Introdução.

O objectivo principal deste tutorial consiste em extrair um subconjunto de dados imagem dum conjunto principal de dados, utilizando como área de extracção um determinado conjunto de dados vectoriais. Para isso iremos utilizar os dados referentes ao Lab 1, os quais constam de

Procedimento

Como os dois conjuntos de dados que iremos utilizar estão definidos em sistemas de coordenadas diferentes, iremos ver, em primeiro lugar, como definir um determinado sistema de coordenadas no PCI Geomatica.

Passo 1: Definição dos dois sistemas de coordenadas no PCI Geomatica

Para definirmos um novo sistema de coordenadas cartográfico teremos, evidentemente, de configurar:

- a projecção cartográfica (ficheiro userproj.txt)
- o elipsoide (ficheiro ellips.txt)
- o datum planimétrico e os parâmetros de transformação para o WGS84 (ficheiro datum.txt)

Para configurarmos a projecção teremos então de editar o ficheiro userproj.txt, que se encontra em \$Geomatica_91\$\etc e introduzir a projecção do sistema

Como exemplo

```
[...]^{1}
    !
ProjectionName "TM"
ProjectionDescription "Hayford Gauss Datum 73"
ProjectionCountry "Portugal"
                    "TM D891"
MapUnits
MappiniesIm 2001TrueOriginLongitude08d07'54.862WTrueOriginLatitude39d40'00.000NScale1.0FalseEasting180.598FalseNorthing-86.990
FalseNorthing
                    -86.990
                    "HG_Lisboa"
ProjectionName
ProjectionDescription "Hayford Gauss Lisboa IPCC"
ProjectionCountry "Portugal"
MapUnits "TM D892"
TrueOriginLongitude 08d07'54.862W
TrueOriginLatitude
                    39d40'00.000N
Scale
                     1.0
FalseEasting
                     0.000
FalseNorthing
                     0.000
ProjectionName
                    "TM06"
ProjectionDescription "PT-TM06/ETR89"
ProjectionCountry "Portugal"
MapUnits "TM D350"
TrueOriginLongitude 08d07'59.19W
TrueOriginLatitude 39d40'05.73N
Scale
                    1.0
                     0.0
FalseEasting
```

Para configurarmos os parâmetros de transformação dos diferentes data teremos de alterar o ficheiro datum.txt que se encontra na directoria \$Geomatica_91\$\etc

Onde

FalseNorthing

0.0

- 1 "D891" Código (único) do data. O primeiro carácter deve ser um D (ou d) seguido dum inteiro com 3 dígitos
- 2 "Datum 73" Descrição do data. Como este descritor ainda não é utilizado pelo software pode-se utilizar uma string vazia ""
- 3 "E004" Código do elipsóide utilizado pela projecção que consta no ficheiro "ellips.txt". Se não existir terá de ser definido em conformidade.
- 4 -223.237 X offset do elipsóide para o centro da terra (em m).
- 5 110.193 Y offset do elipsóide para o centro da terra (em m).

¹ Significa que existem mais linhas dentro do ficheiro e que não deverão ser alteradas. O símbolo ! serve para introduzir uma linha de comentário.

- 6 36.649 Z offset do elipsóide para o centro da terra (em m).
- 7 "Portugal" Um descriptor do datum geodésico. Como ainda não é utilizado pelo software pode ser um string vazia "".
- 8 0 Mínimo erro na direcção X (em m). Como ainda não é utilizado e pode ser igual a 0.
- 9 0 Mínimo erro na direcção Y (em m). Como ainda não é utilizado e pode ser igual a 0.
- 10 0 Mínimo erro na direcção Z (em m). Como ainda não é utilizado e pode ser igual a 0.
- 11 0 Número de estações Doppler utilizadas para modelar os offsets. Como ainda não é utilizado e pode ser igual a 0.

Note-se que os parâmetros 4-6 são os parâmetros de transformação de Molodensky. Caso pretendermos introduzir os parâmetros de Bursa-Wolf então teremos de introduzir as seguintes alterações

- 1. até 11 são os mesmos campos para a transformação de Molodensky
- 12. Rotação em torno do eixo X em segundos decimais
- 13. Rotação em torno do eixo Y em segundos decimais
- 14. Rotação em torno do eixo Y em segundos decimais
- 15.

Para configurarmos um determinado elipsóide teremos de alterar o ficheiro ellips.txt que se encontra na directoria

Onde:

- 1. E004 é o código (único) do elipsóide
- 2. "International 1924", descrição do elipsóide
- 3. 6378388. semi-eixo maior
- 4. 6356911.94613 semi-eixo menor

Passo 2: Projectamos os dados vectoriais no sistema de coordenadas da imagem isto é em UTM/ UTM 29 E012

Começamos por associar os sistemas de coordenadas aos dois conjuntos de dados:

- Clip_CL06pt.shp > Projection: Other ; > Earth Model: TM06 D350
- L71204032_03220000624_B10.TIF > Projection: UTM ; Earth Model: UTM 29 E012

File Propert	ies	-	~	$\sim T_{\rm c}$	21-22	X
General Hist UTM Bounds: Upper Left: Lower Right: Rotation: Pixel Size X: Pixel Size Y:	MetaData F Earth Model Geocoded 423285.000 G60615.000 0.00 30 meters 30 meters	rojection UTM 29 E E Degrees	E012 4572615.000 4357185.000 •	N N N		
ок		Cancel]		Apply	 Help

De seguida utilizando a ferramenta de projecção definida em Tools> Reprojection projectamos (i.e fazemos a transformação de coordenadas

Reproject				X
Browse Source File:C:\Users\Gil\A	ulas\DetecaoR	emota\Dado	ps\Lab1\Clip_CL06pt.shp	
Browse Destination File: C:\Users\	Gil\Aulas\Detec	ao Remota \	Tutorial2\CL06_utm29wgs84	pix
Output Format				
PIX:PCIDSK)		Options:	2]	
Reprojection Bounds				Maximum Round
				Maxingin bound
Use pixels/lines and bounds.	<u>.</u>			
Size: 512 Pixels 512	Lines			
Pixel Size: 158.1775 X 11	18.4736	Y		
UTM Earth Model	TM 29 E012		More	
Bounds: Geocoded +				
Upper Left: 491552 162 F	447	7782 257	N	
Lower Dicht: 572529.024	- 441	7122 752	N	
Pixel Size X: 158 177 meters	. 1441	123.733		
Pixel Size Y: 118.474 meters				
Resampling: Nearest 😽 Transfo	orm Order: Exa	ict	Sampling Interval:	1
Selectable Layers				
Source Layers		1 1	Destination Layers	
View All	t All		Remove Selec	t All
1 [GEO]: Georererend 1 [GEO]: Master Geor	referenci		1 [GEO]: Geore	r Georeferenci
			1 [VEC]: Clip_	CLU6pt
		> Add >		
		> Add >		
	•	<u>> Add ></u>	- m	•
	•	> Add >		۶

Passo 3: Extracção do subconjuntos de dados

Utilizando a ferramenta em Tools> Clipping/Subsetting podemos extrair, de cada uma das bandas (i.e ficheiro tif) a área de interesse correspondente ao rectângulo (bounding box) envelope dos dados do ficheiro shp projectados no mesmo sistema de coordenadas

Repetindo o procedimento anterior podemos extrair a mesma área para cada uma das 7 bandas da imagem Landsat e gravar cada um dos extractos num novo ficheiro tif.

Finamente podemos agrupar as bandas com idêntica resolução num novo ficheiro pix. Para isso teremos em primeiro lugar gravar o extracto relativo à primeira banda num ficheiro pix utilizando a função translate que está disponível em File> Utility> Translate

Browse Source File:C:\Users\Gil\Aulas\L Browse Destination File:C:\Users\Gil\Aul	etecao Remota\Tu as\Detecao Remot	a\Tutorial2\B01_04.pix
Output Format		
PIX:PCIDSK)	Options:	2
Source Layers View All <u>Select All</u> 1 [8u]: Contents Not Spe 1 [GEO]: Georeference seg 1 [GEO]: Master Georefere	acif gmen anci	Destination Layers Remove Select All 1 [8u]: Contents Not Speci 1 [GEO]: Georeference segme 1 [GEO]: Master Georeference
	> Add >	

Seleccionando Export exportamos todos os segmentos/layers (o que contém a imagem) da imagem tif para uma geodatabase pix. De seguida utilizando a função Transfer (disponível em File> Utility> Tansfer), transferimos os extractos relativos às outras bandas (B2,B3,B4) para o mesmo ficheiro pix.

🐇 Transfer Layers		
Browse Source File: C:\Users\Gil\Aulas\DetecaoRemo Browse Destination File: C:\Users\Gil\Aulas\DetecaoR	.B02.tif .B01_04.pix	
Source Layers		Destination Layers
View All Select All		Remove Select Transferred
T 🖪 1 [8u] Contents Not Specified	> Add > Overwrite	I [8u] focus :Exported from 1 on C:\User▲ New I [8u] Contents Not Specified
Close	Transfer Layers	Help

Seleccionando Transfer Layers o segmento 1 (que contem o extracto relativo à banda 2) do ficheiro produzido anteriormente é transferido para a nossa geodatabase. Repetimos o processo para os outros extractos relativos às Bandas B30 e B40.

Browse Destination File: C:\Users\Gil\Aulas\De	stecaoRB01_04.pix	
Source Layers View All Select	→ Add > Overwrite	Destination Layers Remove Select Transferred Image: 1 [8u] focus :Exported from 1 on C:\User Image: 2 [8u] focus :Transferred from 1 on C:\User Image: 3 [8u] focus :Transferred from 1 on C:\User Image: 4 [8u] focus :Transferred from 1 on C:\User

No final teremos um ficheiro pix que contem as 4 Bandas

Para ser mais fácil identificarmos as bandas nesta geodatabase podemos renomear a descrição de cada um dos segmentos em B1,B2,B3 e B4, escolhendo a pestana Files e clicando sobre a descrição de cada um dos segmentos.

Questão: Porque é que as águas do oceano aparecem em tons laranja?