et al., 2020a, 2020c, 
2020b; Kataoka et al., 2012; Kataoka and Nihei, 2020) have proposed 
the use of different colour models. In fact, the combination of more 
colour spaces has also been shown to be beneficial to improve image 
classification accuracy and to produce more robust classification sys-
tems. Following previous experiences (Gonçalves et al., 2020c, 2020b, 
2020a), in this work we converted the RGB image values into three 
additional colour spaces, namely HSV, CIE-Lab and YCbCr. The HSV 
represents the colour spectrum in terms of hue (H), saturation (S) and 
brightness (V); in CIELab, the colour information is described by 

lightness (L) and two chromatic red-green (a) and blue-yellow (b) axis; 
in YCbCr, the luminance intensity (Y) is discriminated by the chromi-
nance blue (Cb) and red (Cr) chrominance components (Fairchild, 
2013). 

2.4. Multi-class Neural Network 

We adopted a multi-class approach for the automated detection of 
the distinct marine litter categories present on the beach (Fig. 2). For the 
aim, we developed a shallow feed-forward NN using the built-in algo-
rithm available in Matlab environment. The NN is commonly trained 
with a set of chosen examples (training set) by a supervised learning 
algorithm, and then evaluated via a testing set. To simplify the appli-
cation and to reduce the computational time of the NN, the orthophoto 
was divided into ten sub-areas, numbered progressively from 1 to 10 
from north to south (Fig. 1). We considered the subareas 1–6 as training 
set (60%), while the 7–10 as testing set (40%). The sub-areas 1–9 (5332 
× 4887 pixels) represented each about 40 m cross-shore and 50 m long- 
shore, while the sub-area 10 (3110 × 4887 pixel) measured 30 m long- 
shore. 

Regarding the NN structure, this classifier is commonly composed by 
an input (first) layer, a hidden layer and an output (last) layer. Each 
layer has neurons that receive input from the previous layer and send the 
output to the next layer. The input layer consisted of twelve neurons 
corresponding to the size of the features vector, itself composed by the 
pixel intensity of the twelve colour channels (namely, R, G, B, H, S, V, L, 
a, b, Y, Cb, Cr) associated to each of the three values composing the 
colour spaces RGB, HSV, CIE-Lab, and YCbCr. The neurons in the NN are 
connected by weights (represented by w in Fig. 2) that are adjusted to 
minimize the error function during the training phase. In the task of 
marine litter classification, we aimed at minimizing the misfit between 
the predicted label for a given pixel and the true label of that pixel. 

In the hidden layer, the common activation function (tansig, hyper-
bolic tangent sigmoid function) applies a nonlinear transformation to 
the input features and weights (Rawat and Wang, 2017). In terms of 
image classification, the identification of marine litter items on a high- 

Fig. 2. Automated macro-litter detection workflow.  
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resolution orthophoto (representing the beach surface) is a typical un-
balanced classification problem (e.g., Duarte et al., 2020), as marine 
litter classes are represented by much less pixels than the image back-
ground. Thus, classification algorithms tend to overlook the minority 
classes (the m litter classes) in favour of the majority class (the non-litter 
class). To overcome this issue, we adopted undersampling and over-
sampling strategies to obtain a more balanced dataset where all classes 
were more evenly distributed. 

The undersampling strategy aimed at reducing the number of sam-
ples of the majority class (non-litter), searching the areas of the images 
with homogeneous chroma background (sand). First, all sub-areas 
composing the training set were divided into regions of size 32 by 32 

pixels (this size found by trial-and-error approach). Finally, we dis-
carded most of the regions with homogeneous chroma and lowest 
standard deviation of pixel values. The oversampling strategy of the 
minority classes (marine litter items) improved the training set by 
adding synthetic items samples. We used the SMOTE (Synthetic Mi-
nority Oversampling Technique) function, which relies on the linear 
interpolation technique (Chawla et al., 2002). 

To find the optimal number of neurons (n) in the hidden layer, the 
undersampling percentage and the oversampling percentage, we 
randomly divided the training sub-area set into two sub-sets, one for 
training (70% of sub-areas) and one for validation (30%). The optimal 
parameters combination was: 20 neurons in the hidden layer, 0.5% of 

Fig. 3. Marine litter detection on Leirosa beach. a) Examples of the four types of items (rectangles) found on the beach and visible on the UAS-based orthophoto; b) 
beach orthophoto and grid (white rectangles) considered for the marking and mapping marine litter. Yellow and red lines indicate dune toe and dune crest, 
respectively; c) marine litter items marked on the grid by MS, NN multi-class and binary approaches. Common to c) and d), magenta and blue frames indicate NN 
training and testing areas, respectively. d) Histograms of the number of items marked by the different approaches on the monitored area. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 
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undersampling and 800% of oversampling. 
The output layer consisted of m + 1 neurons, where m is the number 

of litter classes and +1 the non-litter class, and a suitable activation 
function (softmax function). Each neuron was associated with one of the 
m + 1 classes of our multi-class classification problem The output of each 
neuron was the probability of a given pixel belonging to the class 
associated with the respective neuron. These probabilities were used as 
input to an error function (cross-entropy) and the optimization algo-
rithm used to train the NN was based on the scaled conjugate gradient 
algorithm. 

For comparison purpose, we also adopted the binary approach for 
the NN application, considering only two classes: the litter class of 
marine litter items, in contrast with the non-litter class. The workflow 
followed the same procedure described for the multi-class approach 
(Fig. 2), whereas the structure of the NN was slightly modified. While in 
the multiclass approach there were m + 1 neurons in the output layer, 
one for the non-litter class and one for each one of the m litter classes, for 
the binary approach the output layer was composed by only of two 
neurons: one was associate to the litter class and the other to the non- 
litter class. 

2.5. Performance evaluation 

The automated detection performances were evaluated with the F- 
score statistical analysis, against the results obtained by the MS for the 
testing set (sub-areas 7–10, Fig. 1), for both multi-class and binary 
approaches. 

The centroid of all the pixel regions labelled as marine litter items by 
the algorithms were compared to the centroids of marine litter items 
geotagged by the MS in the testing areas. For the multiclass approach, a 
true positive (TP) was registered when the distance between the items 
centroids was smaller than 34 pixels (30 cm, threshold), and the NN 
label was the same litter class than the MS label. If at least one of these 
two conditions was not satisfied, the detection was marked as false 
positive (FP). For the binary approach, only the geometrical condition of 
distance between centroids was considered. For both approaches, the 30 
cm value was chosen as an appropriate threshold based on the average 
size of the macro-litter items (GESAMP, 2019). Finally, undetected 
marine litter items were counted as false negatives (FN). The new labels 
were used for the computation of the precision (P, detection relevance) 
as: 

P =
TP

TP + FP
(1)  

the recall (R, detection rate), as: 

R =
TP

TP + FN
(2)  

and the F-score (F, overall performance), which combines P and R as: 

F = 2
P R

P + R
(3) 

All these indicators varied between 0 (worst result) and 100% (best 
classification). 

3. Results 

3.1. Manual image screening 

Marine litter was mostly found at the upper beach profile (Fig. 3). 
Overall, 490 marine plastic litter items were identified and grouped into 
four main categories, namely plastic bottles, fishing ropes, octopus pots 
and plastic fragments (Table 1 and Fig. 3a). 

Fragments represented 51% of the marine litter bulk, while each 
other category was found at similar rate (16% on average). Depending 
on items location in relation to the sub-areas 1–10 (Figs. 1e and 3), the 
NN training set was composed by the 67% of the litter items, and each 
category similarly represented (Table 1). 

The inter-observer reliability test performed among the three oper-
ators did not return substantial differences in both marine litter detec-
tion and characterization. 

3.2. Multi-class approach 

Table 2 shows the NN performance in detecting the plastic items on 
the testing set. On average, the F-score was of 49%, nevertheless the 
assessment was different for each category. The octopus pots detection 
had the highest recall (R = 74%) and assessed the best results (F-score =
66%). Fishing ropes were detected with an F-score higher than 50%, 
whereas the worst results were for plastic bottles and fragments (37%, 
on average). The highest precision (P = 81%) obtained for the fragments 
category was determined by the low number of false positives (FP), 
nevertheless the lowest recall (R = 26%) indicated the highest number 
of missed items (Table 2 and Fig. 4d). On average, the F-score for the 
training set was of 47%, a close value to the F-Score (49%) obtained in 
the testing set, indicating that no overfitting occurred. 

Fig. 4 shows the comparison between the maps produced by the 
manual and automated approaches. Regarding plastic bottles and 
octopus pots, automated detection returned FP in the northern sector, 
and overestimated plastic bottles at about 200 m long-shore location. 
Regarding the fragments category, the NN missed items mostly in the 
central and southern sectors of the beach, underestimating the items 
density. Nevertheless, the spatial distribution maps of the categories 
were similar, with all items distributed at the dune foot and all over the 
long-shore. The location of major concentrations (0.1 item m−2) corre-
sponded to the position of the hotspots obtained by the manual pro-
cedure (Fig. 4b). Some small differences were observed between the 

Table 1 
Number and categories of marine litter found in Leirosa beach. The numbers and percentages of items composing the training and testing sets are also shown.   

Number of items Percentage of marine litter Training set Testing set 
N. of items Percentage N. of items Percentage 

Plastic bottles  70  14%  38  54%  32  46% 
Fishing ropes  84  17%  65  77%  19  23% 
Octopus pots  88  18%  57  65%  31  35% 
Fragments  248  51%  167  67%  81  33% 
Total  490   327  67%  163  33%  

Table 2 
Statistical performance of NN multi-class approach in marine litter categories 
detection. True positive (TP), false negative (FN) and false positive (FP) de-
tections were used to compute precision (P), recall (R) and the final F-score. In 
bold, the best values obtained for P, R and F-score.   

TP FP FN P R F-score 
Plastic bottles  11  22  21  33%  34%  34% 
Fishing ropes  12  12  7  50%  63%  56% 
Octopus pots  23  16  8  59%  74%  66% 
Fragments  21  5  60  81%  26%  39% 
Average     56%  49%  49%  
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Fig. 4. Marine litter density maps. a) Beach orthophoto and grid (white rectangles) considered for marking and mapping marine litter. Yellow and red lines indicate 
dune toe and dune crest, respectively; b) density maps of marine litter categories produced by the multi-class Neural Network (NN) approach. Black dots indicate the 
items marked by the manual image screening (MS). Grid is formed by squares of 81 m2; c) density maps of marine litter produced by MS (left), NN binary approach 
(middle) and difference between NN and MS (right). Common to a), b) and c), magenta and blue frames indicate NN training and testing areas, respectively. d) 
Histograms of the comparison among density maps produced from NN and MS. The histograms report the frequency of differences in the number of items within the 
250 grid areas. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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locations of plastic bottles, which were not present at the northern sector 
of the beach, while the fishing ropes were found in smaller numbers in 
the southern limit of the monitored area. The map analysis also 
confirmed the best results obtained for octopus pots and fishing ropes, as 
the NN output described appropriately the abundance and distribution 
of these items. 

In comparison with the multi-class approach, the binary strategy 
improved the average F-score of 24% (Table 3), with the limitation of 
indicating just the number of items and not the category (Fig. 3c). The 
abundance of marine litter was reasonably described, although both the 
white stones composing the groin head and the green dune vegetation 
were incorrectly recognized by the NN as marine litter in the northern 
sector of the beach (Fig. 4c–d). 

4. Discussion 

It has been shown how the use of UAS images allowed to detect and 

categorize the colour of marine litter items, which is also a relevant 
information for planning policy and mitigation measures (GESAMP, 
2019). Hence, it has been proven the feasibility of a colour-based 
strategy to automatically identify and map the stranded plastic litter 
categories (Fig. 3) and their spatial distribution (Fig. 4). Despite the 
limited number of categories found and recognized on the UAS ortho-
photo at Leirosa beach (Table 1), the proposed colour features strategy 
may be a valuable alternative to deep learning architectures based on 
features inside their native structure (e.g., CNN). In fact, the colour in-
formation is less dependent on the drone flight altitude and conse-
quently on the GSD, whereas other automated detection techniques may 
require lower flight altitude, hence higher image resolution, to assess a 
better classification (e.g., Fallati et al., 2019; Wolf et al., 2020). This is 
relevant for the UAS-based marine litter mapping, as the drone flight 
altitude determines the extent of the inspected area due to the limited 
drone battery autonomy. 

The multi-class Neural Network (NN) machine learning algorithm 
returned the best results for those items that did not have intra-class 
colour variability (Table 4), namely octopus pots (97% were black, F- 
score = 66%) and fishing ropes (97% were green, F-score = 56%). On 
the contrary, the detection performances were lower for those items that 
presented high intra-class colour variance (plastic bottles and frag-
ments). These last two categories also shared a large percentage of items 
with the same colour (white, 40% and 71% of plastic bottles and frag-
ments, respectively), therefore the training process may also have been 
negatively affected by this factor. Nevertheless, the generated maps 
were fairly in agreement with the ones produced by the manual image 

Table 3 
Statistical performance of NN binary approach in marine litter detection, and 
average multi-class approach performance (see Table 2 for details). True positive 
(TP), false negative (FN) and false positive (FP) detections were used to compute 
Precision (P), recall (R) and the final F-score.   

TP FP FN P R F-score 
Binary 109 54 28  67%  80%  73% 
Multi-class (average) – – –  56%  49%  49%  

Table 4 
Marine litter categories and related percentage of colour. In bold, the most signifcant percentages for each category.   

White 
(%) 

Black 
(%) 

Blue 
(%) 

Red 
(%) 

Green 
(%) 

Yellow 
(%) 

Brown 
(%) 

Transparent 
(%) 

F-score 
NN (%) 

Number of items 

Plastic bottles 40 1 1 3  8 1 1 44  34  70 
Fishing ropes – – – 3  97 – – –  56  84 
Octopus pots – 96 3 –  1 – – –  66  88 
Fragments 71 8 5 9  3 4 – 1  39  248 
Total 41 21 3 6  19 2 – 7   490  

Table 5 
Comparison of results obtained by published marine litter detection algorithms reporting i) machine learning method and approaches; ii) performance in term of 
precision (P), sensitivity (S) and F-score; iii) environment of application; iv) UAV flight altitude and GSD of the images used.  

Reference Method Binary approach Multi-class approach Type of litter - environment UAV flight altitude 
(GSD)   

P 
(%) 

R 
(%) 

F-score 
(%) 

P 
(%) 

R 
(%) 

F-score 
(%)   

Martin et al., 2018 RF (Hog) Pixel- 
based     

8  35  13 Stranded litter - sandy beach 10 m (0.5 cm/pixels) 

Fallati et al., 2019 CNN Pixel- 
based  

94  67  78    Stranded litter - sandy beach 10 m (0.44 cm/ 
pixels)  23a  25a  33a    

Gonçalves et al., 
2020b 

RF Pixel- 
based  

73  74  75    Stranded litter - sandy beach 
and dune 

20 m (0.55 cm/ 
pixel) 

Gonçalves et al., 
2020c 

RF Pixel- 
based  

70  71  70    Stranded litter - sandy beach 
and dune 

20 m (0.55 cm/ 
pixel) CNN  55  65  60    

Gonçalves et al., 
2020a 

RF Object- 
based  

75  68  72    Stranded litter - sandy beach 
and dune 

20 m (0.55 cm/ 
pixel) SVM  76  62  68    

KNN  68  62  65    
Wolf et al., 2020 CNN Pixel- 

based  
75  72  73  55  83  67 Floating litter - water 6 m (0.2 cm/pixel) 

Jakovljevic et al., 
2020 

ResUNet50 Pixel- 
based     

72b  55b  60b Floating litter – water 90 m (0.3 cm/pixel) 

Garcia-Garin et al., 
2021 

CNN Pixel- 
based  

82  84  83    Floating litter – water 265 m (2.9 cm/ 
pixel) 

This work Neural 
Network 

Pixel- 
based  

80  67  73  56  49  49 Stranded litter - sandy beach 30 m (0.9 cm/pixel)  

a Obtained on images collected on a different beach from the trained dataset.  
b Average values from Table 5 in Jakovljevic et al. (2020)).  
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screening (Fig. 4c), showing correctly the spatial distribution and the 
related hotspots of litter categories. 

Results suggest that marine litter items with a low intra-class vari-
ability may be singularly targeted in future works. This represents an 
advance in comparison with the previous works proposing the auto-
mated litter items detection, as most of them considered the binary 
approach (Table 5). To our knowledge, the multi-class approach on UAS 
images has been adopted just to recognize floating litter categories and 
materials, returning better performances than in this work, however it is 
worth to note that water constitutes a different and more homogeneous 
background in comparison to sand (Jakovljevic et al., 2020; Wolf et al., 
2020). As we implemented a pixel-based detection approach, future 
work may also investigate if the multi-class approach performance can 
be improved by the Object-based Image Analysis (OBIA, Gonçalves 
et al., 2020a), which allows to classify objects based on shape, texture 
and size, besides their spectral properties. 

Several other authors have proposed different methods for the binary 
litter/not litter detection on aerial images (Bak et al., 2019; Bao et al., 
2018; Kako et al., 2020; Kataoka et al., 2012; Kataoka and Nihei, 2020; 
Kylili et al., 2019; Panwar et al., 2020; van Lieshout et al., 2020), 
however the algorithms performances were not reported in terms of F- 
score, thus they were not included in the comparison shown in Table 5. 

5. Conclusions 

To improve the use of Unmanned Aerial Systems (UAS, aka drones) 
for marine litter mapping in the environment, we developed a multi- 
class Neural Network for the automated recognition of stranded litter 
categories on UAS images. 

We tested the feasibility of a colour-based strategy for the recogni-
tion of stranded litter categories, which showed to be a viable solution to 
characterize the items on aerial images. Best performances were ob-
tained for the marine litter categories that did not show inter-class 
colour variability (F-score = 62%, on average), whereas accuracy was 
poor for items with high variance of intra-class colours (37%). Overall, 
the detection performance improved 23% when the binary approach 
(litter/non-litter, F-Score = 73%) was considered. Therefore, the colour- 
based approach may support the selected detection of specific litter 
categories with chroma homogeneousness (in our case, octopus pots and 
fishing ropes). The binary approach was more appropriate for mapping 
the stranded litter abundance and identifying hotspots. 

This work gives a new perspective for the automated detection of 
marine litter on drone images, suggesting that colour-based approach 
can be used to improve the categorization of stranded litter on UAS 
orthophoto. 
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Drones for litter mapping: An inter-operator concordance test in marking beached 
items on aerial images. Mar. Pollut. Bull. 169, 112542 https://doi.org/10.1016/j. 
marpolbul.2021.112542. 

Andriolo, U., Gonçalves, G., Sobral, P., Fontán-Bouzas, Á., Bessa, F., 2020b. Beach-dune 
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