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SUMMARY

The aim of this paper is to derive a reduced model for a piezoelectric plate and to study its actuator
and sensor capabilities. In a first part, we focus on the asymptotic modeling for thin plates formed
by stacking layers of different piezoelectric materials. In the asymptotic model, the mechanical and
electric unknowns are shown to be partly decoupled. In a second part, we study the actuator and
sensor capabilities of this model. We use two discrete non-differentiable multi-objective optimization
problems, which are solved by genetic algorithms. Several numerical results are reported.
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1. INTRODUCTION

Piezoelectric materials belong to a class of smart materials that exhibit electromechanical
coupling, which provides them with actuator and sensor capabilities. The mechanical
deformation generated by the application of an external electric field to the material is known
as piezoelectric effect, and the converse phenomenon as sensor effect. These properties make
piezoelectric devices extremely useful in a wide range of practical applications in aerospace,
mechanical, electrical, civil and biomedical engineering (see, e.g., [1, 2]).

The aim of this paper is twofold: In a first part, we derive a new asymptotic model for a thin
laminated plate formed by stacking several layers of different piezoelectric materials. Then, in
a second part, the actuator and sensor capabilities of this plate model are studied.

The first part (section 2), in which the plate model is derived, is composed of three
subsections. After the notations and the description of the three-dimensional plate equations
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(subsection 2.1), in subsection 2.3 we state the two-dimensional (2D) asymptotic model for
the thin laminated plate. This is accomplished in two steps. Firstly, in subsection 2.2 the
plate model found in [11] (for a thin piezoelectric plate with monoclinic elastic coefficients
and modified piezoelectric coefficients independent of the thickness variable) is generalized to
the case of a completely nonhomogeneous anisotropic piezoelectric plate (cf. (7), theorem 2.1
and corollary 2.1). It is found that the solution of this 2D asymptotic model (given by (12)-
(18)) consists of the Kirchhoff-Love mechanical displacement (whose tangential and transverse
components are coupled) and the electric potential; the latter is an explicit function of the
difference of the prescribed electric potentials on the lower and upper face of the plate, and of
the tangential and transverse mechanical displacements of the plate’s middle plane (cf. (12) in
theorem 2.1). This is in contrast to the models in [9, 11], where the transverse and tangential
components of the mechanical displacement are decoupled and a different formula for the
electric potential is found. In subsection 2.3, our 2D-model (12)-(18) for nonhomogeneous
anisotropic piezoelectric plates is specified to the case of a thin laminated plate formed by
stacking several layers of different piezoelectric anisotropic materials. Clearly, this type of
laminated plate can be considered as a plate made of one lamina with a nonhomogeneous
anisotropic material. Assuming that the material coefficients of each layer are independent of
x3 (the middle plane of the plate is assumed to lie in the x1x5-plane), we prove that the electric
potential is a quadratic polynomial in x3 with coefficients that depend on the tangential and
transversal mechanical displacements of the plate’s middle plane (cf. (32)). This means, that
the electric potential can be easily derived a posteriori from the mechanical deformation.

In the second part of the paper (section 3), we numerically study the actuator and sensor
capabilities of our model. Subsection 3.1 is devoted to a brief description of the finite element
model for the 2D asymptotic laminated plate. This discrete model is obtained applying
standard finite elements to the 2D asymptotic laminated plate model found in subsection 2.3.
Using two multi-objective and non-differentiable optimization problems, in subsection 3.2 we
study the smart capabilities of a laminated plate. For the actuator effect, we intend to maximize
the displacement while minimizing the number of regions where a nonzero electric potential is
applied. A similar multi-objective problem is used to study the sensor effect. These optimization
problems are solved by the elitist genetic algorithms described in [3]. We remark that the
numerical study for the actuator problem presented in this paper constitutes a continuation of
results in the previous work [4]. Differently from the model considered in the present paper, in
[4] the plates under consideration are mechanically monoclinic and the modified piezoelectric
coefficients are independent of the thickness variable. Thus, the tangential and transversal
mechanical displacements are uncoupled and the problem simplifies considerably.

Finally, in subsection 3.3 several numerical tests are reported. They illustrate the actuator
and the sensor capabilities of a thin laminated plate formed by two piezoelectric anisotropic
layers made of PZT materials.

Before finishing this introduction, we mention related approaches and results that can be
found in literature. We first refer to [5, 6] for the description of the asymptotic method in
the case of thin elastic plates. Extensions of this method can be found in [7, 8, 9, 10, 11] for
thin piezoelectric plates and in [12] for thin piezoelectric shells. For the case of piezoelectric
plates, the corresponding asymptotic models differ mainly due to the different materials,
scaling techniques and electric boundary conditions. We refer as well the works [13, 14, 15]
for the modeling (without using the asymptotic method), the finite element discretisation
and the numerical simulation of the actuator effect of piezoelectric thin shells. Theoretical

Copyright © 2006 Computers and Structures 2006; 00:1-29
Prepared using BTEX



MODELING AND NUMERICAL STUDY OF A LAMINATED PIEZOELECTRIC PLATE 3

formulations for the analysis of laminated composite plates with integrated sensors and
actuators is presented in [16]. Analysis, modeling and numerical simulation of piezoelectric
actuators can be found in [17, 18, 19]. For other works reporting the optimal placement of
piezoelectric actuators and sensors in plates we refer, e.g., [20, 21] and the for the same kind
of problem using genetic algorithms see, e.g., [22].

2. THE ASYMPTOTIC MODEL

In this section, we first describe in subsection 2.1 our notations and recall the three-dimensional
(3D) equations for a thin nonhomogeneous anisotropic piezoelectric plate. Then, in subsection
2.2 we give in (7) the variational formulation of the corresponding two-dimensional (2D)
asymptotic model. Moreover, in theorem 2.1 we prove that this variational formulation is
equivalent to a simpler one, and, in corollary 2.1 we show that theorem 2.1 generalizes theorem
3.4 of [11]. In subsection 2.3, the 2D asymptotic plate model defined in theorem 2.1 is considered
for the special case of a thin laminated plate made of stacked layers of different piezoelectric
anisotropic materials.

2.1. The 3D piezoelectric plate model

Let OX;X5X3 be a fixed three-dimensional coordinate system, w C IR? a bounded domain
with a Lipschitz continuous boundary dw, and 7, 71, Y. and s subsets of dw. We assume
that 9 # 0 and use y1 = 0w \ Yo and 75 = Ow \ Ve, where 7, can be empty. We consider the
sets

Q=wx(=hh), Ty=wx{th}, Ti=wx{+h}, T_-=wx{-h},

I'p =7 x(=h,h), Ti=m x(=h,h), Tn=T1UTl4,
I-_‘eN =Ys X (_ha h)v FeD = F:t U (7@ X (_hvh))a

where ) = @ x [—h, h] (that is, Q and its boundary) represents a thin plate with middle surface
w and thickness 2h, with h > 0 a small constant, I'; and I'_ are, respectively, the upper and
lower faces of Q, the sets I'p, I'; and T'.y are portions of the lateral surface dw x (—h, h) of
Q, and finally I'y and I'.p are portions of the boundary 92 of Q2. The points of 2 are denoted
by = = (z1, 22, x3), where the first two components (x1,z2) € w and x3 € (—h,h).
Throughout the paper, the Latin indices 4, j, k, ... belong to the set {1,2,3}, the Greek
indices «, 3, ... vary in the set {1,2} and the summation convention with respect to repeated
indices is employed, that is, a;b; = Z‘Ll a;b;. Moreover, we denote by a - b = a;b; the inner
product of the vectors a = (a;) and b = (b;). The upper subscript | represents the transpose
of a matrix or a vector. Given a function 6(z) defined in Q we denote by 6 ; or 9,0 its partial

derivative with respect to x;, that is, 8; = 0;0 = g—fi, and by 6 ;; or 0;;0 its second partial
derivative with respect to x; and x;, that is, 8 ;; = 0;;0 = %. We denote by v = (v1,v2,13)
i0T;

the outward unit normal vector to 92, by the same letter v = (v, v2) the outward unit normal
vector to Jw, and finally by 0,9 = v,0,9 the outer normal derivative along dw of ¥ : w — IR.

Now, let = represent any open subset of IR", with n = 2,3. We define D(E) to be the
linear space of functions infinitely differentiable and with compact support on =, and denote
by D’(Z) the dual space of D(Z), often called the space of distributions on =. For m = 1 or

Copyright © 2006 Computers and Structures 2006; 00:1-29
Prepared using BTEX



4 L. COSTA, I. FIGUEIREDO, R.LEAL, P. OLIVEIRA, G. STADLER

m =2 and p = 2, the Sobolev spaces H™(Z) (also denoted by W™2(Z)) are defined by
HY(2)={veL*E): 0OwelL?E), fori=1,...,n},
H2(E)={ve L*E): 0w, Oyve L*E), fori,j=1,...,n},

where L*(Z2) = {v: 2 — R, [|v|?dE < 400} and the partial derivatives are interpreted as
distributional derivatives.

We suppose that a piezoelectric anisotropic and nonhomogeneous material occupies the
bounded thin plate @ C IR*. We denote by C' = (Cijxi), P = (Pi;x) and € = (g;;), respectively,
the elastic (fourth-order) tensor field, the piezoelectric (third-order) tensor field, and the
dielectric (second-order) tensor field that characterize the material properties. The coefficients
Cijkts Pijk, €i; are sufficiently smooth functions defined in @ x [—h, h] that satisfy the following
symmetry properties: Piji = Pikj, €5 = €ji, Cijit = Cjirt = Chuij-

Moreover, the plate is clamped along I'p, and subject to an applied electric potential g
on I'ep (¢g and @, are the restrictions of ¢p to T'y and T'_, respectively). In addition,
f = (fi) : Q@ — IR® represents the density of the applied body forces acting on the plate €,
g = (g;) : Ty — IR® the density of the applied surface forces on I'y (g7 and g~ are the
restriction of g to I'y and I'_, respectively). We assume that there is neither electric charge in
Q (this means that the material is dielectric) nor on Ty

In the framework of small deformations and linear piezoelectricity, the three-dimensional
static equations for the piezoelectric plate are the following: Find a displacement vector field
u:Q — IR® and an electric potential p : Q — IR* such that

1)

0ij = Cijrierr(v) — PrijEp(p) in €,

(
Dy, = Pyijeij(u) + emEi(p) in Q, (2)
oij; =—fi in Q (3)
Di;=0 in Q (4)
u=0 on Ip, oiv; =¢; on Iy, (5)
Div; =0 on Ty, w=¢g on I.p. (6)

In (1-6), 0 = (04;) : Q — IR? is the stress tensor field, D = (D) : © — IR’ the electric
displacement vector field and e(u) the linear strain tensor defined by
1
e(u) = (eis(w),  ei(u) = 5(Tiu; + dyui),
and E(y) is the electric vector field defined by
B(p) = (Ei(¢)),  Eily) = 0.

The equations (1-2) are the constitutive equations evidencing the electromechanical coupling,
(3) represents the equilibrium mechanical equation, (4) the Maxwell-Gauss equation, (5) are
the displacement and traction boundary conditions, and finally (6) represents the electric
boundary conditions.

2.2. The 2D asymptotic piezoelectric anisotropic plate model
Now, we apply the asymptotic analysis procedure to the variational formulation of the 3D

piezoelectric anisotropic plate model (1)-(6). As the plate thickness 2h approaches 0, this
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3D model leads to a limit model that is a reduced 2D model, henceforth called the 2D
asymptotic piezoelectric anisotropic plate model, or shortly, the 2D asymptotic plate model.
The arguments used to mathematically justify this limit model can be found in [11], see also
[9]. Its variational formulation is the following

Find (u,p) € Vkr x ¥; such that:
a((u,gp), (U,?/))) =1(v,v), V(v,v¥) € Vi x Uy, (7)
@p=1¢p, on I'i.
Here Vi, is the Kirchhoff-Love mechanical displacement space defined by
Vier = {v = i, va,00) € [HY Q)P 0 3= (n,mayme) € [HYW))? x H2(w),
Va(2) = na(@1, 22) — 230am3(21,22),  v3(2) = n3(21, 22),
My = M25 =M, =0, O3, = 0}
and ¥;, ¥y are the spaces associated to the admissible electric potentials defined by
U ={yeL¥Q): 05 €LV}
Uy ={y € L*(Q): 03¢ € L*(Q), tr, =0}.
Moreover
a((u,9), (v,9)) = [ Aapypas(u)es,(v) dQ + [ p3s D3 031 dQ
= JaP3ap [eas(w)03¢ — eap(v)dsp] dQ,
and

l(v,¢)=/gf-vdf2+/rlvg~vdFN.

The modified coefficients Angyp, P3as and pss depend only on Cjjii, Pijr and €;; and are
defined by

Cap33Cs3 C333
Aaﬁ'yp = Lapyp — % + Caﬁ?)?) @ b51/ A§yp — Cocﬁl/?) b511 A5yps
Cap3s C33u3
D30 = P3ag — SELLY - N Copszs = bsy cs — Capus bsy Cs,
C3333 C3333
P333P333 C33u3
P33 = €33 + o Ps33 c " bsy c5 + Paus by cs, (8)
3333 3333
where
asyp = C33vpCs333 — Cs37,C3333, cs = Cs333P333 — C3333 P53,

[bs,,] = [Cs333C33,3 — Cs3,3C3333] "1 (identity between two matrices).

We observe that this limit problem (7) is an extension of theorem 3.3 in [11] (established
for the case Cppys = 0 = Casss) to the general case of anisotropy. In fact, (7) differs from
the corresponding limit problem defined in theorem 3.3 of [11] with respect to the formulas

Copyright © 2006 Computers and Structures 2006; 00:1-29
Prepared using BTEX
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(8) for the modified coefficients Angyp, P3ap and pss. One easily checks that in case of
Copys = 0 = Cyz33, the formulas in (8) are identical with those given in theorem 3.3 of
[11]: the so-called reduced elastic coefficients Ay, turn to (cf. formula (41) in [11])
Aapyp = Capyp — Caﬁ033033’yp7 9)
3333
the modified piezoelectric coefficients psng and corresponding vector ps are now equal to (cf.
formula (42) in [11])

Caps
D308 = Paag — Czﬁ

3
-~ P33, P3 = [P311 P32z P31zl (10)

and the scalar field ps3 is now (cf. formula (43) in [11])
Ps333P333
C3333
.
n 1 [ Psa3 } [ Ci313 Cisas ] [ P33 ] (11)
Ci313 Chisos —Ps3 Ca313  Coazas —P313 |’
det
Ca313  Coasas

P33 = €33 +

The procedure to obtain the more general formulas (8) for Aagyp, P3as and pss for the
general case of anisotropy is the same as indicated in [11] (cf. section 5 in [11]). It suffices to
use the equations (35) in [11] with nonzero Cyhg3 and Cys3s to derive the new formulas for
Kkij (cf. (34) in [11]) and subsequently introduce these x;; in the two equations of formula (40)
of [11]. The latter step results in the new formulas (8) for Angp, P3as and pss.

Remark 2.1. In subsection 3.3 we consider a laminated plate, whose layers are made of
monoclinic piezoelectric materials with elastic, piezoelectric and dielectric coefficients that are
independent of x3 in each layer. Thus, the material of each layer satisfies Cogyz = 0 = Casss,
and therefore, for each layer the corresponding coefficients Aag~p, P3ap and pss are defined by
(9-11). 1t is also proven in [11], theorem 3.3, that for the case of a plate with Copyg = 0 =
Cas3s, problem (7) admits a unique solution (u,p). One easily verifies that this uniqueness
result also holds true for the variational equation (7), where we consider a laminated plate,
whose layers are made of monoclinic piezoelectric materials, as that used in subsection 3.3.

A straightforward computation shows that (7) can be reformulated: in fact, it is equivalent
to an easier model, in which the Kirchhoff-Love displacement u is the unique solution of a two-
dimensional piezoelectric plate model defined on the plate’s middle plane. Provided u has been
found, the electric potential ¢ is an explicit function of the prescribed electric potential on the
lower and upper surface and the tangential and transverse components of this Kirchhoff-Love
mechanical displacement u. This result is stated in the next theorem 2.1.

Theorem 2.1 (Equivalent reformulation of Problem (7)) Let (u,¢) € Vi x U; be the
unique solution of problem (7), where uo = €4 — x30,€3, us = &3, and & = (£1,&2,€3). Then,
the electric potential ¢ satisfies

(,0(1‘1,:22,563) = gpa($17x2)+
. (12)

T3 +
3 a 3 b —
/ |:(p7a,3 . c) eap(§) — (piaﬁ ys — =2 ¢) Dapés + Po — %o . dys,
h b33 P33 P33 b33 P33
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where pg and @y are the restrictions of ¢ to Ty and T'_, respectively, and

+h +h +h _
a o 1 1
Qap :/ bs ﬂd.’L’g, bap :/ T3 Ps Bd.’L‘g, c= (/ —dmg) (13)
—h

—h P33 P33 —h D33

are functions defined on the middle plane w of the plate. Moreover, u € Vi, is the solution of
the variational equation

Find w € Vi such that: a(u,v) =1(v) Yv € Vkp, (14)
where for any v = (m — x301m3, N2 — T30213,713) € VK1,
) = [ fovae [ goodiy - [ (o - 5) B2 ceaslo) ds (15)
Q I'n Q P33
and
au0) = [ [Naaw) cas(m) + Mas(w) Dupns] e (16)
w

Here, (Nog(u)) and (Maog(u)) are the components of second-order tensor fields associated to
the Kirchhoff-Love displacement u given by the following matriz formula

[ Nap(u) ] 0 [ evp(g) ‘|

Maﬁ(u) Oyp€s; 7

where the 6 x 6 matriz O is (in general) non-symmetric. Its components are functions of the
middle plane w, namely

+h +h
f—h Bagypdas - ffh Dagypds
0= +h +h (17
_f_h 3 Bagypdas f_h z3Dapypdrs 66
with DP3ap P3 P3ap @
Bagyp = Aapryp + o Dvp _ SaB e
P33 D33 (18)

DP3aBP3yp  P3aB byp c

P33 P33
In particular, the bilinear form a(.,.) in (16) is non-symmetric (if O is non-symmetric), and
the tangential (&1,&2) and transverse £ components of the unknown displacement u are coupled

in (14).

Proof — Considering v = 0 in (7) we obtain

Dapyp = 23 Aapyp + T3

/Q [p33 93 — P3ap eaﬁ(u)} 931 d2 = 0.

Since D(Q) is dense in ¥y (see, e.g., [9]), we can take ¢ € D(2), which gives
- /Q 03 [p33 03¢ — P3ap ea@(u)} P dQ = 0.

Hence, 93[p33 93¢ — psag €ap(u)] = 0 and thus, there exists d' € D'(w) such that
—p3303¢0 + P3ageas(u) =d' in D'(w),
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or equivalently, because eqn3(u) = €a3(€) — 30483,

- 1
D3 = 2298 [0, 5(€) — w3 Dugls) — — d". (19)
P33 P33

After integration over zg this yields

So(xla 1’2,.%'3) = SO(Q?l,fL'Q, _h)+

" p3a o3 q
/ 50 Teo(€) — y3 Dapts) dys — / — d* dys.
—h D33 _1n P33

(20)

Since p(z1, 22, —h) = ¢y (v1,22) and ¢(z1, 72, +h) = @g (z1,22) We choose x3 = +h in the
previous expression to determine d' :

@(xlv Z2, +h’) = w(xlv L2, 7h)+
+

(/—}:h p;;f dxg) cas(€) = (/_hh s % dxg,) Oapls — (/h 1%33 dxg) &,

and clearly this equation is exactly the same as

903_ =@ taap eaﬁ(f) - baﬁ aaﬂ€3 - Cildla

or equivalently
d' =cley — o + aaseap(§) — bap Oaps]. (21)

Finally, inserting this d* in (20) we directly obtain formula (12) for the electric potential.
Choosing now 9 = 0 in (7) we get

{ fQ Aaﬁ’YP eaﬁ(u) e’YP(v) das) + fg P3ap eaﬁ(v) 8350 dQ) = (22)
Jo frvdQ+ fFN g-vdly.
For the derivative d3¢ given in (19) with d* as defined in (21) we have
P3ap Qo p P3ap baﬁ @8_ - 4100_

O3p = (—= — —=c¢)eq — (/23— —=¢) 0u3&zs + ———¢,

oY ( P33 P33 ) p(¢) ( P33 ’ P33 ) 543 P33
and introducing this latter formula in (22) we obtain

fQ {Baﬂw €ap &) — Dapyp 37,,(53)} (%a(n) - 1733(15773) dfl = (23)

fo'UdQ+erg'UdPN_fQ(SOS-_@a)Mceaﬁ(v)an

P33

which is precisely the variational equation (14). W

For later use we remark for the last term on the right-hand side of (23) holds

—\ P3a _
/Q(SOS_ — %o ) ;3: Ceaﬂ(v) dQ = /(903_ — %o )C (aaﬁ eaﬁ(n) - baﬁ 8&3773) dw. (24)

In the next corollary 2.1 we show that theorem 2.1 is a generalization of theorem 3.4 in [11].
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Corollary 2.1 (Theorem 3.4 of [11]) Suppose that Cogyz = 0 = Cassz and in each layer
the coefficients psap and pss are independent of xs. Then (12) becomes

— %0
—\d 25
P33 2h Y3, ( )

T3 +
_ p
plar,azan) = o5 (orn) [ [ = (B2 o) 0oy 1 &

—h
which is precisely the formula (88) of [11] after integration with respect to the thickness variable.
Moreover, problem (14) coincides with problem (56) of [11] (we remark that h =1 in (56) of
[11]), because in this case

. ©of —
l(v) = f-vdx—!—/ g-vdFN—/ 0 70 T 0 P3ags €ap(v) dz, (26)
Q I'n Q
and
a0) = [ [Na) () + M) D] o (27)

where (Nog(u)) and (Muog(u)) are defined by the following matriz formula

l Nastw) ] _ [ 1n(6) ]
Map(u) Dvp&3
X " 28
_ fj_h Aapypdrs _f—+h r3Aapypdis l €0 (£) ] &8
- fj;? T3 A0pypdTs fj:(x?,)Q(Aaﬁw + B ) dag Dyp8s

with Aagyp, P3ap ond pss given by (9)-(11).

Proof — In fact, if p3,3 and ps3 are independent of x3, then

P3ap P33
QoB D33 ) af ) c 2h )

and

DP3ap [€2e%¢] o P3ag P3ag P33 _
—F - —Fc="F-2h5~=-=0,
D3z P33 b33 P33 2h
therefore (12) turns to (25), and (26) is obtained from (15) replacing ¢ by £%2. We also have

P3apP3yp  P3aBlyp = P3apP3yp  P3ag 2hp3'yp P33

=0.
D33 D33 D33 P33 ps3 2h
Thus, the coefficients Bqg, and D,gy, defined in (18) are equal to
P3apP3
Bocﬁ“/p = Aaﬁw’ Daﬁw =3 (Aaﬁw + 77’))' (29)

b33
Consequently the bilinear formula (16-18) turns to (27-28) with the coefficients Bog,, and
Bapyp defined by (29). R

We emphasize that theorem 2.1 is a generalization of the results found in [9, 11] to the case of
a completely nonhomogeneous anisotropic piezoelectric plate. In particular the explicit formula
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(12) for the electric potential now depends both on the tangential and transverse components
of the mechanical displacement. This formula is not found in [9] and [11] where it is assumed
that the material is mechanically isotropic and monoclinic, respectively, and where it is also
supposed the modified piezoelectric coefficients are independent of the thickness variable.

Moreover it is worth mentioning that a similar asymptotic procedure as the one used to
obtain the model described in theorem 2.1 (which relies on the method developed formerly
in [5] for elastic plates) was applied in [7, 8] to derive asymptotic models for anisotropic
piezoelectric thin plates. But the latter models differ from the one described in theorem 2.1
of the present paper. Namely the asymptotic electric potentials are not the same. This is
due to different scaling techniques, different types of boundary conditions and also different
types of anisotropic materials. In [7] the first order asymptotic electric potential satisfies a
two-dimensional Poisson-Neumann problem with an effective dielectric constant accounting
for electromechanical couplings. In [8] it is found that the asymptotic electric potential has
two different formulas depending on the type of the electric boundary conditions - a short-
circuited or an insulated plate. For the case of a short-circuited plate (this means the plate
is submitted to prescribed electric potentials on the upper and lower faces and to a surface
electric charge on its lateral surface) the asymptotic electric potential is a quadratic polynomial
of the thickness variable 3 (and that coincides with formula (25) of the present paper when the
material is mechanically monoclinic and the modified piezoelectric coefficients are independent
of the thickness variable). For the case of an insulated plate (that is a plate which is electric
charge-free on whole its boundary) the asymptotic electric potential is constant in the plate’s
thickness variable.

2.8. The laminated piezoelectric plate model

In this subsection, the 2D asymptotic plate model defined in theorem 2.1 is applied to
a thin laminated plate made of several stacked layers of different piezoelectric anisotropic
materials. We assume that, in each layer the elastic, piezoelectric and dielectric coefficients are
independent of z3. This special material structure enables particular formulas for the functions,
matrices and vectors involved in the definition of the 2D asymptotic plate model of theorem
2.1. Below, we give the detailed form for the matrix O and the electric potential .

The matrix O. As before, the global plate =@ x [—h, h], has middle plane w C IR? and
global thickness 2h. The material and geometric properties of each lamina are indexed by the
letter s. We assume that there are k laminas, numbered from the lower face to the upper face
of the global plate 2. We do not impose any geometrical symmetry in the distribution of these
k laminas with respect to the middle plane w of the global plate. Let t5 be the thickness of
lamina s and |zs| the distance from w to the middle plane of lamina s, measured along the
axis O X3, where z; is positive if lamina s is above w and negative if it is below. In particular,
the sum of the thicknesses of the k laminas must be equal to 2h, that is Z];:l ts = 2h.
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MODELING AND NUMERICAL STUDY OF A LAMINATED PIEZOELECTRIC PLATE 11

In this setting, the coefficients ang, bag and c introduced in (13) become

+h ks +h ks
P3ap pSaﬁ P3ap p3a,6
a[;:/ —dxz = ts, bg:/ T3 drg = zsts,
“ ~h P33 ; Pz “ ~n P33 ; Py
(30)
+hoq —1 koo (-1
(L, ) = (5™
—h D33 o1 P33
and for the components of the matrix O in (17) we get
o : PiagPiye  Phaplae
P afpF3vp o
/ Bogypdrs = Z [ oy T 5 - s C} ts;
—h =1 D33 D33
Btsrﬁwp
+h k s s S
DP308P3 P3agyp
/ 23 Bogypdis = Z [ aprp T aﬁs - - ai C] ts zs,
—h =1 P33 D33
Bgﬁ’vp
+h k s s k S b
DP304P3 P308%vp
Dapypdrs = Z [ apyp + y} tszs — Z [% c} ts,
- s=1 P33 s=1 P33
clxsﬁ'vp Disﬁwp

and

th b p§ D3 1 b P§ bvp
/ 23 Dogypdts = Y [ St w} 73 (B +12023) = [# c} t 2.

—h =1 D33 1o P33
1s 2s
Daﬁ'vp Daﬁﬂm

Therefore, the matrix O as defined in (17) becomes a sum O™ of (in general non-symmetric)
matrices, namely

k 1 2
Olam _ Z Zﬁw ts 7Dasf3w tszs + Da%w ts ] (31)
- 1 (43 2 2 ‘
s=11 fsxﬂ“/p ts s Divsﬁw ﬁ(ts +12¢, ZS) o Docsﬁw bs 2 6x6

This matrix (31) induces the bilinear form a(.,.) in (16) for the laminated plate. Note that the

third term on the right-hand side of the linear form [(.) in (15) is defined by (24), where the
coefficients ang, bag and c are given by (30).
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12 L. COSTA, I. FIGUEIREDO, R.LEAL, P. OLIVEIRA, G. STADLER

The electric potential p. Let us now turn to the formula of the electric potential for the
case of the laminated plate. If 23 belongs to lamina 7, with 1 <14 < k, we obtain from (12)

o(x1,22,23) = @y (21, T2)+

— —Fc)tse - z - c 3+ ———¢
=L p3s P33 >tas °7 pis * pis o P33 ’
) ) (32)
pZSCzB Qo ti péaﬁ 2 ti 2 1
: -7 — i+ = — =7 —(z;—=2)) =9
( v Pl ) (zs — 2z + 2)%5(5) i (23 — (2 2) ) 2 €3+

bap ti Y5 — %o ti
—.c(xg—zi—i——)@a £3+7C(£C3—Zl+*)
Ph 2777 Pls 2

Of course, if z3 belongs to lamina 1, the sum 22;11 [...] on the right-hand side of (32)
disappears. We also remark that ¢ is a quadratic polynomial of the thickness variable.

3. NUMERICAL STUDY OF ACTUATOR AND SENSOR EFFECTS

In this second part, we discretize the model obtained in subsection 2.3 using standard finite
elements. Moreover, by means of mulitiobjective optimization problems we numerically analyze
actuator and sensor capabilities of this laminated piezoelectric plate model.

3.1. The discrete model

Applying the finite element method to (14) and (12) leads to a discrete laminated piezoelectric
plate model, which is stated in the below theorem 3.1. In the sequel we assume that the
plate’s middle plane is a rectangular domain w that is discretized using m = nino axis-parallel
rectangles w®, i.e., w = [JI"; w®. We suppose w® = [a$, b$] x [c§, d5] and denote h§ = b$ —a$ and
h§ = d§—c§, that is, {w°} is affine equivalent to the reference element & = [—1,4+1] x [—1, +1].

Bilinear and nonconforming higher-order finite elements (cf. Ciarlet [23]) are chosen to
approximate the tangential and transverse displacement fields (£1,&2) and uz = &3 of the
Kirchhoff-Love displacement u, respectively. The 8 degrees of freedom of the bilinear finite
element are the values of (£1,&2) at the vertices of w®, and the 12 degrees of freedom
characterizing the nonconforming finite element are the values of us, us; and uzo at the
vertices of w®. We also utilize the 2 x 8-matrix M and the 12 x 1-vector N€¢ that correspond,
respectively, to the four shape functions of the bilinear finite element and the twelve shape
functions corresponding to the nonconforming finite element defined in @ (cf. (26) and (27) in
[4]). Moreover, let L¢ and S¢ be the matrices that correspond to the derivatives of the shape
functions of the bilinear and the nonconforming finite elements, respectively (cf. (38) and (39)
in [4]).

If n is the number of nodes in the finite element mesh, as approximation of the displacements
(&1,62,€3,€3.1,&32) in w we obtain the vector u € IR”™ defined by

U= [y U € R*™3"  with
Utg = (u1j7u2j);‘l=1a Uy = (U3j7u31j,U32j)?:1,
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MODELING AND NUMERICAL STUDY OF A LAMINATED PIEZOELECTRIC PLATE 13

where u;, and uy, are, respectively, the approximations of the tangential and transverse
displacements (51,52) and (53,5371,6372). This means that Uij, U2j and usj, u31j, U32; are
the approximations of &, & and &3, £3.1, £3,2, respectively, at the node j of the finite element
mesh w. Moreover, if P is an arbitrary set of indices, we denote by w4, p, Uty the sub-vectors
of uy, and uy, respectively, whose components have their indices in P.
Let also
Fi= [ fides + g +g7, for i=1,2,3

fig=[F1 F»]" and f, =F3

be the vectors associated to the density of the mechanical forces acting on the middle plane w
of the plate, and let the vectors p3, a!%™ and b!™ (related to the material coefficients ps, aap
and b,p of the laminated plate, cf. (10) and (30)) be defined by

P3 = [P311 P3az Piip) for each layer s,
al“™ = layy azy a12], '™ = [b11 bay bia).
Then we have the following theorem.

Theorem 3.1. The finite element discret problem associated to (14) is:

Find w=[uy uw) € R°™  such that :

ugg; =0, Uty g = 0, (33)
Ku=F.
The equations uiy, = 0 and uy,; = 0 represent the discrete boundary conditions for the

displacements. At the element level, the square matriz K and the vector F are defined by K¢
and F€, respectively. The 20 x 20 matrix K€ is in general non-symmetric and depends on the
laminated material coefficients

h$hs et 0 L 0
K¢ = 1°°2 / |: oT :| Olﬁarré |: :| dwe’
4 o ( 0o S 2056 x 0 S° 6X20)

where O'*™ s the material matriz defined in (31). The vector F¢ has 20 components and is
related to the mechanical forces and the applied electric potential Lpg and g . Assuming that
the surface mechanical force g = 0 in Ty and fo, gt , g5, are independent of x3 € [—h, h] we

obtain
Fe = { ?Z% } ,  where
Fe — hihs / {MTf —( + ) eT ipth}dA
tg 1 ), tg —\Po —¥o)C 2 s, s| aw, (34)

. _ hghs o L et .
Ftv: 4 |:N ftv+(900 _(JDO)CS Zps tszsi| dw.
& o—1 P33

It is worth noticing that the nodal displacements urg and uy, in (33) are coupled (due to the
definition of O™ in (31)).
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14 L. COSTA, I. FIGUEIREDO, R.LEAL, P. OLIVEIRA, G. STADLER

Furthermore, if x3 belongs to lamina i, 1 < i < k, the finite element approximation of the
electric potential (32) in w® x (—h,+h) is defined by

©(21, T2, 23) |we x (—h,+h) = Po +
i—1 s lam s lam + —
p a p b -
E (—53 - — c) ts Lfuy, — (ts Zs —53 —ls —— c) Seus, + o — %o . L cts} +
o—1 - P33 P33 D33 P33 D33
7 lam 7 (35)
D a Livre e P3 /2 tivon 1 ce e
AN —z;i+ =)L — = —(z;—=)") =S8
(pé3 P33 ) (@5 = 2+ 3) Lt Ph3 (73— (= 5) ) 5 Ut
blam t; e, e ‘P(J)r — 906 li
_ S g 4+ ==Y —zi+ =),
. c(zs — 2z + 2) uy, e c(ws —z; + 5 )

and if 3 belongs to lamina 1, the sum Zi;ll[ ..] disappears on the right-hand side of (35).

Proof — The arguments are similar to those used in theorem 3.1 in [4], so we omit the proof.
We remark that to obtain the above form, we have assumed that the surface mechanical
force g = 0 in T’y and f,, gF, g, are independent of z3 € [—h,h] in order to simplify the
formulas for the vector F' . Otherwise the expression for F° in (34) would consist of more
terms. Furthermore, to obtain (35), it suffices to use (32) and apply the following standard
finite element approximations for each finite element w®

(€1,62) =~ Mug, le11(§) e22(§) 2e12(§)] =~ Lfug,
ug =& =~ NCuf, (0113 O3 2012&3]  ~ SCuf,. A
Remark 3.1. - The finite element code for the discrete model described in the previous

theorem is available on request (cf. hitp://www.mat.uc.pt/ “isabelf/poci59502.html, code
Lampiezo.m).

3.2. Optimization problems

We now describe the optimization problems that model the actuator and the sensor effect of
the discrete 2D laminated piezoelectric plate model (defined in theorem 3.1). For the actuator
problem we vary the location of the applied electric potential difference <p5r — g , and for the
sensor problem the location of the applied mechanical loads. Moreover, for both problems,
we may also change the order of the different materials and the thickness of each lamina.
Before presenting the actuator and sensor optimization problems, we define the optimization
variables.

Optimization variables. We consider three optimization variables: the vector t of
thicknesses, the vector mat of materials and the vector loc representing the location of the
non-zero applied electric potential difference g — g or the non-zero applied mechanical loads
ftg and fi,. The vectors t and mat are defined by

t=(t1,ta,...,ty), with SF_ t,=2n, t,>0,

mat = (maty, mats, ..., maty), mat,. # mats, forr=s+1.
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MODELING AND NUMERICAL STUDY OF A LAMINATED PIEZOELECTRIC PLATE 15

The components of both vectors are numbered from the lower to the upper face of the laminated
plate, and layers with zero thickness, or repeated materials are not allowed.

Next we define the vector loc. We assume that the non-zero applied electric potential
differences or mechanical loads may act in regions of w with the same size. These regions
are numbered and the finite element discretization of w is chosen such that the borders of
the regions consist of edges of adjacent finite elements. Then, the optimization variable loc is
defined by

loc = (i, j, pe), (36)

where 1 < ¢ < m; is the number of regions of w that consist of j > 1 adjacent finite
elements (m; is the total number of regions), where the non-zero electric potential difference or
mechanical loads are applied. The set pe contains ¢ elements of Y; = {1,2,...,m;} representing
the location of these regions. In particular, pe ranges over all subsets of Y; with cardinality 4,
that is, pe € C;" (Y;).

For example, for a rectangular mesh with 2020 finite elements setting loc = (3,4x4,[1,4, 8])
means that the non-zero applied electric potential difference or non-zero applied mechanical
loads are acting in 3 regions of w, each consisting of 4 x 4 = 16 finite elements, located at the
positions pe = [1,4, 8] of Y15 = {1,...,mis = 25}.

Since the size of the regions with nonzero electric potential difference or mechanical load is
independent of the finite element mesh, for finer meshes the number of adjacent finite elements
j corresponding to the regions in loc increases. Obviously, for a mesh with m finite elements,
1 <m; <m holds for any j and m; = m for j = 1.

Actuator optimization problem. The actuator effect of a piezoelectric material (also
called the inverse piezoelectric effect) is the mechanical deformation generated by applying an
external electric field to the material. The aim of this subsection is to present the optimization
problem that focuses on the maximization of the actuator effect of the laminated piezoelectric
plate model.

For a mesh with m finite elements and n global nodes, the mechanical displacement
of the plate is determined by the displacements (£1,&2,£3) that define the Kirchhoff-Love
displacement u of the nodes in the plate’s middle plane. For an arbitrary node j in the middle
plane’s mesh, the corresponding three-dimensional displacement (1, &3, €3) is approximated by
(u1j,ugj,us;). Fixing the applied mechanical forces and the boundary conditions, the nodes’
displacements depend on the location of the non-zero applied electric potential difference
loc = (i,7,pe) as well as on the thickness and material vector ¢t = (t1,...,tx) and mat =
(maty, ..., maty). Of course, for each fixed triple (loc,t, mat) exists a node in the mesh that
attains a maximum displacement d(loc, t, mat), that is

d(loc, t,mat) = ;jDax (w1, uaj, us;)| ms,
where ||.|| gs is the usual Euclidean norm in IR®.

Our objective is to maximize d(loc,t,mat) choosing appropriate loc = (i,j,pe), t =
(t1,...,tx) and mat = (mati,...,maty), where pe ranges over all the subsets of Y, with
1 distinct elements. At the same time we want to minimize the number ¢ of regions of
w with nonzero electric potential difference. Therefore, two objectives are considered: the
maximization of the displacements and the minimization of the number i of regions. This
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16 L. COSTA, I. FIGUEIREDO, R.LEAL, P. OLIVEIRA, G. STADLER

corresponds to the following non-differentiable multi-objective actuator optimization problem

d(loc,t,mat)

d(loc, t, mat) = usgyuzi)me) A mind

oo dloc,t, ma ) I (j Iax (w1, u2g, uzg)| me ) min g

[ loc = (i,j,pe), pe€ C;7(Y;), H#pe=1i, i=1,2,..,m;j,
t=(t1,te, . str), SoF_ te=2h, t,>0, s=1,... .k (37)
mat = (maty, matg, ..., maty), mat,. # mats, forr=s+1,

subject to :
Find w = [uy uw € R™  such that :

Utgy = Utgy, =0, Uty g, = Uty g, = U gy = 0,

L L Ku = F(loc,t,mat)~

Note that the vector F' depends on (loc, t, mat), cf. (34). To emphasize this dependence, we
write Fljoc t,mat) instead of F.

Note that for multi-objective problems such as (37), the aim is to characterize the set of
so-called Pareto optimal solutions; these are solutions that cannot improve the performance
of the first objective function (the node’s displacement d(loc,t,mat)) without worsening the
performance of the second one (the number i of regions where the applied electric potential
difference is non-zero) and vice-versa. If we drop the second objective, that is min 4, the multi-
objective problem becomes an optimization problem with only one objective, namely to achieve
a maximal node’s displacement choosing (loc, t, mat) appropriately for fixed ¢ in loc.

We point out that (37) is a combinatorial problem, since different combinations of the
positions for the applied electric potentials, of the layer’s thicknesses and the order of the
materials lead to a different displacement of the nodes. In particular, the set C’;n 7(Y;), that

is, the admissible set for the optimization variable pe is of cardinality C’;n = #’l), (for
instance, for a mesh with m; = 25 and i = 3 we have C2° = 2300). Even if the numbers C;"
can be reduced due to symmetries in the problem formulation, they become very large.

Obviously, the solutions of the optimization problem (37) strongly depend on the mechanical
loadings and the boundary conditions imposed to the plate. In order to achieve a better
understanding of the actuator effect, we assume that all the mechanical loadings f = (f;) and
g = (g;) vanish. To analyze the influence of the boundary conditions, we consider a plate that
is clamped on different parts of the lateral surface (this means that we vary the definition of
the set 79 C Ow).

Sensor optimization problem. The sensor effect of a piezoelectric material (also called
the direct piezoelectric effect) consists in the generation of an electric field in the material that
is subject to an imposed mechanical force. In this subsection we describe the optimization
problem related to the maximization of the sensor effect of the discrete laminated piezoelectric
plate model. The optimization variables are those defined above, that is, (loc,t,mat). As
objective functional we choose the maximum value of the electric potential ¢ (cf. (35)) at
a pre-defined thickness z, for each lamina s. That is, for a mesh with m finite elements we
consider the non-differentiable function
elpot(loc, t,mat) = max max | 1we x {23

e=1,....m s=1,...,
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We notice that the discrete electric potential o ey (—n,+r) depends on (loc,t, mat) by means
of the Kirchhoff-Love displacement u, which is the solution of Ku = Fjoct,mat), cf- (33) and
(35).

Analogously to the actuator optimization problem, the objective is not only to maximize
elpot(loc, t,mat), but also to minimize the number i of regions of w with non-zero mechanical
forces. Therefore, two objectives are considered, which leads to the following sensor multi-
objective optimization problem

elpot(loc,t,mat)

Ipot(loc,t t) = e A ing
ooy 1P0t00 bmat) = i (s, X el ) A mind
loc = (iaj7pe)7 peecznj()/})? #pe:ia i = 1a25"'7mj7 (38)

k
. t:(tl,tQ,...,tk), ZszltSZQh, ts >0, s=1,...,k,
subject to :
mat = (maty, mata, ..., maty), mat, #mats, ifr=s+1,

L @\w“x{zs} defined in (35) .

Unlike the actuator optimization problem we assume in this case non zero mechanical forces
and applied electric potential all nil.

3.3. Numerical tests

In this subsection, we describe the data and the solutions of our numerical tests. Moreover, we
give a brief explanation of the genetic algorithms used to solve the multi-objective optimization
problems (37) and (38).

Data. Let us consider a fixed three-dimensional coordinate system OXY Z and a laminated
plate Q@ = [0,Lq] x [0, Lg] x [~h,+h] with thickness 2h and a rectangular middle plane
w = (0,L1) % (0, Ly). The set w is partitioned into a mesh of m sub-rectangles, where electrodes
or mechanical loads are imposed. We assume a laminated plate consisting of two layers made
of two different piezoelectric materials. The parameters z; and t, for s = 1,2 (related to the
thickness ts and introduced before in section 2.3) are defined as

h+h h—nh
- D) O+h07 t1:h+h07 Z2 = 0

where hy € IR is such that —h < hy < h. Layer 1 is below w while layer 2 is above, and if
ho = 0 then ¢; = t5 and both layers have the same thickness. If hy > 0 (respectively, hg < 0)
layer 1 (respectively, layer 2) is thicker than layer 2 (respectively, layer 1).

In the sequel, we fix a 20 x 20 finite element mesh for the middle plane w; the finite
elements and the nodes are numbered from the left side s = {0} x [0, L2] to the right side
rs = {L1} %[0, Ls] and from the bottom side bs = [0, L1]x {0} to the top side ts = [0, L1] x{ L2}
of w. We consider four types of clamped boundary conditions (abbreviation BC). If BC = 1,
w is clamped only on the bottom side (yg = bs); if BC = 2, w is clamped on the left, bottom
and right sides (79 = lsUbsUrs); if BC = 3, w is clamped on the two opposite left and right
sides (y9 = lsUrs); finally, if BC' = 4, w is clamped on the two consecutive bottom and right
sides (o = bs U rs). We suppose that the non-zero applied electric potential difference (for

z1 =

+ho, t2=h—hg, (39)
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18 L. COSTA, I. FIGUEIREDO, R.LEAL, P. OLIVEIRA, G. STADLER

actuator multi-objective problem (37)) or the non-zero applied mechanical loads (for the sensor
multi-objective problem (38)) may act in i = 1 up to ¢ = 25 regions consisting of 16 = 4 x 4
adjacent finite elements of the 20 x 20 mesh (we recall that the definition of 7 in given in (36)),
located at the positions pe C Y14 = {1,...,m16 = 25} as explained in Figure 1.

1
21 22 23 24 25
0.8 -
16 17 18 19 20
0.6 -
>
@ 11 12 13 14 15
ES
04
6 7 8 9 10
0.2 -
1 2 3 4 5
0
0 0.2 0.4 0.6 0.8 1
axis X

Figure 1. Location pe = [I] of each element | € Y16 = {1,...,25}.

The exact data for the geometry, the electric potential and the mechanical loadings are given
in Table I.

Parameter Unit Value Value
(actuator problem)  (sensor problem)
Ly m 1 1
LQ m 1 1
h m 0.01 0.01
ot %4 -100 0
Yo Vv 0 0
=) N (0,0,0) (10,10,10)
g="(9:) N (0,0,0) (10,10,10)

Table I. Geometric, electric potential and mechanical loadings data.

The piezoelectric, dielectric and elastic coefficients of the two materials (P;jx, €;; and Cjxr)
are given in (40) and Table II. In particular, the elasticity matrix (Cjjx;) in terms of the Young’s
moduli F, Es, F3, the Poisson’s ratios v12, 113, /93 and the shear moduli G142, G13, Ga3 of the
material are shown. All the data displayed in Table II correspond exactly to two PZT ceramic
materials used in [26]. The materials are orthotropic with constant elastic, piezoelectric and
dielectric coefficients (cf. Tables VIII and XTI in [26]).
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Piii Piaa Pizs Pias Pz Pie 0 0 0 0 Ps O
Po11 Poya Pozz Paaz Paz1 Pop | = 0 0 0 0 0 Py
| P311 Pso2 Pa3s Paas Piar Paio P31 Py Psi3 0 0 0
i €11 €12 €13 1 0 0
€292 £923 = €33 01 0 (40)
| sym. €33 0 0 1
v v -1
Ci111 Crizz Ciizz Cries Ciizi Chie E% = B 0 0 0
Ca222  Caozz Cazaz  Coozr Choro E% -7 0 0 0
Cs3z3  C3323 Cazzr Csziz | m 0 0 0
Ca323  Cazzr Casiz (;%3 0 0
sym. C3131 Ca112 sym. G%s 0
Ci212 L
G2

In Tables I-II the unit symbols m, V, N, GPa, Cm~2 and Fm~! mean, respectively, meter,
volt, newton, giga pascal, coulomb per square meter and farad per meter.

Parameter Unit  PZT-5A Ceramic PZT-5 Ceramic
Value Value
FEq GPa 67 62
E2 = E3 GPa 67 54.9
V19 = V13 = V23 0.31 0.31
G12 = G13 GPa 25.57 23.6
P31 = Pso Cm™2 -9.30032142 -12.006
Ps3 Cm™2 20.3638 17.277
P15 = Pog Cm™2 14.5749 15.812
€33 Fm~™'  15.31742 x 107° 22.99 x 1079

Table II. Elastic, piezoelectric and dielectric data of the two materials.

Genetic algorithms. In general, engineering problems involve multiple conflicting
objectives. For these problems no single solution that is optimal with respect to all objectives
exists. Instead, there is a set of optimal solutions, known as Pareto optimal solutions,
reflecting compromises between the objectives. Genetic algorithms (cf. [24]) are population
based algorithms and, therefore, particularly suitable to tackle multi-objective problems. They
can, in principle, find multiple widely different Pareto-optimal solutions in a single run (cf.
[25]). Furthermore, they do not require any differentiability or convexity assumptions and can
deal with complex search spaces, as well as non convex Pareto fronts.

We apply the elitist genetic algorithm, described in [3] to the actuator and sensor multi-
objective optimization problems. We note that the genetic algorithm used in this paper is also
similar to the one applied in [4] for the analysis of the actuator effect of a single plate made
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of a transversely isotropic piezoelectric material. However, the mechanical model considered
in the present paper is more complex than the one in [4]. In fact, in the present model, the
plate is laminated and made of different materials and therefore the tangential and transverse
mechanical displacements are coupled (this did not occur in [4]). Moreover we deal with
additional optimization variables related to the thicknesses of the layers and the order of
the materials. We discuss both the actuator and sensor effects.

We now shortly describe some technical features and the parameters of this genetic
algorithm. For both problems (37) and (38), the optimization variables loc = (i, j, pe), t and
mat are encoded using binary strings (referred also as chromosomes) with a total length of
30 bits. The first 25 bits represent the sequence of the 25 regions: 1 means that a non-zero
electric potential difference or a non-zero mechanical load is applied in this region, while
0 means that the applied electric potential difference or the mechanical load is equal to
zero. Since only two materials are considered, the next bit suffices to represent the order
of the materials: 1 represents the material vector mat = (maty, mats), while 0 corresponds
to mat = (mats, maty). The remaining 4 bits of the binary string represent the parameter
ho € IR (related to the thicknesses of the layers, cf. (39)) as a small constant ranging from
—%h to %, allowing 16 values for hyg.

For the actuator problem, to each string we assign a displacement u, which is the solution of
the inner linear system Ku = F' in problem (37). For the sensor problem, to each chromosome
we assign the vector of the electrical potentials ey, y With s = 1,2, and e = 1,...,m,
where m is the total number of finite elements.

The genetic algorithms is stopped after 100 generations. In all numerical tests we use an
initial population size of 100 chromosomes. A tournament selection, a two point crossover and
a uniform mutation are adopted. The crossover probability is 0.7. The mutation probability is
given by %, where b is the binary string length, that is b = 30. The elitism level considered is
10. The value of sigma share (ospqre) is taken equal to 1. For sharing purposes, the distance
measure considered is the Hamming distance between chromosomes (cf. [24]).

Solutions. For all our tests, the stiffness matrices K and force vectors F' have been evaluated
with the subroutines planre and platre of the CALFEM toolbox of MATLAB [27]. The genetic
algorithms have been implemented in C.

The Figure 2 shows the objective values d of the Pareto optimal solutions for the actuator
multi-objective problem (37) as a function of the number i of regions. We observe an increase
of the displacement d with the number of regions 4, but for some values of i there are not
Pareto optimal solutions. This happens for 23 < i < 25 if BC' =1, for 22 <i < 25 if BC = 2,
for 20 < ¢ < 25 if BC = 3, and for 19 < ¢ < 25 if BC' = 4. This means, for example for
the latter case BC' = 4, that to achieve a maximum displacement d it suffices to apply the
electric potential difference to 18 regions, because the application of a nonzero electric potential
difference in more than 18 regions (in 21 or 23, for example) will not increase the maximum
displacement value d.

Analogously, Figure 3 represents the objective values elpot of the Pareto optimal solutions
for the sensor multi-objective problem (38) as a function of the number ¢ of regions, where
mechanical forces are applied.

We observe the same phenomena as in Figure 2. In general, the objective value elpot
increases with the number ¢, but for some i there are not Pareto optimal solutions. Namely,
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Figure 2. Pareto curves: maximal displacement d versus number of regions 7 (where the electric

potential difference g — g is applied) for the actuator multi-objective problem for BC' = 1 (upper
left plot), BC = 2 (upper right plot), BC' = 3 (lower left plot) and BC' = 4 (lower right plot).

for 24 < ¢ <25 if BC =1, for 23 < ¢ < 25 if BC = 2, for 18 < ¢ < 25 if BC' = 3, and for
22 <i<25if BC =4.

Some of the Pareto optimal solutions produced by the genetic algorithms are also displayed
in Table III (for the actuator optimization problem) and Table IV (for the sensor optimization
problem).

In Table IIT node represents the number of the node, in which the maximum displacement
d is attained. The Figures 4 to 7 (labelling 4 rows in Table III) represent the plots of the
transverse displacements of the plate’s middle plane for the corresponding BC, loc and mat.

In Table IV, e is the number of the finite element where the maximum electric potential
elpot is attained for the sensor optimization problem. The Figures 8 to 11 (labelling 4 rows in
Table IV) depict the transverse displacement of the plate’s middle plane and plot the electric
potentials measured at the middle plane of each lamina and at each finite element for the
indicated four groups of BC, loc and mat.
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Figure 3. Pareto curves: maximal electric potential elpot versus number of regions ¢ (where the
mechanical loads are applied) for the sensor multi-objective problem for BC' = 1 (upper left plot),
BC = 2 (upper right plot), BC' = 3 (lower left plot) and BC' = 4 (lower right plot).

In Tables IIT and IV we have omitted all the symmetric solutions loc, hy and mat producing
the same objective values d and elpot. In fact, due to the symmetry of the plate and the
boundary conditions, there are always several locations pe and symmetrical values of hg and
mat that lead to the same d and elpot.

Finally we have also tested the influence of the refinement of the finite element mesh in the
numerical results produced by the genetic algorithms. We have done experiments with three
meshes with 5 x 5, 10 x 10 and 20 x 20 finite elements, which means that the variable j in loc
becomes j = 1 for the 5 X 5 mesh, j =4 =2 x 2 for the 10 x 10 mesh and j = 16 = 4 x 4 for
the 20 x 20 mesh. For these three different discretizations we observe a similar behavior of the
objective values d, elpot and hg, mat, as well as a similar location pe for the optimal regions.
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BC loc = (1, j, pe) ho mat = (mat1, mate) | node | d
1,4 x 4, [4]) 0.00125 | (PZT-5, PZT-5A) | 441 | 1.248183E — 05
(2,4 x 4, [4,5)) 0.00125 | (PZT-5, PZT-5A) | 441 | 2.293397E — 05
1 (3,4 x 4, [3,4,5)) 0.00125 | (PZT-5, PZT-5A) | 441 | 3.348424F — 05
(4,4 x 4, [3,4,5,9)) 0.00125 | (PZT-5, PZT-5A) | 441 | 4.020649E — 05
Figure 4 — (5,4 4, [2,3,4,5,9]) 0.00125 | (PZT-5, PZT-5A) | 441 | 4.680007E — 05
(1,4 x 4, [23]) 0 (PZT-5, PZT-5A) | 431 | 4.818227E — 06
(2,4 x 4, [17,23)) 0 (PZT-5, PZT-5A) | 431 | 6.438335E — 06
2 (3,4 x 4, [18,23,24)) 0 (PZT-5, PZT-5A) | 432 | 8.721058E — 06
(4,4 x 4, [18,19,23,24]) | 0 (PZT-5, PZT-5A) | 432 | 1.042312E — 05
Figure 5 — | (5,4 x 4, [17,18,19,22,23]) | 0 (PZT-5, PZT-5A) | 430 | 1.190036E — 05
(1,4 x 4, [3]) 0 (PZT-5, PZT-5A) | 11 | 4.828368E — 06
(2,4 x 4, [2,3]) 0 (PZT-5, PZT-5A) | 10 | 6.808695E — 06
3 (3,4 % 4, [2,3.8]) 0 (PZT-5, PZT-5A) | 10 | 8.708387E — 06
(4,4 x 4, [2,3,7.8)) 0 (PZT-5, PZT-5A) | 10 | 1.038399E — 05
Figure 6 — (5,4 x 4, [2,3,7,8,9]) 0 (PZT-5, PZT-5A) | 10 1.183562E — 05
1,4 x4, [1]) 0.00125 | (PZT-5, PZT-5A) | 421 | 6.536013E — 06
(2,4 x 4, [1,2]) 0.00125 | (PZT-5, PZT-5A) | 421 | 1.287488E — 05
4 (3,4 x 4, [1,2,3]) 0.00125 | (PZT-5, PZT-5A) | 421 | 1.719750E — 05
(4,4 x 4, [1,2,3,7)) 0.00125 | (PZT-5, PZT-5A) | 421 | 2.051966E — 05
Figure 7 — (5,4 x 4, [1,2,3,6,7]) 0.00125 | (PZT-5, PZT-5A) | 421 | 2.366497E — 05

Table III. Solutions loc, ho, mat, node and d for the actuator optimization problem (mesh: 20 x 20).

BC loc = (4, j, pe) ho mat = (maty, mats) | e elpot
1,4 x 4, [21]) 0.00875 | (PZT-5, PZT-5A) | 5 | 0.894998
(2,4 x 4, [21,22)) 0.00875 | (PZT-5, PZT-5A) | 5 | 1.654821
1 (3,4 x 4, [16,21,22)) 0.00875 | (PZT-5, PZT-5A) | 5 | 2.380768
(4,4 x 4, [16,21,22,23]) | 0.00875 | (PZT-5, PZT-5A) | 6 | 3.011719
Figure 8 — | (5,4 x 4, [16,17,21,22,23]) | 0.00875 | (PZT-5, PZT-5A) | 6 | 3.615470
(14 x 4, [24)) 0.00875 | (PZT-5, PZT-5A) | 380 | 0.295855
(2.4 x 4, [23,24]) 0.00875 | (PZT-5, PZT-5A) | 380 | 0.535390
2 (3.4 x 4, [23,24,25]) | 0.00875 | (PZT-5, PZT-5A) | 380 | 0.676532
(4,4 x 4, [22,23,24,25]) | 0.00875 | (PZT-5, PZT-5A) | 380 | 0.792569
Figure 9 — | (5,4 x 4, [19,22,23,24,25]) | 0.00875 | (PZT-5, PZT-5A) | 380 | 0.903534
1A% 4, [23)) 0.00875 | (PZT-5, PZT-5A) | 330 | 0.230884
(2,4 x 4, [23,24]) 0.00875 (PZT-S, PZT-5A) 380 | 0.535988
3 (3.4 x 4, [23,24,25]) | 0.00875 | (PZT-5, PZT-5A) | 380 | 0.677186
(4,4 x 4, [22,23,24,25]) | 0.00875 | (PZT-5, PZT-5A) | 380 | 0.793471
Figure 10 — | (5,4 x 4, [19,22,23,24,25]) | 0.00875 | (PZT-5, PZT-5A) | 380 | 0.904455
1A% 4, 21)) 0.00875 | (PZT-5, PZI-5A) | 360 | 0.556523
(2.4 x 4, [21,22]) 0.00875 | (PZT-5, PZT-5A) | 360 | 1.099163
4 (3,4 x 4, [21,22,23)) 0.00875 | (PZT-5, PZT-5A) | 360 | 1.594584
(4,4 x 4, [21,22,23,.24]) | 0.00875 | (PZT-5, PZT-5A) | 360 | 1.972989
Figure 11 — | (5,4 x 4, [16,21,22,23,24] | 0.00875 | (PZT-5, PZT-5A) | 360 | 2.330120

Table IV. Solutions loc, ho, mat, e and elpot for the sensor optimization problem (mesh: 20 x 20).

4. Conclusions

In this paper, we have developed a piezoelectric model for a thin plate made of a completely
anisotropic material. For the sake of validating the model, a laminated plate with two
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Figure 4. Actuator optimization problem: transverse displacement of the plate’s middle plane for
BC =1 (left plot) and corresponding optimal position pe=[2,3,4,5,9] of the regions where the non-
zero electric potential difference is applied (right plot).
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Figure 5. Actuator optimization problem: transverse displacement of the plate’s middle plane for
BC = 2 (left plot) and corresponding optimal position pe=[17,18,19,22,23] of the regions where the
non-zero electric potential difference is applied (right plot).

piezoelectric materials of variable thickness is used. For this plate, the actuator and the sensor
effects are studied using bi-objective optimizations problems. Due to their characteristics (non-
differentiability and non-convexity), genetic algorithms are used to obtain (Pareto-optimal)
solutions. For the actuator optimization problem the objectives are to maximize the mechanical
displacement while, at the same time, minimize the number of regions where a nonzero electric
potential is applied. For the sensor effect, the objectives are the maximization of the electric
potential inside the plate while minimizating the number of regions which are subject to
mechanical loads. For various boundary conditions we show where to place the applied electric
potentials or the mechanical loads, taking into consideration the thickness and the order of the
materials. Future work will aim at solving problems with more involved optimization variables
and new objectives (e.g., to obtain a predefined mechanical deformation of the plate) using
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Figure 6. Actuator optimization problem: transverse displacement of the plate’s middle plane for
BC = 3 (left plot) and corresponding optimal position pe=[2,3,7,8,9] of the regions where the non-
zero electric potential difference is applied (right plot).
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Figure 7. Actuator optimization problem: transverse displacement of the plate’s middle plane for
BC = 4 (left plot) and corresponding optimal position pe=[1,2,3,6,7] of the regions where the non-
zero electric potential difference is applied (right plot).

genetic algorithms. Moreover, we also intend to apply techniques from continuous optimization
such as optimal control for the investigation and the design of smart materials involving
piezoelectric plates.
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Figure 10. Sensor optimization problem: transverse displacement of the plate’s middle plane for

BC = 3 (upper left plot), electric potentials (cross mark - ¢ ex(z,} on lamina 1, and, dotted -

Plwex {22} ON lamina 2) (upper right plot) and corresponding optimal position pe=[19,22,23,24,25] of
the regions where the non-zero mechanical forces are applied (lower plot).
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Figure 11. Sensor optimization problem: transverse displacement

BC = 4 (upper left plot), electric potentials (cross mark - ¢ ex(z,} on lamina 1, and, dotted -

Pwe x {22} ON lamina 2) (upper right plot) and corresponding optimal position pe=[16,21,22,23,24] of
the regions where the non-zero mechanical forces are applied (lower plot).
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