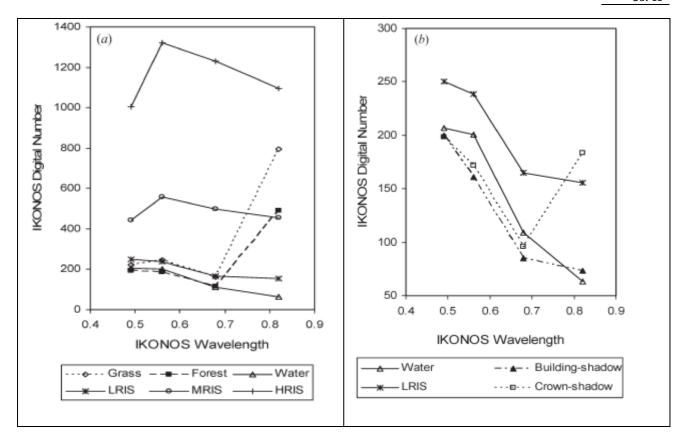
Tutorial 7: Classificação supervisada de imagens de muita alta resolução

Introdução.

O objectivo principal deste tutorial consiste na classificação de imagens aéreas de muita alta resolução tendo em vista a cartografia da impermeabilidade urbana.

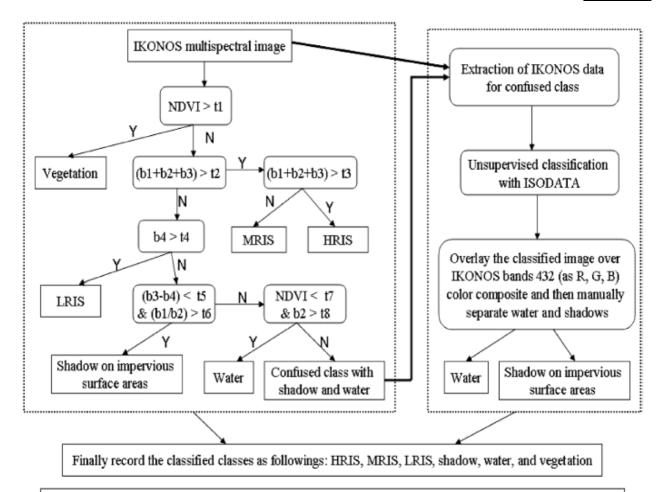
Neste tutorial iremos implementar:

- 1. Uma das três metodologias propostas por Lu e Weng, 2009 para a extracção das superfícies impermeáveis urbanas duma imagem Ikonos
- 2. Propor uma nova metodologia que tenha em conta as características dos dados disponíveis para o trabalho, ou seja, orto-imagens com baixa resolução radiométrica (8 bits) e muita alta resolução espacial (50 cm)


Metodologia 1: Utilizando o classificador MV

A nomenclatura de classes utilizada por Lu e Weng é que foi dada na tabela 1. Para estabelecer esta nomenclatura foi utilizada uma composição das bandas Ikonos 432 em RGB.

Descrição	NumClas
Superfícies impermeáveis com alta reflectividade (HRIS): > 225-250	1
Superfícies impermeáveis com média reflectividade (MRIS)	2
Superfícies impermeáveis com baixa reflectividade (LRIS)	3
Sombra em superfícies impermeáveis	4
Vegetação	5
Agua	6


Como a resolução espectral do satélite é dada por

Band	1-m PAN	4-m MS & 1-m PS
1 (Blue)	0.45-0.90 μm	0.445-0.516 μm
2 (Green)	*	0.506-0.595 μm
3 (Red)	*	0.632-0.698 μm
4 (Near IR)	*	0.757-0.853 μm

Metodologia 2: Utilizando um método híbrido

Neste caso tentaremos seguir a metodologia indicada no fluxograma seguinte:


Note: b1, b2, b3, and b4 represent IKONOS bands 1, 2, 3, and 4; NDVI is the normalized difference vegetation index; HRIS, MRIS, and LRIS are high-, medium-, and low-reflectivity impervious surfaces; t1, ..., t8 are thresholds developed from training samples

Para implementarmos esta metodologia teremos de calcular os 8 parâmetros (ti).

 O parâmetro de corte t1 na banda composta NDVI permite diferencia as zonas de vegetação das zonas de não vegetação. Para o calcular teremos de realizar zonas de treino em diferentes partes da imagem. Uma composição 142 permite evidenciar a classe de vegetação e realizar as zonas de treino.

Escolhendo o valor 0.1 para este parâmetro obtemos:

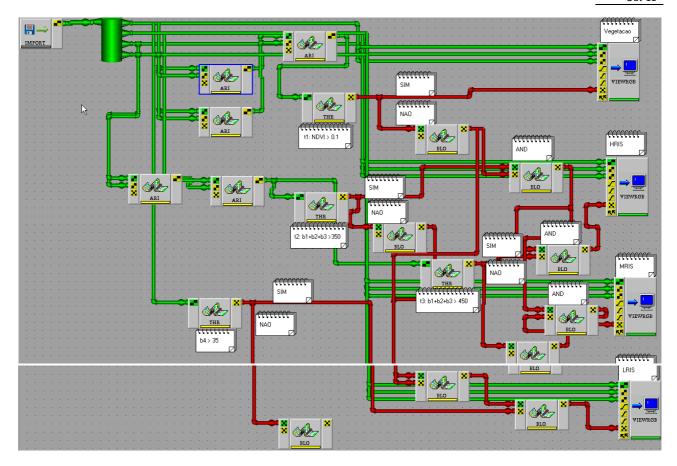
Para as superfícies sem vegetação, o parâmetro de corte t2 nas bandas (B;G;R) permite distinguir as superfícies impermeáveis com alta e média reflectividade das superfícies com baixa reflectividade.
Para o determinarmos iremos recorrer aos histogramas das áreas de treino definidas sobre uma composição 432

• O parâmetro de corte t3 nas bandas (B;G;R) permite distinguir as superfícies impermeáveis com alta reflectividade das superfícies com média reflectividade

Alta reflectividade (HRIS

Media reflectividade (MRIS)

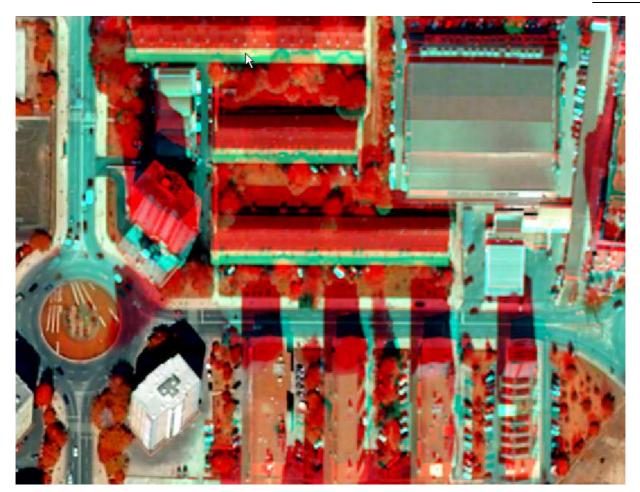
• O parâmetro t4 permite separar as superfícies impermeáveis com baixa reflectividade de outras superfícies como por exemplo sombras em superfícies impermeáveis, etc....


Baixa reflectividade

Note-se que o solo exposto não está devidamente classificado

- Os parâmetros t5 e t6 permitem identificar as sombras em superfícies impermeáveis. Como estes são obtidos a partir das bandas (R;IR) e (B;G), respectivamente teremos de construir áreas de treino nestas zonas para determinar os seus valores.
- Os parâmetros t7 e t8 identificar os corpos de água.

A implementação parcial do fluxograma no Modeler é dada pela figura seguinte:



Fica como exercício terminar a implementação do fluxograma

Observações

Alguns problemas que aparecem nas imagens

1. A banda IR não está correctamente registada com as outras bandas. Na figura seuinte é bem visível este problema.

