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The Workshop Modelling and Simulation in Chemical Engineering took place in 
Coimbra in July 2003, integrated in a thematic term devoted to Mathematics and Engineering 
which was supported by the Centro Internacional de Matemática (CIM). 

Its main objective was to bring together mathematicians and chemical engineers to 

improve the understanding of the problems of process engineering and the mathematical tools 

available to solve them. To enhance the dialogue among theoretical research, computational 

aspects and reactive flow behaviour short courses and plenary conferences were given covering 

topics like Mathematical Modelling and Chemical Engineering Systems, Packages and 

Numerical Methods to Solve P.D.E’s, and Optimization Techniques. Twenty contributed talks 

were also presented. 

The workshop was attended by about fifty researchers working in numerical simulation 

of Chemical Engineering problems. We believe that the texts included in this publication will 

give a reasonable overview of the state of the art as far as the main challenges posed in our days 

by the Numerical Simulation of Reactive Flows are concerned. 
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Splitting Techniques for Advection-Diffusion-Reaction Equations

Willem Hundsdorfer

CWI, Amsterdam, The Netherlands

Abstract

Notes for minicourse at the Workshop on Modeling and Simulation in Chemical Engineering –
Coimbra, 2003. In these notes some classical and modern splitting techniques are reviewed
for transport-chemistry problems, modeled as time-dependent advection-diffusion-reaction
equations. The material is largely based on the forthcoming book [6], where a more detailed
exposition and additional numerical tests can be found.

1 Introduction

Many physical, chemical and biological models take the form of advection-diffusion-reaction
problems. Problems of this type occur for instance in the description of transport-chemistry
in the atmosphere, surface- and ground-water and we shall consider the equations with such
applications as reference.

Consider a concentration u(x, t) of a certain chemical species, with space variable x and
time t. If the species is carried along by a flowing medium with velocity a(x, t), with diffusion
coefficient d(x, t) and with sources, sinks and chemical reactions described by f(u, x, t), then the
mass conservation law leads to the advection-diffusion-reaction equation

∂

∂t
u(x, t) +

∂

∂x

(

a(x, t)u(x, t)
)

=
∂

∂x

(

d(x, t)
∂

∂x
u(x, t)

)

+ f
(

u(x, t), x, t
)

. (1.1)

We shall consider the equation in a spatial interval Ω ⊂ R with time t ≥ 0. An initial profile
u(x, 0) will be given and we also assume that suitable boundary conditions are provided.

If we consider multiple spatial variables, say x ∈ R
2 or R

3, then we get

∂

∂t
u + ∇ · (au) = ∇ · (Du) + f(u, x, t) (1.2)

with velocity a = a(x, t) and diffusion (tensor) D = D(x, t). Moreover, with r chemical species
we will have a vector u(x, t) = (u1(x, t), u2(x, t), ..., ur(x, t))T containing concentration values
of the chemical species. Each chemical component might have a different velocity or diffusion
coefficient. The coupling between the chemical components is then provided by the reaction
term. Although more general problems often occur – where, for example, a and D also depend
on u – the system (1.2) already has many applications, for instance in pollution problems [14, 18].

One might want to apply different time stepping methods to the different parts of the equa-
tions. For example, the chemistry can be very stiff, which calls for an implicit ODE method. On
the other hand, if the advection is discretized in space with a flux-limiter, then explicit methods
seem much more suitable for that part of the equation. Moreover, use of an implicit method to
the full equation will lead to a huge algebraic system, with coupling over the species as well as
over the space.
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1.1 Spatial discretizations and the “method” of lines

We shall consider the discretization of spatial and temporal derivatives as separate processes. If
the spatial derivatives are replaced by difference quotients on some spatial mesh Ωh, we end up
with a large system of ordinary differential equations

w′(t) = F (t, w(t)) (1.3)

where each component wi(t) of the vector w(t) approximates the PDE solution u(x, t) in a grid
point xi or a surrounding cell. Such an ODE system is often called the semi-discrete system
since the space is discretized but time is still continuous. We will consider (1.3) for t ≥ t0 with
given initial condition w(t0).

Although spatial discretization will not be considered here, some brief remarks are in order.
Advection: The advection just gives a translation of the solution along the steamlines (charac-
teristics) described by the velocities. This usually results in large solution gradients. Standard
second-order differences

(

ux(xi) ≈ (2h)−1(u(x + h) − u(x − h)
)

then may give large numerical
oscillations. Therefore more complicated discretizations, possibly with limiters to suppress os-
cillations, are then advisable; see for instance [7, 6]. The use of an explicit time stepping method
will lead to a stability restriction τ/h ≤ C where τ is the time step and C > 0 will depend on
the size of a and the methods used.
Diffusion: Diffusion has a smoothing effect on the solution. The standard second-order differ-
ences

(

uxx(xi) ≈ h−2(u(x + h) − 2u(x) + u(x − h)
)

usually provide a good discretization. For
diffusion terms an explicit time stepping scheme will lead to a time step restriction of the form
τ/h2 ≤ C. On a fine mesh such a restriction is not acceptable (too many steps) and therefore
implicit methods should then be used.
Reaction: Chemical reaction often have very different time scales, where only the slower scales
need to be resolved; the fast scales typically correspond to radicals which are important for the
process but not in the final output. However, with an explicit time stepping method also the
fast scales need to be resolved for numerical stability reasons. Hence also for reaction terms,
implicit methods may be more advisable.

After a discretization in space, a semi-discrete system (1.3) is obtained which then is dis-
cretized in time. This separate treatment of time and space is often called the method of lines.
It is not a ‘method’ in the numerical sense, but rather a way to construct and analyze numerical
schemes.

Due to the different operators and time scales of the processes it is often advisable to use a
splitting of F into easier parts, say

F (t, w) = F1(t, w) + F2(t, w) , (1.4)

such that the individual processes v′(t) = Fj(t, v(t)) are easier to solve than (1.3). Some examples
are given below, but for the moment we may think of splitting a two-dimensional equation into
two one-dimensional equations; or splitting a reaction-diffusion (or reaction-advection) equation
into a diffusion (or advection) equation and a separate reaction equation. The latter type of
splitting, also applies to general spatial discretizations on unstructured grids. Here the advantage
lies in the fact that the reaction will only have a coupling over the chemical components whereas
advection-diffusion will only give a coupling over space.

More general, one can consider a multiple splitting

F (t, w) = F0(t, w) + F1(t, w) + · · · + Fs(t, w) (1.5)
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where F0 will stand for the contribution of non-stiff terms, suitable for explicit treatment, and
the other terms F1, . . . , Fs are stiff and need implicit time integration.

Example 1.1. Standard second-order spatial discretization for (1.1) on a uniform mesh leads
to the semi-discrete system

w′

j =
1

2h

(

aj− 1

2

(wj−1 + wj) − aj+ 1

2

(wj + wj+1)
)

+
1

h2

(

Dj− 1

2

(wj−1 − wj) − Dj+ 1

2

(wj − wj+1)
)

+ f(wj, xj , t) .

Here wj = wj(t) is viewed as an approximation to u(xj , t) or the average value over the cell
[xj − 1

2h, xj + 1
2h] at time t, with grid points xj = x0 + jh. If u is a vector of r chemical

components, then each wj is also a vector in R
r.

Boundary conditions will lead to a system with dimension ∼ rh−1. As mentioned above, the
reaction term is usually stiff and also the diffusion term usually makes explicit time stepping
costly. On the other hand, with an implicit method for the whole system we get in each time
step a large algebraic system with coupling over space and chemical components.

If we put the advection and diffusion terms in F1 and reaction in F2 then this simultaneous
coupling is avoided. Advection may also be put separately in F0, which can then be treated
explicitly. This is in particular attractive if more complicated (nonlinear, limited) discretizations
are used for the advection. Moreover, for multi-dimensional problems on a Cartesian mesh, the
diffusion terms in different directions may be further split to get simple one-dimensional sub-
systems. 3

2 Time splitting methods

In this section we shall discuss some methods were the equation is split into several parts, which
are all solved independently on the time intervals [tn, tn+1]. Such methods are usually called
(time) splitting methods or fractional step methods. In case the splitting is such that different
physical processes are separated, the term ‘operator splitting’ is also commonly used. If a
multi-dimensional problem is split into 1-dimensional sub-problems, this is called ‘dimensional
splitting’.

2.1 First-order splitting

Consider an ODE system, linear for simplicity,

w′(t) = Aw(t),

with A = A1+A2, arising for example from a linear PDE with homogeneous boundary conditions
or periodicity conditions. We have

w(tn+1) = eτAw(tn). (2.1)

If we are only able, or willing, to solve the ‘sub-problems’ v′(t) = A1v(t) and v′(t) = A2v(t),
then (2.1) can be approximated by

wn+1 = eτA2eτA1wn, (2.2)
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which is the simplest splitting method. In actual computations the terms eτAk will, of course,
be approximated by some suitable ODE method.

Replacing (2.1) by (2.2) will introduce an error, the so-called splitting error for this particular
splitting. Inserting the exact solution into (2.2) gives w(tn+1) = eτA2eτA1w(tn) + τρn with local
truncation error ρn. Note that τρn is the error introduced per step. We have

eτA =
(

I + τ(A1 + A2) +
1

2
τ2(A1 + A2)

2 + · · ·
)

,

eτA2eτA1 =
(

I + τ(A1 + A2) +
1

2
τ2(A2

1 + 2A2A1 + A2
2) + · · ·

)

.

Hence the local truncation error equals

1

τ

(

eτA − eτA2eτA1

)

w(tn) =
1

2
τ [A1, A2]w(tn) + O(τ 2), (2.3)

with [A1, A2] = A1A2−A2A1 the commutator of A1 and A2. We see that (2.2) will be a 1st-order
process, unless A1 and A2 commute. Note that we assume here tacitly that terms like A1A2w(t)
are O(1), which seems reasonable only if there are no boundary conditions or the PDE solution
satisfies certain compatibility conditions.

For general nonlinear ODE systems

w′(t) = F1(t, w(t)) + F2(t, w(t)),

we can apply (2.2) if the terms etAk are interpreted as solution operators. Written out, we solve
subsequently

d
dtw

∗(t) = F1(t, w
∗(t)) for tn ≤ t ≤ tn+1 with w∗(tn) = wn ,

d
dtw

∗∗(t) = F2(t, w
∗∗(t)) for tn ≤ t ≤ tn+1 with w∗∗(tn) = w∗(tn+1) ,

giving wn+1 = w∗∗(tn+1) as the next approximation. If wn = w(tn) we now get the local
truncation error

1

2
τ
[∂F1

∂w
F2 −

∂F2

∂w
F1

]

(tn, w(tn)) + O(τ 2),

similar to (2.3). This formula can be derived by Taylor expansions of w∗∗(tn+1) and w∗(tn+1)
around t = tn.

2.2 Higher-order and multi-component splittings

In (2.2) one starts in all steps with A1. Interchanging the order of A1 and A2 after each step will
lead to more symmetry and often to better accuracy. Carrying out two half steps with reversed
sequence gives the following splitting, due to Strang [12],

wn+1 =
(

e
1

2
τA2e

1

2
τA1

)(

e
1

2
τA1e

1

2
τA2

)

wn = e
1

2
τA2eτA1e

1

2
τA2wn. (2.4)

By a series expansion and some tedious calculations it follows that the local truncation error is
given by

1

24
τ2

(

[A2, [A2, A1]] − 2[A1, [A1, A2]]
)

w(tn) + O(τ 4). (2.5)
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Due to symmetry, the truncation error will only contain even order terms.
If we work with constant step sizes, then (2.4) will require almost the same amount of

computational work as (2.2), since for constant τ we can write the total process (2.4) as

wn = e
1

2
τA2eτA1eτA2 · · · eτA1e

1

2
τA2w0.

In general, with variable step sizes it will be more expensive, of course.
Generalization to nonlinear systems is straightforward, we get

d
dtw

∗(t) = F2(t, w
∗(t)) for tn ≤ t ≤ tn+1/2 with w∗(tn) = wn ,

d
dtw

∗∗(t) = F1(t, w
∗∗(t)) for tn ≤ t ≤ tn+1 with w∗∗(tn) = w∗(tn+1/2) ,

d
dtw

∗∗∗(t) = F2(t, w
∗∗∗(t)) for tn+1/2 ≤ t ≤ tn+1 with w∗∗∗(tn+1/2) = w∗∗(tn+1) ,

giving wn+1 = w∗∗∗(tn+1) as the approximation on the new time level.
With regard to stability of the splitting schemes, there are not that many practical, pertinent

results available. However, as a rule, if the individual steps are treated in a stable manner then
the whole process will be stable.

Higher-order splittings are possible, but such splittings will contain negative coefficients or
negative time steps (Sheng, 1989; Goldman & Kaper, 1996; see [6]). For example, let

Sτ = e
1

2
τA2eτA1e

1

2
τA2

be the 2nd-order Strang splitting operator. Then a 4th-order splitting is given by

wn+1 = Sθτ S(1−2θ)τ Sθτ wn ,

with θ = (2 − 3
√

2)−1 ≈ 1.35. Here we have 1 − 2θ < 0, so that a step with negative time has
to be taken. For partial differential equations with boundary conditions such splittings with
negative time steps seem of limited value. We note, however that they are frequently used for
time reversible problems, which arise for instance with certain mechanical problems, see [11].

With more splitting components, for example A = A1+A2+A3, then the first-order splitting
(2.2) can be generalized to

wn+1 = eτA3eτA2eτA1wn.

Likewise, the Strang splitting (2.4) leads to the 2nd-order formula

wn+1 = e
1

2
τA3e

1

2
τA2eτA1e

1

2
τA2e

1

2
τA3wn.

Note that this is just a repeated application of (2.4): first approximate eτA by e
1

2
τA3eτ(A1+A2)e

1

2
τA3 ,

and then approximate eτ(A1+A2) in the same fashion. Application to more components and non-
linear systems carries over in the same way.

2.3 Solving the fractional steps

To solve the sub-steps, one may select a method such as Euler or Trapezoidal Rule. If these
are applied with the same step size τ that is used for the splitting itself, a specific (classical)
splitting method arises. Numerous examples are found in Yanenko [17], Mitchell & Griffiths [9]
and Marchuk [8].
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For instance, first-order splitting combined with backward Euler gives the first-order method

w∗

n+1 = wn + τF1(tn+1, w
∗

n+1),

wn+1 = w∗

n+1 + τF2(tn+1, wn+1).
(2.6)

If F1 and F2 contain discretized space derivatives in x and y direction, respectively, this method
is called the 1st-order LOD method (locally one dimensional) method. It is obvious that we can
generalize this method for F = F1 + F2 + ... + Fs.

The 2nd-order LOD method is obtained by combining Strang splitting with the trapezoidal
rule (or, likewise, the implicit midpoint rule),

w∗

n+1 = wn + 1
2τ

(

F1(tn, wn) + F1(tn + (1
2 + c)τ, w∗

n+1)
)

,

wn+1 = w∗

n+1 + 1
2τ

(

F2(tn + (1
2 − c)τ, w∗

n+1) + F2(tn+1, wn+1))
)

,

w∗

n+2 = wn+2 + 1
2τ

(

F2(tn+1, wn+1) + F2(tn+1 + (1
2 + c)τ, w∗

n+2)
)

,

wn+2 = w∗

n+2 + 1
2τ

(

F1(tn+1 + (1
2 − c)τ, w∗

n+2) + F1(tn+1, wn+2))
)

.

(2.7)

Note that here Strang splitting is applied on the interval [tn, tn+2]. For c we can take for
example c = 0 or c = 1

2 . What is best will depend on the problem, and there is no choice that
seems preferable a priori. This is due to the fact that the intermediate vectors w∗

n+j are not a
consistent approximation to the full problem at some given time level. Again, generalization to
more F -components is straightforward. Method (2.7) is known as Yanenko’s method; see [17].

With the above splitting methods all sub-problems are treated in the same fashion and with
the same time step. In general, it seems better to solve the fractional steps with a method that
is suited for that particular sub-step, possibly with a sub-time step τ̄ ≤ τ . Here one may chose,
for example, an implicit or explicit Runge-Kutta method, depending whether the sub-problem
w′(t) = Fj(t, w(t)) is stiff or non-stiff, with an appropriate τ̄ . This latter approach is the one we
recommend for general problems.

2.4 Boundary corrections

The major difficulties with splitting methods occur for problems were the boundary conditions
are important. If we consider a PDE problem with boundary conditions, then these are physical
conditions for the whole process and boundary conditions for the sub-steps (which may have
little physical meaning) are missing.

Therefore one may have to reconstruct boundary conditions for the specific splitting under
consideration. For example, consider a linear semi-discrete problem w′(t) = Aw(t) + g(t), were
g(t) contains the given boundary conditions. Suppose that

Av + g(t) =
(

A1v + g1(t)
)

+
(

A2v + g2(t)
)

,

with gk(t) containing the boundary conditions relevant to Ak. The exact solution satisfies

w(tn+1) = eτAw(tn) +

∫ τ

0
e(τ−s)Ag(tn + s)ds.
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If we consider 1st-order splitting, with inhomogeneous terms g̃1, g̃2, then

wn+1 = eτA2eτA1wn + eτA2

∫ τ

0
e(τ−s)A1 g̃1(tn + s)ds +

∫ τ

0
e(τ−s)A2 g̃2(tn + s)ds.

Even with commuting matrices, A1A2 = A2A1, and constant boundary terms we will get a
splitting error if we take g̃k = gk. An exact formula for this case is obtained by choosing

g̃1(tn + s) = e−sA2g1(tn + s), g̃2(tn + s) = e(τ−s)A1g2(tn + s).

Note that this correction for g1 requires a backward time integration with A2, and this may not
be feasible with an implicit ODE method, due to the fact that the implicit algebraic relations
need no longer be well defined with negative step size. One might replace e−sA2 by some explicit
polynomial approximation P (−sA2), but the effect of this on stability and accuracy is unclear.

As a rule of thumb, it can be said that the treatment of the boundaries should coincide as
much as possible with the scheme in the interior of the domain. Examples for specific LOD (and
ADI) methods can be found in Mitchell & Griffiths [9, Ch. 2]. A general analysis of boundary
conditions for splitting methods is, at present, still lacking. Therefore we conclude this subject
with an example.

Example. Consider the model advection-reaction equation

ut + ux = u2, 0 ≤ x ≤ 1, 0 ≤ t ≤ 1/2

with given initial value at t = 0 and Dirichlet condition at x = 0, derived from the exact solution

u(t, x) =
sin(π(x − t))2

1 − t sin(π(x − t))2
.

Here spatial discretization is performed with 4th-order central differences in the interior and
3rd-order one-sided approximations at the boundaries. The advection step is solved with the
classical 4th-order Runge-Kutta method at Courant number τ/h = 2, and the ‘reaction’ ut = u2

is solved exactly. Since the nonlinear term is nonstiff, splitting is not really necessary in this
example, but it is instructive to consider the errors.

Let us consider :
(i) Simple splitting (with reaction followed by advection) where in the advection step the given
boundary values are used;
(ii) Strang splitting where after each time step the order of the fractional steps is reversed, also
with the given boundary conditions;
(iii) The same splitting as in (i) but with corrected boundary conditions

u∗∗(t, 0) =
u(t, 0)

1 − (tn+1 − t)u(t, 0)
for t ∈ [tn, tn+1] .

The errors in the L2-norm, together with the estimated orders of convergence, are given in the
following table.
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Simple splitting Strang splitting Corrected bd.

τ = 1/ 20 0.26 10−1 0.14 10−1 0.88 10−3

τ = 1/ 40 0.14 10−1 (0.94) 0.48 10−2 (1.58) 0.91 10−4 (3.27)

τ = 1/ 80 0.72 10−2 (0.96) 0.17 10−2 (1.54) 0.13 10−4 (2.80)

τ = 1/160 0.36 10−2 (0.98) 0.58 10−3 (1.52) 0.22 10−5 (2.57)

Table 2.1. L2-errors (and estimated orders) for (4.1) at t = 1/2 with τ = 2h.

Note that the simple splitting with boundary corrections is more accurate than its Strang
type counterpart. The convergence rate of the scheme with boundary corrections is less than 4,
but this is due to order reduction of the Runge-Kutta method, it is not caused by the splitting
procedure. A similar order reduction can be observed with Strang splitting: in the absence of
boundary conditions it has (at least) order 2, but in the above table an order 1.5 behaviour can
be observed. 3

3 IMEX, ADI and AMF methods

With time splitting by the fractional step approach we have to solve sub-problems that are not
consistent with the full model. As we saw this creates difficulties with boundary conditions, and
similar problems arise with interface conditions. Also, stationary solutions of the problem are
not stationary solutions of the fractional step methods. Moreover in the time splitting approach
multi-step schemes cannot be used in a natural fashion. In this section some alternatives to time
splitting will be briefly reviewed.

3.1 The θ-IMEX method

Suppose that the semi-discrete system is of the form

w′(t) = F (t, w(t)) = F0(t, w(t)) + F1(t, w(t)) (3.1)

where F0 is a term suitable for explicit time integration, for instance discretized advection, and
F1 requires an implicit treatment, say discretized diffusion or stiff reactions.

We consider the following simple method

wn+1 = wn + τF0(tn, wn) + (1 − θ)τF1(tn, wn) + θτF1(tn+1, wn+1), (3.2)

with parameter θ ≥ 1
2 . Here the explicit Euler method is combined with the implicit θ-method.

Such mixtures of implicit and explicit methods are called IMEX schemes. Note that in contrast
to the time splitting methods there are no intermediate results which are inconsistent with the
full equation.

Insertion of the exact solution in the scheme gives the truncation error

1

τ

(

w(tn+1 − w(tn)
)

− (1 − θ)F (tn, w(tn)) − θF (tn+1, w(tn+1))−

−θ
(

F0(tn+1, w(tn+1)) − F0(tn, w(tn))
)

=
(1

2
− θ

)

τw′′(tn) + θτϕ′(tn) + O(τ 2)

8



where ϕ(t) = F0(t, w(t)). If F0 denotes discretized advection and nonstiff terms, smoothness of
w will also imply smoothness of ϕ, independent of boundary conditions or small mesh widths
h. Therefore the structure of the truncation error is much more favourable than with the time
splitting methods considered in the preceding section. For example, with a stationary solution
w(t) = w(0) we now have a zero truncation error. However, with methods of this IMEX type it
is stability that needs a careful examination.

Let us consider the scalar, complex test equation

w′(t) = λ0w(t) + λ1w(t), (3.3)

and let zj = τλj , j = 0, 1. In applications to PDEs these λj will represent eigenvalues of the
two components F0 and F1, found by inserting Fourier modes. One would hope that having
|1 + z0| ≤ 1 (stability of the explicit method) and Re z1 ≤ 0 (stability of the implicit method)
would be sufficient to guarantee stability of the IMEX scheme, but this is not so in general.
Application of the IMEX scheme to this test equation yields wn+1 = Rwn where R = R(z0, z1)
is given by

R =
1 + z0 + (1 − θ)z1

1 − θz1
. (3.4)

Stability for the test equation thus requires |R | ≤ 1.
First, consider the set

D0 = {z0 : the IMEX scheme is stable for any z1 ∈ C
−}. (3.5)

So, here we insist on A-stability with respect to the implicit part. Using the maximum principle,
it follows by some straightforward calculations that z0 = x0 + iy0 belongs to this set iff

θ2y2
0 + (2θ − 1)(1 + x0)

2 ≤ 2θ − 1.

Plots are given in Figure 3.1. If θ = 1 we reobtain the stability region of the explicit Euler
method, but for smaller values of θ the set start to shrink and for θ = 1

2 it reduces to the line
segment [−2, 0] on the negative axis.
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Fig. 3.1. Boundaries of regions D0 (left) and D1 (right) for the θ-IMEX method (3.2) with

θ = 0.5, 0.51, 0.6 and 1.
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Alternatively, one can insist on using the full stability region of the explicit method S0 =
{z0 : |1 + z0| ≤ 1}, but then z1 has to be restricted to the set

D1 = {z1 : the IMEX scheme is stable for any z0 ∈ S0}. (3.6)

It easily follows that z1 ∈ D1 iff

1 + (1 − θ)|z1| ≤ |1 − θz1|,

see the right plot in Figure 3.1. Again it is only for θ = 1 that we get the stability region of the
implicit θ-method. If θ = 1

2 the set D1 equals the negative real line R
−.

Note that the implicit θ-method with θ > 1
2 is strongly A-stable (that is, A-stable with

damping at ∞) whereas the trapezoidal rule, θ = 1
2 , is ‘just’ A-stable. Apparently, using a

strongly implicit method gives better stability properties within an IMEX formula.
On the other hand, the above criteria are rather strict. For instance, if we take z0 such that

|ρ + z0| ≤ ρ with ρ < 1, then the method with θ = 1
2 will be stable if z1 = x1 + iy1 ∈ C

− is
within the hyperbole ρ2y2

1 + 4ρ2(1 − ρ) ≤ 4(1 − ρ)(ρ− x1)
2. Therefore, the IMEX method with

θ = 1
2 should not be discarded, only extra care should be given to stability when applying this

method.
In the above the values of λ0 and λ1 have been considered as independent, which is a

reasonable assumption if F0 and F1 act in different directions, for instance if F0 ≈ a(∂/∂x)
(horizontal coupling) and F1 ≈ d(∂2/∂z2) (vertical coupling) or F1 a reaction term (coupling
over chemical species).

Different results are obtained if there is a dependence between λ0 and λ1. Then the implicit
treatment of λ1 can stabilize the process so that we do not even need z0 ∈ S0. Consider for
example the 1D advection-diffusion equation ut +aux = duxx with periodicity in space and with
second-order spatial discretization. If advection is treated explicitly and diffusion implicitly,
then the relevant eigenvalues (Fourier decomposition) are

z0 = iν sin 2φ, z1 = −4µ sin2 φ (3.7)

with ν = aτ/h, µ = dτ/h2 and 0 ≤ φ ≤ π. A straightforward calculation shows that |R | ≤ 1 iff

1 − 8(1 − θ)µs + 16(1 − θ)2µ2s2 + 4ν2s(1 − s) ≤ 1 + 8θµs + 16θ2µ2s2

where s = sin2 φ. This holds for all s ∈ [0, 1] iff

ν2 ≤ 2µ and 2(1 − 2θ)µ ≤ 1. (3.8)

So for any θ ≥ 1
2 we now just have the condition ν2 ≤ 2µ, that is a2τ ≤ 2d.

Finally we note that the above IMEX method with θ = 1 could be viewed as a time splitting
method where we first solve v′(t) = F0(t, v(t)) on [tn, tn+1] with forward Euler and then v′(t) =
F1(t, v(t)) with backward Euler. This explains the favourable stability results with this method.
However, the structure of the truncation error is very different from the time splitting methods.
This is due to interference of the first-order splitting error with the first-order Euler errors.

In the following subsections we shall consider several generalizations of (3.2). Such general-
izations are necessary for practical problems since the explicit Euler method is not well suited for
advection, and also first-order accuracy is often not sufficient. Moreover, we may want additional
splittings of the implicit terms to resolve the implicit relations more efficiently.

10



3.2 IMEX multi-step methods

As mentioned already, in the time splitting approach multi-step schemes cannot be used in a
natural fashion. Straightforward use of a multi-step scheme with step size τ to solve the sub-
problems v′(t) = Fj(t, v(t)), tn ≤ t ≤ tn+1 leads to inconsistencies since the available past values
wn−1, wn−2, · · · are approximations to the whole problem, not to the particular sub-problem at
hand. Here we shall consider an other approach to combine implicit and explicit multi-step
methods.

One of the most popular implicit methods is the second-order BDF2 method

3

2
wn+1 − 2wn +

1

2
wn−1 = τF (tn+1, wn+1)

where the left hand side is the 2-step backward differentiation formula, hence the name BDF.
Along with w0, the starting value w1 should be known. It can be computed by a one-step
method, for instance Euler. The popularity of this implicit BDF method is due to its stability
and damping properties. These are very useful properties for diffusion equations.

Convection equations are often treated more efficiently by an explicit method, such as

3

2
wn+1 − 2wn +

1

2
wn−1 = 2τF (tn, wn) − τF (tn−1, wn−1),

to which we shall refer as the explicit BDF2 method. The stability region of this explicit method
is plotted in Figure 3.2.

With advection-diffusion-reaction problems, explicit advection and implicit diffusion-reaction
can then be combined through the IMEX formula

3

2
wn+1 − 2wn +

1

2
wn−1 = 2τF0(tn, wn) + τF0(tn−1, wn−1) + τF1(tn+1, wn+1), (3.9)

where F0 contains convective terms only and F1 denotes discretized diffusion together with
reaction.

The above can be generalized as follows: consider a fully implicit multistep method

k
∑

j=0

αjwn+1−j = τ
k

∑

j=0

βj

(

F0(tn+1−j, wn+1−j) + F1(tn+1−j, wn+1−j)
)

, (3.10)

with implicit treatment of advection and diffusion-reaction. We can handle the advection ex-
plicitly by applying an extrapolation formula

ϕ(tn+1) =
k

∑

j=1

γjϕ(tn+1−j) + O(τ q) (3.11)

with ϕ(t) = F0(t, w(t)). This leads to the method

k
∑

j=0

αjwn+1−j = τ
k

∑

j=1

β∗

j F0(tn+1−j, wn+1−j) + τ
k

∑

j=0

βjF1(tn+1−j, wn+1−j), (3.12)

with new coefficients β∗

j = βj + β0γj . Methods of this implicit-explicit multistep type were
introduced by Crouzeix [2] and Varah [13].
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Accuracy of the IMEX multistep methods is easy to establish.

Theorem 3.1. Assume the implicit multistep method has order p and the extrapolation pro-
cedure has order q. Then the IMEX method has order r = min(p, q).

Proof. With ϕ(t) = F0(t, w(t)), the local truncation error can be written as

1

τ

k
∑

j=0

(

αjw(tn+1−j) − τβjw
′(tn+1−j)

)

+ β0

(

ϕ(tn+1) −
k

∑

j=1

γjϕ(tn+1−j)
)

= Cτpw(p+1)(tn) + O(τ p+1) + β0C
′τ qϕ(q)(tn) + O(τ q+1),

with constants C,C ′ determined by the coefficients of the multistep method and the extrapola-
tion procedure. 2

Note that in this truncation error only total derivatives arise, and therefore the error is not
influenced by large Lipschitz constants (negative powers of the mesh width) in F0 or F1.

Stability results for the IMEX multistep methods are quite complicated, even for the simple
test problem (3.3). We consider here two classes of 2-step IMEX methods. Let S0,S1 be the
stability regions of the explicit and implicit method, respectively.

The first class is based on the BDF2 method,

3
2wn+1 − 2wn + 1

2wn−1 = 2τF0(tn, wn) − τF0(tn−1, wn−1)+

+ θτF1(tn+1, wn+1) + 2(1 − θ)τF1(tn, wn) − (1 − θ)τF1(tn−1, wn−1)
(3.13)

with parameter θ ≥ 0. The order is 2 and the implicit method is A-stable for θ ≥ 3
4 . With

θ = 1, F0 = 0 we reobtain the fully implicit BDF2 method. If θ = 3
4 the implicit method is

‘just’ A-stable (equivalent with the trapezoidal rule).
We also consider the following class of IMEX methods, based on the two step Adams for-

mulas,
wn+1 − wn = 3

2τF0(tn, wn) − 1
2τF0(tn−1, wn−1)+

+ θτF1(tn+1, wn+1) + (3
2 − 2θ)τF1(tn, wn) + (θ − 1

2)τF1(tn−1, wn−1),
(3.14)

again with order 2. Here the implicit method is A-stable if θ ≥ 1
2 . If θ = 1

2 the implicit method
reduces to the trapezoidal rule.

In the Figure 3.2 the stability regions S0 of the explicit methods are plotted together with
the regions D0, defined as in (3.5). We see from the figure that here D0 is really smaller than
S0 and if the implicit method is just A-stable, the region D0 reduces to a line. Formulas for the
boundary of D0 can be found in Frank et al. [3] In that paper also results on the set D1, see
(3.6), are presented. It seems that, as a rule, if z0 ∈ S0 and z1 < 0, then the IMEX scheme is
stable. Moreover, if the implicit method is strongly A-stable then the IMEX scheme is stable
for z1 in a wedge Wα = {ζ ∈ C : |arg(−ζ)| ≤ α}, with positive angle α. These results were
not proven for arbitrary IMEX schemes, only for some specific schemes in the above BDF2 and
Adams2 class.
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Fig. 3.2. Explicit stability regions S0 (dashed) and regions D0 for the IMEX BDF2 methods (left) and

Adams2 methods (right).

With these regions D0, z0 and z1 are considered as independent. As said before, this holds for
example if F0 represents horizontal advection and F1 stands for vertical diffusion plus reaction
(for air pollution problems these are the most relevant terms, the other processes, such as
horizontal diffusion, are small and they can be lumped into F0). Results for 1D advection-
diffusion equations can be found in Varah [13] and Ascher et al. [1]. More general stability
results of this type, valid for noncommuting operators, are given in Crouzeix [2].

3.3 Douglas ADI methods

The acronym ADI stands for alternating direction implicit. Originally these methods were
developed for dimension splitting with two- and three-dimensional parabolic problems from
numerical oil reservoir models, see Peaceman [10]. We will use the name ADI for more general
splittings in which all internal stages are consistent with the whole problem.

A familiar ADI method is the second-order Peaceman-Rachford method

w∗

n+1/2 = wn + 1
2τF1(tn, wn) + 1

2τF2(tn+1/2, w
∗

n+1/2),

wn+1 = w∗

n+1/2 + τF1(tn+1/2, wn+1) + 1
2τF2(tn+1, w

∗

n+1/2).
(3.15)

This could be viewed as a Strang splitting with alternative use of forward and backward Euler,
in a symmetrical fashion to obtain second order, but it seems more natural to consider this ADI
method as a method of its own. Note that the intermediate value w∗

n+1/2 is consistent with the
whole equation, unlike with the LOD methods. On the other hand, this ADI method does not
have a natural extension for more than two components Fj . Therefore we consider a related
ADI method that does allow more components.

Suppose we have a decomposition

F (t, v) = F0(t, v) + F1(t, v) + · · · + Fs(t, v). (3.16)

It will be assumed here that the term F0 is nonstiff, or mildly stiff, so that this term can be
treated explicitly. The other terms will be treated implicitly, in a sequential fashion.

The θ-IMEX method regarded at the beginning of this section can be generalized as follows,

v0 = wn + τF (tn, wn),

vj = vj−1 + θτ
(

Fj(tn+1, vj) − Fj(tn, wn)
)

(j = 1, 2, · · · , s),
wn+1 = vs,











(3.17)

13



with internal vectors vj . In case F0 = 0 this is the first-order Douglas-Rachford ADI method if
θ = 1, and the second-order Brian-Douglas ADI method if θ = 1

2 ; see [6, 9] for references. This
method is also known as the method of Stabilizing Corrections [8]. Note that all internal vectors
vj are consistent with w(tn+1) and therefore the accuracy for problems where the boundary
conditions are influential is often better than with the time splitting schemes considered in the
previous section. In particular, stationary solutions w̄ of w′(t) = F (w(t)), that is F (w̄) = 0, are
also stationary solutions of the ADI method, as can be seen by considering consecutive vj .

Observe that in this ADI method the implicit terms also allow a splitting, which is not the
case with the IMEX multistep methods. However, as with the IMEX methods, stability of the
method should be carefully examined. The most simple test problem is

w′(t) = λ0w(t) + λ1w(t) + · · · + λsw(t). (3.18)

Let zj = τλj , j = 0, 1, ..., s. Then the ADI method yields a recursion wn+1 = Rwn with
R = R(z0, z1, ..., zs) given by

R = 1 +
(

s
∏

j=1

(1 − θzj)
)

−1 s
∑

j=0

zj . (3.19)

Obviously, stability for the test problem requires |R | ≤ 1.
Consider the wedge Wα = {ζ ∈ C : |arg(−ζ)| ≤ α} in the left half-plane. We consider here

stability under the condition that zj ∈ Wα, j ≥ 1. If Fj is a discretized advection-diffusion
operator and λj an eigenvalue in the Fourier decomposition, then α < 1

2π means that advection
is not allowed to dominate too much. For pure diffusion we have zj = τλj ∈ W0, the line of
non-positive real numbers. As before, z0, z1, . . . , zs are assumed to be independent of each other.

Theorem 3.2. Suppose z0 = 0 and s ≥ 2, 1 ≤ r ≤ s − 1. For any θ ≥ 1
2 we have

|R | ≤ 1 for all zi ∈ Wα, 1 ≤ i ≤ s ⇐⇒ α ≤ 1

s − 1

π

2
, (3.20)

|R | ≤ 1 for all z1, . . . , zs−r ∈ Wα

and zs−r+1, . . . , zs ≤ 0

}

⇐⇒ α ≤ 1

s − r

π

2
. (3.21)

Proof. Necessity in (3.20) is easy to show: if we take all zj = −teiα, j ≥ 1, then for t → ∞ we
get

R = 1 − steiα

θstseisα + O(ts+1)
= 1 − s

θs
t1−seiα(1−s)(1 + O(t−1)),

and consequently Re(R) > 1 if t is sufficiently large and α(1 − s) > 1
2π.

To illustrate necessity in (3.21), consider s = 3 and z3 ≤ 0. Since R is fractional linear in
z3, it follows that we have |R| ≤ 1 for all z3 ≤ 0 iff this holds with z3 equal to 0 or ∞. This
amounts to verification of the inequalities

∣

∣

∣
1 +

z1 + z2

(1 − θz1)(1 − θz2)

∣

∣

∣
≤ 1,

∣

∣

∣
1 − 1

θ(1 − θz1)(1 − θz2)

∣

∣

∣
≤ 1.

For the first inequality we know from (3.20) that α ≤ 1
2π is necessary and sufficient, but for the

second inequality it can be shown as above that we need α ≤ 1
4π. The proof of the other results

is technical; these can be found in [4, 5]. 2

14



Note that in (3.21), with r = 1 we get the same angles α as for r = 0. Moreover, it is somewhat
surprising that there is no difference between θ = 1

2 and θ = 1. In [5] also results are given
for |1 + z0| ≤ 1, and then the having θ = 1

2 or θ = 1 makes a difference. If θ = 1 the above
statements remain the same. If θ = 1

2 we now need α = 0, as we saw already with the θ-IMEX
method.

In the following figure the boundary of the stability region |R | ≤ 1 is plotted for two special
choices, namely z0 = 0, zj = z (1 ≤ j ≤ s) and z0 = 0, zj = z (1 ≤ j ≤ s− 1), zs = ∞. Plots for
the method with θ = 1

2 look very similar. Also drawn, as dotted curved lines, are contour lines
of |R | at 0.1, 0.2,,...,0.9. From this it is seen that we have little damping in general. If there are
two zj with large values then |R | will be close to 1. The same holds if we are outside the region
of stability, where we may have |R | > 1 but very close to 1. Consequently, there may be a very
slow instability.
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Fig. 3.3. Regions of stability |R | ≤ 1 for θ = 1, z0 = 0, with equal zj = z or zs = ∞. Left picture s = 2,

right picture s = 3.

In conclusion, if we consider α = 1
2π, then the essential condition for stability is z1 ∈ Wπ/2

and z2, . . . , zs ≤ 0, so only one of the implicit term should have eigenvalues that are large in
modulus and not near the negative real axis. If this is violated, instability can be expected.
This instability will be quite slow and therefore difficult to detect before it is too late.

Example. To illustrate the slow onset of instability, we consider the following advection equa-
tion with a simple linear reaction term,

ut = aux + buy + Gu, (x, y) ∈ [0, 1]2, 0 ≤ t. (3.22)

The velocities are given by a(x, y, t) = 2π(y − 1
2), b(x, y, t)) = 2π(1

2 − x). Further,

u = u(x, y, t) =

(

u1(x, y, t)
u2(x, y, t)

)

, G =

(

−k1 k2

k1 −k2

)

.

We take k1 = 1. The second reaction constant k2 can be used to vary the stiffness of the reaction
term, and is taken here as 2000. Note that the matrix G has eigenvalues 0 and −(k1 + k2), and
we have a chemical equilibrium if u1/u2 = k2/k1.
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The initial condition is chosen as

u1(x, y, 0) = c, u2(x, y, 0) = (1 − c) + 100 k−1
2 exp(−80((x − 1

2)2 − 80(y − 3
4)2),

with c = k2/(k1 + k2). After the short transient phase, where most of the Gaussian pulse is
transferred from u2 to u1, this is purely an advection problem, and the velocity field gives a
rotation around the center of the domain. At t = 1 one rotation is completed. The exact solution
is easily found by superimposing the solution of the reaction term onto the rotation caused by
the advection terms.

Dirichlet conditions are prescribed at the inflow boundaries. At the outflow boundaries we
use standard upwind discretization, in the interior second-order central differences are used.
We consider splitting with F1, F2 the finite difference operators for advection in the x and y
direction, respectively, and with F3 defined by the linear reaction term. All three terms are
treated implicitly. The corresponding eigenvalues λ1, λ2 will be close to the imaginary axis
whereas λ3 = 0 or −(k1 + k2). The test has been performed on a fixed 80 × 80 grid, and with
τ = 1/160.
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Fig. 3.4. Numerical solutions advection-reaction problem (3.22) at t = 1, 2, 3, 4.

The numerical solution of the first component u1 for the scheme with θ = 1
2 is given in in

Figure 3.4 at time t = 1 (top left), t = 2 (top right), t = 3 (bottom left) and t = 4 (bottom
right; different scale). There are some smooth oscillations in the wake of the Gaussian pulse, but
these are caused by the spatial discretization with central differences. The instabilities occur
near the corners where both advection speeds, in x and y direction, are large. The build up of
the instabilities is very slow, and therefore it will be difficult to detect this with error estimators.
To some extend the slowness of the instability can be attributed to the fact that they occur near
an outflow boundary, but related tests have shown that it is mainly caused by the fact that we
have amplification factors only slightly larger than 1 in modulus.
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Finally it should be noted that the advection treatment here, implicit with central differences,
is only justified for problems with smooth solutions. If steep gradients may arise some upwinding
or flux limiting is to be preferred. The experiment here merely serves as an illustration of the
theoretical results on the stability of the ADI method with s = 3. 3

3.4 Rosenbrock methods with approximate matrix factorization (AMF)

With the above ADI method we still still are dealing with the explicit Euler method for F0. To
allow a second-order explicit method we first consider a linearization of this ADI method. In
the following only autonomous equations are considered.

As starting point we consider the linearized θ-method

wn+1 = wn + (I − θτA)−1τF (wn) (3.23)

where A approximates the Jacobian matrix F ′(wn). This is a so-called Rosenbrock method. It
has order 1 if θ 6= 1

2 and order 2 if θ = 1
2 and A − F ′(wn) = O(τ) .

We consider the form where in the Jacobian approximation the nonstiff term is omitted and
the rest is factorized in approximate fashion, that is

wn+1 = wn + (I − θτAs)
−1 · · · (I − θτA2)

−1(I − θτA1)
−1τF (wn) (3.24)

with Aj ≈ F ′

j(wn). The order of this approximate factorization method is 1 in general. For

second-order we need θ = 1
2 and F0 = 0. If the problem is linear this approximate factorization

method is identical to the Douglas ADI method. Hence the linear stability properties are the
same.

A 2-stage generalization of the above approximate factorization method is given by

wn+1 = wn + 3
2k1 + 1

2k2,

Mk1 = τF (tn, wn), Mk2 = τF (tn + cτ, wn + k1) − 2k1,
(3.25)

where M =
∏s

j=1(I − θτAj), Aj ≈ F ′

j(wn) and θ is a free parameter. The order of this method
is 2 (in the classical ODE sense). If F0 = 0 and F1 = F this is a well-known Rosenbrock method
that has the special property that the order is not influenced by the Jacobian approximation.
This Rosenbrock method is A-stable for θ ≥ 1

4 . On the other hand, if F = F0 we now get a
second-order explicit Runge-Kutta method.

The above method has been proposed in Verwer et al. [15], and in that paper the scheme was
applied successfully on some 3D atmospheric transport-chemistry. problems. There operator
splitting was used with F0 advection, F1 diffusion and F2 reaction, and the free parameter was
taken as θ = 1+ 1

2

√
2 to have optimal damping (L-stability). The eigenvalues of F1 and F2 were

close to the negative real axis, and therefore stability problems were not expected, and indeed
did not occur.

It is for such problems, where the structure of the eigenvalues can be well predicted in
advance, that these approximate factorization methods seem suited. For general applications
values θ in the range [ 12 , 1] seem more suitable than θ = 1 + 1

2

√
2, because the latter value gives

relatively large error constants.
The above Rosenbrock methods are formulated here for autonomous problems. A nonau-

tonomous problem w′(t) = F (t, w(t)) can be written as v′(t) = G(v(t)) with v = (t, w)T and
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G(v) = (1, F (t, w))T , and so the methods can be applied to this artificial autonomous problem.
Then t is formally also considered as an unknown, but it is easily seen that the approximation
tn found with this method still equals nτ . When reformulated on the original level, in terms of
wn, the methods will now also involve approximations to the derivatives Ft(t, w). For example,
with Aj ≈ ∂wFj(tn+θ, wn) ∈ R

m×m, bj ≈ ∂tFj(tn+θ, wn) ∈ R
m and

Bj =

(

1 0 · · · 0
(I − θτAj)

−1θτbj (I − θτAj)
−1

)

∈ R
(m+1)×(m+1),

the factorized Rosenbrock scheme (3.23) then reads

(

tn+1

wn+1

)

=

(

tn
wn

)

+ Bs · · ·B2B1

(

τ
τF (tn, wn)

)

.

We will have tn+1 = tn + τ , as it should be, and the computation of wn+1 can be written in the
more transparent recursive form

dv0 = τF (tn, wn) , dvj = (I − θτAj)
−1

(

θτ2bj + dvj−1

)

(1 ≤ j ≤ s) , wn+1 = wn + dvs .

Note. It is also possible to linearize a multistep method and then use approximate factorization.
Such methods can be found in Warming & Beam [16]. Runge-Kutta methods of the IMEX type
have been studied recently by many authors, see the references in [6]; if such methods are applied
in a linearized form, they are similar to the above factorized Rosenbrock methods with s = 1.

Remark: Modified Newton Iterations. Instead of the above techniques, one could also
use a well-known fully implicit method and then try to modify the Newton process such that
the computational ease is comparable to the IMEX or approximate factorization methods. The
advantage is that if the iteration converges, then the theoretical properties of the fully implicit
method are valid.

Consider a generic implicit relation

wn+1 = Wn + θτF (wn+1) , (3.26)

where Wn contains the information up to tn. This may be for instance Backward Euler (θ =
1, Wn = wn), the Trapezoidal Rule (θ = 1

2 , Wn = wn + 1
2τF (tn, wn)) or the BDF2 method

(θ = 2
3 , Wn = 4

3wn − 1
3wn−1). Then the Newton iteration to solve the implicit relation will look

like
ui+1 = ui − M−1

(

ui − θτF (ui) − Wn

)

, i = 0, 1, 2, ... (3.27)

with initial guess u0. Standard modified Newton would be M = I − θτA with A ≈ F ′(v0). For
systems of multi-dimensional PDEs this leads to a very big linear algebra problem that has to
be solved by a preconditioned conjugate gradient or multigrid method for example.

As an alternative one can consider approximate factorization inside the Newton process,

M =
s

∏

j=1

(I − θτAj) (3.28)

with Aj ≈ F ′

j(v0), but now we have to look at convergence of the iteration.
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When applied to the scalar test equation this iteration process has a convergence factor

S = 1 −
(

s
∏

j=1

(1 − θzj)
)

−1(

1 − θ
s

∑

j=0

zj

)

(3.29)

and for the iteration to converge we need |S | < 1. This looks very similar to the stability factor
with the Douglas ADI method. Indeed, the statements given previously for |R | ≤ 1 with the zj

in wedges are also valid for the convergence factor, see [5].
In the next figure the boundaries of the convergence region are plotted for special choices

of zj with z0 = 0, similar to Figure 3.3. The dotted curved lines are the contour lines for |S |
with all zj equal. If the zj assume large negative values, then |S | is close to 1 and thus the
convergence will be very slow. Moreover divergence may occur if s ≥ 3 and two or more of the
zj are close to the imaginary axis.
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Fig. 3.5. Regions of convergence |S | < 1 for θ = 1 with equal zj = z or zs = ∞. Left picture s = 2,

right picture s = 3.

In conclusion it can be said that the convergence of such a modified Newton iteration with
approximate factorizations is often very poor, so it is not an approach that is recommended
for general equations. Of course, there are special cases, especially with smooth solutions (no
high Fourier harmonics), where this approach may work well. However the class of problems
where the iteration does not diverge seems close to the class where the Rosenbrock schemes
with approximate factorizations are be stable, see Figures 3.3 and 3.5. In those cases the
simpler Rosenbrock schemes with approximate factorizations will be more efficient, and with
such Rosenbrock schemes smoothness of the solution is not required.

3.5 Numerical illustration

In this section some numerical illustrations are given for the schemes applied to a simple 2D
advection-diffusion-reaction equation (see [6] for more realistic problems). We shall refer to the
1-stage scheme (3.23) as ROS1 and to the 2-stage scheme (3.25) as ROS2, and for both schemes
parameter values θ = 1

2 and 1 are considered.
We consider here the following 2D equation, on spatial domain Ω = [0, 1]2 and t ∈ [0, 1],

ut + α
(

ux + uy

)

= ε
(

uxx + uyy

)

+ γu2(1 − u) , (3.30)
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with traveling wave solution

u(x, y, t) =
(

1 + exp(a(x + y − bt) + c)
)

−1
. (3.31)

Here a =
√

γ/4ε determines the smoothness of the solution, b = 2α +
√

γε is the velocity of the
wave and c = a(b−1) a shift parameter. Initial and Dirichlet boundary conditions are prescribed
so as to correspond with this solution. Due to the time-dependent boundary conditions, the semi-
discrete problem is non-autonomous and the Rosenbrock methods are applied to the extended
autonomous form.

For this scalar test example splitting is not really necessary, but the structure of the equations
is similar to many real-life problems where splitting cannot be avoided with present day computer
(memory) capacities. In Verwer et al. [15] application the ROS2 method can be found for a
large scale 3D problem from atmospheric dispersion.

Reaction-diffusion test. First we consider the above test equation with α = 0. To give an
illustration of the convergence behaviour of the various methods we take γ = 1/ε = 10, which
gives a relatively smooth solution.

For this smooth problem the spatial derivatives are discretized with standard second-order
finite differences. Let D(x)(t, u) = A(x)u + g(x)(t) stand for the finite difference approximation
of εuxx with the associated time-dependent boundary conditions for x = 0 and x = 1. Likewise
D(y)(t, u) approximates εuyy with boundary conditions at y = 0, y = 1. Further, G(t, u)
represents the reaction term γu2(1 − u) on the spatial grid. We consider the following two
splittings with s = 3 and F0 = 0,

(A) · · · F1 = D(x), F2 = D(y), F3 = G,

and
(B) · · · F1 = G, F2 = D(x), F3 = D(y).

Since the reaction term in (3.30) with γ = 10 is not stiff, we also consider here the case where
this term is taken explicitly,

(C) · · · F0 = G, F1 = D(x), F2 = D(y).

The spatial grid is uniform with mesh width h in both directions. The errors in the L2-norm
are calculated at output time T = 1 with τ = h = 1/N , N = 10, 20, 40, 80. In the Figure 3.6
these errors are plotted versus τ on a logarithmic scale. The results for the ROS1 scheme are
indicated by dashed lines with squares if θ = 1 and circles if θ = 1

2 . Likewise, the results for the
ROS2 scheme are indicated by solid lines with squares if θ = 1 and circles if θ = 1

2 .
For comparison, results of the well-known fractional step (LOD) method of Yanenko are

included, indicated by dotted lines with stars. With this method fractional steps are taken with
the implicit trapezoidal rule vj = vj−1 + 1

2τFj(tn, vj−1) + 1
2τFj(tn+1, vj), with v0 = wn. After

each step the order of the Fj is interchanged to achieve symmetry and second order (in the
classical ODE sense), see formula (2.7) with c = 1

2 . If an explicit term F0 is present, the implicit
trapezoidal rule is replaced by its explicit counterpart for the fractional step with F0.
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Fig. 3.6. L2-errors versus τ = h for the splittings (A), (B) and (C). Methods ROS1 (dashed lines) and

ROS2 (solid lines) with θ = 1

2
(circles) and θ = 1 (squares). Results for Yanenko’s method are indicated

with stars.

It is known that Yanenko’s method needs boundary corrections to obtain second-order con-
vergence for initial-boundary value problems, otherwise the order of convergence can be lower;
see e.g. [6]. In the present test we get convergence with order 1

2 approximately. The test
was repeated with boundary corrections, but still the results were less accurate than with the
second-order ROS schemes. Finally we note that boundary corrections were also attempted on
the Douglas scheme, similar to formula (101) in Mitchell & Griffiths [9]. In the above test this
did lead to smaller errors, reduction with a factor ranging between 1.2 and 2, but the conver-
gence behaviour did not change fundamentally. Since boundary corrections have to be derived
for each individual problem, it is a favourable property of the stabilizing correction schemes that
such corrections are not necessary to get a genuine second-order behaviour.

Advection-diffusion-reaction test. To illustrate the improved stability behaviour of the 2-stage
scheme ROS2 over ROS1 if a substantial explicit term is present, we now consider the test
equation with a advection term with α = −1 that will be taken explicitly. Further we choose
γ = 100 and ε = 0.01, 0.001 which gives solutions that have a steep gradient, relative to the
mesh widths used here.

The splitting is such that F0 contains the convective terms, F1, F2 diffusion in x and y
direction, respectively, and F3 the nonlinear reaction term. The convective terms are discretized
with third-order upwind-biased differences (4-point stencil). For the diffusion terms standard
second-order differences are used as before.

The results with ε = 0.01 are given in the Figures 3.7, 3.8. In the plots of Figure 3.7 the
solutions h = 1/40 and τ = 1/80 are found, represented as contour lines at the levels 0.1,
0.2,...,0.9, with solid lines for the numerical solution and dotted lines for the exact solution.
Quantitative results are given in Figure 3.8, where the L2-errors are plotted as function of the
time step for a 40 × 40 and 80 × 80 grid with τ = h, 1

2h and so on. As in Figure 3.6 results for
ROS1 are indicated with dashed lines, for ROS2 with solid lines, and with squares if θ = 1 and
circles if θ = 1

2 .
It is obvious that the 2-stage schemes ROS2 give much better results than the corresponding
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1-stage schemes ROS1. To achieve a level of accuracy comparable to the ROS2 schemes we
need much smaller time steps with the ROS1 schemes, see Figure 3.8. This is primarily due to
the more stable treatment of the explicit advection term with the ROS2 schemes. The explicit
2-stage Runge-Kutta method underlying ROS2 is stable for third-order advection discretization
up to Courant number 0.87 (experimental bound). On the other hand, some of the eigenvalues
associated with this discretization are always outside the stability region of the explicit Euler
scheme. In this test it is the (implicit) diffusion part that provides a stabilization for the smaller
step sizes. (In fact, for ε = 0.01 similar results were obtained with second-order central advection
discretization, but not anymore with ε = 0.001). Further we note that instabilities do not lead
to overflow since the solutions are pushed back to the range [0,1] by the reaction term, but the
resulting numerical solutions are qualitatively wrong.
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Fig. 3.7 Contour lines numerical solutions for ε = 0.01 with h = 1/40, τ = 1/80.
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Various methods indicated as in Figure 3.6.
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Decreasing the value of the diffusion coefficient ε gives a clearer distinction between the
methods. Results with ε = 0.001 are given in the Figures 3.9 and 3.10. The grids chosen are
80 × 80 and 160 × 160, since the 40 × 40 grid gives quite large spatial errors with this small
ε. The results are essentially the same as above: the 1-stage schemes ROS1 need much smaller
time steps than the ROS2 schemes to obtain reasonable solutions.

For more realistic problems with stiff reaction terms, nonlinear advection discretizations
with flux limiters are recommended to avoid oscillations, and this fits easily into the present
framework due to the explicit advection treatment.
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Fig. 3.9 Contour lines numerical solutions for ε = 0.001 with h = 1/80, τ = 1/160.
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%DFN�WR�WKH�RULJLQV�

8QLW�RSHUDWLRQ��ILUVW�SDUDGLJP�RI�&KHPLFDO�(QJLQHHULQJ�

*HRUJH�(��'DYLV� ������������PDGH�D�SURSRVDO� � �ZLWKRXW� VXFFHVV�� LQ������ IRU� WKH�FUHDWLRQ�RI� WKH� � �6RFLHW\�RI�
&KHPLFDO�(QJLQHHUV� LQ� /RQGRQ��� ,Q� ����� KH� JDYH� D� VHULHV� RI� OHFWXUHV�RQ�2SHUDWLRQ� RI�&KHPLFDO� 3URFHVVHV� DW�
0DQFKHVWHU�7HFKQLFDO�6FKRRO�DQG�SXEOLVKHG�WKH��+DQGERRN�RI�&KHPLFDO�(QJLQHHULQJ����������+LV�DSSURDFK��LQ�
WHUPV�RI�XQLW�RSHUDWLRQV��HPSKDVL]HV�WKH�LPSRUWDQFH�RI�H[SHULPHQWDWLRQ�DW�SLORW�VFDOH�DQG�VDIHW\�UXOHV��KH�XVHV�WKH�
WHUP��FKHPLFDO� HQJLQHHULQJ�� WR�GHVLJQDWH� WKH�SURIHVVLRQ� WKHQ�HPHUJLQJ�ZKLFK�FRUUHVSRQGV� LQ� D� FHUWDLQ�ZD\� WR�
WRGD\·V�FKHPLFDO�HQJLQHHU���
/HZLV�0LOOV�1RUWRQ��������������3URIHVVRU�RI�,QGXVWULDO�DQG�2UJDQLF�&KHPLVWU\�DW�0,7��WDXJKW�LQ������WKH�ILUVW���
\HDUV� FRXUVH� LQ� &KHPLFDO�
(QJLQHHULQJ� ��&RXUVH�;���7KH� ILUVW�
FKHPLFDO� HQJLQHHU� WR� FRPSOHWH� WKDW�
FRXUVH� LQ� ����� ZDV� :LOOLDP� 3DJH�
%U\DQW�� KLV� MRE� ZDV� LQ� LQVXUDQFH�
DXGLWRU� IRU� WKH� %RVWRQ� %RDUG� RI�
)LUH� 8QGHUZULWHUV�� $Q\� VLPLODULW\�
ZLWK� FXUUHQW� PDUNHW� VLWXDWLRQ� LV��
PHUHO\�FRLQFLGHQFH��
:LOOLDP� +�� :DONHU� �����²�������
:DUUHQ�.�� /HZLV� �����²������� DQG� $UWKXU�'�� /LWWOH� DUH� WKH� SLRQHHUV� ZKR� GHILQHG� FKHPLFDO� HQJLQHHULQJ� DV� D�
SURIHVVLRQ� ZLWK� SURSHU�
DSSURDFK� DQG� WUDLQLQJ�
PHWKRGV��
$UWKXU� '�� /LWWOH� ZDV� WKH�
ILUVW� WR� XVH� WKH� WHUP��
�XQLW� RSHUDWLRQVµ� LQ� D�
UHSRUW� ������� WR� WKH�
SUHVLGHQW� RI� 0,7�� +H�
FUHDWHG� LQ� ����� WKH�
FRPSDQ\� ODWHU� NQRZQ� DV�
$UWKXU�'��/LWWOH��,QF��,Q������KH�LV�DVVRFLDWHG�ZLWK�:LOOLDP�+��:DONHU��%6F�LQ�&KHPLVWU\��3HQQ�6WDWH�DQG�3K'�
2UJDQLF�&KHPLVWU\��*RWWLQJHQ��EXW�:DONHU� OHIW� WR� UHVWUXFWXUH� WKH� FXUULFXOXP�RI�&K(� DW�0,7� DQG� LQ� ����� WKH�
5HVHDUFK�/DERUDWRU\�RI�$SSOLHG�&KHPLVWU\�LV�FUHDWHG��6WXGHQWV�ZRUNHG�LQ�UHDO�SUREOHPV�JLYHQ�E\�LQGXVWU\�ZKLFK�

� �
*HRUJH�'DYLV� /HZLV�1RUWRQ�

� � �
:LOOLDP�+��:DONHU�

������������
$UWKXU�'��/LWWOH� :DUUHQ�.��/HZLV�

������������
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ZDV�DOVR�SD\LQJ�WKH�JUDQWV�� �:DUUHQ�.��/HZLV��ZKR�DWWHQGHG�WKH�&K(�SURJUDPPH�DW�0,7�DQG�3K'�LQ�2UJDQLF�
&KHPLVWU\� IURP� WKH� 8QLYHUVLW\� RI� %UHVODX�� EHFDPH� D� VWDII� PHPEHU� RI� 0,7� LQ� ������ KLV� DELOLW\� WR� WKHRUL]H�
HQJLQHHULQJ�SUREOHPV�DQG�KLV� VWURQJ�FKDUDFWHU� FRQWULEXWHG� WR�VWUHQJWKHQ� WKH�SURJUDPPH��7KH� WHDFKLQJ�RI�XQLW�
RSHUDWLRQV�EHFDPH�TXDQWLWDWLYH��,Q������WKUHH�XQLWV�RI�WKH�6FKRRO�RI�&KHPLFDO�(QJLQHHULQJ�3UDFWLFH�ZHUH�RSHQHG�
ZKHUH� VWXGHQWV�ZRUNHG� ��ZHHNV� RQ� H[SHULPHQWDO�ZRUN��7KLV� SHULRG� LV� FRQGHQVHG� LQ� WKH� WHDFKLQJ�PDQXDO��7KH�
3ULQFLSOHV� RI� &KHPLFDO� (QJLQHHULQJ� ������� E\� :DONHU�� /HZLV�� DQG� :LOOLDP� +�� 0F$GDPV�� :DONHU�� VRPHWLPHV�
FRQVLGHUHG�WKH�IDWKHU�RI�&K(�JRHV�EDFN�WR�FRQVXOWLQJ��/HZLV�FRQWLQXHV� LQ�0,7�LQ�FROODERUDWLRQ�ZLWK� �6WDQGDUG�
2LO�&RPSDQ\��ODWHU�([[RQ��DQG�ZLWK�*LOOLODQG�LV�WKH�LQYHQWRU�RI��)&&�RI�SHWUROHXP��JDVROLQH�IRU�::,,��>�@��
�
(QJLQHHULQJ�6FLHQFH�0RYHPHQW��VHFRQG�SDUDGLJP�RI�&KHPLFDO�(QJLQHHULQJ�

7KLV� PRYHPHQW� LV� LOOXVWUDWHG�
E\�WKH�ERRN�RI��%LUG��6WHZDUW�
H� /LJKIRRW� ´7UDQVSRUW�
SKHQRPHQDµ� >�@�ZKLFK� WUHDWV�
LQ� SDUDOOHO� WUDQVIHU� SURFHVVHV�
RI� PRPHQWXP�� KHDW� DQG�
PDVV�� ZKLFK� DUH� DIWHU� DOO� D�
PDMRU� SRUWLRQ� RI� WKH� &K(�
DFWLYLW\�� 7KH� WUDQVSRUW�
SKHQRPHQD� DSSURDFK� ZDV�
LQLWLDWHG�E\�.UDPHUV��'HOIW�8QLYHUVLW\�RI�7HFKQRORJ\��ZKHUH�%LUG�VSHQW�D�VHPHVWHU�DQG�NQHZ�WKH�OHFWXUH�QRWHV�
3K\VLVFKH�7UDQVSRUWYHUVFKLMQVHOHQ��
�

0RPHQWXP�WUDQVIHU�²��1HZWRQ·V�ODZ��τ �� = −µ GY�
G\ �

+HDW�WUDQVIHU�E\�FRQGXFWLRQ�²�)RXULHU·V�ODZ���T� = −N G7G\ �

0DVV�WUDQVIHU�E\�GLIIXVLRQR�²�)LFN·V�ODZ�� M� = −'��
Gρ�

G\ � DW�FRQVWDQWρ ��

�

� � �
%LUG� 6WHZDUW� /LJKIRRW�
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�
7KH�DERYH� ODZV�DVVXPH�LQILQLWH�YHORFLW\�RI�SURSDJDWLRQ�RI� WKH�VLJQDO��7KLV�SUREOHP� LV�HOLPLQDWHG� IROORZLQJ� WKH�
SURSRVDO�RI��-DPHV�&OHUN�0D[ZHOO�IRU�PRPHQWXP�WUDQVIHU��

σ�� + τ
∂σ��

∂W = −µ∂X�

∂\ � >�@�
ZKHUH�τ�LV�WKH�WLPH�FRQVWDQW�DQG�WKH�VKHDU�VWUHVV�σ�� �LQ�D�IOXLG�RU�VROLG�ERG\�σ�� ��

M + τ ∂M
∂W = −'∂F

∂[ � >�@�
IRU�PDVV�WUDQVIHU�>�@DQG�

T+ τ ∂T
∂W = −N ∂7

∂[ � >�@�
IRU�KHDW�WUDQVIHU���9&�HTXDWLRQ�RI��9HUQRWW�DQG�&DWWDQHR��>�@���,Q�KRPRJHQHRXV�VXEVWDQFHV�WKH�UHOD[DWLRQ�WLPH�LV�
���������	�V�DQG�)RXULHU·V�ODZ�ZRUNV�IRU�QRUPDO�KHDWLQJ�SURFHVVHV��%XW�LQ�ELRORJLFDO�V\VWHPV�τ LV�RI� WKH�RUGHU�RI�
������V�DQG�&9�HTXDWLRQ�DSSOLHV��
 

3KLORVRSK\�RI�SURFHVV�PRGHOOLQJ�

´/H�*pQLH�&KLPLTXH�F·HVW�SDV�GH�OD�SORPEHULHµ��3��/H�*RII��

,� UHPHPEHU�3URIHVVRU�3LHUUH�/H�*RII�ZKHQ� ,�ZDV� D�VWXGHQW� LQ�1DQF\��+H� VDLG� WKDW� D� FKHPLFDO� HQJLQHHU�ZKHQ�
VROYLQJ�D�SUREOHP�ZULWHV�>�@��

•  FRQVHUYDWLRQ�HTXDWLRQV��PDVV��HQHUJ\��PRPHQWXP��HOHFWULF�FKDUJH��
•  HTXLOLEULXP�ODZ�DW�WKH�LQWHUIDFH��V��

� � �
1HZWRQ� )RXULHU� )LFN�
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•  FRQVWLWXWLYH�ODZV��IRU�H[DPSOH��LGHDO�JDV�ODZ���
•  NLQHWLF�ODZV�RI�WUDQVSRUW��KHDW�PDVV��DQG�UHDFWLRQ��
•  LQLWLDO�DQG�ERXQGDU\�FRQGLWLRQV�
•  RSWLPL]DWLRQ�FULWHULD�

7KLV�PHWKRGRORJ\�KDV�EHHQ�XVHIXO�WR�DQDO\]H�SUREOHPV�DW�YDULRXV�VFDOHV�LQYROYHG�LQ�&K(���
•  SRUH�VFDOH��FDWDO\VW��DGVRUYHQW�����QP�²�����QP�
•  SDUWLFOH�VFDOH������µP����FP�
•  UHDFWRU�VHSDUDWRU�VFDOH���P����P�

$FFRUGLQJ� WR� $ULV� >�@� D� ´PDWKHPDWLFDO� PRGHOµ� RU� VLPSO\� PRGHO� � ´LV� D�
FRPSOHWH�DQG�FRQVLVWHQW�VHW�RI�PDWKHPDWLFDO�HTXDWLRQV�ZKLFK�DUH�VXSSRVHG�WR�
FRUUHVSRQG� WR� VRPH� HQWLW\� ²� LWV� SURWRW\SH� �� ZKLFK� FDQ� EH� D� SK\VLFDO��
ELRORJLFDO�� VRFLDO«HQWLW\� DOWKRXJK� KHUH� ZH� GHDO� ZLWK� SK\VLFRFKHPLFDO�
V\VWHPVµ��$�SURFHVV�PRGHO�LV�D�UHODWLRQ�EHWZHHQ�´RXWSXWVµ�DQG�´LQSXWVµ��IHHG�
FRQGLWLRQV��GHVLJQ�SDUDPHWHUV��SURFHVV�DGMXVWDEOH�SDUDPHWHUV��6KLQQDU��LQ�YLHZ�
RI���L��VFDOH�XS�IURP�ODE�WR�LQGXVWULDO�VFDOH��LL��SUHGLFWLRQ�RI�SURFHVV�G\QDPLFV�
DQG��LLL��RSWLPLVDWLRQ�RI�RSHUDWLQJ�FRQGLWLRQV��

�
0RGHOV��VLPSOLILFDWLRQ�RI�UHDOLW\���WR�´EHWWHUµ�NQRZ�WKH�UHDOLW\��

7KH�GHWDLO�RI�PDWKHPDWLFDO�GHVFULSWLRQ�FDQ�EH�JXLGHG�E\�REMHFWLYHV�ZKLFK�FDQ�VHHP�FRQWUDGLFWRU\��
D��6LPSOLILFDWLRQ�RI�UHDOLW\����LGHDOL]DWLRQ�

,Q�DQ�H[FHOOHQW�SDSHU� �/HYHQVSLHO� >�@�� D�SLRQHHU�RI�&KHPLFDO�5HDFWLRQ�(QJLQHHULQJ�PHQWLRQ� �'HQELJK� >�@� ��´,Q�
VFLHQFH� LW� LV�DOZD\V�QHFHVVDU\� WR�DEVWUDFW�IURP�WKH�FRPSOH[LW\�RI�WKH� UHDO�ZRUOG��DQG� LQ� LWV�SODFH� WR�VXEVWLWXWH�D�
PRUH�RU�OHVV�LGHDOL]HG�VLWXDWLRQ�WKDW�LV�PRUH�DPHQDEOH�WR�DQDO\VLVµ��7KLV�LGHDOL]DWLRQ�OHDGV�WR�WKH�FUHDWLRQ�RI�QHZ�
PRGHOV��VLPSOLILHG��ZKLFK�DUH�D�´GLJLWDO�LPSUHVVLRQµ�RI�RXU�SURIHVVLRQ���([DPSOHV�DUH��L��ERXQGDU\�OD\HU�WKHRU\��LL��
PRGHO�RI�ILOP�KHDW�WUDQVIHU��K��LLL��PRGHO�RI�ILOP�PDVV�WUDQVIHU��N���LY��WKHRU\�RI�UHVLGHQFH�WLPH�GLVWULEXWLRQ��57'��
DQG�WUDFHU�WHFKQRORJ\��

E��'HWDLOHG�PRGHO�WR�´EHWWHUµ�NQRZ�WKH�UHDOLW\�
$Q�H[DPSOH�LV�WKH�0D[ZHOO�6WHIDQ�PRGHO�IRU�PXOWLFRPSRQHQW�GLIIXVLRQ�>��@��
7KH�GULYLQJ�IRUFH�LV�WKH�JUDGLHQW�RI�FKHPLFDO�SRWHQWLDO��µ�ZKLFK�LV�IRU�LGHDO�JDV���
µ� = µ�

�

+57 ln S�� >�@�

�
5��$ULV�
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7KH�GLIIXVLYH��IOX[�GXH�WR�WKLV�JUDGLHQW�LV�EDODQFHG�E\�IULFWLRQ�IRUFHV� 

G]
GIX �

�
P

−= � >�@�
ZKHUH��I�LV�WKH�IULFWLRQ�FRHIILFLHQW�DQG��X��LV�WKH�YHORFLW\�RI�VSHFLHV�L��
7KH�IOX[�LV��

1 � = X�&� = −
57
I

∂ln S�

∂ ln&�

G&�

G] � >�@�
where the “corrected diffusivity” is   '�

0 =
57
I  and the thermodynamic 

factor is 
∂ ln S�

∂ ln&�
. 

)RU�ELQDU\�V\VWHPV�LI�WKH�FKDQJH�LQ�SDUWLDO�SUHVVXUH�RI�VSHFLHV���LV��GS��RYHU�GLVWDQFH�G]���WKH�IRUFH�DFWLQJ�LQ���SHU�
YROXPH��LV�− GS1

G] ��LI�WKH�FRQFHQWUDWLRQ�RI���LV�&� WKH�IRUFH�SHU�PROH�RI�VSHFLHV���LV − 1

&1

GS1

G]  DQG�IRU�DQ��LGHDO��JDV�

−
57
S1

GS1

G] = −57 Gln S1

G]  RU� 

−57 Gln S1

G] = −
Gµ1

G] � >�@�
7KLV�IRUFH�LV�EDODQFHG�E\�WKH�IULFWLRQ�EHWZHHQ�VSHFLHV���DQG����SURSRUWLRQDO�WR�WKH�GLIIHUHQFH�RI�YHORFLWLHV�DQG�WR�
WKH�FRQFHQWUDWLRQ�RI�FRPSRQHQW�����H[SUHVVHG�E\�[���7KH�EDODQFH�RI�IRUFHV�DFWLQJ�LQ�VSHFLHV���LV����

−
Gµ1

G] =
57
'�	 [2 X1 − X2( )� [8] 

RU��

−
1

3
GS1

G] =
1

'
� [1[2 X1 − X2( )� [9] 

 

)RU�Q�FRPSRQHQWV��

G� = ∇ [� =
[ �1 
 − [ 
 1 �

F �'�


��


 =1

�

∑ � >��@ 
�

6WUDWHJ\�RI�PRGHOOLQJ�

$�SKLORVRSK\�RI�PRGHOOLQJ�FDQ�EH�EDVHG�LQ���SRLQWV�>��@��

�
-�&��0D[ZHOO�
������������

�
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D� 6WDUW�ZLWK�VLPSOH�PRGHOV��REWDLQ�IURP�VXFK�PRGHOV�LQIRUPDWLRQ�ZKLFK�UHPDLQV�YDOLG�IRU�PRUH�FRPSOH[�
PRGHOV������DSSURDFK�RI�/HYHQVSLHO�>�@��´$OZD\V�VWDUW�E\�WU\LQJ�WKH�VLPSOHVW�
PRGHO�DQG�WKHQ�RQO\�DGG�FRPSOH[LW\�WR�WKH�H[WHQW�QHHGHG�´���

E� 7KH�YDOLGLW\�RI�D�PRGHO�LV�QRW�MXVW�D�UHVXOW�RI�D��´JRRG�ILWµ��PRUH�LPSRUWDQW�LV�
WKH� FDSDELOLW\� WR� SUHGLFW� WKH� V\VWHP� EHKDYLRU� XQGHU� RSHUDWLQJ� FRQGLWLRQV�
GLIIHUHQW�IURP�WKRVH�XVHG�WR�JHW�PRGHO�SDUDPHWHUV���

F� *RRG�UHVXOWV�FDQ�RQO\�EH�REWDLQHG�LI�WKH�PRGHO�´ZHOOµ�UHSUHVHQWV�WKH��
G� 8VH� PRGHOV� WR� REWDLQ� XVHIXO� GHVLJQ� SDUDPHWHUV� DQG� WKHLU� GHSHQGHQFH� RQ�

RSHUDWLQJ�FRQGLWLRQV��XVH� LQGHSHQGHQW� H[SHULPHQWV� LI�SRVVLEOH� WR�JHW�PRGHO�
SDUDPHWHUV��

,Q�VKRUW��PRGHO�GHYHORSPHQW�LV�D�WDVN�WR�EH�FDUHIXOO\�GRQH�WR�DYRLG�ZDVWH�RI�HQHUJ\�LQ�
WKH�QH[W�VLPXODWLRQ�VWHS��´.HHS�WKLQJV�DV�VLPSOH�DV�SRVVLEOH��EXW�QRW�VLPSOHUµ��(LQVWHLQ���
7KH�´DUWµ�RI�PRGHOOLQJ�

7KH� ´DUWµ� RI� PRGHOOLQJ� XVHV� VRPH� WHFKQLTXHV� �WULFNV�� VXFK� DV�� DGLPHQVLRQDOL]DWLRQ� DQG� VFDOLQJ�� DYHUDJLQJ��
DSSURSULDWH�FKRLFH�RI�LQGHSHQGHQW�YDULDEOHV��
6FDOLQJ�DQG�GLPHQVLRQOHVV�JURXSV�

&KHPLFDO� HQJLQHHUV� KDYH� VRPH� KDELWV� DV� QRUPDOL]DWLRQ� RI� YDULDEOHV� WR� JHW� VFDOHV� EHWZHHQ� �� DQG� ��� $V� D�
FRQVHTXHQFH�RI�WKDW�PDWKHPDWLFDO�RSHUDWLRQ�GLPHQVLRQOHVV�JURXSV�DSSHDU�ZLWK�D�SK\VLFDO�PHDQLQJ�� �
$Q�H[DPSOH��GLIIXVLRQ�UHDFWLRQ�LQ�DQ�LVRWKHUPDO�SRURXV�FDWDO\VW�ZLWK�VODE�JHRPHWU\��7KH�PDVV�EDODQFH�LQ�VWHDG\�
VWDWH�IRU�LUUHYHUVLEOH�UHDFWLRQ�RI�RUGHU�Q�LV��

'�

G2F �

G] 2 − NF �

�

= 0 � >��@�
ZLWK�ERXQGDU\�FRQGLWLRQV��V\PPHWU\�FRQGLWLRQ�LQ�WKH��FHQWHU�DQG�VXUIDFH�FRQGLWLRQ��

��

] = 0,
GF �

G] = 0

] = ",F � = F ��

� >��@�

7KH�QRUPDOL]DWLRQ�RI�VSDFH�YDULDEOH�DQG�FRQFHQWUDWLRQ�YDULDEOH�E\���

��

[ = ] /"

I � = F � /F ��
�

OHDGV�WR�

�
/HYHQVSLHO�
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��

G2 I �
G[ 2 −"2 NF ���−1

'�
I �� = 0 � >��@�

ZKLFK�VKRZV�WKH�GLPHQVLRQOHVV�JURXS�JRYHUQLQJ�WKH�UHDFWLRQ�GLIIXVLRQ�SUREOHP��

��

"
2 NF ���−1

'�
= φ2 = 'D�� � >��@�

ZKHUH��φ�LV�WKH�7KLHOH�PRGXOXV���
7KH� SK\VLFDO� PHDQLQJ� RI� WKH� GLPHQVLRQOHVV� JURXS� LV��
φ2 ='D		 =UHDFWLRQ� UDWH�GLIIXVLRQ� UDWH � � GLIIXVLRQ� WLPH�
FRQVWDQW��UHDFWLRQ�WLPH�FRQVWDQW��7ZR�H[WUHPH�FDVHV��

D� UHDFWLRQ�UDWH����GLIIXVLRQ�UDWH�²�FRQFHQWUDWLRQ�SURILOH�
LQVLGH� WKH� FDWDO\VW� LV� DOPRVW� HTXDO� WR� WKH� VXUIDFH�
FRQFHQWUDWLRQ�� WKH� FDWDO\VW� ZRUNV� RQ� ´FKHPLFDO�
UHJLPHµ��

E� E��UHDFWLRQ�UDWH�!!�GLIIXVLRQ�UDWH�²�WKH�FDWDO\VW�ZRUNV�
LQ�´GLIIXVLRQDO�UHJLPHµ���
�

$YHUDJLQJ�

/HW�XV�LOOXVWUDWH�WKLV�WHFKQLTXH�ZLWK�WKH�/')�PRGHO��OLQHDU�GULYLQJ�IRUFH��RI�*OXHFNDXI�>��@��
)RU�D�VSKHULFDO�´KRPRJHQHRXVµ�DGVRUEHQW�SDUWLFOH�WKH�PDVV�FRQVHUYDWLRQ�HTXDWLRQ�LV���
∂T

∂W ='�

1

52

∂
∂5 52 ∂T


∂5
 
 
 

 
 
 � >��@�

ZLWK� ERXQGDU\� FRQGLWLRQV� �V\PPHWU\� DW� WKH� FHQWHU� DQG� HTXLOLEULXP�ZLWK� WKH� IOXLG� FRQFHQWUDWLRQ� DW� WKH� VXUIDFH�
WKURXJK�WKH�DGVRUSWLRQ�HTXLOLEULXP�LVRWKHUP��I�F�����

5 = 0,
∂T

∂5 = 0

5 =5� ,T
� = I (F 
)
� >��@�

7KH�DYHUDJLQJ�RSHUDWLRQ�FRQVLVWV�RQ�PXOWLSO\LQJ�ERWK�PHPEHUV�E\�5�G5��DQG�LQWHJUDWH�RYHU�WKH�SDUWLFOH�YROXPH�
�EHWZHHQ����DQG�5���DQG��LQWURGXFH�DYHUDJH�FRQFHQWUDWLRQ���T�!��WKH�UHVXOW�LV��
∂〈T�〉

∂W =
3'�

5�
∂T�
∂5 ��

=
3'�

5�
T�� −〈 T�〉

α5� =
15'�

5 �
2 T�� −〈T�〉 )( � >��@�

] �O ] � ] O

F�� F�������� � !��"#

������
�$%���&'�#

������ '�( )�#$*+
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�
&KRLFH�RI�YDULDEOHV�

7R� LOOXVWUDWH� WKLV� WHFKQLTXH� OHW� XV� FRQVLGHU�
WKH� HTXLOLEULXP� PRGHO� RI� DQ� LVRWKHUPDO�
DGVRUSWLRQ�FROXPQ�ZLWK�SOXJ�IOXLG�IORZ�RI�D�
GLOXWHG�VWUHDP��WUDFH�V\VWHP���0RGHO�HTXDWLRQV�
DUH� WKH�PDVV�EDODQFH�RI� WKH�VROXWH� LQ� D�EHG�
YROXPH� HOHPHQW� DQG� WKH� HTXLOLEULXP� ODZ� DW�
WKH�LQWHUIDFH�IOXLG�VROLG��

X0

∂F �
∂] + ε∂F�

∂W + (1−ε)
∂T�*

∂W = 0

T�* = I (F �)
� �>��@�

)RU� DQ� DGVRUSWLRQ� LVRWKHUP� RI� ´� FRQVWDQW� VHSDUDWLRQ� IDFWRUµ� W\SH� DQG� QRUPDOL]LQJ� WKH� GHSHQGHQW� YDULDEOHV��
F �
^

=
F �
F �0

,T�
^

=
T�
T�0

�ZH�JHW��

X� ∂F �
^

∂] +
∂F �

^

∂W +
1−ε

ε
T�

0

F �
0

∂T�
^

∂W = 0

T�
^

= .F �
^

1+ (. −1)F �
^

� >��@�

$�ILUVW�GLPHQVLRQOHVV�SDUDPHWHU�DSSHDUV��WKH�´FDSDFLW\�SDUDPHWHUµ�RI�WKH�DGVRUSWLRQ�FROXPQ�

ξ� =
1−ε

ε
T�0
F �0

� >��@�
$�FRPELQDWLRQ�RI�WKH�LQGHSHQGHQW�YDULDEOHV��]�DQG�W�LQ�RQO\�RQH�YDULDEOH�7����WKURXJKSXW�SDUDPHWHU�RI��9HUPHXOHQ�
>��@���GHILQHG�DV�WKH�UDWLR�RI�PROHV�RI�VROXWH�SDVVHG�WKURXJK�WKH�EHG�VHFWLRQ�ORFDWHG�DW��Y $]�DQG�WKH�QXPEHU�RI�
PROHV�UHWDLQHG�LQ�WKH�DGVRUEHQW�FRQWDLQHG�LQ�WKH�YROXPH�Y��LV���
7 �F	
�9�εY�����ε�T	
Y� >��@�
7KH�QHZ�YDULDEOH�7 =

1

ξ �
X�W
]

 
 
 − 1) �DOORZV�XV�WR�ZULWH�WKH�PDVV�EDODQFH�DV��

GT

^

GF 

^ =7 � >��@�

/')

F�
F��

T�� T��

�T�! �T�!

T��5�

�
)LJXUH����/')�PRGHO�
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DQG�WDNLQJ�LQWR�DFFRXQW�WKH�DGVRUSWLRQ�HTXLOLEULXP�LVRWKHUP��
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^^

^

)1(1[ −+
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.F

.
FG
TG
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� >��@�

ZH�JHW��
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7
.

F� 1
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1
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−

−
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�
)URP�PRGHO�UHVXOWV�WR�UHDO�OLIH�

%DFN�WR�WKH�UHDFWLRQ�GLIIXVLRQ�SUREOHP�IRU�ILUVW�RUGHU�UHDFWLRQ�LQ�LVRWKHUPDO�FDWDO\VW��7KH�FRQFHQWUDWLRQ�SURILOH�
LV��

I � =
cosh(φ[)

coshφ
� >��@�

7KH� HIIHFWLYHQHVV� IDFWRU� RI� WKH� FDWDO\VW� �UDWLR� EHWZHHQ� WKH� REVHUYHG� UDWH� DQG� WKH� UHDFWLRQ� UDWH� DW� UHIHUHQFH�
FRQGLWLRQV�� H�J��� VXUIDFH�� FDOFXODWHG� E\� WKH� ,WDOLDQ� RU�*HUPDQ�PHWKRG� �VWXGHQWV�ZLOO� UHFRJQL]H�*DXVV� WKHRUHP�
UHODWLQJ�GLYHUJHQFH�DQG�IOX[«��LV���

η =
tanhφ

φ
� >��@�

�
,W� LV� LPSRUWDQW� WR� NQRZ� WKH� HIIHFWLYHQHVV�
IDFWRU�WR�FDOFXODWH�WKH�DPRXQW�RI�FDWDO\VW�RQH�
QHHGV� WR� KDYH� LQ� WKH� UHDFWRU� WR� JHW� D� JLYHQ�
UHDFWDQW�FRQYHUVLRQ��
�
%XW� WR�NQRZ� WKH�7KLHOH�PRGXOXV� WKH�NLQHWLF�
FRQVWDQW�N��PXVW�EH�NQRZQ��DQG�PDQ\�WLPHV�LW�LV�QRW�«���

0

1

0 1 2 3 47

F �
^

=

�
)LJXUH����%UHDNWKURXJK�FXUYHV�IRU�XQIDYRXUDEOH�

LVRWKHUPV�
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�
)LJXUH����(IIHFWLYHQHVV�IDFWRU�YHUVXV�7KLHOH�PRGXOXV��
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+RSHIXOO\� WKHUH� DUH� DOZD\V� EULJKW� SHRSOH�
DURXQG� WR� WUDQVIRUP� WKHRUHWLFDO� UHVXOWV� LQ�
SUDFWLFDO� WRROV�� :HLV]� DQG� 3UDWHU� >��@�
FKDQJHG� WKH� SORW� � η = I (φ) � LQ� DQRWKHU�
PRUH�XVHIXO� �η = J(ηφ2 ) �ZKHUH�ηφ2 �GRHV�
QRW� UHTXLUH� WKH� NQRZOHGJH�RI� � �N�� EXW� RQO\�
PHDVXUDEOH�TXDQWLWLHV�VLQFH��

��

ηφ2 =
U���"2

F ��'�
� �>��@�

�
2EWDLQLQJ�XVHIXO�UHODWLRQV�EHWZHHQ�GHSHQGHQW�YDULDEOHV�

&RQVLGHU� WKH�GLIIXVLRQ�UHDFWLRQ�FRQGXFWLRQ�SUREOHP� LQ� D�QRQ�LVRWKHUPDO� FDWDO\VW�� )RU� VODE� JHRPHWU\� DQG� ILUVW�
RUGHU�LUUHYHUVLEOH�UHDFWLRQ�FRQVHUYDWLRQ�HTXDWLRQV�RI�PDVV�HQHUJ\�DUH���

��

'�
G2F �

G] 2
− N(7 )F � = 0

λ�
G27
G] 2

+ (−∆+ )N(7 )F� = 0

] = 0,
GF �

G] =
G7
G] = 0

] = ",F � = F ��;7 =7	

� >��@�

0XOWLSO\LQJ�WKH�ILUVW�HTXDWLRQ�E\�WKH�KHDW�RI�UHDFWLRQ����∆+��DQG�DGGLQJ�WKH�VHFRQG�ZH�JHW��

'
(−∆+ )
G2F�
G]2 + λ 


G27
G]2 = 0 � >��@�

,QWHJUDWLQJ�WZLFH�ZH�REWDLQ��

� 7 −7� =
'
(−∆+ )

λ 

(F �� −F �) � >��@�

7KLV� HTXDWLRQ� ZDV� GHULYHG� E\� 'DPNRKOHU� >��@� DQG� SURYLGHV� D�
UHODWLRQ�EHWZHHQ�FRQFHQWUDWLRQ�DQG�WHPSHUDWXUH�LQ�D�SRLQW�LQVLGH�WKH�
FDWDO\VW�� $� VLPLODU� WUHDWPHQW� KROGV� IRU� DGLDEDWLF� FDWDO\WLF� UHDFWRUV�
XVLQJ� SVHXGR�KRPRJHQHRXV� PRGHOV�� ,W� LV� HDVLHU� WR� PHDVXUH�
WHPSHUDWXUH�WKDQ�FRQFHQWUDWLRQV��
�
�
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�
)LJXUH����(IIHFWLYHQHVV�IDFWRU�YHUVXV�ηφ2 �
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)LJXUH����&RQFHQWUDWLRQ�DQG�
WHPSHUDWXUH�SURILOHV�LQ�D�QRQ�
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0RGHOV�RI�����������H��������/HYHQVSLHO��

%RXQGDU\�OD\HU�FRQFHSW�

+RZ�LV�WKH�IOXLG�YHORFLW\�DIIHFWHG�ZKHQ�LW�IORZV�QHDU�D�VROLG�VXUIDFH"��
7KH�DQVZHU�ZDV�JLYHQ�E\�.DUPDQ�3UDQGWO���������)RU�IORZ�SDUDOOHO�WR�D�IODW�SODWH�
LQ�ODPLQDU�UHJLPH���5H� Yρ[�µ<2.105  PRGHO�HTXDWLRQV�DUH� 

Y�

∂Y�

∂[ + Y� ∂Y�

∂\ =ν ∂ 2Y�

∂\ 2

∂Y�

∂[ +
∂Y�
∂\ = 0

Y� = Y� = 0; \ = 0

Y� = Y∞ ;\ = ∞

� >��@�

�
7KH� YHORFLW\� GLVWULEXWLRQ� LQ� D� WXEH� IURP� WKH� ODPLQDU� VXEOD\HU� XS� WR� WKH� FHQWUDO� WXUEXOHQW� FRUH� LV�� LQ� WHUPV� RI��

Y + =
Y�

−

τ 0 /ρ
��YHUVXV�� \ + =

τ 0 /ρ
ν

\ ��

Y + = \ +;5 > \+ > 0

Y + = −3.05 + 5ln \+;30 > \ + > 5

Y + = 5.5 + 2.5ln \ +; \+ > 30

 [33]�

�
3UDQGWO� ������� >��@�SURSRVHG�D�VLPSOHU�PRGHO�IRU� WKH�YHORFLW\�SURILOHU�²�OLQHDU�YDULDWLRQ�ZLWK�GLVWDQFH�IURP�WKH�
VROLG�VXUIDFH�RU�GX�G\ ���DQG��X ��DW��\ ��LQ�WKH�YLVFRXV�OD\HU��DQG�D�QRQ�YLVFRXV�OD\HU�DZD\�IURP�WKH�VROLG��9RQ�
.DUPDQ�FRPPHQW�DERXW�3UDQGWO��´3UDQGWO�������������ZDV�DQ�HQJLQHHU�E\�WUDLQLQJ��+LV�FRQWURO�RI�PDWKHPDWLFDO�
PHWKRGV�DQG�WULFNV�ZDV�OLPLWHG«+RZHYHU��KH�KDG�D�XQLTXH�DELOLW\�WR�GHVFULEH�SK\VLFDO�SKHQRPHQD�LQ�UHODWLYHO\�
VLPSOH� WHUPV�� WR� GLVWLOO� WKH� HVVHQFH� RI� D� VLWXDWLRQ� DQG� WR� GURS� WKH� XQHVVHQWLDOV��+LV� JUHDWHVW� FRQWULEXWLRQ� LV� LQ�
ERXQGDU\�OD\HU�WKHRU\µ��
 

)LOP�0RGHO�IRU�KHDW�WUDQVIHU��K���
:KHQ� VWXG\LQJ� KHDW� WUDQVIHU� IURP� D� KRW� IOXLG� IORZLQJ� DURXQG� D� FROG� VXUIDFH�:�.�� /HZLV� � �0,7�� ������ >��@�
SURSRVHG�D�OLQHDU�SURILOH�RI�WHPSHUDWXUH�LQ�WKH�ILOP�ZLWKRXW�DGGLWLRQDO�YDULDWLRQ�DZD\�IURP�WKH�VXUIDFH���
�

�
3UDQGWO�
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%\� DQDORJ\�ZLWK� )RXULHU·V� ODZ�� WKH� WRWDO� KHDW� IOX[� �-�V�� WKURXJK� WKH� ILOP� LV����
T• = λ$∆7

∆\ � RU� T
•

= K$∆7 � ZKHUH� WKH� ILOP� KHDW� WUDQVIHU� FRHIILFLHQW� LV�

K =
λ
∆\ ��)RU�LVRODWHG�VSKHUHV�

KG�

λ
= 2 + 0.6Re1/ 2 Pr1/ 3 ��

�
)LOP�0RGHO�IRU�PDVV�WUDQVIHU��

:KLWPDQ��������>��@�XVHG�D�VLPLODU�WUHDWPHQW�IRU�PDVV�WUDQVIHU�IURP�D�IOXLG�
WR� D� VROLG� VXUIDFH� DQG� DJDLQ� SURSRVHG� D� OLQHDU� FRQFHQWUDWLRQ� SURILOH� LQ� WKH�
ILOP��WKH�WRWDO�PDVV�IOX[�WKURXJK�WKH�ILOP�IRU�VSHFLHV�L��PROH�V��DFFRUGLQJ�WR�

)LFN·V�ODZ�LV� 1 �

•
= '$∆F �

∆\ �RU� 1 �

•
= N$∆F � �ZKHUH� N =

'
∆\ � LV�WKH�

ILOP� PDVV� WUDQVIHU� FRHIILFLHQW�� )RU� LVRODWHG� VSKHUHV��
NG�

' = 2 + 0.6Re1/ 2 6F1/ 3 ��7KH��6KHUZRRG�QXPEHU�DSSHDUV�LQ�WKH�
OKV�RI�HTXDWLRQV�DERYH��D�FKHPLFDO�HQJLQHHU�VKRXOG�UHPHQEHU�VRPH�
QXPEHUV��DQG�RQH��
LV�6K���� ���
�
�
�
�
�

$QDORJLHV�EHWZHHQ�PRPHQWXP��KHDW�DQG�PDVV�WUDQVIHU��
:KHQ��6F�DQG�3U�DUH�RI�WKH�RUGHU�RI�����WKH�DQDORJ\�RI�5H\QROGV�EHWZHHQ�WKH�WKUHH�WUDQVSRUW�PRGHV�LV���
0V� 0V� I���RU��
N
X� =

K
ρF	 X�

= I /2 � >��D@�
�
:KHQ�6F� LV�������OLTXLGV�� LQ� ODPLQDU� IORZ�D�VPDOO� WXUEXOHQFH�FDQ�DIIHFW� WKH� WUDQVSRUW�RI�KHDW�PDVV�HYHQ� LI� WKH�
YHORFLW\�GLVWULEXWLRQ�LV�QRW�PXFK�DIIHFWHG��7KH�DQDORJ\�RI�&KLOWRQ�&ROEXUQ�LV�WKHQ�DSSOLHG��

�
7��6KHUZRRG�

�
)LJXUH����)LOP�0RGHO�
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M� = M� = I /2

M� = 0V�6F2 / 3

M� = 0V� Pr 2 / 3
� >��E@�

'LIIXVLRQ��FRQYHFWLRQ�DQG�UHDFWLRQ�LQ�LVRWKHUPDO�FDWDO\VWV����LQWXLWLRQ�LV�QRW�HQRXJK�

7KH�LPSRUWDQFH�RI�LQWUDSDUWLFOH�FRQYHFWLRQ�LQ�WKH�FDWDO\VW�HIIHFWLYHQHVV�ZDV�DQDO\VHG�E\�1LU�DQG�3LVPHQ��>��@�LQ�
�����IRU�ILUVW�RUGHU�LUUHYHUVLEOH�UHDFWLRQ�LQ�LVRWKHUPDO�FDWDO\VWV���7KH�SUREOHP�ZDV�ILUVW�GHDOW�ZLWK�E\�:KHHOHU�LQ�
����� >��@� �� KH� FRQFOXGHG� WKDW� LQWUDSDUWLFOH� FRQYHFWLRQ�ZRXOG�EH� LPSRUWDQW�RQO\� IRU� JDV�SKDVH� V\VWHPV� DW�KLJK�
SUHVVXUH�LQ�FDWDO\VWV�ZLWK�YHU\�ODUJH�SRUHV��)RU�WKH�UHDFWLRQ��$�→ %�LQ�VODE�FDWDO\VWV�WKH�PDVV�EDODQFH�LV��
G2 I
G[2 −2λ�

GI
G[ − 4φ�2 I = 0 � >��@�

ZLWK�%&��I ��DW�[ ��DQG�[ ���0RGHO�SDUDPHWHUV�DUH��
7KLHOH�PRGXOXV�

��

φ� = "
N
'�

� �φ�
2 � UDWLR� EHWZHHQ� WLPH�

FRQVWDQWV�IRU�SRUH�GLIIXVLRQ�DQG�UHDFWLRQ���LQWUDSDUWLFOH�
3HFOHW� QXPEHU� �

��

λ� =
Y0"

'�
� �UDWLR� EHWZHHQ� WLPH�

FRQVWDQWV� IRU� SRUH� GLIIXVLRQ� DQG� FRQYHFWLRQ��� 7KH�
FRQFHQWUDWLRQ�SURILOH�LQVLGH�WKH�FDWDO\VW�LV��

I =
VKα 2Hα1 (2	 −1) − VKα1Hα 2(2	−1)

VK (α 2 −α1)
� >��@�

ZKHUH�α1,2 =
λ
 ± λ
2 + 4φ�2

2
��

7KH�HIIHFWLYHQHVV�IDFWRU�LV��

21

21 /1/1

DD
DDK FRWKFRWK

�

−
−= � >��@�

:KHQ�FRQYHFWLRQ�LV�QRW�LPSRUWDQW��L�H���λP� ���η� =
tanhφ�

φ�
��7KH�HIIHFW�RI�FRQYHFWLRQ�FDQ�EH�VHHQ�LQ�)LJXUH���

ZKHUH���ηGF�ηG�LV�SORWWHG�YHUVXV��λP�DQG�φV��,Q�WKH�LQWHUPHGLDWH�UHJLRQ�RI�7KLHOH�PRGXOXV��VLPLODU�UHDFWLRQ�DQG�
GLIIXVLRQ�UDWHV��WKH�HIIHFWLYHQHVV�RI�WKH�FDWDO\VW�LV�LPSURYHG�E\�FRQYHFWLRQ��7KH�SRUH�FRQYHFWLRQ�ZLOO�DSSDUHQWO\�
LQFUHDVH�GLIIXVLYLW\�DQG�PRYH�WKH�FDWDO\VW�ZRUNLQJ�UHJLPH�IURP�GLIIXVLRQDO�WR�´FKHPLFDOµ�FRQWUROOHG��7KH�PHVVDJH�
LV��LQWXLWLRQ�LV�QRW�HQRXJK���
�

] �O ] � ] O

F�� F�������� �������

������
����������

������ �� �!���"#

I �
O$ �

�
)LJXUH����$VV\PHWULF�FRQFHQWUDWLRQ�SURILOHV�

LQ�ODUJH�SRUH�FDWDO\VWV�
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�
�
�
�
�
)LJXUH����KGF�KG��YHUVXV�OP�DQG�IV�
�
�
)OXLG�IORZ�LQ�FKHPLFDO�UHDFWRUV��5HVLGHQFH�7LPH�'LVWULEXWLRQ��57'��DQG�WUDFHU�WHFKQRORJ\�

'DQFNZHUWV��������>��@�DSSURDFKHG�WKH�VWXG\�RI�IOXLG�IORZ�LQ�UHDFWRUV�LQ�D�EULOOLDQW�DQG�VLPSOH�ZD\��´LQWURGXFH�D�
SXOVH�RI�WUDFHU� LQWR�WKH�IOXLG�HQWHULQJ� WKH�UHDFWRU�DQG�VHH�ZKHQ�LW� OHDYHVµ��7KH�QRUPDOL]HG�RXWOHW�FRQFHQWUDWLRQ�
YHUVXV�WLPH�LV�WKH�5HVLGHQFH�7LPH�'LVWULEXWLRQ��57'���7KH�VWXG\�RI�57'�RI�IORZLQJ�IOXLGV�DQG�LWV�FRQVHTXHQFHV�
FDQ�EH�SXW�XQGHU�WKH�XPEUHOOD�RI�WUDFHU�WHFKQRORJ\��7KLV�LV�LPSRUWDQW�IRU�
FKHPLFDO�HQJLQHHUV��UHVHDUFKHUV�LQ�WKH�PHGLFDO�ILHOG��HQYLURQPHQW��HWF�WR�
GLDJQRVH�WKH�UHDFWRU�EHKDYLRXU��GUXJ�GLVWULEXWLRQ�LQ�WKH�ERG\��HWF��:KHQ�
,� WDXJKW� WKLV� VXEMHFW� DW� WKH� 8QLYHUVLW\� RI� 9LUJLQLD� VWXGHQWV� VDZ� WKH�
DSSOLFDWLRQ�ZKHQ�LQ�D�'HSDUWPHQW�6HPLQDU�VRPHRQH�IURP�0HUFN��6KDUS�
DQG� 'RPH� WDONHG� DERXW� SKDUPDFRNLQHWLFV�� 'DQFNZHUWV� EXLOW� D� WKHRU\�
EDVHG�RQ�WKH�FKDUDFWHUL]DWLRQ�RI�IOXLG�HOHPHQWV�RI�D�SRSXODWLRQ�LQVLGH�WKH�
UHDFWRU� �DJH� DQG� OLIH� H[SHFWDWLRQ�� DQG� OHDYLQJ� WKH� UHDFWRU� �UHVLGHQFH�
WLPH���7KHQ�KH�LQWURGXFHG�WKH�´GLVWULEXWLRQµ��UHODWLYH�WR�HDFK�FKDUDFWHU��
WKH� UHVLGHQFH� WLPH�GLVWULEXWLRQ�(�W�� LV� WKHQ�GHILQHG� DV�(�W�GW� EHLQJ� WKH�
IUDFWLRQ� RI� IOXLG� HOHPHQWV� OHDYLQJ� WKH� UHDFWRU� ZLWK� UHVLGHQFH� WLPH�
EHWZHHQ� W� DQG� W�GW�� 7KH� QH[W� TXHVWLRQ� LV� KRZ� WR� H[SHULPHQWDOO\� KDYH�
DFFHVV� WR� (�W��� 7KLV� EULQJV� WKH� WUDFHU� WHFKQRORJ\� WR� WKH� FHQWHU� RI� WKH�
DUHQD��7KH�QRUPDOL]HG�UHVSRQVH�WR�DQ�LPSXOVH�RI�WUDFHU�&�W��LV�GLUHFWO\�UHODWHG�ZLWK�WKH�57'�L�H���&( W) = τ( (W) ��
RU�WKH�QRUPDOL]HG�UHVSRQVH�WR�D�VWHS�LQSXW�RI�WUDFHU��)�W��FXUYH�RI��'DQFNZHUWV�LV�(( W) =

G) (W)
GW ��

7KLV� LV�D�FKDUDFWHULVWLF�RI� OLQHDU�V\VWHPV�� WKH� UHVSRQVH�WR� DQ� LPSXOVH� LV� WKH�GHULYDWLYH�RI�WKH� UHVSRQVH� WR�D�VWHS�
LQSXW�� +RZ� WKLV� OLQHDULW\� DSSHDUV� LQ� WKLV� PDFURVFRSLF� YLVLRQ� RI� IOXLG� IORZ� ZKHUH� 1DYLHU�6WRNHV�
ρ'Y
'W = ρJ− ∇ 3 + µ∇ 2Y �DSSOLHV�LQ�D�GHWDLOHG�GHVFULSWLRQ�LV�D�PDWWHU�RI�WKLQN�DERXW��

�
'DQFNZHUWV�
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,W� LV�DOVR� LQWHUHVWLQJ� WR�QRWH� WKDW� WKH�57'�LV� WKH�LQYHUVH�/DSODFH� WUDQVIRUP�RI� WKH� WUDQVIHU� IXQFWLRQ�*�V�� �� L�H���
(( W) =/−1*(V) ���
7KLV�UHODWLRQ�DOORZV�WKH�FDOFXODWLRQ�RI�WKH�PRPHQWV�RI�(�W��IURP��*�V��DQG�LWV�GHULYDWLYHV�DW��V ����9DQ�GHU�/DDQ�
WKHRUHP���
)LQDOO\� WKH� FKHPLFDO� HQJLQHHU� XVHV� WKH� K\GURG\QDPLF�
FKDUDFWHUL]DWLRQ� WR� FRQQHFW�ZLWK� WKH� UHDFWLRQ� NLQHWLFV�
REWDLQHG� LQ� D� EDWFK� UHDFWRU�� F������ �W��� DQG�SUHGLFW� WKH�
DYHUDJH�RXWOHW�FRQFHQWUDWLRQ�LQ�D�UHDO�UHDFWRU���

< F� >= ( (W)F���	


0

∞

∫ (W)GW � >��@�
7KLV�UHVXOW� LV�YDOLG�IRU�ILUVW�RUGHU�UHDFWLRQV��)RU�RWKHU�
UHDFWLRQ� NLQHWLFV� LW� JLYHV� WKH� OLPLW� ZKHQ� WKH� IORZ� LV�
FRPSOHWHO\� VHJUHJDWHG�� LQ� WKH� OLPLW� RI� PD[LPXP�
PLFURPL[LQJ�WKH�=ZLHWHULQJ�HTXDWLRQ�KROGV��
�
0RUH����PRGHOV��DGVRUSWLRQ�FROXPQV��3K\VLFDO�FRQFHSWV�IURP�VLPSOH�PRGHOV��

7KH�PRGHO� DVVXPHV� LVRWKHUPDO� RSHUDWLRQ�� SOXJ� IOXLG� IORZ�� LQILQLWHO\� IDVW�PDVV� WUDQVIHU� EHWZHHQ� IOXLG� DQG� VROLG�
SKDVHV��LQVWDQWDQHRXV�HTXLOLEULXP�DW�WKH�LQWHUIDFH��DQG�WUDFH�V\VWHP��0RGHO�HTXDWLRQV�DUH���

X0

∂F �

∂] + ε ∂F�

∂W + (1−ε)
∂ 〈T�〉

∂W = 0

〈T�〉 = T�
* = I (F �)

� >��@�

ZKHUH��T�!�LV�WKH�DYHUDJH�FRQFHQWUDWLRQ�LQ�WKH�DGVRUEHQW�DQG��T

* = I (F 
) �LV�WKH�FRQFHQWUDWLRQ�DW�WKH�VXUIDFH�LQ�

HTXLOLEULXP�ZLWK� WKH� IOXLG� FRQFHQWUDWLRQ� F���8VLQJ� WKH� F\FOLF� UHODWLRQ� EHWZHHQ� SDUWLDO� GHULYDWLYHV� �\HV«WKH\� DUH�
XVHIXO���ZH�JHW���

X� � =
∂]
∂W

 
 
 

 
 
 
� �

=
X�

1+ 1−ε
ε

I ’(F�)
� >��@�

7KLV� LV� 'H� 9DXOW� � HTXDWLRQ� ������� >��@�� 7KRVH� LQWHUHVWHG� LQ� XQGHUVWDQGLQJ� DGVRUSWLYH� DQG� FKURPDWRJUDSKLF�
SURFHVVHV�ZLOO� UHFRJQL]H� WKLV� LV� WKH�PRVW� LPSRUWDQW� UHVXOW� WR� UHWDLQ�� ,W� VKRZV� WKDW�DGVRUSWLRQ� LQ� IL[HG�EHGV� LV�D�
SKHQRPHQRQ� RI� SURSDJDWLRQ� RI� FRQFHQWUDWLRQ� ZDYHV�� 7KH� VLPSOHVW� PRGHO� VKRZV� WKDW� WKH� QDWXUH� RI� WKH�
HTXLOLEULXP�LVRWKHUP�LV�WKH�PDLQ�IDFWRU�LQIOXHQFLQJ�WKH�VKDSH�RI�WKH�EUHDNWKURXJK�FXUYH���7KH�SK\VLFDO�FRQFHSWV�
WR�EH�UHWDLQHG�DUH��GLVSHUVLYH�ZDYHV�DUH�IRUPHG�ZKHQ�LVRWKHUPV�DUH�XQIDYRXUDEOH��HDFK�FRQFHQWUDWLRQ�SURSDJDWHV�
ZLWK� D� YHORFLW\� JLYHQ� E\�'H�9DXOW� HTXDWLRQ��&RPSUHVVLYH�ZDYHV� DUH� IRUPHG� IRU� IDYRXUDEOH� LVRWKHUPV� DQG� WKH�

(�4�

�
)LJXUH�����5HVLGHQFH�WLPH�GLVWULEXWLRQ��57'�
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SK\VLFDO� OLPLW� LV� D� VKRFN�ZKLFK�SURSDJDWHV�ZLWK�D�YHORFLW\� � X�� =
X�

1+ 1−ε
ε

∆T�

∆F �

� ��ZKHUH� WKH�VORSH�RI� WKH�FKRUG�

OLQNLQJ�WKH�IHHG�VWDWH�DQG�WKH�EHG�LQLWLDO�VWDWH�DSSHDU�LQVWHDG�RI�WKH�ORFDO�VORSH�RI�WKH�HTXLOLEULXP�LVRWKHUP��
�

F F

[

Q

�

F F

[

Q

�
�D�� �E��

)LJXUH������D��8QIDYRUDEOH�LVRWKHUPV�DQG�GLVSHUVLYH�IURQWV��E��)DYRUDEOH�LVRWKHUP�DQG�FRPSUHVVLYH�
IURQW��

�
������PRGHOV�

/HYHQVSLHO� >�@� VXPPDUL]HV� WKH� SURJUHVV� RQ� WKH� VWXG\� RI� IOXLG� IORZ�� ´,Q� WKH� ����� FHQWXU\� WKHUH� ZHUH� WZR�
DSSURDFKHV�WR�VWXG\�IOXLG�IORZ��K\GURG\QDPLFV��GHDOW�ZLWK�LGHDO�IULFWLRQOHVV�IOXLG��KLJKO\�PDWKHPDWLFDO�VWXII��DQG�
K\GUDXOLFV�GHYHORSHG�E\�FLYLO� HQJLQHHUV�´�ZKR�DPDVVHG�PRXQWDLQV�RI� WDEOHV�RI�SUHVVXUH�GURS�DQG�KHDG� ORVV�RI�
IOXLGV� LQ� RSHQ� DQG� FORVHG� FKDQQHOV� RI� DOO� VRUW«µ�� $W� WKH� EHJLQQLQJ� RI� WKH� ����� FHQWXU\� 3UDQGWO� VDLG�
´+\GURG\QDPLFV�KDV�OLWWOH�VLJQLILFDQFH�IRU�WKH�HQJLQHHU�EHFDXVH�RI�WKH�JUHDW�PDWKHPDWLFDO�NQRZOHGJH�UHTXLUHG�IRU�
DQ�XQGHUVWDQGLQJ�RI�LW�DQG�WKH�QHJOLJLEOH�SRVVLELOLW\�RI�DSSO\LQJ�LWV�UHVXOWV��7KHUHIRUH�HQJLQHHUV�SXW�WKHLU�WUXVW�LQ�
WKH�PDVV�RI�HPSLULFDO�GDWD�FROOHFWLYHO\�NQRZQ�DV�WKH�´VFLHQFH�RI�K\GUDXOLFVµ��3UDQGWO�ZDV�WKH�JHQLXV�ZKR�SDWFKHG�
WRJHWKHU�WKHVH�GLIIHUHQW�GLVFLSOLQHV�ZLWK�KLV�VLPSOH�ERXQGDU\�OD\HU�WKHRU\��7KH�UHVXOW�LV�PRGHUQ�IOXLG�PHFKDQLFV��
2Q� WKH� RWKHU� KDQG� QXPHULFDO� PHWKRGV� IRU� WKH� VROXWLRQ� RI� 3'(·V� H[LVW� DQG� WKH� FRPELQDWLRQ� RI� WZR� VROLG�
GLVFLSOLQHV�DSSHDUV�ZLWK�D�QHZ�QDPH��´&RPSXWDWLRQDO�)OXLG�'\QDPLFVµ��7ZHQW\�\HDUV�DJR�,�SXEOLVKHG�LQ�,6&5(��
´5HVLGHQFH�WLPH�GLVWULEXWLRQ�LQ�ODPLQDU�IORZ�WKURXJK�UHVHUYRLUV�IURP�PRPHQWXP�DQG�PDVV�WUDQVSRUW�HTXDWLRQVµ�
>��@��,W�LV�D�SUREOHP�RI���'�IORZ�LQ�D�UHVHUYRLU�RI�OHQJWK�/�DQG�KHLJKW�+�ZKHUH�D�VWDWLRQDU\�ODPLQDU�IORZ�H[LVWV�
EHWZHHQ�LQOHW�DQG�RXWOHW��)LJ�������7KH�IRUPXODWLRQ�LV�PDGH�LQ�WHUPV�RI�YRUWLFLW\�DQG�VWUHDP�IXQFWLRQ��WKH�IORZ�ILHOG�
LV�REWDLQHG�DQG�WKH�57'�LV�REWDLQHG�E\�VROYLQJ�WKH�PDVV�FRQVHUYDWLRQ�HTXDWLRQ���
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∂(XΩ)

∂[ + ∂(YΩ)

∂\ =ν ∂ 2Ω
∂[ 2

+ ∂ 2Ω
∂\ 2

 

 
  

 

 
  

X=
∂ψ
∂\ ;Y = −

∂ψ
∂[

∂ 2ψ
∂[2 +

∂ 2ψ
∂\2

 

 
  

 

 
  = −Ω

∂&
∂W +

∂(X&)

∂[ +
∂(X&)

∂\ = ' ∂ 2&
∂[2

+
∂ 2&
∂\ 2

 

 
  

 

 
  

� >��@�

7KLV�SUREOHP�ZDV�VROYHG�ZLWK�PRGHUQ�WRROV��)OXHQW��UHFHQWO\��,W�FRXOG�EH�DQRWKHU�&)'�SDFNDJH��&);��),'$3��
HWF���

�

�

�

�
�
�
�
�

�

�
)LJXUH�������'�IORZ�LQ�D�UHVHUYRLU�DQG�57'��

�
�
�
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6LPXODWLRQ�

&KURPDWRJUDSKLF�SURFHVVHV�

7KH� ILUVW� FKURPDWRJUDSKLF� H[SHULPHQW� GDWHV� IURP� ����� DQG� ZDV� UHSRUWHG� LQ� ����� E\� 3URIHVVRU� RI� %RWDQ\��
0�7VZHWW� WR�WKH� �:DUVDZ�6RFLHW\�RI�1DWXUDO�6FLHQFHV��´2Q�D� FDWHJRU\� RI� DGVRUSWLRQ�SKHQRPHQD�DQG� WKHLU� DSSOLFDWLRQ� WR�
ELRFKHPLFDO�DQDO\VLVµ�>��@��+H�FRLQHG�WKH�WHUP�´FKURPDWRJUDSK\µ�LQVSLUHG�LQ�WKH�H[SHULPHQW���HOXWLRQ�RI�D�VDPSOH�RI�
JUHHQ�OHDYHV�H[WUDFW�WKURXJK�D�FROXPQ�RI�FDOFLXP�FDUERQDWH�ZKLFK�ZDV�VHSDUDWHG�LQ�D�\HOORZ�IUDFWLRQ�FDURWHQHV��
DQG�JUHHQ�IUDFWLRQ��FKORURSK\OO���7KHVH�VWXGLHV�ZHUH�UHGLVFRYHUHG�LQ������E\�WKH�1REHO�3UL]H�5��.XKQ�ZRUNLQJ�
RQ�QDWXUDO�SLJPHQWV��7KH�WKHRU\�RI�DGVRUSWLRQ�FKURPDWRJUDSK\�ZDV�GHYHORSHG�LQ������E\�7LVHOLXV�DQG�SDUWLWLRQ�
FKURPDWRJUDSK\� LQ� ������E\�$�� -��3��0DUWLQ� DQG�$��/��0��6\QJH� �DOO�1REHO�� ��������$QRWKHU�YLVLRQ�RI�KLVWRU\�
VKRZV�'DYLG�7DOERW�'D\�>��@��JHRORJLVW�DQG�HQJLQHHU�DW�WKH�0LQHUDO�5HVRXUFHV�RI�WKH�86�*HRORJLFDO�6XUYH\��ZKR�
SUHVHQWHG� LQ������DW� WKH� ��VW� ,QWHUQDWLRQDO�3HWUROHXP�&RQJUHVV� LQ�3DULV� �������RQH�H[SHULPHQW�ZKHUH�´FUXGH� RLO�
IRUFHG�XSZDUG�WKURXJK�D�FROXPQ�SDFNHG�ZLWK�OLPHVWRQH�FKDQJHG�LQ�FRORU�DQG�FRPSRVLWLRQµ���7KLV�LV�WKH�EDVLV�RI�321$�DQDO\VLV�
HVWDEOLVKHG�LQ������DQG�VWLOO�XVHG�LQ�SHWUROHXP�LQGXVWU\�ZKHUH�WKH�DGVRUEHQW�LV�VLOLFD�JHO��
�

�
V

A

R

1

�

e

f

d

ba

c

�
���� ����

)LJXUH����� ([SHULPHQWV�RI�0��7VZHWW�����DQG�'��7��'D\������
�

0RGHOLQJ�RI�FKURPDWRJUDSKLF�SURFHVVHV�
7KH�IDFWRUV�LQIOXHQFLQJ�WKH�EHKDYLRXU�RI�D�IL[HG�EHG�FROXPQ�FDQ�EH�FODVVLILHG�LQ�WZR�FDWHJRULHV��HTXLOLEULXP�DQG�
NLQHWLF�IDFWRUV��K\GURG\QDPLFV��KHDW�PDVV�WUDQVIHU���
�
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�
�

0RGHOV� FDQ� EH� FODVVLILHG� LQ� � WZR� JURXSV�� � ,�� &KHPLFDO�
NLQHWLFV�W\SH��DQG��,,��3K\VLFDO�NLQHWLFV�W\SH�GHSHQGLQJ�RQ�
WKH� UDWH� ODZ� XVHG>�����@� �� 7KH� QXFOHL�PRGHO� DUH� 7KRPDV�
>��@�IRU�7\SH�,�DQG�5RVHQ�>��@�IRU�7\SH�,,���
�
�
�

7KRPDV�0RGHO�

� X∂F
∂[ +

∂F
∂W +

1−ε
ε

∂Q
∂W = 0 � >��D@�

∂Q
∂W = N1[F(Q0 − Q) − UQ (F0 −F)] � >��E@�

[� �����F� �F� ∀ W��DQG� X
[W ≤ ��Q� ��� ∀ [�

. =
1

U =
\*(1− [* )

[*(1− \* )
�ZLWK� [* =

F
F0

 

 
  

 

 
  �� �DQG�\


� � Q
Q0

 

 
  

 

 
  �� � >��F@�

7KH�VROXWLRQ�LV��
F
F0

=
1

2
+

2

π
H� sin%

0

∞

∫ Gλ
λ
� >��@�

ZKHUH�$� DQG� �%� DUH� IXQFWLRQV�RI� WKH�PRGHO�SDUDPHWHUV��7KH�$Q]HOLXV�6FKXPDQQ�PRGHO� >�����@�GHYHORSHG�IRU�
KHDW�WUDQVIHU�LV�D�VLPSOLILFDWLRQ�ZKHQ�ILOP�UHVLVWDQFH�LV�FRQVLGHUHG��7KH�VROXWLRQ�LV��

0F
F  �-�1� ��1� �7��ZKHUH��WKH�

QXPEHU�RI�ILOP�PDVV�WUDQVIHU�XQLWV��1� ���LV�EDVHG�RQ�WKH�EHG�OHQJWK���
7KH�FKURPDWRJUDSKLF�FROXPQ�DV�D�G\QDPLF�V\VWHP�

)RU�OLQHDU�V\VWHPV�WKH�WUDQVIHU�IXQFWLRQ�RI�WKH�FROXPQ��*�V���LV�WKH��/DSODFH�WUDQVIRUP�RI�WKH�QRUPDOL]HG�LPSXOVH�
UHVSRQVH��(�W��DQG�WKH�PRPHQWV�RI�(�W��DUH�REWDLQHG�IURP�*�V���

µ� = W�((W)GW = (−1)
�

0

∞

∫ G �*(V)
GV� 	

=0

� >��@�

�
)RU�WKH�RULJLQDO�PRGHO�RI��0DUWLQ�H�6\QJH�>��@�7KH�3ODWH�7KHRU\�RI�0DUWLQ�DQG�6\QJH��WKH�WUDQVIHU�IXQFWLRQ�LV����


��
���
����� ����������

��
���
����� ���������

�������� �
�����

� !
�! ������ "#��$

%&����'
��� ����

�
)LJXUH�����)DFWRUV�JRYHUQLQJ�WKH�EHKDYLRU�

RI�DQ�DGVRUSWLYH�SURFHVV�
�
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�

*(V) = J�
�

∏ (V) = (1+
W�V
- )−� � >��@�

ZKHUH��τ� -Y� �8�LV�WKH�VSDFH�WLPH�RI�WKH�IOXLG�SKDVH�DQG��N� �PY��Y� �Q��Q� �����LV�WKH��UDWLR�RI�DPRXQW�RI�VROXWH�
LQ�HDFK�SKDVH�DQG�WKH�VWRLFKLRPHWULF�WLPH�LV�W�� �τ����N���7KH�RXWOHW�QRUPDOL]HG�FRQFHQWUDWLRQ�LV��

(( W) =
1

W 	
W
W 	

 

 
  

 

 
  



−1 - 


(- −1)!
H−

 �

/
�� � >��@�

7KH�PRPHQWV�RI�(�W�� DUH��
 ����� τ���N�� DQG�σ�� � W���-�� WKH�SHDN�PD[LPXP�LV� � W��� W������-��DQG� WKH�SHDN�
ZLGWK�DW�PLG�KHLJKW�IRU��KLJK�-���LV�2σ = 2W� - ��
7KH�PRGHO���0L[LQJ�FHOOV�LQ�&DVFDGH�ZLWK�([FKDQJH��>��@��LV�REWDLQHG�ZKHQ�WKH�PDVV�WUDQVIHU�EHWZHHQ�SKDVHV�KDV�
ILQLWH�UDWH��0RGHO�HTXDWLRQV�DUH���

8F0 =8F1 + Y� GF1

GW + N�6(F1 −
Q1

P ) � >��@�

N�6(F1 −
Q1

P ) = Y� GQ1

GW � >��@�

%\�SXWWLQJ��t m =  
mvs

kmS
  =  

m

kmap

WKH�WUDQVIHU�IXQFWLRQ�*�V��LV���

*(V) = 1+
τV
- 1+

N
1+ W�V

 

 
  

 

 
  

 
 
 

  

 
 
 

  

−
�
� >��@�

7KH� PRPHQWV� RI� WKH� FKURPDWRJUDSKLF� SHDN� DUH��
W� = τ (1+ N) �DQG�σ

2

W� =
1

- +
2N

1+ N
W�
W� ���

9DQ� 'HHPWHU�� =XLGHUZHJ� DQG� .OLQNHQEHUJ� YLHZHG� WKH�
FROXPQ�DV�D�FRQWLQXRXV�V\VWHP�>��@�ZLWK�

*(V) = exp
3H
2

−
3H
2

1+
4Vτ (1+ 0(V))

3H
 

 
 
 

 

 
 
 
� >��@�

ZKHUH� 0(V) =
N

1+ W�V �� 7KH� YDULDQFH� LV� REWDLQHG� E\�
UHSODFLQJ���-�E\���3H��
�

��  

!"�#

$

�

 
% &�$$

�  

!"�#

$

�

 

�

% &�$$

% &'

% &'

( & )

( &�$)

�
)LJXUH�����,QIOXHQFH�RI��-�DQG��1I NPDSW����H��H��
RQ�WKH�VKDSH�RI�D�FKURPDWRJUDSKLF�SHDN�IRU�

N ���
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�
3URJUHVVLYH�PRGHOOLQJ�

$�FRPSOHWH�WUHDWPHQW�GHWDLOV�WKH�SDUWLFOH�GHVFULSWLRQ��:KHQ�ILOP�UHVLVWDQFH�LV�LQFOXGHG�ZH�KDYH��

N� 6� (F −F� ) =9�
G F
GW � >��@�

ZKHUH����F
�F��� ε� ���ρ�N� �P�DQG��

F =
F�’
P +

G
N�

G F
GW � >��@�

7KH�UHODWLRQ�EHWZHHQ��F
!�DQG��F
�	��FDQ�EH�REWDLQHG�E\�VROYLQJ�WKH�SDUWLFOH�PDVV�EDODQFH��
7$%/(����&KDUDFWHULVWLF�GLPHQVLRQ��+�V��DQG�VKDSH�IDFWRU��

*HRPHWU\� &KDUDFWHULVWLF�'LPHQVLRQ�
G 9��6� � 
FFV+ ’’)( = � 6KDSH�)DFWRU�

µ�
VODE�RI�WKLFNQHVV��O� O�� tanhφ

φ
� ����

LQILQLWH� F\OLQGHU� RI� UD�GLXV�5� 5��� ,1(2φ)

φ, �(2φ)
� ����

VSKHUH�RI�UDGLXV�5� 5��� 1

φ
1

tanh 3φ
−

1

3φ
 

 
  

 

 
  � ����

DQ\�VKDSH� G� 1

1+ µφ2 � µ 

� � � ZLWK��φ2 =
G2V
'�

�
�
$�JRRG�DSSUR[LPDWLRQ�LV��+�V�� ������W
V��ZLWK��W
� �µG��'��DQG�WKHQ�

/(V) =
< F’>

−

F−
=

P
1/+ (V) + W�V =

P
1+ ( W� + W� )V � >��@�

ZLWK��W� PG�N� ��
)RU� ILQLWH� DGVRUSWLRQ� UDWH� � /�V�� ≅ P�>���W
�W��W��V@� ZKHUH� � W� ρ�.��PN��� ,Q� JHQHUDO� 0�V� N����W�V�� ZLWK���
W� W
�W��W��H�*�V� *�>V���0�V�@�ZKHUH�*��V��LV�WKH�FROXPQ�WUDQVIHU�IXQFWLRQ�LQ�DEVHQFH�RI�DGVRUSWLRQ���
�
3HUIXVLRQ�FKURPDWRJUDSK\��,PSRUWDQFH�RI�LQWUDSDUWLFOH�FRQYHFWLRQ�LQ�ODUJH�SRUHV�

,Q�FKHPLFDO�HQJLQHHULQJ� WKHUH�DUH�PDWHULDOV� �FDWDO\VWV�� DGVRUEHQWV��PHPEUDQHV��ZLWK� ODUJH�SRUHV��!������$�� IRU�
WUDQVSRUW� DQG� VPDOOHU� SRUHV� WR� SURYLGH� DGVRUSWLRQ� FDSDFLW\� DQG� FDWDO\WLF� VLWHV�� $V� PHQWLRQHG� LQ� WKH� VHFWLRQ�
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WKH�SDUWLFOH�SHUPHDELOLW\�DQG�SUHVVXUH�JUDGLHQW���FRQYHFWLRQ�FRQWUROOHG�OLPLW���,Q�ODUJH�SRUH�VXSSRUWV�WKH�FROXPQ�
SHUIRUPDQFH� LV� LPSURYHG�VLQFH�+(73�LV� ORZHU�WKDQ�ZLWK�FRQYHQWLRQDO�VXSSRUWV� � �WKH�&�WHUP�RI�9DQ�'HHPWHU�
HTXDWLRQ�LV�UHGXFHG���DQG�WKH�VSHHG�RI�VHSDUDWLRQ�LV�LQFUHDVHG�ZLWKRXW�ORRVLQJ�HIILFLHQF\��
�
6LPXODWHG�0RYLQJ�%HG�

7KH�RSHUDWLRQ�RI�6LPXODWHG�0RYLQJ�%HG��60%�LV�HDVLO\�XQGHUVWRRG�E\�
DQDORJ\�ZLWK�D�7UXH�0RYLQJ�%HG��70%��VKRZQ�LQ�)LJ������7KH�V\VWHP�
LV� GLYLGHG� LQ� IRXU� ]RQHV� HDFK� ZLWK� D� VSHFLILF� WDVN�� WKH� OHVV� UHWDLQHG�
VSHFLHV� LV� UHFRYHUHG� LQ� WKH� UDIILQDWH� DQG� WKH� PRUH� UHWDLQHG� LQ� WKH�
H[WUDFW��,I�ZH�ZDQW�WR�VHSDUDWH�D�ELQDU\�PL[WXUH�LQ�WKH�70%�ZH�QHHG�
WR�IROORZ�WKH�FRQVWUDLQWV�VKRZQ�LQ�)LJ�������
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For linear isotherms the separation region  is a triangle shown in  figure 21. 

 

In order to avoid friction between particles flowing in the true moving bed UOP developed the SMB 

technology [42] industrially used now for the separation of p-xylene (Parex process), production of HFCS 

(Sarex process). In the SMB the solid is fixed and the solid movement is simulated by periodically shifting 

the inlet/outlet positions of streams with a URWDU\� YDOYH. Recently the technology was adopted by the 

paharmaceutical industry for the separation of enantiomers [43]. In this case there are typically  6 columns 

with valves associated to each column as shown in Figure 23 a) and b. If mass transfer resistance inside 

particles is important the constraints imposed by the equilibrium theory have to be modified; that is why the 

concept of separation volume was introduced [44] to illustrate in a 3-D diagram the effect of flowrate in 

region I where the adsorbent is regenerated (Figure 24). 

 

 

 

 

 

�
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&RQFOXVLRQV�

0RGHOOLQJ�LV�WKH�DFWLYLW\�ZKLFK�LGHQWLILHV�D�JHQHUDWLRQ�
RI� FKHPLFDO� HQJLQHHUV� DVVRFLDWHG� ZLWK� WKH� 6HFRQG�
3DUDGLJP�RI�&KHPLFDO�(QJLQHHULQJ��6LPXODWLRQ�WDVNV�
FDQ� EH� VLPSOLILHG� HYHQWXDOO\� ZLWK� WKH� DYDLODELOLW\� RI�
VRIWZDUH� ZLWK� IULHQGO\� XVHU� LQWHUIDFHV�� 7KH� TXHVWLRQ�
RI�YDOLGDWLRQ�RI�UHVXOWV�UHPDLQV�DQG�LQ�SULQFLSOH�PRUH�
WLPH� ZLOO� EH� DYDLODEOH� WR� DQDO\]H� UHVXOWV�� 7KH� 7KLUG�
3DUDGLJP� RI� &KHPLFDO� (QJLQHHU� VKRXOG� FRPH� RXW�
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Numerical analysis of the motion of glass under
external pressure.

K. Laevsky, R.M.M. Mattheij
Department of Mathematics and Computer Science,

Eindhoven University of Technology,
PO Box 513, 5600 MB The Netherlands

Abstract

We give a mathematical model of the forming of a glass product in a mould under pressure.
It turns out the the equations of motion are the Stokes equations. One part of the boundary is
given, another part is free. The latter means that the velocity there comes from an external force,
in particular from a piston that drives a moving part of the mould (the plunger) into the glass.
This provides for an additional (kinematic) boundary condition. The complication here is that
the movement of this piston on one hand and the counter force from the glass on the other are
coupled. The equation of motion are the Stokes equations. The boundary condition couples
these with the motion of the plunger, being an ordinary differential equation. It turns out that
the resulting equation for the plunger velocity is stiff, so it should be solved by an implicit
method. However, due to the afore mentioned coupling a straightforward implementation of
such an implicit scheme is impossible. We give a solution to this problem.

1 Introduction

Glass is a simple material and is available in all sorts of applications. Yet production and forming
are matters that still pose questions the answers to them relying more and more on mathematical
modelling and simulation, cf.[2], [3], [4]. In this paper we consider the motion of molten glass by
pressure, which is an important step in the production of container glass. In particular we model
the pressing of a preform or parison in a mould used in the mechanical production of container
glass. In Figure 1.1 we have sketched the various parts making up for the mould. The actual
mould consists of the baffle, the blank, and the neckring. Initially the baffle part is removed and
the mould is open from above (cf. Figure 1.1a). Once a gob of glass is inside the mould, the baffle
is closed and the plunger moves up by the force of a piston (cf. Figure 1.1b,c). This parison (see
Figure 1.1d), is then blown into it final shape in the next stage (see Figure 1.2).

Although the temperature plays an important role in this modelling [5], it can be shown that
during the pressing phase the temperature changes are rather small because of the short time the
pressing takes. Hence we consider the problem to be isothermal. We shall model the process
assuming all parts of the mould and the plunger to have axisymmetric geometry. An appro-
priate choice for the coordinate system to be used in order to solve the equations numerically
are then cylindrical coordinates. The motion of a fluid can be described by Navier Stokes. By
dimension analysis it can be shown that they simplify to Stokes equations, cf. [4] The Stokes
equations in cylindrical coordinates can be formulated as follows, cf [1]. Find the velocity field
v := (ur(r, z,ϕ), uz(r, z,ϕ), uϕ(r, z,ϕ))T and pressure field p := p(r, z, ϕ), which satisfy

1
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Figure 1.1: Pressing process.

∇ ·σ(v, p) = 0, (1.1)

∇ · v = 0, (1.2)

where σ(v, p), the stress tensor, is given by

σ(v, p) = −pI + η(∇v +∇vT). (1.3)

Here I is the identity tensor.
Using the formula for the gradient in cylindrical coordinates we obtain

σ =




−p + 2η
∂ur

∂r
η

(
∂ur

∂z
+

∂uz

∂r

)
η

(
1
r

∂ur

∂ϕ
+

∂uϕ

∂r
− uϕ

r

)

η

(
∂ur

∂z
+

∂uz

∂r

)
−p + 2η

∂uz

∂z
η

(
1
r

∂uz

∂ϕ
+

∂uϕ

∂z

)

η

(
1
r

∂ur

∂ϕ
+

∂uϕ

∂r
− uϕ

r

)
η

(
1
r

∂uz

∂ϕ
+

∂uϕ

∂z

)
−p + 2η

(
1
r

∂uϕ

∂ϕ
+

ur

r

)




. (1.4)

Equations (1.2), (1.1), rewritten in terms of cylindrical coordinates, read as

2



(a) (b)

Figure 1.2: Pressing process.

∂2ur

∂r2 +
∂2ur

∂z2 +
1
r2

∂2ur

∂ϕ2 +
1
r

∂ur

∂r
− 2

r2

∂uϕ

∂ϕ
− ur

r2 =
1
η

∂p
∂r

, (1.5)

∂2uz

∂r2 +
∂2uz

∂z2 +
1
r2

∂2uz

∂ϕ2 +
1
r

∂uz

∂r
=

1
η

∂p
∂z

, (1.6)

∂2uϕ

∂r2 +
∂2uϕ

∂z2 +
1
r2

∂2uϕ

∂ϕ2 +
1
r

∂uϕ

∂r
+

2
r2

∂ur

∂ϕ
− uϕ

r2 =
1
ηr

∂p
∂ϕ

, (1.7)

∂ur

∂r
+

∂uz

∂z
+

1
r

∂uϕ

∂ϕ
+

ur

r
= 0. (1.8)

2 Rotational Symmetry

As was explained in Section 1 both the mould and the plunger are axisymmetric. Since the
plunger is moving in vertical direction the velocity, Vp(t) say, we can write

vp(t) = Vp(t)ez := (0, Vp(t), 0)T , (2.1)

where ez is the unit vector in z direction. We may reduce the dimension of the problem and
consider (1.1), (1.2) in two-dimensional axisymmetric coordinates. The velocity field then has the
components

v := (ur(r, z,ϕ), uz(r, z,ϕ), 0)T , (2.2)

and the pressure field

p := p(r, z, 0). (2.3)

From (1.4) we obtain the stress tensor for the axisymmetric case
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σ =




−p + 2η
∂ur

∂r
η

(
∂ur

∂z
+

∂uz

∂r

)
0

η

(
∂ur

∂z
+

∂uz

∂r

)
−p + 2η

∂uz

∂z
0

0 0 −p + 2η
ur

r




. (2.4)

The Stokes equations (1.5)- (1.8) take the following form

∂2ur

∂r2 +
∂2ur

∂z2 +
1
r

∂ur

∂r
− ur

r2 =
1
η

∂p
∂r

, (2.5)

∂2uz

∂r2 +
∂2uz

∂z2 +
1
r

∂uz

∂r
=

1
η

∂p
∂z

, (2.6)

∂ur

∂r
+

∂uz

∂z
+

ur

r
= 0. (2.7)

Clearly, the pressure p is defined up to a constant. One can should notice singularities in (2.4)-
(1.7) when r = 0.

3 Boundary Conditions

As we have an axisymmetric problem we obtain a domain Ω, as sketched in Figure 3.1. The
boundary Γ := ∂Ω of the domain consists of four parts

Γ = Γs ∪ Γm ∪ Γp ∪ Γ f , (3.1)

where the indices s, m, p, f represent the symmetric, mould, plunger and free boundaries respec-
tively. Let

n = (nr, nz, 0)T , t = (tr, tz, 0)T (3.2)

be the normal and tangent unit vectors respectively for the boundary Γ in the directions as dis-
played in Figure 3.1. Then we find the following boundary conditions. Because of symmetry, the
boundary conditions on Γs are

v · n = 0, (3.3)

σn · t = 0. (3.4)

It is easy to see that

n = (−1, 0, 0)T , t = (0, −1, 0)T , σn = (−σrr, −σrz, 0)T (3.5)

on Γs. Using the expressions for the stress tensor components (2.4) we obtain

ur = 0,
∂ur

∂z
+

∂uz

∂r
= 0. (3.6)

Since ur ≡ 0 on Γs, it follows that the derivative along Γs is also equal to zero, i.e., ∂ur/∂z = 0.
As a result the boundary conditions on Γs can be written as
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Figure 3.1: Problem domain.

ur = 0,
∂uz

∂r
= 0. (3.7)

For the mould and the plunger we will allow both slip and no slip boundary conditions and
everything in between. A partial slip boundary condition for the mould means that the nor-
mal component of the velocity should be zero and the tangential component proportional to the
tangential stress, i.e.

v · n = 0, (3.8)

(σn + βmv) · t = 0, (3.9)

where βm is a friction coefficient. The first equation clearly represents a Dirichlet boundary con-
dition, and the second a Robin boundary condition.

For the plunger which moves with velocity vp (see (2.1)), we find

(v− vp) · n = 0, (3.10)

(σn + βp(v− vp)) · t = 0. (3.11)

Note that vp does not depend on r, z, and βp is again the friction coefficient. The physical meaning
of these conditions is the same as for (3.8), (3.9), with the only difference that here we consider
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the velocity relative to vp, i.e., v− vp. Also we are using the fact that σ(v− vp, p) = σ(v, p). Let
Vp > 0 be the absolute velocity of the plunger, then

vp = Vpez := (0, Vp, 0)T . (3.12)

Actually, the velocity of the plunger Vp is an unknown function of time t, so we should write
Vp(t). Nevertheless, for the boundary conditions below and the Stokes problem as such, we view
this as just a parameter. Hence, the boundary conditions read as follows

v · n = Vpez · n, (3.13)

(σn + βpv) · t = βpVpez · t. (3.14)

Finally the boundary conditions at the free boundary Γ f are defined as the vector relation

σn = −p0n, (3.15)

where p0 is the external pressure. We can take the inner product of (3.15) with n, t and obtain the
boundary conditions in the form of two scalar equations

σn · n = −p0, (3.16)

σn · t = 0. (3.17)

Note that the velocity field found from (1.1), (1.2) with the boundary conditions (3.3) – (3.17),
is independent of the value of p0. From a physical point of view this can be explained by the
incompressibility of the fluid.

4 An Ordinary Differential Equation for the Plunger Velocity

The velocity Vp(t) of the plunger is not known beforehand and in fact coupled to the motion of
the glass itself. Indeed, the plunger movement is the result of a certain pressure pp applied to its
bottom. Let F(t) denote the total force on the plunger and mp be the mass of the plunger. Then

dVp(t)
dt

=
F(t)
mp

. (4.1)

This total force is the sum of

F(t) = Fp + Fg(t), (4.2)

where Fp remains constant through the whole process and Fg(t) is the force on the plunger from
the glass. The constant force can be computed as

Fp = Sp pp = beingsomeconstant. (4.3)

Here Sp is the area of the surface where pressure pp is applied. The second term Fg(t), is the force
on the plunger from the glass. The force from the glass can be expressed in terms of the stress
tensor (2.4)

Fg(t) =
∫

S(t)
σn · ez dS, (4.4)

where σ ≡ σ(t) is the stress tensor, and S(t) the part of the plunger surface which is in contact
with the glass at time t. The formula requires integration of the second component of σn only,
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Figure 4.1: Geometry of the plunger.

as the first one will vanish due to such integration because of the axisymmetrical nature of the
problem.
Consider Figure 4.1 which depicts one half of the plunger (cf. Figure 4.1) turned by 90 degrees.
If z is the axial variable and R(z) denotes the form of the plunger we can derive (cf. [7]

dS = 2π Rp(s) ds = 2π
√

1 + R′p(z)2 Rp(z) dz, (4.5)

where s represents the length over the plunger profile. The two dimensional surface S(t) is
related to the interval [z0, z1] on the z axis. Then (4.4) can be written as follows

Fg(t) = 2π

∫ z1

z0

σn · ez

√
1 + R′p(z)2 Rp(z) dz. (4.6)

The values of σn can be obtained as follows The normal components nr, nz (see Figure 4.1) are
computed as follows

n = − 1√
1 + R′p(z)2

(1, R′p(z), 0)T . (4.7)

Using the expressions (2.4) for the stress tensor components, (4.6) reads

Fg(t) = 2π

∫ z1

z0

((
p− 2η

∂uz

∂z

)
R′p(z) + η

(
∂ur

∂z
+

∂uz

∂r

))
Rp(z) dz. (4.8)

Now in order to compute the velocity of the plunger Vp(t) as a function of time, one should solve
the ordinary differential equation





dVp(t)
dt

=
Fg(t)
mp

+
Fp

mp
,

Vp(0) = V0,

(4.9)

where V0 is some initial velocity of the plunger. Note that we can compute Fg(t), once ur, uz, p
(or σn) are known. The latter are obtained from solving the Stokes equations. In order to solve
the Stokes equations one needs some value for the plunger velocity Vp in (3.13) and (3.14). So, at
time t = 0 we use V0 from (4.9) and find Fg(0). We can thus perform an explicit integration step
in (4.9). In general, suppose we use the Euler forward scheme

Vk+1
p = Vk

p + ∆tk Fg(tk) + Fp

mp
. (4.10)
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Figure 4.2: Velocity of the plunger (numerical instabilities).

Having solved the Stokes equations, with the new velocity of the plunger Vk+1
p , we can com-

plete the boundary conditions for the Stokes problem at t = tk+1. To this end the velocity of the
plunger obtained from (4.10) is used. However, as illustrated in Figure 4.2, the algorithm turns
out to be unstable. Looking more carefully at Figure 4.2 we detect a phenomenon that looks like
stiffness. To overcome this we should take recourse to implicit methods. A fully implicit scheme,
however, practically impossible as we do not know the plunger velocity at tk+1; thus we cannot
use it for the boundary conditions (3.13), (3.14). Of course, a predictor-corrector scheme for such
an implicit integrator will only converge for infeasible small time steps because of stiffness.

5 A Stiffness Phenomenon

In this section we like to investigate the stiffness of the ordinary differential equation (4.9). Clearly,
we need to have a closer look at Fg(t), as derived in (4.8). In general it is impossible to compute
it exactly so we take recourse to a thin film approximation. Here we shall approach the problem
analytically in order to point out the stiffness phenomenon detected in numerical simulation. For
a more detailed discussion see [7]. We shall consider a simple, yet meaningful geometry for the
mould and the plunger, see Figure 5.1. Let each of them be defined by a parabola, say

Rm(z) = dm
√

z, Rp(z) = dp
√

z− z0, (5.1)

where coefficients dm, dp have positive values and z0 is the position of the plunger.
Let us define ε := D/L as the ratio between the length scales corresponding to the parison’s

wall thickness D and the height of the parison L. Since D is smaller than L, ε is a small parameter.
The variables can be then scaled as follows

r = Dr′, z = Lz′, ur = εVu′r, uz = Vu′z, p =
ηVL
D2 p′, (5.2)

where V is the typical flow velocity. Using (5.2) we can make (4.8) dimensionless

Fg(t) := 2πηVLF′g(t). (5.3)

Then (4.8) can be approximated by the following expression
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Figure 5.1: Mould and plunger geometries defined by parabolas.

F′g(t) =
∫ z′1

z′0

((
p′ − 2ε2 ∂u′z

∂z′

)
R′p

′(z′) +
(

ε2 ∂u′r
∂z′

+
∂u′z
∂r′

))
R′p(z′) dz

(5.4)

≈
∫ z′1

z′0

(
p′R′p

′(z′) +
∂u′z
∂r′

)
R′p(z′) dz.

Using (5.2) it is possible to find the exact solution of the Stokes equations (2.5), (2.6), (2.7) (see [7])

u′r =
1
r′

d
dz′

∫ R′m

r′
r′u′z(r′, z′) dr,

(5.5)

u′z =
1
4

r′2
dp′

dz′
+ A(z′) ln r′ + B(z′),

where A(z′) and B(z′) can be obtained from the boundary conditions. The eventual dimensional
force Fg(t) takes then the following form

Fg(t) ≈ 2πηVL V ′
p(t′)

∫ z′1

z′0

cm − cp

(bm − bp)2 − (am − ap)(cm − cp)
dz. (5.6)

Here V ′
p(t′) is the dimensionless velocity of the plunger scaled with V; am, ap, bm, bp, cm, cp denote

am = ln R′m(z′) + sm/R′m(z′), ap = ln R′p(z′) + sp/R′p(z′),

bm = R′m
2(z′)(1 + 2sm/R′m(z′)), bp = R′p

2(z′)(1 + 2sp/R′p(z′))

cm = R′m
4(z′)(1 + 4sm/R′m(z′)), cp = R′p

4(z′)(1 + 4sp/R′p(z′)),

(5.7)

respectively. Here sm, sp are dimensionless parameters similar to the friction coefficients βm, βp
as defined in Section 3. Note that all defined quantities are dimensionless.

The dimensionless integral in (5.4) can be computed numerically. The graph in Figure 5.2
shows the results of this integration as a function of upper bound z′1 in (5.4). Using the same
scaling (4.9) reads
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Figure 5.2: Force on the plunger as a function of z′1

dV ′
p

dt′
= V ′

p I(t)
2πL2η

Vmp
+ C, (5.8)

where t = t′ L/V, Vp = VV ′
p, I(t) is the dimensionless integral from (5.4) and C some constant.

The typical values for L and V are 10−1 m and 10−1 s respectively. The mass of the plunger device
mp is of order 1. The viscosity coefficient η for our problem is a large number

η ≈ 104 kg/s m. (5.9)

One can see that the coefficient of V ′
p on the right-hand side of ??chapter6/section2: equation8)

is large. Indeed, taking I(t) ≈ 1 (see Figure 5.2) we find

I(t)
2πL2η

Vmp
≈ 104. (5.10)

This clearly indicates that (5.8) is a stiff equation. One should note that η is the dominating
quantity. This will also be the case for more complicated geometries. This then shows the inherent
stiffness of the plunger motion equation.

6 Uncoupling the Flow Equations and the Plunger Velocity

From the preceding analysis it follows that an explicit method leads to numerical instabilities, for
not unduly small time steps. We therefore prefer to use an implicit method instead. However,
the right-hand side F(t)/mp of (4.1) depends on the solution of the Stokes equations. In order to
apply an implicit step to (4.1) at time t = tk we need to know Fg(tk+1). In this case we would
compute

Vk+1
p = Vk

p + ∆tk Fg(tk+1) + Fp

mp
. (6.1)

Note that Fg(tk+1) resulting from the solution of the Stokes equations with Vk+1
p . Clearly, in

this way the Stokes equations and the motion of the plunger are coupled. In order to use the
implicit scheme (6.1), we could, for example, predict the velocity of the plunger using (4.10) and
then use it for the boundary conditions in the Stokes equations. After having solved the latter, let
us compute the value for Fg(tk+1) and perform (6.1). Unfortunately this does not work because
of the explicit prediction step, which sooner or later cause numerical instabilities.

Below we work out how to overcome the stiffness phenomenon for our problem. The crucial
role here is played by regarding the velocity of the plunger Vp(t) uncoupled from the parameter
Vp in the boundary conditions for the Stokes problem. We shall make use of the following lemma.
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LEMMA 6.1 Let v1, p1 and v2, p2 be the solutions of the Stokes equations (2.5), (2.6) and (2.7)
with corresponding plunger velocities Vp1 and Vp2 respectively. Then k1v1 + k2v2, p0 + k1(p1 −
p0) + k2(p2 − p0) is also a solution of these equations with Vp = k1Vp1 + k2Vp2 .

Proof. From ∇ · p0 I = 0, it follows that

∇ ·σ(k1v1 + k2v2, p0 + k1(p1 − p0) + k2(p2 − p0)) =
(6.2)

k1∇ ·σ(v1, p1) + k2∇ ·σ(v2, p2) = 0.

It is simple to see that such a linear combination satisfies Stokes equation. Note that

∇ · (k1v1 + k2v2) = k1 ∇ · v1 + k2 ∇ · v2 = 0. (6.3)

Likewise such a property can be shown for the boundary conditions. Considering the pressure
field relative to p0, the boundary conditions (3.16), (3.17) are satisfied

σ(k1v1 + k2v2, p0 + k1(p1 − p0) + k2(p2 − p0))n =
(6.4)

k1(σ(v1, p1)n + p0n) + k2(σ(v2, p2)n + p0n)− p0n = −p0.n.

This proves the lemma. ¤
From Lemma 6.1 it follows that we may consider the velocity and pressure fields at some time

t as affine functions of Vp, so

v(t; Vp) = Vp v(t; 1),

p(t; Vp) = p0 + Vp (p(t; 1)− p0).
(6.5)

Here v(t;α), p(t;α) is the solution of the Stokes equations with the velocity of the plunger equal
to α = const. As a consequence we deduce from (4.8) that this then also holds for the glass force

Fg(t; Vp) = F0(t) + Vp
(

Fg(t; 1)− F0(t)
)

, (6.6)

where F0(t) is the force on the glass due to normal air pressure

F0(t) = 2π

∫ z1

z0

p0R′p(z)Rp(z) dz. (6.7)

Using (6.6) we can reformulate (4.9) as follows




dVp(t)
dt

= Vp(t)
Fg(t; 1)− F0(t)

mp
+

Fp + F0(t)
mp

,

Vp(0) = V0.

(6.8)

Note that one should use Vp = 1 for the boundary conditions (3.13), (3.14). By tracking the
free boundary and defining the Stokes problem, the glass force Fg(t; 1) can be computed for the
changing domain Ω. As a consequence it makes sense to consider the force as a function of the
plunger position, not the time. So we slightly change the notation

Fg := Fg(z; Vp), Vp := Vp(z). (6.9)

Equation (6.8) should be reformulated as follows
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



1
2

dV2
p (z)
dz

= Vp(z)
Fg(z; 1)− F0(z)

mp
+

Fp + F0(z)
mp

,

Vp(0) = V0.

(6.10)

Here we used

dVp(t)
dt

=
dVp(z)

dz
Vp(z). (6.11)

By solving these equations for a evolving glass domains, we can obtain a table with plunger
positions, and velocity and pressure fields computed for Vp = 1 in such domains. Hence, the
velocity of the plunger can be considered to be a function of the plunger position, but still being
unknown as a function of t.

If one applies the Euler explicit method to (6.10),




1
2

Vk+1
p

2 −Vk
p

2

zk+1 − zk = Vk
p

Fg(zk; 1)− F0(zk)
mp

+
Fp + F0(zk)

mp
,

V0
p = V0.

(6.12)

it appears that this approach is identical to one in which the plunger velocity for the bound-
ary conditions at the next time-step were obtained straight from the previous velocity field and
pressure field

Vp(t + ∆t) = Vp(t) + ∆t
Fg(t) + Fp

mp
. (6.13)

The boundary conditions (3.13), (3.14) for the next stationary Stokes problem should use Vp(t +
∆t). We omit further discussion of (6.13).
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Figure 6.1: Velocity of the plunger obtained using implicit scheme.

Now consider the implicit Euler method instead




1
2

Vk+1
p

2 −Vk
p

2

zk+1 − zk = Vk+1
p

Fg(zk+1; 1)− F0(zk+1)
mp

+
Fp + F0(zk+1)

mp
,

V0
p = V0.

(6.14)
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Although (6.14) is implicit, we just have a quadratic equation for Vk+1
p , which can be solved

trivially. The result is in Figure 6.1a. We clearly have a stable calculation now. The velocity of
the plunger in Figure 6.1a is a function of z. In order to obtain the velocity as a function of t the
following approximation can be used





zk+1 = zk + ∆tk Vp(zk),

tk+1 = tk + ∆tk,
(6.15)

where t0 = 0. The final graph is depicted in Figure 6.1b.
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o*Ó�Ô�ÓwÑ�Õ�ß<ÞLÒJ�^ÞLÑºç»ÓwÕ=Ú¤Þ.è¤Ø�×�Ñ¤ècØ�Þgã Õ4ß²×�Ò=ÓNãäÞgÒ<Ø�Ó�Ñ¤Ø�à�Õ�à�á.à�Õ4Ö»×gÑ�×�â�Ö.Ø=à�Ø'Þ�ã�í�î-ï)Ø�Ö.Ø�Õ=Ó�ç»Øg� l
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ß�×gØ-ÔwÞLÑ¤Ô�ÓwÒ=Ñ¤Ówèªß*à�Õ=ÚFÚ�×�Ñ¤è¤â�à�Ñ¤Ý^Õ�Ú¤Ó3Ô�ÞLç»ñ¤â�Ó&ø
à�Õ=à�Ó�Ø#Þ�ã`ãäÞLÒ=çqë¤âå×�Õ=à�ÞLÑ�×�Ñ¤è¬Ø�ÞLâ�ë/Õ=à�ÞLÑ¢Þgã�Õ�Ú¤Ó·×gèBm�ÞLà�Ñ�Õ
Ø=ÓwÑ¤Ø=à�Õ�à�á
à�Õ4Ö3Ø�Ö.Ø�Õ=Ó�ç ß*Ú/à�â�Ó'Ò=Ówê;ë¤à�Ò�à�Ñ¤Ý-×gØ`â�à�Õ=Õ=â�ÓM×gè¤è/à�Õ�à�ÞLÑ�×gâ;à�Ñ/ãäÞLÒ=ç§×�Õ=à�ÞLÑ�ãäÒ�ÞLç Õ�Ú¤Ó²ë/Ø=Ó�Ò`×gØKà�ØKç§×�Õ�Ú
æ
Ó�ç§×�Õ=à�Ô�×�â�â�Ö»Ñ¤ÓwÔ�ÓwØ=Ø�×�Ò�ÖLóf�NÓwÒ=Ó�ß�Ó�è¤ÓwØ=ÔwÒ=à�Û,Ó3Ø=ÞLç»Ó�ÞgãkÕ�Ú¤Ó�è¤Ó&Õ�×gà�â�Ø#ÞgãkÕ�Ú¤Ó�à�ç§ñ¤â�Ó�ç»Ó�Ñ�Õ�×1Õ�à�ÞgÑ[ó

Ð4Ñ�Õ�Ú¤Óº×gèBm�ÞLà�Ñ;Õ·Ø�Ö.Ø�Õ�Ó�ç ì�æLð�×gÑ¤è�Õ=Ú¤ÓºØ=ÓwÑ¤Ø=à�Õ�à�á
à�Õ4Ö³Ô�×gâ�Ô�ë¤â�×�Õ�à�ÞLÑ2ì � ð&Ù�Õ�Ú¤Óºè/Ó�Ò=à�á�×�Õ�à�áLÓ�Ø � Ñ Ù �ÙØÑ×gÑ¤è � ³³ç§×yÖGè¤Ó�ñ,Ó�Ñ/è ÞLÑ�Õ�Ú/Ó³Ø�Õ�×�Õ=ÓÍág×�Ò=àå×�Û¤â�ÓwØÓ��ÙNß*Ú¤à�Ô�Ú ×�Ò=ÓÍÕ�Ú¤ÓõØ�ÞLâ�ë/Õ=à�ÞLÑ/ØºÞgã3Õ�Ú¤ÓõÞLÒ�à�ÝLà�Ñ�×gâ
í*î�ï6Ø�óMÐ4è¤Ó�×gâ�â�ÖLÙ
Õ=Ú¤Ó�×gè
m�ÞLà�Ñ�Õ*í*î�ï ì�æLð'Ø=Ú¤ÞLë/â�è�Û:Ó-Ô�ÞLë¤ñ/â�Ó�èJß*à�Õ�ÚºÕ�Ú/Ó�ÞLÒ=à�ÝLà�Ñ�×�â:í*î�ï5×gÑ¤è�Ø�ÞLâ�ágÓ�è
Õ�ÞgÝLÓwÕ=Ú¤Ó�ÒM×gØ`ß<Ó#è¤à�è´à�Ñ�Õ�Ú/Ó²ãäÞLÒ�ß�×gÒ=è^Ø�Ó�Ñ¤Ø�à�Õ�à�á.à�Õ4Ö·ç§Ó&Õ�Ú¤Þ.è[ó(��Þyß�Ó&áLÓ�ÒwÙ
à�Ñ´ÝLÓ�Ñ/Ó�Ò�×�â¤à�Õ6à�Ø`Ñ¤ÞgÕKãäÓ�×gØ�à�Û¤â�Ó
Õ�Þ3Ø=Þgâ�áLÓ*Õ�Ú/Ó�ç Õ�ÞLÝgÓwÕ�Ú/Ó�ÒMÛ:ÓwÔ�×gë/Ø=ÓNÕ=Ú¤Ó-ÞgÒ=à�Ýgà�Ñ�×gâ/í�î-ï�çc×�Ö´Û,Ó�ë¤Ñ¤Ø�Õ�×gÛ¤â�Ó�ß*Ú¤ÓwÑcØ�ÞLâ�ágÓ�èºÛ�×�Ô*�;ß�×gÒ�è[ó
î-â�Õ�ÓwÒ=Ñ�×�Õ=à�ágÓ�â�ÖgÙgà�Õ�ß<ÞLë¤â�è´Û:Ó²Ótø.Õ�Ò=Ówç§Ówâ�Ö3à�Ñ/Ó��»Ô�à�Ó�Ñ�Õ`Õ�Þ-Ø=ÞLâ�áLÓ�Õ=Ú¤Ó²ÞLÒ�à�ÝLà�Ñ�×gâ;í*î�ïÍãäÞLÒ�ß�×gÒ=è^×�Ñ;Ö3Õ�à�ç§Ó
ß<Ó·Ñ¤ÓwÓ�è�Õ�Ú¤Ó�á�×gâ�ë¤Ó�Ø*ÞgãkÕ�Ú¤Ó�Ø�Õ�×�Õ=Ó�á�×gÒ�àå×gÛ/â�Ó�Øwó

ô#Ú¤Ócà�ç§ñ/â�Ó�ç»Ó�Ñ�Õ�×�Õ�à�ÞLÑªÞgã<Õ�Ú¤Ó»×gèBm�Þgà�Ñ�Õ3Ø=Ó�Ñ/Ø=à�Õ=à�á.à�Õ4Öªç§Ó&Õ�Ú¤Þ.è ÔwÞLÑ¤Ø�à�Ø�Õ=Ø·Þ�ã�Õ�Ú/Ò=Ó�Ó»ç§×
m�ÞLÒ�Ø�Õ=Ó�ñ¤Øwó�Kà�Ò=Ø�Õ�Ù�ß�ÓNç�ë¤Ø�Õ<Ø=Þgâ�áLÓ�Õ�Ú¤ÓNÞLÒ=à�ÝLà�Ñ¤×gâ ��í�ï"!gí�î-ï ãäÞLÒ�ß²×gÒ�ècÕ�Þ·×·Ø�ñ:ÓwÔ�à�÷�Ô-ÞLë
Õ�ñ¤ë/Õ<Õ�à�ç§ÓN­3ó��
ÓwÔ�ÞLÑ/è[Ù
×�ÕJÕ=à�ç»Ó¨­3ÙNß<ÓõÔ�ÞLç»ñ¤ë/Õ=ÓªÕ�Ú¤ÓõÔ�ÞgÑ¤Ø=à�Ø�Õ�ÓwÑ�ÕFà�Ñ¤à�Õ=àå×gâ*ÔwÞLÑ¤è¤à�Õ�à�ÞgÑ¤ØcãäÞLÒºÕ=Ú¤Óõ×gèBm�ÞLà�Ñ�ÕJØ�Ö.Ø�Õ=Ó�ç¢ó�ô#Ú¤Ó
Ô�ÞgÑ¤Ø=à�Ø�Õ�ÓwÑ�Õ�à�Ñ¤à�Õ=àå×gâ
Ô�ÞLÑ¤è/à�Õ�à�ÞLÑ¤Ø6ç�ë/Ø�Õ'Ø�×�Õ=à�Ø�ã Ö�Õ�Ú¤Ó�Û,ÞLë¤Ñ¤è�×�Ò�Ö´ÔwÞLÑ¤è¤à�Õ�à�ÞgÑ¤Ø6ÞgãMì � ð&ó(�Kà�Ñ�×�â�â�ÖgÙ�ß<ÓNØ�ÞLâ�ágÓ
Õ�Ú/Ó·×�èBm�ÞLà�Ñ�Õ*Ø�Ö
Ø�Õ�Ówç Û�×gÔ*��ß²×�Ò=èFÕ=Þ»Õ=Ú¤Ó�Ø�Õ�×gÒ�Õ*ñ,ÞLà�Ñ�Õ�Ù�×gÑ¤è¢Ô�×gâ�Ô�ë¤â�×�Õ�ÓNÕ�Ú¤Ó�Ø=ÓwÑ¤Ø=à�Õ�à�á
à�Õ�à�Ó�Ø�ó

�



Òbà�Õ=Ú³ÓwÑ¤ÞLë¤ÝgÚ³ç»Ó�ç»ÞLÒ�ÖLÙ[ß<Ó»Ô�×gÑõØ�Õ=ÞLÒ=Ó»×gâ�âKÞgãMÕ�Ú/Ó»Ñ/Ó�Ô�ÓwØ=Ø=×gÒ�Öõà�Ñ/ãäÞLÒ=ç§×�Õ=à�ÞLÑ¬×gÛ:Þgë/Õ�Õ�Ú¤Ó´Ø�Õ�×�Õ=Ó
á�×gÒ=à�×gÛ¤â�Ó�ØN×�Õ�Ó�×gÔ�ÚªÕ�à�ç§Ó3Ø�Õ=Ó�ñÍè¤ë¤Ò�à�Ñ¤Ý§Õ�Ú¤ÓqãäÞgÒ�ß�×gÒ=èªà�Ñ�Õ�Ó�ÝgÒ�×�Õ=à�ÞLÑ¬×gÑ¤è¬Õ=Ú¤Ó�ÑÍë¤Ø�Ó´à�Õ�Õ�ÞºÞgÛ/Õ�×gà�ÑFÕ=Ú¤Ó
á�×gâ�ë/Ó�Ø�Þgã.Õ�Ú¤Ó6Ø�Õ�×�Õ=Ó6ág×�Ò=àå×�Û¤â�ÓwØ[Û�Ö�à�Ñ�Õ�ÓwÒ=ñ,ÞLâå×1Õ�à�ÞgÑ�è¤ë¤Ò�à�Ñ¤Ý²Õ=Ú¤ÓMÛ�×gÔ*��ß²×�Ò=èqà�Ñ�Õ�Ó�ÝgÒ�×�Õ=à�ÞLÑ�Þ�ã
Õ=Ú¤ÓM×gèBm�ÞLà�Ñ�Õ
í*î�ï6Ø�ó���ÞLÒkÓ&ø/×gç»ñ¤â�ÓgÙ�ß<Ó²Ô�×gÑ�Ø�Õ=ÞLÒ=Ó��»×gÑ¤è���»×1Õ`Ó�×�Ô�Ú�Õ�à�ç»ÓMØ�Õ=Ó�ñ´è¤ë¤Ò�à�Ñ¤Ý�Õ�Ú¤Ó'ãäÞLÒ�ß�×gÒ�è�à�Ñ�Õ�ÓwÝLÒ�×1Õ�à�ÞgÑ
×gÑ¤è Ò=ÓwÔ�ÞLÑ/Ø�Õ�Ò�ë¤ÔwÕFÕ�Ú¤ÓõØ�ÞLâ�ë/Õ=à�ÞLÑ ×�ÕF×gÑ�Ö�Õ=à�ç»ÓªÛ�ÖbÔ�ë¤Û¤à�Ô ��Ó�Ò�ç§à�Õ�ÓÍà�Ñ�Õ=Ó�Ò=ñ,ÞLâ�×�Õ�à�ÞLÑ þ è¤ë¤Ò�à�Ñ¤Ý)Õ=Ú¤Ó
Û�×gÔ*��ß�×gÒ=è)à�Ñ�Õ�Ó�ÝgÒ�×�Õ=à�ÞLÑ[óJô#Ú/Ócç»Ó�ç»ÞLÒ�ÖÍÒ�Ó�ê;ë¤à�Ò=Ó�ç»Ó�Ñ�Õ=ØqãäÞLÒ�Õ�Ú¤à�Øq×gñ/ñ¤Ò=Þ�×�Ô�Ú)×gÒ=Ó»ñ¤Ò�ÞLñ:ÞgÒ�Õ�à�ÞLÑ�×gâ`Õ=Þ
Õ�Ú/Ó²Ñ;ë¤ç�Û,Ó�ÒKÞ�ã�Õ�à�ç»ÓMØ�Õ=Ó�ñ¤ØM×gÑ/èqÕ�Ú¤Ó�è¤à�ç»Ó�Ñ¤Ø�à�ÞLÑ·Þgã¤Õ=Ú¤Ó²Ø�Õ�×�Õ�Ó'á�×gÒ=à�×gÛ¤â�ÓwØ.��ÙL×gÑ¤è^×gÒ�Ó�ë¤Ñ¤ñ/Ò=Ó�è/à�ÔwÕ�×gÛ¤â�Ó
Û,Ó�Ô�×�ë¤Ø=Ó-Õ=Ú¤Ó�Ñ;ë¤ç�Û,Ó�Ò<Þgã�Õ�à�ç§Ó*Ø�Õ�Ó�ñ/Ø²ág×�Ò=à�ÓwØ'ß*à�Õ�Úºè/à�é:Ó�Ò=ÓwÑ�Õ²ÞLñ/Õ=à�ÞLÑ/Ø�×gÑ/èºÓ�Ò�Ò=ÞLÒ'Õ�ÞLâ�Ó�Ò�×�Ñ¤Ô�ÓwØ²Þgã[Õ=Ú¤Ó��í�ï"!gí�î-ï Ø�ÞLâ�ágÓ�Ò�ó

ô�Þ�Ò�Ó�è¤ë¤ÔwÓ»Õ=Ú¤Ó´ç»Ó�ç»ÞLÒ�ÖFÒ=Ówê.ë/à�Ò=Ówç§ÓwÑ�Õ�Ø3×gÑ¤è³×gâ�Ø=ÞJç§×��gÓ�Õ=Ú¤Ó�ç�ñ¤Ò=Ówè¤à�Ô&Õ�×gÛ¤â�ÓgÙ[ß<Ó^ë¤Ø=Ó»×cÕ4ß<Þ�æ
â�Ó&áLÓwâ6Ô�Ú¤Ó�Ô*�;ñ,ÞLà�Ñ�Õ�à�Ñ¤ÝJÕ�ÓwÔ�Ú¤Ñ¤à�ê;ë¤Ó�ó �Kà�Ò�Ø�Õ�ß<Ó^Ø=ÓwÕ3ë¤ñ³×JÔ�Ú¤ÓwÔ*�.ñ,ÞLà�Ñ;Õ·×�ã Õ=Ó�Ò�Ó&áLÓ�Ò�ÖÍ÷/ø
Ó�è³Ñ;ë¤ç�Û,Ó�Ò�Þgã
Õ�à�ç§ÓqØ�Õ�Ówñ¤Øqè/ë¤Ò=à�Ñ¤ÝJÕ�Ú¤Ó´ãäÞLÒ�ß²×gÒ�è à�Ñ�Õ�Ó�ÝgÒ�×�Õ=à�ÞLÑÍÞgã<Õ�Ú¤Ó^ÞLÒ�à�ÝLà�Ñ�×gâKí�î-ï*ó�ô#Ú/Ó�Ñ ß<Ó»Ò=Ó�ÔwÞLç»ñ¤ë/Õ�Ó´Õ=Ú¤Ó
ãäÞLÒ�ß²×gÒ�è·à�Ñ/ãäÞLÒ�çc×�Õ=à�ÞLÑ�Û,ÓwÕ4ß<Ó�ÓwÑqÕ4ß<Þ-Ô�ÞgÑ¤Ø=ÓwÔ�ë/Õ=à�áLÓ<Ô�Ú¤Ó�Ô*�;ñ,ÞLà�Ñ�Õ=Ø`è¤ë¤Ò�à�Ñ¤Ý#Õ�Ú/Ó<Û�×�Ô*�;ß�×gÒ�è�à�Ñ�Õ�ÓwÝLÒ�×1Õ�à�ÞgÑ
Û�Ö°Ø�Õ�×gÒ�Õ�à�Ñ¤ÝFÕ=Ú¤Ó§ãäÞLÒ�ß²×�Ò=è�à�Ñ;Õ=Ó�ÝLÒ=×�Õ�à�ÞLÑõãäÒ=ÞLçIÕ�Ú/ÓºÔ�Ú¤Ó�Ô*�;ñ,ÞLà�Ñ�Õ�óªô#Ú¤à�Øq×gñ¤ñ¤Ò�Þ�×gÔ�Ú�Ñ/Ó�Ó�è/ØqÕ�ÞªØ�Õ�ÞLÒ�Ó
ÞLÑ¤â�ÖcÕ=Ú¤Ó3ãäÞgÒ�ß�×gÒ=è¢à�Ñ/ãäÞgÒ=ç§×�Õ�à�ÞLÑº×�Õ*Õ=Ú¤Ó�Ô�Ú¤Ó�Ô*�;ñ,ÞLà�Ñ�Õ�Ø-×gÑ¤èF×�Õ�×´÷/ø
Ó�è¬Ñ;ë¤çqÛ:ÓwÒ�Þ�ã�Õ=à�ç»Ó�Ø#Û,ÓwÕ4ß<Ó�Ó�Ñ
Õ4ß<Þ§Ô�Ú¤ÓwÔ*�;ñ:ÞLà�Ñ�Õ�Ø�ó

Ð4ÑFÕ=Ú¤Ó�à�ç»ñ¤â�Ówç§ÓwÑ;Õ�×�Õ�à�ÞLÑcß<Óq×�â�â�Þ.Ô�×1Õ�Ó�è�×´Ø�ñ:ÓwÔ�àå×�â�Û¤ë/é:Ó�Ò*Õ�Þ^Ô�ÞLç»ç�ë¤Ñ/à�Ô�×1Õ�Ó�Û,ÓwÕ4ß<Ó�Ó�ÑFÕ�Ú¤Ó�ãäÞLÒ�æ
ß�×gÒ=èq×gÑ¤è3Û�×gÔ*��ß²×�Ò=èqà�Ñ�Õ�Ó�ÝgÒ�×�Õ=à�ÞLÑ[ó�ô#Ú¤Ó'Û¤ë/é:Ó�Ò�à�Økë/Ø=Ó�è3ãäÞLÒ[Õ4ß<Þ-ñ¤ë¤Ò�ñ:ÞgØ=Ó�Ø�§kÕ=Þ*Ø�Õ�ÞgÒ=ÓMÕ�Ú¤ÓMÑ¤ÓwÔ�Ó�Ø�Ø�×gÒ�Ö
à�Ñ
ãäÞLÒ=ç§×�Õ�à�ÞLÑJÕ�ÞºÒ�Ó�Ø�Õ�×gÒ�Õ-Õ�Ú/ÓqãäÞLÒ�ß�×gÒ�èªà�Ñ�Õ�ÓwÝLÒ�×1Õ�à�ÞgÑª×�ÕNÕ�Ú¤Ó�Ô�Ú/Ó�Ô*�;ñ:Þgà�Ñ�Õ�ØwÙ�×gÑ¤è¬Õ=ÞºØ�Õ=ÞLÒ=Ó3Õ�Ú¤Ó�Ø�Õ�×�Õ=Ó
á�×gÒ=à�×gÛ¤â�Ó�Ø²×�Ñ¤èJè¤Ó�Ò�à�á�×�Õ=à�áLÓwØ#×�Õ�Ó�×gÔ�ÚJÕ�à�ç§ÓNØ�Õ=Ó�ñ�Û:Ó&Õ4ß�ÓwÓ�Ñ�Õ4ß�Þ´Ô�Ú/Ó�Ô*�;ñ:Þgà�Ñ�Õ�Ø#ãäÞLÒ²Ò�Ó�ÔwÞLÑ¤Ø�Õ=Ò=ë¤Ô&Õ�à�ÞLÑJÞgã
Õ�Ú/Ó3Ø�Õ�×�Õ=Ó�ág×�Ò=àå×�Û¤â�Ó�Ø�ÞLâ�ë
Õ�à�ÞgÑ¤Ø²è¤ë¤Ò�à�Ñ¤Ý´Õ=Ú¤Ó�Û�×gÔ*��ß²×�Ò=èªà�Ñ;Õ=Ó�ÝLÒ=×�Õ�à�ÞLÑ[ó

Ð4Ñ2ÞLÒ�è¤Ó�Ò»Õ�Þ�ÞLÛ
Õ�×gà�Ñ5Õ=Ú¤ÓF÷/ø
Ówè�Ñ.ë/ç�Û:ÓwÒcÞgã�Õ=à�ç»Ó�Ø�Õ�Ówñ¤ØºÛ,ÓwÕ4ß<Ó�ÓwÑbÕ4ß<Þ�ÔwÞLÑ¤Ø=ÓwÔ�ë/Õ=à�ágÓÍÔ�Ú¤Ó�Ô*�Læ
ñ,ÞLà�Ñ�Õ�ØwÙ�Õ�Ú/Ó�Ø=ÓwÔ�ÞLÑ¤èõãäÞLÒ�ß²×gÒ�èÍà�Ñ�Õ�ÓwÝLÒ�×1Õ�à�ÞgÑ¬Ø=Ú/ÞLë¤â�èÍç§×���Ó�Ó&ø/×gÔ&Õ�â�ÖFÕ�Ú¤ÓqØ�×gç»Ó´×gè�×�ñ/Õ�à�áLÓ´è¤ÓwÔ�à�Ø�à�ÞLÑ/Ø
×gØ�Õ�Ú¤Ó^÷�Ò�Ø�Õ�ñ¤×gØ=Ø3à�ã�à�Õ3Ò=ÓwØ�Õ�×�Ò�Õ�Ø�ãäÒ=Þgç Õ�Ú¤Ó»Ô�Ú¤Ó�Ô*�;ñ,ÞLà�Ñ�Õ�ó¢ô#Ú/Ó�Ò=Ó&ãäÞLÒ=Ó�Ù�Õ=Ú¤Ócà�Ñ/ãäÞLÒ=ç§×�Õ=à�ÞLÑªØ=×�áLÓ�èÜ×1Õ
Ó�×�Ô�Ú°Ô�Ú¤ÓwÔ*�.ñ,ÞLà�Ñ;ÕqØ=Ú¤Þgë¤â�è³Û:Ó»Ó�Ñ/ÞLë¤ÝLÚ³Õ�Ú�×�Õ�Õ=Ú¤Ó§à�Ñ�Õ�Ó�ÝgÒ�×�Õ=à�ÞLÑÍÔ�×gÑ°Ò�Ó�ñ,Ó�×�Õ·à�Õ=Ø=Ó�â�ã�ó^Ð4Ñ Õ�Ú/Ó§Ô�×gØ=Ó»Þgã
í*îg�/ò�� � ó\�/Ù[Õ�Ú¤Ó´Ñ/Ó�Ô�ÓwØ=Ø=×gÒ�Ö³à�Ñ
ãäÞLÒ=ç§×�Õ�à�ÞLÑ¬à�Ñ¤Ô�â�ë¤è¤ÓwØ-Õ�Ú¤Ó^ÞLÒ�è¤Ó�Ò�×�Ñ¤èõØ�Õ�Ówñ¤Ø=à�ö�Ó´ãäÞLÒ�Õ=Ú¤Ó´Ñ¤Ó&ø.Õ�Õ�à�ç§Ó
Ø�Õ=Ó�ñ[Ù
Õ�Ú¤Ó�ÔwÞ
Ó��§Ôwà�ÓwÑ;Õ=Ø#Þgã�Õ�Ú¤ÓG�²íg�°ãäÞLÒ=çqë¤âå×/Ù�Õ=Ú¤Ó�Ú¤à�Ø�Õ�ÞLÒ�Öcà�Ñ/ãäÞLÒ�çc×�Õ=à�ÞLÑ§×gÒ�Ò�×�ÖcÞ�ã�Õ�Ú¤Ó�ñ¤Ò�Ówá.à�Þgë¤Ø$#
Õ�à�ç§ÓNØ�Õ=Ó�ñ¤ØwÙ/Õ�Ú¤Óä·L×�Ô�ÞLÛ¤à�×gÑºà�Ñ/ãäÞLÒ=ç§×�Õ=à�ÞLÑ§×�Õ²Õ=Ú¤Ó�Ô�ë/Ò=Ò=ÓwÑ�Õ#Õ�à�ç»ÓgÙ.ÓwÕ=Ôgó�óMô�Þ^×�áLÞgà�èJØ�Õ=ÞLÒ=à�Ñ¤Ý�·L×gÔwÞLÛ¤à�×gÑ
è�×�Õ�×�ì ß*Ú¤à�Ô�Ú´à�Ø�ç�ë/Ô�Ú´âå×gÒ�ÝLÓ�Ò�Õ�Ú¤×gÑ�ÞgÕ=Ú¤Ó�Ò�à�Ñ/ãäÞLÒ�çc×1Õ�à�ÞgÑ ð�à�Ñ3Õ�Ú¤Ó<Û¤ë/é:Ó�Ò�Ù�ß�Ó²ÓwÑ/ãäÞLÒ�Ô�Ó²×NÒ=Ó�Ó&á�×gâ�ë�×1Õ�à�ÞgÑ
ÞgãkÕ�Ú¤Ó�à�Õ�Ó�Ò=×�Õ�à�ÞLÑJç§×�Õ�Ò�à�øº×�Õ*Ó�×gÔ�Ú¢Ô�Ú¤ÓwÔ*�.ñ,ÞLà�Ñ;Õ-è¤ë¤Ò�à�Ñ¤Ý�Õ=Ú¤Ó�÷�Ò=Ø�Õ�ãäÞgÒ�ß�×gÒ=è¢à�Ñ�Õ�ÓwÝLÒ�×1Õ�à�ÞgÑ[ó

Ð9ã/Õ=Ú¤Ó<Ø�à�öwÓ'Þ�ã/Õ�Ú/Ó'Û/ë/é�ÓwÒ�à�Ø�Ø=ñ,Ó�Ôwà�÷�Ówè[Ù�Õ=Ú¤ÓMçc×1ø
à�ç�ë¤ç Ñ;ë¤çqÛ:ÓwÒ�Þgã.Õ�à�ç§Ó6Ø�Õ�Ówñ¤ØK×�â�â�Þyß<Ó�è�Û,ÓwÕ4ß<Ó�Ó�Ñ
Õ4ß<ÞNÔwÞLÑ¤Ø=ÓwÔ�ë/Õ=à�ágÓ<Ô�Ú¤ÓwÔ*�;ñ:ÞLà�Ñ�Õ�Ø`×�Ñ¤è�Õ�Ú¤ÓMç§×1ø
à�ç�ë¤ç Ñ;ë¤ç�Û,Ó�Ò�Þgã
Ô�Ú¤Ó�Ô*�;ñ,ÞLà�Ñ�Õ=Ø`×gâ�â�Þyß�Ówè�à�Ñ�Õ�Ú/Ó'Û/ë/é�ÓwÒ
Ô�×�Ñ�Û:Ó�Ó�×gØ�à�â�Ö�è/ÓwÕ�ÓwÒ=ç»à�Ñ¤Ówè[ó(��Þyß�Ó&áLÓ�ÒwÙ�Õ�Ú¤Ó�Õ=ÞgÕ�×�â.Ñ;ë¤çqÛ:ÓwÒ`Þgã�Ô�Ú¤ÓwÔ*�;ñ:ÞLà�Ñ�Õ�ØMà�Økñ¤Ò=ÞgÛ¤â�Ówç^æ9è¤Ó�ñ,Ó�Ñ¤è/Ó�Ñ�Õ
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è)à�Ø�ç»ÞLÒ=Ó§Ó��»Ô�à�Ó�Ñ�Õ´ãäÞLÒ�ñ¤Ò�ÞLÛ¤â�Ó�ç»Ø
à�Ñ�ágÞLâ�á.à�Ñ/Ý§×^âå×�Ò=ÝLÓ�Ñ;ë¤ç�Û,Ó�Ò*ÞgãKØ=ÓwÑ¤Ø=à�Õ�à�á.à�Õ4ÖJñ�×gÒ=×gç§Ó&Õ�ÓwÒ=Ø�×gÑ¤è�ãäÓwß ÞgÛem�Ó�Ô&Õ�à�ágÓ3ãäë/Ñ¤ÔwÕ=à�ÞLÑ¤ØwóÃÒ Ó�Ú�×�áLÓ
Ø�Õ=ë¤è¤à�Ó�è�Õ�Ú¤ÓFãäÞLÒ�ß�×gÒ=èbç»ÓwÕ=Ú¤Þ
èGà�Ñ;� � æ � ×�Ñ¤è�Ø=Ú¤Þyß*ÑbÚ¤Þyß�à�ÕJà�Øcñ,ÞLØ=Ø�à�Û¤â�Ó¬Õ�Þ)ç§×��gÓ¬ë¤Ø=ÓÍÞgã�Õ=Ú¤Ó
ç»ÓwÕ�Ú/Þ
è¤Ø�×�Ñ¤èÍØ=Þgã Õ4ß�×gÒ�Ó^ãäÞgÒ�Ø=ÓwÑ¤Ø=à�Õ�à�á.à�Õ4ÖÍ×gÑ�×�â�Ö.Ø=à�Ø�Þgã<í�î-ï6Ø3à�ÑÍÔ�ÞLçqÛ¤à�Ñ�×1Õ�à�ÞgÑFß*à�Õ=Ú³×gÑõ×gè�×gñ
Õ�à�ágÓ
ç»Ó�Ø=ÚÜÒ�Ów÷�Ñ¤Ówç§ÓwÑ�Õc×�â�ÝLÞLÒ�à�Õ=Ú¤çIãäÞLÒ´òMí�ï6Ø�ó�Ð4ÑÕ� �&l�� Ù'ß<Ó�Ú�×�áLÓ�Ø�Õ=ë¤è¤à�Ó�èÜÓ&ø.Õ�ÓwÑ¤Ø=à�áLÓwâ�Ö�Õ=Ú¤Ó�×gèBm�ÞLà�Ñ�Õ
ç»ÓwÕ�Ú/Þ
è³ãäÞLÒqòMí�ï6ØqØ�ÞLâ�ágÓ�è°ß*à�Õ�Ú)×�è�×gñ/Õ=à�áLÓ»ç»Ó�Ø=Ú°Ò=Ów÷¤Ñ¤Ó�ç»Ó�Ñ�Õ�óFô#Ú¤ÞLØ�ÓcÒ=ÓwØ=ë¤â�Õ�Øq×gÒ=Ó§ÞLë/Õ�â�à�Ñ¤Ówè à�Ñ
ß*Ú�×�Õ*ãäÞLâ�â�Þyß*Ø�ó

ô²ß�Þõ×�ñ¤ñ¤Ò=ÞL×gÔ�Ú¤Ó�ØqÔ�×gÑ)Û,Ó§Õ�×��gÓwÑ�ãäÞLÒ·Ó�×gÔ�Ú)ç»ÓwÕ�Ú/Þ
è[ó¢Ð4Ñ�Õ�Ú/Ó§÷�Ò�Ø�Õ�ÙKÔ�×gâ�â�Ó�è³Õ�Ú¤Óuò�øVU+W�ó*õ�ôÛõ3×gñ.æ
ñ¤Ò�Þ�×gÔ�Ú[Ùkß�Ó§×gñ¤ñ¤Ò�Þ�ø/à�çc×1Õ�Ó´Õ�Ú¤Ó»òMí�ïÃÛ�Ö ×¢è¤à�Ø=ÔwÒ=ÓwÕ=Ó§Ñ/ÞLÑ¤â�à�Ñ¤Ó�×�Ò�Ø�Ö.Ø�Õ=Ó�ç ×gÑ¤è³Õ�Ú¤ÓwÑ°è¤à�é�ÓwÒ=Ó�Ñ�Õ=àå×�Õ=Ó
Õ�Ú/Ó�è¤à�Ø�Ô�Ò=Ó&Õ�Ó�Ø�Ö.Ø�Õ�Ó�ç ß*à�Õ�Ú�Ò=ÓwØ=ñ,Ó�Ô&Õ�Õ=Þ´Õ�Ú¤Ó�ñ�×�Ò�×gç»ÓwÕ=Ó�Ò=Øwó6ô#Ú¤Ó�è¤à�Ø�Ô�Ò�ÓwÕ�Ó3×gñ/ñ¤Ò=Þ�×�Ô�Ú¢à�Ø#Ó�×gØ�ÖºÕ�Þ^à�ç^æ
ñ¤â�Ó�ç»Ó�Ñ�Õ²ß*à�Õ=ÚcÕ�Ú/Ó�Ú¤Ó�â�ñJÞgãÃñ�ð&ô(�X� ñ�ô¤øYW ò�ø ZGõ�óöõ�
"ô�ø¤ñ�ô¤øY�X
�Õ�Þ.ÞLâ�Øë� � Ù l��T� ó���Þ@ß<ÓwágÓ�ÒwÙ ß*Ú/Ó�ÑJÕ�Ú¤Ó-ç§ÓwØ=Ú
à�Ø'Ø=Þgâ�ë/Õ=à�ÞLÑ»ÞLÒ�ñ¤×gÒ�×gç»ÓwÕ=Ó�Ò'è¤Ó�ñ,Ó�Ñ/è¤Ó�Ñ�Õ·ì�Ó�ó Ý/ó�Ù;ãäÞLÒ<×gÑÔñkòkñ�[,ô¤ø$÷�õMç§ÓwØ=ÚºÞgÒ<ç»Þyá
à�Ñ¤ÝqÛ,ÞLë¤Ñ/è�×gÒ�Ö/ðtÙ
ÞLÒ�×
Ñ¤ÞLÑ/â�à�Ñ/Ó�×gÒ#è¤à�Ø=ÔwÒ=ÓwÕ=à�ö�×�Õ�à�ÞLÑ�Ø=Ô�Ú¤Ówç§Óºì�Ógó Ý¤ó�Ù:ë/ñ;ß*à�Ñ¤è¤à�Ñ¤Ý;ð²à�Ø*ë¤Ø�Ó�è[Ù,Õ�Ú¤Ó3è¤à�Ø�Ô�Ò�ÓwÕ�Ó·×gñ¤ñ/Ò=Þ�×gÔ�ÚFçc×�Ö�Ñ¤Þ�Õ
Û,Ó3ÔwÞLç»ñ¤ë/Õ�×1Õ�à�ÞgÑ�×gâ�â�Ö^Ówé:Ó�Ô&Õ�à�ágÓgó

Ð9Õ²à�ØMß<Ó�â�â�æ_�.Ñ/Þ@ß*Ñ»Õ�Ú�×1Õ<Õ=Ú¤Ó-ç»ÓwÕ=Ú¤Þ
è»Þgã�â�à�Ñ¤ÓwØNì�n-�4\kðMÔ�×gÑcÕ=Ò�×gÑ¤Ø�ãäÞLÒ=ç�×·òMí�ï�Ø�Ö.Ø�Õ=Ó�çDà�Ñ�Õ�Þq×gÑ��í�ï2ÞLÒNí�î-ï2Ø�Ö.Ø�Õ=Ó�ç Û;Ö¢Ø�ñ�×�Õ�à�×gâ�è¤à�Ø=Ô�Ò�ÓwÕ=à�ö�×1Õ�à�ÞgÑ[ó²ô#Ú;ë¤ØNÕ=Ú¤ÓqØ�Ó�Ñ¤Ø�à�Õ=à�á.à�Õ4Ö�Ô�×gâ�Ôwë¤âå×�Õ=à�ÞLÑ�ç»ÓwÕ=Ú¤Þ
è/Ø
à�Ñ � l � � Ô�×gÑÍÛ:Óqë¤Ø=Ówè³à�ã`Õ�Ú/Ó�Ø=Ówç§à�æ4è¤à�Ø=Ô�Ò�ÓwÕ=à�ö�ÓwèÍòMí�ï à�Ø-ÞLÛ
Õ�×gà�Ñ¤Ó�è[óG�NÞyß�Ó&áLÓwÒ�Ù�ß�ÓqÚ�×�áLÓ´ÞLÛ¤Ø�Ó�Ò�áLÓ�è
Õ�Ú¤×�Õ�Õ�Ú¤Ó¨ñkò
���Bø�
"ô]�_^Îô�`"õÓò�øVU+W�óöõ�ô�øba5ñ�ô¤øY�X
 ì�î�í�ð-ç§×�ÖÍÑ¤ÞgÕ�Û,Ó^Ô�ÞLÑ/Ø=à�Ø�Õ�ÓwÑ;Õ�ß*à�Õ�Ú³×FòMí�ï#Ù�×gÑ/è³Õ=Ú¤Ó
×gèBm�Þgà�Ñ�Õ�á�×gÒ�àå×gÛ¤â�Ó�Ø�×gÒ=Ó�Ñ/ÞgÕ²Ø�ç§Þ.ÞgÕ�ÚJÞgÑJ×gÑ�×gè�×�ñ/Õ�à�áLÓ�ÝLÒ�à�è[óKô#Ú¤Ó�Ò�ÓwãäÞLÒ�ÓgÙ�à�ã�Õ=Ú¤Ó�×gè¤×gñ/Õ�à�áLÓ�Ò�Ó�ÝLà�ÞLÑºà�Ø
Ô�Ú�×gÑ/ÝLà�Ñ¤Ý§ß*à�Õ�ÚªÕ=à�ç»ÓºìäÓgó Ý¤ó�à�Ñ¬×gè�×gñ
Õ�à�ágÓ�ç»Ó�Ø=ÚÍÒ�Ów÷�Ñ/Ó�ç»Ó�Ñ�Õ§ì�îGn�o-ð®� � Ù � æ � ð&Ù,Õ�Ú¤Óqà�Ñ�Õ�ÓwÒ=ñ,ÞLâå×�Õ=à�ÞLÑ
ãäÞLÒºÕ=Ú¤Ó³×gèBm�ÞLà�Ñ;Õcág×�Ò=àå×�Û¤â�ÓwØºÛ:Ó&Õ4ß�ÓwÓ�ÑÃè/à�é:Ó�Ò=ÓwÑ�Õ�ÝLÒ=à�è¤Øºß*à�â�â-à�Ñ�Õ=Ò=Þ.è¤ë¤Ô�Óõâ�×gÒ=ÝLÓ¬Ó�Ò=Ò�ÞLÒ=Øwó�ô#Ú¤Óõî�í
ç»ÓwÕ�Ú/Þ
èºÔ�×gÑ¤Ñ¤Þ�Õ²Û,Ó-ë¤Ø�Ó�è�à�Ñ»Õ�Ú¤à�Ø�Ô�×�Ø=Ógóc��ÑcÕ=Ú¤Ó�ÞgÕ=Ú¤Ó�Ò<Ú�×gÑ¤è[Ù
ÞLÑ¤Ó�Ô�×gÑºØ�Ú¤Þyß � �&l�� Õ�Ú¤×�Õ�ãäÞLÒ<â�à�Ñ¤Ó�×gÒ
è¤à�Ø=Ô�Ò�ÓwÕ=à�ö�×1Õ�à�ÞgÑ·ç»ÓwÕ=Ú¤Þ
è/ØK×gñ/ñ¤â�à�Ó�èqÞgÑ�×N÷/ø
Ówè�ÝLÒ=à�è·ß*à�Õ�Ú�×�ñ¤ñ¤Ò=Þgñ¤Ò=à�×�Õ�ÓMÕ�Ò�Ó�×�Õ=ç§ÓwÑ;Õ�Þgã¤Õ=Ú¤Ó�Û,ÞLë¤Ñ/è�×gÒ�Ö
Ô�ÞgÑ¤è¤à�Õ=à�ÞLÑ/Ø�Ù/Õ=Ú¤Ó�Ø=Ó�Ñ/Ø=à�Õ=à�á.à�Õ=à�ÓwØ²ÝLÓ�Ñ/Ó�Ò�×1Õ�Ó�è¬×gÒ=Ó�×�Ô�Ô�ë/Ò�×�Õ=Ó3Ótø
Ô�Ó�ñ
Õ�à�Ñ�×^Ø=ç§×gâ�â�Û,ÞLë¤Ñ¤è�×�Ò�ÖJâ�×yÖgÓ�Òwó

Ð4ÑFÕ=Ú¤Ó�Ø=Ó�ÔwÞLÑ¤è[Ù Ô�×gâ�â�Ó�èJÕ�Ú¤ÓdWJ�X
"ô¤ø�
"ð �Bð�U#×�ñ¤ñ¤Ò=ÞL×gÔ�Ú[Ù�ß�Ó3è¤à�é�ÓwÒ=Ó�Ñ�Õ=àå×�Õ=Ó�Õ�Ú¤Ó·òMí�ï ß*à�Õ=Ú¢Ò�Ó�Ø�ñ:ÓwÔwÕ
Õ�Þ�Õ�Ú/Ó�ñ¤×gÒ�×gç»ÓwÕ=Ó�Ò�ØM÷¤Ò=Ø�Õ<×gÑ/è»Õ=Ú¤Ó�Ñ§è¤à�Ø�Ô�Ò=Ó&Õ�à�ö�Ó#Õ�Ú¤Ó*Ø�Ó�Ñ¤Ø�à�Õ�à�á.à�Õ4Ö´ÞLÒ'×gè
m�ÞLà�Ñ�Õ'òMí�ï6ØMÕ=Þ·ÔwÞLç»ñ¤ë/Õ�Ó#Õ=Ú¤Ó
×gñ¤ñ/Ò=Þ�ø
à�ç§×�Õ�Ó�Ø=ÓwÑ¤Ø=à�Õ�à�á
à�Õ�à�Ó�Ø�ó#ô#Ú/Ó�Ø�Ö.Ø�Õ=Ó�ç Ò=ÓwØ=ë¤â�Õ�à�Ñ/Ý»ãäÒ�ÞLç Õ�Ú¤Ó3Ô�ÞLÑ�Õ=à�Ñ;ë¤ÞLë¤Ø-×gñ¤ñ¤Ò�Þ�×gÔ�Úªà�ØNë/Ø=ë�×gâ�â�Ö
ç�ë¤Ô�ÚFØ=à�ç§ñ¤â�Ó�Ò²Õ=Ú�×gÑFÕ=Ú�×�Õ�ãäÒ=ÞLç Õ�Ú¤Ó·è¤à�Ø�Ô�Ò=Ó&Õ�Ó·×gñ¤ñ¤Ò�Þ�×gÔ�Ú[Ù:×gÑ¤è¢à�Ø�Ñ�×�Õ=ë¤Ò�×�â�â�ÖcÔ�ÞLÑ/Ø=à�Ø�Õ�ÓwÑ;ÕNß*à�Õ=Ú¢Õ=Ú¤Ó
×gèBm�Þgà�Ñ�Õ*òMí�ï5Ø�Ö.Ø�Õ�ÓwçFóMô#Ú¤ÓwÒ=Ó&ãäÞLÒ=Ó�Ù¤Õ�Ú¤Ó�×gè¤×gñ/Õ�à�áLÓ�ÝLÒ�à�èºç»ÓwÕ=Ú¤Þ.è�×gÑ¤è�à�Ñ�Õ�ÓwÒ=ñ,ÞLâå×1Õ�à�ÞgÑcÔ�×�Ñ¢Û,Ó�ë¤Ø�Ó�è
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ß*à�Õ=Ú¤ÞLë/ÕKè¤à �»Ôwë¤â�Õ=à�Ó�ØwóKí�ÓwÒ=à�ág×1Õ�à�ÞgÑqÞgã�Õ=Ú¤Ó#×gèBm�Þgà�Ñ�Õ6òMí�ïõÔ�ÞLë¤â�è�Û,Ó²Ú�×gÑ¤è/â�Ó�è´Û�Ö·Ø�Ö.ç�Û,ÞLâ�à�Ô�ç»ÓwÕ=Ú¤Þ
è/Ø
Ø=ë/Ô�ÚF×�ØZnFî-ò"\�ï#ó"��Þ@ß<ÓwágÓ�Ò*à�Õ<à�Ø'áLÓwÒ�Öºè/à �»Ô�ë¤â�Õ<Õ=Þ�ãäÞLÒ=çqë¤âå×�Õ=Ó*ñ¤Ò=ÞLñ,Ó�Ò�Û:ÞLë/Ñ¤è�×gÒ�ÖcÔwÞLÑ¤è¤à�Õ�à�ÞgÑ¤Ø'ãäÞgÒ
Õ�Ú/Óq×gè
m�ÞLà�Ñ�Õ�ÞgãM×»ÝLÓ�Ñ¤ÓwÒ�×gâkòMí�ï2Ø�Ö.Ø�Õ�Ó�ç¢Ù[×�Ñ¤èFÕ=Þ§Õ�Ú/Ó·Û,Ó�Ø�Õ�ÞgãKÞLë¤Ò �.Ñ/Þ@ß*â�Ó�è¤ÝgÓ�×gÑ¬×gâ�ÝLÞgÒ=à�Õ=Ú¤ç ãäÞgÒ
ÝLÓwÑ¤Ó�Ò=×�Õ�à�Ñ¤Ý»Õ=Ú¤Ó3Û:ÞLë/Ñ¤è�×gÒ�Ö�Ô�ÞLÑ¤è/à�Õ�à�ÞLÑ¤Ø*è¤Þ.Ó�Ø�Ñ¤ÞgÕ�Ó&ø
à�Ø�Õ�ãäÞLÒ�×»ÝLÓwÑ¤Ó�Ò=×gâkòMí�ï2Ø�Ö.Ø�Õ=Ó�ç¢ó nFÞLÒ=ÓwÞyáLÓ�ÒwÙ
Õ�Ú/Óc×gè
m�ÞLà�Ñ�Õ�Ø�Ö.Ø�Õ�Ó�ç ç§×�ÖÍÛ:ÓwÔ�ÞLç»Ó^à�Ñ�×�è¤ç§à�Ø=Ø�à�Û¤â�Ó·ãäÞLÒ�Ø=Þgç§Ó´ÞLÛcm�Ó�ÔwÕ=à�ágÓ§ãäë¤Ñ¤Ô&Õ�à�ÞLÑ�×gâ�Ø^ì�Ø�Ó�Óu� l Ù �5� ðtÙ
ß*Ú¤ÓwÒ=Ó�Õ�Ú/Ó�Û:ÞLë/Ñ¤è�×gÒ�ÖcÔwÞLÑ¤è¤à�Õ�à�ÞgÑ¤Ø�ì�ÞgÒ�à�Ñ/à�Õ�à�×gâ Ô�ÞLÑ/è¤à�Õ=à�ÞLÑ¤Ø�ðMãäÞLÒ'Õ�Ú¤Ó�×�èBm�ÞLà�Ñ�Õ²ò'í�ïÜØ�Ö.Ø�Õ�Ó�ç Ô�×gÑ¤Ñ/ÞgÕ
Û,Ó�ãäÞgÒ=ç�ë¤â�×�Õ�ÓwèJñ¤Ò=Þgñ:ÓwÒ=â�Ögó6ô#Ú¤Ó�è¤à�Ø�Ô�Ò�ÓwÕ�Ó·×gñ¤ñ/Ò=Þ�×gÔ�Ú¢è¤Þ.Ó�Ø*Ñ¤ÞgÕ*Ú¤×yágÓ·Ø�ë¤Ô�Ú¬è/à �»Ô�ë¤â�Õ�à�Ó�Ø�óÒ°ÓFñ¤Ò=Þgñ:ÞLØ�Ó¬×�Ñ2×gñ¤ñ/Ò=Þ�×gÔ�Ú5Õ�Þ Ô�ÞLç�Û/à�Ñ¤ÓJÕ�Ú/Ó¬î�í ç§Ó&Õ�Ú¤Þ.è2×�Ñ¤è Õ=Ú¤Óªò�øVU+W�óöõ�ô¤øba5ñ�ô�øY�X
6�_^¨ô�`"õñkò
���Bø�
"ô<ì?í*î�ð#ç§Ó&Õ�Ú¤Þ.è¬à�Ñª×gÑ¬Ó��»Ô�à�Ó�Ñ�Õ�ç§×gÑ¤Ñ¤ÓwÒNØ�ÞcÕ�Ú¤×�Õ�à�ÕNÔ�×gÑªÛ,Óqë¤Ø�Ó�èªß*à�Õ�Ú¬îGn�o�ó:ô#Ú¤ÓqÑ¤Ówß
×gñ¤ñ/Ò=Þ�×gÔ�ÚÍì�Ô�×�â�â�Ówè´Õ�Ú¤ÓNî�í�í*î ç»ÓwÕ=Ú¤Þ.è ðMÑ/ÞgÕ�ÞgÑ¤â�Ö´Ø�ÞLâ�ágÓ�Ø'Õ�Ú¤ÓNñ¤Ò=ÞLÛ/â�Ó�ç ãäÞgÒ'î-í ÞLÑ»Õ�Ú¤ÓN×gè�×gñ
Õ�à�ágÓ
ÝLÒ�à�è[Ù;à�Õ<×gâ�Ø=Þ3Ø=ÞLâ�áLÓwØ<Õ�Ú/ÓNà�Ñ�×gè¤ç»à�Ø�Ø=à�Û/à�â�à�Õ4Ö3ñ¤Ò=ÞLÛ/â�Ó�ç ãäÞgÒ<í*îqóe��Þ�Õ�Ú§Õ=Ú¤Ó-î-íÃ×gÑ¤ècí�î ç»ÓwÕ�Ú/Þ
è¤Ø'×gÒ�Ó
ë¤Ø�Ó�è¬à�ÑJÕ�Ú¤à�Ø#Ñ¤ÓwßÃ×gñ¤ñ¤Ò�Þ�×gÔ�Ú¢Û¤ë/ÕN×gÒ=Ó3×gñ/ñ¤â�à�Ó�èJà�Ñ�è¤à�é�ÓwÒ=ÓwÑ;Õ�Ò�Ó�ÝLà�ÞLÑ¤Ø�óÒ°ÓÍè/ÓwáLÓwâ�ÞLñ,Ó�èbÕ�Ú/ÓÍî�í�í*î ç§Ó&Õ�Ú¤Þ.è�Û�×gØ�Ó�è ÞLÑ ×gÑ�ÞLÛ¤Ø�Ó�Ò�ág×1Õ�à�ÞgÑ2Õ�Ú�×�ÕJÕ=Ú¤ÓÍè¤à�Ø=Ô�Ò�ÓwÕ=à�ö�×1Õ�à�ÞgÑ
ãäÒ=Þgç Õ=Ú¤Ó�î-í ç§Ó&Õ�Ú¤Þ.è¬à�Ø-Ô�ÞgÑ¤Ø=à�Ø�Õ�ÓwÑ�Õ�ß*à�Õ�ÚFÕ�Ú¤Óq×gèBm�ÞLà�Ñ;Õ�òMí�ï ìäÚ¤Ó�Ñ/Ô�Ó´à�ÕNÔ�×�ÑÍÛ:Ó·Ò=Ó�ñ/âå×gÔwÓ�èªß*à�Õ=Ú
Õ�Ú/Ó�è¤à�Ø�Ô�Ò�ÓwÕ�à�ö�×�Õ=à�ÞLÑ¢Þgã6Õ=Ú¤Ó´í*î ç»ÓwÕ�Ú/Þ
è ð�×�Õ�Õ�Ú¤Ó�à�Ñ�Õ�Ó�Ò�Ñ�×gâkñ:Þgà�Ñ�Õ�ØNà�ã`Õ=Ú¤Ó�ç»Ó�Ø=Úª×gÑ¤èªÕ�Ú/ÓJì�â�à�Ñ¤Ó�×gÒ�ð
è¤à�Ø=Ô�Ò�ÓwÕ=à�ö�×1Õ�à�ÞgÑ�×gÒ�Óºë¤Ñ¤à�ãäÞLÒ=ç ÓwágÓ�Ò�Ö;ß*Ú¤ÓwÒ=Ó¢Ó&ø
Ô�Ówñ/Õ»×�Õ�Õ=Ú¤ÓºÛ,ÞLë¤Ñ¤è¤×gÒ=à�Ó�Ø�óõô#Ú¤ÓJÛ¤×gØ=à�Ôcà�è/Ó�×ªÞgã#Õ=Ú¤Ó
î�í�í*î ç»ÓwÕ�Ú/Þ
è�à�Ø#à�â�â�ë¤Ø�Õ=Ò�×�Õ=Ó�èJà�Ñ|�Kà�Ý¤ó l ó

DA

AD

adaptive grid

fixed grid

��à�ÝLë¤Ò�Ó l §Mí�àå×�ÝLÒ�×gçDÞgãkÕ�Ú¤Ó�î-í�í�î ç»ÓwÕ=Ú¤Þ
è

ô#Ú¤Ó»Ò=Ó�Ø�ë¤â�Õ=Ø·Þ�ã<Õ=Ú¤Ó§î-í�í�î ç»ÓwÕ=Ú¤Þ.è Ø�Ú¤ÞLë¤â�è Û,Ó^Ó�ê;ë�×gâMÞLÒ�Ôwâ�ÞLØ�Ó^Õ=Þ¢Õ=Ú¤Ó^Ò=ÓwØ=ë¤â�Õ�Ø3Þgã<Õ=Ú¤Ó»î�í
ç»ÓwÕ�Ú/Þ
è ÞLÑ2×°Ñ/ÞLÑ�×gè�×�ñ/Õ�à�áLÓ�÷�Ñ¤ÓªÝLÒ�à�è[ó 8 à�ágÓ�ÑG×°Ò=Ó&ãäÓ�Ò=ÓwÑ¤Ô�Ó¬Ñ¤ÞLÑ�×gè¤×gñ/Õ�à�áLÓ¢÷�Ñ¤Ó¬ÝgÒ=à�è�Ù<ß<Ó¬÷�Ò=Ø�Õ
Ø=ñ/â�à�ÕJÕ=Ú¤ÓÍß*Ú¤ÞLâ�Ó³è/ÞLçc×�à�Ñ�à�Ñ�Õ=ÞÜÕ4ß<ÞGöwÞLÑ¤ÓwØ�§5Û:ÞLë/Ñ¤è�×gÒ�Ö�Û¤ë/é:Ó�Ò¢ö�ÞLÑ/Ó ×�Ñ¤è à�Ñ�Õ�Ó�Ò�Ñ�×gâ�öwÞLÑ¤Ó ì�Ø�Ó�Ó

�



�Kà�Ý¤ó l ð&ó3ô#Ú¤Ó´Û,ÞLë¤Ñ¤è�×�Ò�ÖªÛ/ë/é�ÓwÒ�ö�ÞLÑ/Ó´Ô�ÞLÑ¤Ø�à�Ø�Õ�Ø�Þgã'Õ�Ú¤ÓqÛ:ÞLë/Ñ¤è�×gÒ�Öªñ,ÞLà�Ñ�Õ�Ø�×gÑ¤èõñ:Þgà�Ñ�Õ�Ø-Õ=Ú�×�Õ�ë/Ø=Ó
Õ�Ú/Ó§Û,ÞLë¤Ñ¤è¤×gÒ�Öõñ,ÞLà�Ñ�Õ=Ø·à�Ñ³Õ=Ú¤Ó�à�Ò3è/à�Ø=ÔwÒ=Ó&Õ�à�ö�×�Õ�à�ÞLÑ[ó»ô#Ú¤ÓcÒ�Ó�ç§×gà�Ñ/è¤Ó�Ò�Þgã<Õ�Ú¤Ó»ñ:Þgà�Ñ�Õ�Ø3Û:Ówâ�ÞLÑ/Ý¢Õ=Þ¢Õ=Ú¤Ó
à�Ñ�Õ=Ó�Ò=Ñ¤×gâ#ö�ÞLÑ/ÓgóÈ�.à�Ñ¤ÔwÓ�Õ=Ú¤Ó¢è¤à�Ø�Ô�Ò=Ó&Õ�à�ö�×�Õ=à�ÞLÑÜÞgã�Õ�Ú¤Ó¢î�í ç§Ó&Õ�Ú¤Þ.èÜçc×�Ö)Ñ/ÞgÕ»Û:Ó¢Ô�ÞLÑ/Ø=à�Ø�Õ�ÓwÑ;Õ»ß*à�Õ=Ú
Õ�Ú/Óº×gèBm�Þgà�Ñ�Õ·ò'í�ï ×1ÕqÞLÒ3Ñ¤Ó�×gÒ3Õ=Ú¤ÓcÛ,ÞLë¤Ñ/è�×gÒ=à�Ó�ØwÙkÕ=Ú¤ÓcÛ¤ë
é�ÓwÒ·öwÞLÑ¤Ócà�Ø3÷
ø/Ówè)×gÑ¤è Ñ¤ÓwágÓ�Ò´×�è�×gñ/Õ=Ó�è
è¤ë¤Ò�à�Ñ¤ÝºÕ=Ú¤Ó�ÓwÑ;Õ=à�Ò�Ó�Õ�à�ç»Óqà�Ñ�Õ�Ó�ÝgÒ�×�Õ=à�ÞLÑ[ó�Ð4ÑÍÕ=Ú¤Ó�à�Ñ�Õ=Ó�Ò=Ñ¤×gâKöwÞLÑ¤ÓgÙ[Õ=Ú¤Ó´è¤à�Ø=Ô�Ò�ÓwÕ=à�ö�×1Õ�à�ÞgÑ¬ãäÒ=ÞLç Õ�Ú/Ó´î�í
ç»ÓwÕ�Ú/Þ
èÍÔ�×gÑõÛ:Ó´Ò�Ó�ñ¤â�×gÔ�Ówèªß*à�Õ�ÚÍÕ=Ú¤Ó´è¤à�Ø�Ô�Ò�ÓwÕ�à�ö�×�Õ=à�ÞLÑFãäÒ=ÞLç Õ�Ú¤Ó^í*î ç»ÓwÕ�Ú/Þ
èÍà�ã6ß�Ó»×gØ�Ø=ë¤ç»Ó�Õ�Ú�×1Õ
Õ�Ú/Óqè¤à�Ø=Ô�Ò�ÓwÕ=à�ö�×1Õ�à�ÞgÑFãäÒ=Þgç Õ=Ú¤Óqî-í ç§Ó&Õ�Ú¤Þ.è¬à�Ø-ÔwÞLÑ¤Ø=à�Ø�Õ=Ó�Ñ�Õ�ß*à�Õ=Ú¬Õ�Ú/Ó�×gèBm�Þgà�Ñ�Õ�òMí�ï#ó�Ð9ÕNÕ�ë¤Ò�Ñ¤Ø�ÞLë
Õ� �&l�� Õ�Ú�×�Õ�Õ�Ú¤à�Ø`×gØ�Ø=ë¤ç»ñ/Õ=à�ÞLÑ�à�ØKÑ¤Þ�Õ6×gâ�ß²×�Ö.ØKÕ�Ò�ë¤Ó�ãäÞLÒK×-ÝLÓwÑ¤Ó�Ò=×gâ/è¤à�Ø=ÔwÒ=ÓwÕ=à�ö�×�Õ�à�ÞLÑ�×gÑ/è�ÝLÒ=à�è[ó4�NÞyß�Ó&áLÓwÒ�Ù
à�ã'Õ�Ú/Ó»ç»Ó�Ø�Ú�×gÑ/è è¤à�Ø=ÔwÒ=ÓwÕ=à�ö�×�Õ�à�ÞLÑõÞgã<Õ=Ú¤Ó^ãäÞLÒ�ß�×gÒ=è³ñ¤Ò�ÞLÛ¤â�ÓwçI×gÒ�Ó»ë/Ñ¤à�ãäÞLÒ�ç à�ÑõÕ=Ú¤Ó»à�Ñ�Õ�ÓwÒ=Ñ�×gâ6öwÞLÑ¤Ó�Ù
Õ�Ú/Ó·×�èBm�ÞLà�Ñ�Õ*ÞgãkÕ�Ú/Ó3è/à�Ø=ÔwÒ=Ó&Õ�à�ö�×�Õ�à�ÞLÑJà�Ø#à�Ñ¤è¤ÓwÓ�è¢Ô�ÞLÑ¤Ø�à�Ø�Õ�Ó�Ñ�Õ*ß*à�Õ=Ú¢Õ=Ú¤Ó3×gèBm�ÞLà�Ñ�Õ*òMí�ï*ó

îNã Õ=Ó�Ò�Õ�Ú¤Ó´è/à�Ø=ÔwÒ=Ó&Õ�à�ö�×�Õ�à�ÞLÑÍà�ÑªÕ=Ú¤Ó^à�Ñ�Õ�ÓwÒ=Ñ�×�â`ö�ÞLÑ/Ó»Ú¤×gØ�Û:ÓwÓ�ÑõÒ=Ówñ¤âå×gÔwÓ�è³Û�ÖªÕ�Ú�×1Õ�ãäÒ=ÞLç Õ�Ú¤Ó»í*î
ç»ÓwÕ�Ú/Þ
è[Ù�Õ�Ú¤Óõç»Ó�Ø�Ú Ô�×gÑbÛ:Ó³×gè�×�ñ/Õ�Ówè Õ=Þ ×�Ô�Ú¤à�Ó&áLÓ³Ó��»Ô�à�Ó�Ñ¤Ô&Ö�ß*à�Õ�Ú/ÞLë/Õ�â�ÞgØ=ØJÞgã3Õ�Ú¤Ó³×gÔwÔ�ë¤Ò=×gÔwÖgó
ô#Ú¤Óq×gè�×gñ/Õ=à�ágÓ3ç»Ó�Ø�Ú¬Ò�Ów÷�Ñ¤Ówç§ÓwÑ�Õ�à�Ñ�Õ�Ú/Ó·à�Ñ;Õ=Ó�Ò�Ñ�×gâ�ö�ÞgÑ¤Óqà�Ø�à�Ñ�á
à�Ø=à�Û¤â�Ó�Õ=Þ»Õ=Ú¤Ó·î-í ç»ÓwÕ�Ú/Þ
è[Ù¤ß*Ú/à�Ô�Ú
Ó&ø
ñ,Ó�Ô&Õ�Ø�Õ�Ú¤×�ÕNÕ=Ú¤Óqè/à�Ø=ÔwÒ=Ó&Õ�à�ö�×�Õ�à�ÞLÑ¤Ø*ãäÞLÒ*Õ�Ú¤Óq×gèBm�ÞLà�Ñ;ÕNØ�Ö.Ø�Õ�Ó�ç ×gÒ=Ó3ÝLÓwÑ¤Ó�Ò=×�Õ�ÓwèÍÛ;Ö¢Õ�Ú/Óqî�í ç§Ó&Õ�Ú¤Þ.è
ÞLÑ³×JÑ¤ÞLÑ�×�è�×gñ/Õ=à�áLÓ´÷�Ñ/Ó»ÝgÒ=à�è�ó�Ð4Ñ¤Ø�Õ=Ó�×gè³Õ�Ú¤Ó´è/à�Ø=ÔwÒ=Ó&Õ�à�ö�×�Õ�à�ÞLÑÍà�Ø�×�Ô�Ô�Þgç§ñ¤â�à�Ø�Ú¤Ó�èõÓ��»Ôwà�Ó�Ñ�Õ=â�ÖÍÛ�ÖªÕ=Ú¤Ó
í*î ç§Ó&Õ�Ú¤Þ.èÜÞLÑ5×gÑ5×gè�×gñ/Õ=à�ágÓJÝLÒ=à�è[ó°ô#Ú¤Ó�à�Ñ;Õ=Ó�Ò�Ñ�×gâ²öwÞLÑ¤Ó�â�Þ.Þ��;Ø�â�à �gÓ�×ÍÛ¤â�×gÔ*�°Û,Þ�ø)Õ�ÞªÕ=Ú¤Ó�î�í
ç»ÓwÕ�Ú/Þ
è[ó�
à�Ñ/Ô�Ó�Õ�Ú/Ó�Ø=Ó�Ñ/Ø=à�Õ=à�á.à�Õ4Ö§Ô�×�â�Ô�ë/âå×�Õ=à�ÞLÑ§à�Ø²Û�×�Ø=Ó�è�ÞLÑºÕ=Ú¤Ó�î�í ç»ÓwÕ=Ú¤Þ
è�Ù
Õ�Ú/Ó�à�Ñ¤à�Õ�àå×�â,ÔwÞLÑ¤è¤à�Õ�à�ÞLÑ¤Ø<ãäÞgÒ
Õ�Ú/Ó�×gèBm�Þgà�Ñ�Õ'Ø�Ö.Ø�Õ=Ó�çDç�ë¤Ø�Õ<Û,ÓNÝLÓwÑ¤Ó�Ò=×�Õ�ÓwèºÛ�Ö^Õ�Ú¤ÓNî�í ç»ÓwÕ=Ú¤Þ
è�ó(�NÞyß<ÓwágÓ�Ò�Ù¤Õ=Ú¤Ó�à�Ñ¤à�Õ�àå×�â/Ô�ÞgÑ¤è¤à�Õ=à�ÞLÑ/Ø
ÝLÓwÑ¤Ó�Ò=×�Õ�Ówè°Û�ÖÍÕ�Ú¤Ó^î-í ç»ÓwÕ�Ú/Þ
è³çc×�ÖÍà�Ñ�áLÞLâ�áLÓ´Õ�Ú¤Ó»ÝLÒ�à�èõØ=ñ�×�Ô�à�Ñ/ÝFà�Ñ/ãäÞLÒ=ç§×�Õ=à�ÞLÑ[Ù:è¤ë¤Ó^Õ�Þ�Õ�Ú¤Ó^ÞLÛ.æm�Ó�Ô&Õ�à�áLÓ�ãäë¤Ñ¤ÔwÕ=à�ÞLÑ¤×gâ[Ówá�×gâ�ë�×�Õ=à�ÞLÑ�� �&l�� ó<î á�×gÒ�àå×gÛ¤â�Ó-Õ�Ò=×gÑ¤Ø�ãäÞLÒ=ç§×�Õ�à�ÞLÑ�� �&l�� à�Ø#ë/Ø=Ó�è¢Õ�Þ»Ó�â�à�ç»à�Ñ�×�Õ=ÓNÕ=Ú¤Ó
ÝLÒ�à�è´Ø=ñ¤×gÔ�à�Ñ¤Ý�à�Ñ/ãäÞgÒ=ç§×�Õ�à�ÞLÑqÒ�Ó�âå×1Õ�Ó�è�Õ=Þ�Õ�Ú¤Ó#à�Ñ;Õ=Ó�ÝLÒ=×�Õ�à�ÞLÑ�Ø�Ô�Ú¤Ó�ç»Ó*à�Ñ�Õ�Ú/Ó#ÞLÛem�Ó�Ô&Õ�à�áLÓ#ãäë¤Ñ¤Ô&Õ�à�ÞgÑ»Ó&á�×gâ�ë
æ
×�Õ=à�ÞLÑ[ó��NÞyß<ÓwáLÓwÒ�Ù�à�Õ�Ô�×gÑ¤Ñ¤ÞgÕ²Ó�â�à�ç§à�Ñ�×�Õ=Ó²Õ�Ú¤ÓNÝLÒ=à�ècØ=ñ¤×gÔ�à�Ñ¤Ý�à�Ñ
ãäÞLÒ=ç§×�Õ�à�ÞLÑ^Ò=Ówâå×�Õ=Ó�ècÕ=Þ·Õ�Ú/Ó�à�Ñ�Õ�ÓwÝLÒ�×�Ñ¤è
ãäë¤Ñ¤Ô&Õ�à�ÞLÑ[ó�.Õ�Ò�à�Ô&Õ�â�ÖõØ�ñ:Ó�×��;à�Ñ¤Ý/ÙkÕ=Ú¤Ó§á�×gâ�ë¤Ó�Ø3Þgã²Õ=Ú¤Óº×gè
m�ÞLà�Ñ�Õ�á�×gÒ=à�×gÛ¤â�ÓwØ3×gÒ=Ó»è¤à�é:Ó�Ò�Ó�Ñ�Õ·ÞLÑ�è¤à�é�ÓwÒ=Ó�Ñ�Õ·ÝLÒ=à�è¤Ø�ó
ô#Ú�×�Õ�à�Ø*ß*Ú�ÖJÕ=Ú¤Ó·Ø�Ó�Ñ¤Ø�à�Õ=à�á.à�Õ4ÖJÔ�×gâ�Ôwë¤âå×1Õ�à�ÞgÑºÛ�ÖJÕ�Ú¤Ó3î�í ç§Ó&Õ�Ú¤Þ.è¢ç�ë¤Ø�Õ�Û,Ó�ñ:ÓwÒ�ãäÞLÒ�ç§ÓwèFÞLÑF×�÷/ø
Ó�è
ç»Ó�Ø=Ú�ó�ô#Ú¤Ó�à�Ñ¤à�Õ=àå×gâ�ÝLà�áLÓwÑÍç§ÓwØ=Ú[Ù,ß*Ú¤à�Ô�ÚÍà�ØNÕ�Ú/Ó�âå×gØ�Õ-ç»Ó�Ø�ÚÍÝLÓ�Ñ/Ó�Ò�×1Õ�Ó�èõ×1Õë °¢ ­�à�Ñ¬Õ=Ú¤Ó·ãäÞLÒ�ß²×�Ò=è
×gè�×�ñ/Õ�à�áLÓqç»ÓwÕ=Ú¤Þ.è[Ù�ç§×�ÖFÑ/ÞgÕ�Û,Ó·Õ�Ú/Ó�Ø�×gç»Ó�×�Ø-Õ�Ú¤ÓqÒ=ÓwãäÓwÒ=ÓwÑ¤Ô�Ó´Ñ¤ÞgÑ�×gè�×gñ
Õ�à�ágÓ·÷�Ñ/Ó´ç§ÓwØ=Ú¬ß<Ó´Ø=ÓwÓ�� ó
ô#Ú¤ÓwÒ=ÓwãäÞgÒ=ÓgÙ�ß<Ó*ç�ë¤Ø�ÕMÔ�×gâ�Ôwë¤âå×1Õ�Ó<Õ=Ú¤Ó*à�Ñ¤à�Õ�à�×gâ;Ô�ÞLÑ¤è/à�Õ�à�ÞLÑ¤ØkãäÞLÒ`Õ�Ú¤Ó#î-í�í�îGç§Ó&Õ�Ú¤Þ.è´ÞLÑ´Õ�Ú¤Ó#Ò�ÓwãäÓwÒ=Ó�Ñ/Ô�Ó
ç»Ó�Ø=Ú�÷�Ò�Ø�ÕN×gÑ¤è�Õ�Ú¤ÓwÑFñ/Ò=ÞBm�ÓwÔwÕ*Õ�Ú¤Ówç ÞLÑ�Õ�Þ^Õ�Ú/Ó3à�Ñ¤à�Õ=àå×gâ,ÝLà�áLÓ�Ñ�ç»Ó�Ø�ÚFÛ�Ö�à�Ñ�Õ=Ó�Ò=ñ,ÞLâ�×�Õ�à�ÞLÑ[ó

ô#Ú¤Ó�ÞyáLÓwÒ�×gâ�â`×gâ�ÝLÞLÒ�à�Õ�Ú/ç Þgã`Õ=Ú¤Ó�î�í�í*î ç»ÓwÕ=Ú¤Þ.è¬à�Ø-×gØ-ãäÞLâ�â�Þyß*Ø�§N�Kà�Ò�Ø�Õ�ß�Ó�ÞgÛ/Õ�×gà�Ñ¬Õ�Ú/Óqà�Ñ/à�Õ�à�×gâ
Ô�ÞgÑ¤è¤à�Õ=à�ÞLÑ/Ø�ãäÞLÒ�Õ�Ú¤Ó�×gèBm�ÞLà�Ñ;ÕNØ�Ö.Ø�Õ�Ó�ç�Û�ÖFÕ=Ú¤Ó�î�í ç»ÓwÕ=Ú¤Þ.è¬ÞLÑÍ×»á
à�Ò�Õ=ë�×gâkÑ¤ÞLÑ�×gè¤×gñ/Õ�à�áLÓq÷¤Ñ¤ÓqÝLÒ�à�è[ó
ô#Ú¤ÓwÑ³ß<Ó�Õ�Ò=×gÑ¤Ø�ãäÞgÒ=ç�×gÑ¤èõñ¤Ò=Þ
m�Ó�ÔwÕ�Õ=Ú¤Ó�ç Õ�ÞºÕ=Ú¤Ó^×gè�×gñ
Õ�à�ágÓ�ÝLÒ�à�èªß*à�Õ=Úõ×c÷/ø
Ó�èõÛ,ÞLë¤Ñ¤è�×�Ò�ÖªÛ/ë/é�ÓwÒ
ö�ÞgÑ¤ÓgóäÒ°Ó^×gØ�Ø=ë¤ç»Ó�Õ�Ú¤×�Õ�Õ�Ú/Ó´è¤à�Ø�Ô�Ò=Ó&Õ�à�ö�×�Õ=à�ÞLÑÍÚ�×�Ø�Û:ÓwÓ�Ñ³Ô�Ú¤ÞLØ�Ó�Ñ³Ø=ÞJÕ�Ú�×1Õ�î�í à�Ø-Ô�ÞLÑ¤Ø�à�Ø�Õ�Ó�Ñ�Õ�ß*à�Õ=Ú
Õ�Ú/Ó´×gèBm�ÞLà�Ñ�Õ�òMí�ï à�Ñ�Õ�Ó�Ò�Ñ�×gâ�â�ÖLóNô#Ú¤Ó�ÑªÕ=Ú¤Ó�Ø�ñ�×�Õ�à�×gâkè¤à�Ø�Ô�Ò=Ó&Õ�à�ö�×�Õ=à�ÞLÑªà�Ñ¬Õ�Ú/Ó�Û:Þgë¤Ñ¤è�×gÒ�Ö¬Û/ë/é�ÓwÒ�ö�ÞgÑ¤Ó
à�Ø3ÝLÓwÑ¤Ó�Ò=×�Õ�Ówè�Û�Ö³Õ=Ú¤Ó»î�í ç»ÓwÕ=Ú¤Þ
è³á.àå×¢×gë/Õ�Þgçc×�Õ=à�Ô^è¤à�é�ÓwÒ=Ó�Ñ�Õ=àå×�Õ=à�ÞLÑ[Ùk×gÑ/è Õ�Ú/Ócè¤à�Ø=Ô�Ò�ÓwÕ=à�ö�×1Õ�à�ÞgÑ³à�Ñ
Õ�Ú/ÓFà�Ñ;Õ=Ó�Ò�Ñ�×gâ*ö�ÞLÑ/ÓFà�Ø»è/Ów÷�Ñ¤Ówè2Û�Ö5è¤à�Ø�Ô�Ò=Ó&Õ�à�ö�×�Õ=à�ÞLÑÜÞgãNÕ�Ú¤ÓF×gèBm�ÞLà�Ñ�ÕcòMí�ï#ó��Kà�Ñ¤×gâ�â�ÖLÙ'×gÑ;��í�ï ÞgÒ
í*î�ï5Õ=à�ç»Ó�Ø=Þgâ�áLÓwÒ*à�Ø#ë¤Ø�Ó�è�Õ�Þ»×gè/á�×gÑ¤ÔwÓ�Õ�Ú¤Ó�Ø�ÞLâ�ë/Õ=à�ÞLÑºÕ=Þ´Õ�Ú¤Ó�Ñ¤Ótø.Õ�Õ=à�ç»Ó�Ø�Õ=Ó�ñ[ó'îNã Õ=Ó�Ò²Õ=Ú¤Ó�×gèBm�ÞLà�Ñ�Õ
á�×gÒ=à�×gÛ¤â�Ó�Ø*Ú�×�áLÓ·Û:ÓwÓ�Ñ¬ÔwÞLç»ñ¤ë/Õ�Ówè[Ù Õ�Ú¤Ó3Ø=ÓwÑ¤Ø=à�Õ�à�á.à�Õ4Ö�Ówá�×gâ�ë¤×�Õ�à�ÞLÑ¤Ø*ÞgãKÕ=Ú¤Ó3î�í ç»ÓwÕ=Ú¤Þ
èF×gÒ�Ó·ë¤Ø�Ó�è¬Õ=Þ
Ô�×�â�Ô�ë/âå×�Õ=Ó-Õ�Ú¤Ó�Ø�Ó�Ñ¤Ø�à�Õ�à�á.à�Õ�à�Ó�Øwó

ïKø¤×�ç§ñ¤â�Ó�Ø¢×gÒ�ÓÍñ¤Ò=ÓwØ=Ó�Ñ�Õ=Ó�èÃà�Ñî� �&l�� ß*Ú¤à�Ô�Ú è¤Ó�ç»ÞLÑ¤Ø�Õ�Ò=×�Õ�ÓªÕ=Ú¤ÓõÓwé:Ó�ÔwÕ=à�ágÓ�Ñ¤ÓwØ=Ø¬Þ�ã·Õ=Ú¤Óõî�í�í*î
ç»ÓwÕ�Ú/Þ
è[ó

�



e rG}�r�É�r�ÇÍÎ rgt
� l�� Ò ó®�´ó3î-Ñ¤è/Ó�Ò=Ø�ÞLÑ�×gÑ¤ègfqóhfMÓwÑß�1×�Õ�×T�.Ò�à�Ø�Ú¤Ñ�×gÑ[ÙjiGõ�ó:��ò	kX
,ñ	�ÎøYW òeõJU�øb�	
l�J[,ô�ø��Îøba5ñ�ô¤øY�X
B�X
ðm
�U�ô¤óDð W�ô¤ðeó*õJòn��óDø¤ògo�ø$ôF`éñpWJ�X
"ô¤ø�
"ð �Bð�U ñkò
���Bø�
"ô.^��BóP�Îðeúâñ�ô�øY�X
�Ù¬î-Ð4î-î ��� æU� �T�k� Ù � æm� Õ=Ú

î-ÓwÒ=ÞLØ�ñ�×gÔ�Ó �
Ôwà�ÓwÑ¤Ô�Ó3ç§ÓwÓwÕ=à�Ñ¤ÝMq Ótø
Ú¤à�Û¤à�Õ�Ù�ì l5���k� ð&ó� �B� ï#ó[î-Ò�àå×gÑÍ×�Ñ¤èån óO�/×gâ�×gØ�Ùriµò	�Îø$ô¤ô�ø�
s�|ôF`"õ�ø�
,ñkò	�ÎøVUJU�ø¤ù�ú¶õutÎñkò
���Bø�
"ô%^��BóP�Îðeúâñ�ô�øY�X
.^��BóÎø�
vWJ�X�xw[,ú¶õ�ôUõyWJ�+U�ôz^Dðs
vW�ô�øY�X
,ñ�ú{Ugø�
�ñeõ�óJ��ò	kX
,ñ	�ÎøYWy�J[,ô¤ø��Îøba5ñ�ô¤øY�X
�Ù¤Ð@,�îg�/ïÈo*Ó�ñ,ÞLÒ�Õ êNÞ¤ó ��� æ ��� Ù l5���k� ó� �T�}| óßn ó/îNØ=Ô�Ú¤ÓwÒN×�Ñ¤è~\6óßo�ó/òkÓwÕ�öwÞLâ�è�Ù��c�X��[,ð&ôÛõ�ó2��õ�ôF`���òXUT^��BóM�Nó�ò�ø�
,ñ�ó�kh�Ùø ZGõ�óöõ�
"ô�ø¤ñ�ú �Zï�ð´ñ	wô�øY�X
�Uäñ	
,òM�Ùø ZGõ�óöõ�
"ô�ø¤ñ�ú�w�iëú��eõ�ù�ó�ñ�øYW2�Zï�ð´ñ�ô¤øY�X
�U&Ù7�
Ð4îgn³Ù l���� �/ó� ��� n ó
·/ó5�<Ó�Ò=ÝgÓ�Òk×gÑ¤è ·/ó���â�à�ÝLÓ�ÒwÙ�i òkñ�[,ô�ø$÷�õ"�ÓõJUJ`äóöõF��
�õ��Óõ�
"ô+^��Bó�`skP["õ�ó�ù��Bú øYWr[´ñ�óDô�ø¤ñ�úkò�ø ZGõ�ó*õ�
"ô¤ø¤ñ�úõJï�ðßñ�ô¤øY�X
�U&Ù7·/ó ,�Þgç§ñ¤ë
Õ�ó ò6Ú�Ö
Øwó=æ � ì l5� � � ð&Ù � � � æSæ l
� ó�Xæ � ·/ó��<ÞLÒ=ÝLÝL×L×gÒ=è¬×gÑ¤è�·/ó=��ë¤Ò�Ñ¤Ø�Ù�ip���]��U5õ�
�U�ø$ô�ø$÷5ø$ô�k¨õJï�ð´ñ�ô�øY�X
��Óõ�ôF`���ò]^��Bó.�J[,ô¤ø�� ñ�ú�ñeõ�óJ��ò	kXw
,ñ	�ÎøYWäòeõJU�øb�	
�Ù7·/óz,�Þgç§ñ[ó¤òMÚ�Ö.Ø�ó�Ù l5��� ì l����k� ðtÙ ����� æ � � � ó� �T� ,-ó���à�Ø=Ô�Ú¤Þ�ã�ÙLîqó�,²×gÒ=â�ÓgÙ 8 ó�,�ÞLÒ�â�à�Ø=Ø�Ù�îqó 8 Ò=à�Ówß�×gÑß�·×gÑ¤è^òkó��NÞyá.âå×�Ñ¤è[Ù�i��2�J���c�Ow��µõ�
�õ�óJñ�ô¤ø�
s�òeõ�óDø$÷Bñ�ô�ø$÷�õ�WJ��òeõJU�^DóJ�X�p���BóDô¤óJñ	
.[,óJ�G��ó�ñ	�yU&Ù7�.Ô�à�ÓwÑ�Õ�à�÷¤Ô�òMÒ�ÞLÝLÒ=×gç§ç»à�Ñ/Ý l ì l5����� ð&Ù l�l æ ��� ó� �B� �´ó;ï*ó&��Ò�Ó�Ñ�×gÑ�Ùß�:ós\6óm,²×gç»ñ¤Û:Ówâ�â,×gÑ¤è�\6ó&o�ó;ò�Ó&Õ�öwÞLâ�è[Ù �Gðs�Óõ�óDøYWJñ�ú��%�Bú ð&ô¤øY�X
-�_^��P
"ø$ô�ø¤ñ�ú�wX�"ñ�ú ð"õ�ÃóJ��ù�ú¶õ��yUgø�
��Ùø ZGõ�óöõ�
"ô�ø¤ñ�ú�w�iëú��eõ�ù�ó�ñ�øYW2�Zï�ð´ñ�ô¤øY�X
�U&Ù7�
Ó�ÔwÞLÑ¤èFÓ�è¤à�Õ�à�ÞgÑ[Ù"�
Ð4îGn Ù l5����� ó� � � ò�ófê·óN�<Ò=Þyß*Ñ[Ù�îqó�,-óN�Nà�Ñ/è¤çc×�Ò=Ø=Ú2×gÑ¤è�\6óNo�ó²òkÓwÕ�öwÞLâ�è�Ù� %U�ø�
s�¢¡äó�kBúV�B÷��Óõ�ôF`���òXU�ø�
Õô�`"õU+�Bú ð&ô¤øY�X
£�_^ úâñ�óY�eõ�wYU+WJñ�ú¶õÓò�ø ZGõ�óöõ�
"ô¤ø¤ñ�ú�wSñ�ú��eõ�ù�ó�ñ�øYW�U�k�U�ôÛõ��yU&Ù��.Ð4îgn ·/ó��
Ô�à?óT,�Þgç§ñ¤ë
Õ�ó<ì l5����� ð&Ùl��k�k� æ l�� ���/ó� �T�4¤ ós,²×gÞ/Ùß�:ós\�à�Ù�\6ó.ò�Ó&Õ�öwÞLâ�èc×gÑ¤è�o�óe�
ÓwÒ=Û�×gÑdiµò
���Bø�
"ô7�Eõ�
�U�ø$ô�ø$÷5ø$ô�k4i�
,ñ�ú�k+U�øVU7^��Bó$�Ùø ZGõ�óöõ�
"ô¤ø¤ñ�ú�wiëú��eõ�ù�ó�ñ�øYW��Zï�ð´ñ�ô¤øY�X
�UutM¥%`"õ�iµò
���Bø�
"ô7�$i��;� k+U�ôÛõ��éñ	
,ò{ø$ô�U2�ëðm�Óõ�óDøYWJñ�ú �%�Bú ð&ô¤øY�X
�Ù&�
Ð4îgn~·/ó�
Ô�à?ó ,�ÞLç»ñ¤ë/Õ�ó �T� ì � ð�ì � ��� � ð&Ù l � ��� æ l ��� � Ù� l � �4¤ ó�,²×gÞ¤ÙÃ�:ó�\�à�×gÑ¤è¦\6ó`ò�Ó&Õ�öwÞLâ�è[Ùci ò
���Bø�
"ô�U5õ�
�U�ø$ô�ø$÷5ø$ô�k�ñ	
,ñ�ú�k+U�øVU�^��Bó ò�ø ZGõ�óöõ�
"ô¤ø¤ñ�ú�wSñ�ú��eõ�ù�ó�ñ�øYWõJï�ðßñ�ô¤øY�X
�UutGñ�ú��s�BóDø$ô�`s�yU ñ	
,òMU+�_^Dô�o�ñ�ó*õ&Ù"·/óz,�ÞLç§ñ�ó¤î-ñ¤ñ/â�ó7n¬×1Õ�Ú[ó l���� ì � ��� � ð&Ù l
�el æ l5��� ó� l�l�� o3ó.n³ó�ï6Ò�Ò=à�ÔwÞ¤Ù}§j`´ñ�ô øVUÓñ	
Ýñkò
���Bø�
"ô�����òeõ�ú_¨�Ù4�<ë¤â�â�ÓwÕ�à�ÑÍÞgã�Õ=Ú¤Ó»î-ç»Ó�Ò=à�Ô�×gÑånFÓ&Õ�ÓwÞLÒ=ÞLâ�ÞLÝLà�Ô�×gâ�
Þ.Ô�à�Ó&Õ4Ö � �¢ì l5���k� ðtÙ � æ ��� æ � æ �´l ó� l
�B� Ò ó7��ó"��Ó�ÓwÚ¤Ó�Ò�ÖLÙ�·/ó ï#ó�ô�ÞLâ�Ø=ç§×^×gÑ¤èFò�ó�Ð�ó,�²×gÒ�Õ�ÞLÑ[Ùz��©OW�ø�õ�
"ô�U5õ�
�U�ø$ô�ø$÷5ø$ô�k�ñ	
,ñ�ú�k+U�øVU��_^Ùúâñ�óª�eõ�wU+WJñ�ú¶õfò�ø ZGõ�óöõ�
"ô�ø¤ñ�ú�wSñ�ú��eõ�ù�ó�ñ�øYW�U�k+U�ôUõ��yU&Ù�î-ñ¤ñ/â�à�ÓwèäêNë¤ç»Ó�Ò�à�Ô�×�âen¬×�Õ�Ú/Ó�ç§×�Õ�à�Ô�Ø�Ù � æ�ì l����k� ð �ßl æUæ � ó� l5�T�4¤ ó&·L×gÒ�Ñ;ÖgÙßn³óRê3ó���öwà�Ø=à �´×gÑ¤è�·/ó òkó´��×gÒ=è¤ÞgÑ[Ùmi��eõ�
�õ�ó�ñ�úr�J[,ô¤ø��Îøba5ñ�ô¤øY�X
d�Óõ�ôF`���ò{ð�U�ø�
s� ñkò
���Bø�
"ôõJï�ðßñ�ô¤øY�X
-^��BódU+�Bú ÷5ø�
s�¢�Îð&ú ô¤ø¤ò�ø��Óõ�
�U�øY�X
,ñ�úNø�
"÷�õ�ó:U5õd`"õJñ�ô.WJ�X
,ò�ð�W�ô�øY�X
�Ù�Ð4Ñ;Õ�óN·/óÃ�NÓ�×�Õ�n¬×gØ=Øwó
ô�Ò=×gÑ¤Ø�ãäÓ�Ò ��� ì l5���´l ð ���&l�l æ �T�´l5� ó� l���� o3ó 8 à�Ó�Ò�à�Ñ¤Ý)×�Ñ¤è�ô�óZ��×gç»à�Ñ¤Ø��.à?Ù]� õJW�ø{["õJU}^��BóÔñkò
���Bø�
"ô«WJ��òeõ�WJ�X
�U�ô¤ó�ð�W�ô¤øY�X
�ÙNî�,Zn ô�Ò=×gÑ¤Øwón¬×�Õ=Ú[ó7�
Þgã Õ4ß�×gÒ�Ó �T� ì l5��� ��ðtÙ �k��� æ �c�B� ó

l �



� l æ � n ók�-ó 8 à�â�Ó�Ø6×�Ñ¤è ê·ó îqó;ò6à�ÓwÒ=Ô�Ó�Ùmiµò
���Bø�
"ô�õJï�ðßñ�ô¤øY�X
�U ø�
E�����htEò�ðßñ�ú ø$ô�k+¬�ù��Bðs
,òkñ�óPkMWJ�X
,ò�ø$ô¤øY�X
�Uñ	
,òMU+�Bú ðeô�øY�X
Ôù�õJ`´ñ�÷5øY�Bðeótó¤î-Ð4îNî�òK×gñ,Ó�Ò �k� æ l �kæ��/Ù�ì l����k� ðtó� l5�T� n óZ�-ó 8 à�â�ÓwØº×gÑ¤è ê3ó î·ó#ò6à�Ó�Ò�Ô�Ó�Ù4i�
 ø�
"ô�ó:��ò�ð�W�ô�øY�X
Õô_�ªôF`"õÔñkò
���Bø�
"ô�ñ�[�[,ó:��ñsWJ`Çô(�ÝòeõJU�øb�	
�Ù
ï�o�,��g�Kô�î�,�Ò°ÞLÒ��;Ø=Ú¤ÞLñ¢ÞLÑ¢î-èBm�Þgà�Ñ�ÕµnFÓwÕ=Ú¤Þ.è¤Ø�Ù�ôkÞLë¤â�ÞLë¤Ø=Ó�Ù,·gë¤Ñ¤Ó �&l æ ��� Ù l������ ó� l
�B� ��ó 8 Ú�×1Õ=Õ�×�Ø§×�Ñ¤è ·/ó æU�3ó��²×gÒ��,Ùy��[,ô�ø�� ñ�ú�WJ�X
"ô�ó:�Bú��_^sô�o­� ñ	
,òåô�`eó*õ*õ�wSò�ø��Óõ�
�U�øY�X
,ñ�úÃø�
vWJ�X�xw[,óöõJUJU�ø¤ù�ú¶õ��gñ�÷5ø�õ�ó�w®�7ô(�+¯kõJU]��úV�XoTU&Ù"·/óz,�ÞLç§ñ�ó�ò6Ú;Ö.Øwó�Ù l5��� ì l5���k� ðtÙ ���´l æ �T��� ó� l � � îqó=·L×gç»Ó�Ø�ÞLÑ[ÙviGõ�ó:��ò	kX
,ñ	�ÎøYWh�®õJU�øb�	
�÷5ø¤ñE�c�X
"ô¤ó:�Bú$¥%`"õJ�BóPk+¬�·/ó Þgã��
Ôwà�Ó�Ñ�Õ=à�÷�Ô�,�ÞLç§ñ/ë/Õ�à�Ñ¤Ý¤Ù �
ì l5� ����ð ����� æ ��� �/ó� l5�T� í�ó,��Ñ¤×gñ¤ñ[Ùvfqó���×gÒ=Þ.Ô�×gØwÙ9�´ó ¤ Þ.Þ¤Ù�\6ó[ò�Ó&Õ�öwÞLâ�èÍ×�Ñ¤èÔo3ó,ôkÒ�×gÑ¤ê;ë¤à�â�â�Þ¤Ù%��`"õJ�BúV�G�	k��_^ ó*õJWJ�X
�U�ô¤ø�wô�ðeôÛõJòÓôªkJ["õ��xWJ�Bú$úâñ+�eõ�
j�eõ�ú9ø�
�WJ�X
���
�õJò~WJ�X��[,óöõJUJU�øY�X
�Ù"·/ó7o*Ú¤Ó�Þgâ�ÞLÝgÖ �ßl ì l����k� ðtÙ �k�&l æ ����� ó� � � � o3óBn³ó	\�Ówß*à�Ø�Ù��Gðs�Óõ�óDøYWJñ�ú WJ�X��[,ðeô_ñ�ô¤øY�X
d�_^�U5õ�
�U�ø$ô¤ø$÷5ø$ô¤ø�õJU°ñ	
,òGô�`"õ°ñkò
���Bø�
"ôOñ�[�[,ó:��ñsWJ`.Ù@Ð@,�îg�
ï
ô�ÓwÔ�Ú¤Ñ¤à�Ô�×gâOo*Ó�ñ,ÞLÒ�Õ ê�Þ¤ó �k� æ �´l Ù l5���k� ó� �&l�� �:ór\�à6×gÑ/è�\6ó�òkÓwÕ=ö�ÞLâ�è[Ù�iµò
���Bø�
"ô��Eõ�
�U�ø$ô¤ø$÷5ø$ôªk«i�
,ñ�ú�k+U�øVU�^��Bó°¥Oø��Óõ�wY�{õ(["õ�
,òeõ�
"ôc�Nñ�óDô¤ø¤ñ�ú��Ùø ^Pw^�õ�óöõ�
"ô�ø¤ñ�ú��Nï�ð´ñ�ô�øY�X
�U4o�ø$ôF`�i òkñ�[,ô�ø$÷�õ4��õJUJ`d�°õF��
�õ��Óõ�
"ô?Ù
Ø=ë¤Û/ç§à�Õ=Õ�Ówè[Ù,·/ó ,�ÞLç»ñ[ó ò6Ú�Ö.Ø�ó� ���B� �:ó6\�à ×gÑ/è \6ó òkÓwÕ=ö�ÞLâ�è[Ù±�{õJU+W�óDø{[,ô¤øY�X
 �_^²�$i]�³��¡�i]�4´����:��¥�t�i�
 i ò
���Bø�
"ôg�Eõ�
�wU�ø$ô�ø$÷5ø$ô�kµ�%�Bú ÷�õ�ó¶^��Bó±�Ùø ZGõ�óöõ�
"ô¤ø¤ñ�ú�w�iëú��eõ�ù�ó�ñ�øYW²�Nï�ð´ñ�ô�øY�X
�U&Ù | ,Z�´� ôkÓ�Ô�Ú¤Ñ/à�Ô�×�â o�Ówñ:ÞgÒ�Õ�Ù
ß#ß#ß�ó ÓwÑ¤ÝLà�Ñ¤Ó�ÓwÒ=à�Ñ/Ý¤ó ë/Ô�Ø=Û�ó Ówè¤ë !§ÔwØ=Ógó� ���T� �:ór\�à6×gÑ/è¢\6ó�òkÓwÕ�öwÞLâ�è�Ù��%�_^Dô�o�ñ�óöõ ñ	
,ò�ñ�ú��s�BóDø$ô�`s�yU�^��BóyU5õ�
�U�ø$ô¤ø$÷5ø$ôªk¨ñ	
,ñ�ú�k+U�øVUj�_^Îúâñ�óª�eõ�wYU+WJñ�ú¶õò�ø ZGõ�óöõ�
"ô�ø¤ñ�ú�wSñ�ú��eõ�ù�ó�ñ�øYW�U�k�U�ôÛõ��yU&Ù¤Õ�Þ»×gñ¤ñ,Ó�×�Ò�Ù7·/óz,�ÞLç»ñ[ó�×�Ñ¤èFîNñ¤ñ¤â?ó7n¬×�Õ=Ú[ó� �T��� �:ó�\�à�×gÑ¤è6\6ó*ò�Ó&Õ�öwÞLâ�è[Ùh�{õJU�øb�	
n�_^·� õ�op�$i]�³��¡¸^��Bó°�Eõ�
�U�ø$ô¤ø$÷5ø$ôªk�i�
,ñ�ú�k+U�øVU&ÙNôkÓ�Ô�Ú/Ñ¤à�Ô�×gâo�Ówñ:ÞgÒ�Õ�Ù¤í�Ó�ñ/Õ�ó¤Þgã�,�Þgç§ñ¤ë
Õ�Ó�Ò �.Ô�à�ÓwÑ¤Ô�Ó�Ù | ,Z�´�-Ù l������ ó� � æ � �:óz\�à�Ù�\Mó,òkÓwÕ�öwÞLâ�èª×gÑ¤èÔ·/ó,��Ö.ç§×gÑ[Ù��%�Bú ð&ô¤øY�X
 ñkòkñ�[,ôUõJòj
�õJU�ôÛõJò.��óDø¤ò�óöõF��
�õ��Óõ�
"ôZñ	
,ò«U5õ�
�U�ø�wô�ø$÷5ø$ô�k�ñ	
,ñ�ú�k+U�øVU7^��Bó"[´ñ�ó�ñkù��Bú øYW�[´ñ�ó�ô¤ø¤ñ�ú=ò�ø ZGõ�óöõ�
"ô�ø¤ñ�úEõJï�ð´ñ�ô�øY�X
�U&Ù;Õ�Þq×gñ¤ñ,Ó�×gÒ'à�Ñ§Ø=ñ,Ó�Ô�à�×gâ�áLÞLâ�ë¤ç»Ó
ÞgãT\�ÓwÔwÕ=ë¤Ò=ÓäêNÞ�Õ�Ó�Ø*à�Ñ°,�Þgç§ñ¤ë
Õ�×�Õ=à�ÞLÑ�×�â9�
Ôwà�Ó�Ñ/Ô�Ó·×gÑ¤è¢ï6Ñ¤ÝLà�Ñ/Ó�Ó�Ò�à�Ñ¤Ý/Ù7�
ñ¤Ò�à�Ñ¤ÝLÓwÒ�Ù � ��� l ó� ���T� �:ó³\�à?Ù³\6ó�ò�Ó&Õ�öwÞLâ�è¢×gÑ¤èsÒ ó³¹�Ú.ë�Ù%�Eõ�
�U�ø$ô�ø$÷5ø$ô�k ñ	
,ñ�ú�k�U�øVUy�_^Ùò�ø ZGõ�óöõ�
"ô�ø¤ñ�ú�wSñ�ú��eõ�ù�ó�ñ�øYWäõJï�ðßñ�ô¤øY�X
�UutiºWJ�X��[´ñ�óDøVU+�X
»�_^y�Óõ�ô�`���òXU«�X
 ñ�U(["õJW�ø¤ñ�ú�[,ó:��ù�ú¶õ��´Ù,î-ñ¤ñ/â�à�ÓwèuêNë/ç§ÓwÒ=à�Ô�×gâ4n¬×�Õ=Ú¤Ó�ç§×�Õ�à�Ô�Ø �k�
ì � ������ð&Ù l5�´l æ l
�T� ó� ���B� ô�ó,n¬×gâ�Ö¢×gÑ¤è�\Mó7o�ó,ò�Ó&Õ�ö�Þgâ�è[Ù%�ëðm�Óõ�óDøYWJñ�úr�Óõ�ô�`���òXU®ñ	
,ò.U+�_^Dôªo�ñ�óöõ�^��Bó4U5õ�
�U�ø$ô�ø$÷5ø$ô�k�ñ	
,ñ�ú�k+U�øVU�_^äò�ø ZGõ�óöõ�
"ô�ø¤ñ�ú�wSñ�ú��eõ�ù�ó�ñ�øYW2U�k�U�ôÛõ��yU&Ù¤î-ñ/ñ¤â�à�Ó�è|êNë¤ç»Ó�Ò�à�Ô�×gâOn¬×�Õ=Ú¤Ó�ç§×�Õ=à�Ô�ØwÙ � �¢ì l����k� ðtÙ7æ � æ ��� ó� � � � 8 ó�Ð�óBn¬×gÒ=Ô�Ú;ëß� ÙXf�óyÐ�óyî-ÝgÞLØ=Úß��Þyá3×gÑ¤è¼f�ó@ò�óB�.Ú.ë
Õ4Ö�×gÓ&á:Ù�iµò
���Bø�
"ôOõJï�ðßñ�ô¤øY�X
�Ufñ	
,ò"["õ�óDô�ðeó�ù*ñ�ô�øY�X
ñ�ú��s�BóDø$ôF`s�yU&Ù³,No�, ò6Ò=ÓwØ=Ø�Ù,��Þ.Ô�×�o�×�Õ�ÞgÑ[Ù"�Kâ?Ù l5����� ó� ���T� �:ó5�´ó�êN×gè�×gÒ=×
m=×gÚ3×gÑ¤è�î·ó
·L×gç»Ó�Ø=ÞgÑ[Ù½i�WJ�X��[´ñ�óDøVU+�X
«�_^�ô�`"õ�WJ�X
"ô¤ø�
"ð �Bð�Ufñ	
,ògò�øVU+W�óöõ�ôUõÃñkò
���Bø�
"ôñ�[�[,ó:��ñsWJ`sô(�Óñ�ð&ô(�X� ñ�ô�øYW®ñeõ�ó:��ò	kX
,ñ	�ÎøYW��J[,ô¤ø��Îøba5ñ�ô�øY�X
�Ù
î-Ð4î-î ñ�×�ñ:ÓwÒµ���1æU��� �k� Ù � �����/ó

l�l



� � � � \6ó�\6ókoN×5m=×/Ùco3óe·/ó���ÓwÓgÙeo�óe�
Ó�Ò�Û�×gÑ§×gÑ¤è.\6ó;ò�ÓwÕ=ö�ÞLâ�è[Ù³�¼kX
,ñ	�ÎøYW]�J[,ô�ø��Îøba5ñ�ô¤øY�X
��_^]WJ`"õ��ÎøYWJñ�ú$ú�kóöõJñsW�ô�ø�
s�MU�ô�ñ+�	
,ñ�ô¤øY�X
y¾��XoTU&Ù¤òMÒ�Þ
Ô�ó ï6â�Ó�Ô&Õ�Ò�Þ
Ô�Ú¤Ówç§à�Ô�×gâ9�
Þ
Ôwà�Ó&Õ4ÖLÙ l5��� �/ó� �´l�� îqó �
Ówà3×gÑ¤èÕÒ óZÒ ó �.Ö.ç»Ó�ØwÙyiµ
v�BôÛõ»�X
¿WJ�X
�U�øVU�ôÛõ�
vW�kÇñ	
,òÇñkò
���Bø�
"ôª
�õJUJUy^��BóE
"ðm�Óõ�óDøYWJñ�úU+WJ`"õ��ÓõJU&Ù
ôkÓ�Ô�Ú�ó7o�Ówñ:ÞLÒ�Õ#ô°o � æ@æU� � Ù¤í�Ówñ�×gÒ�Õ=ç§ÓwÑ�Õ#ÞgãT,�ÞLç»ñ¤ë/Õ�×1Õ�à�ÞgÑ�×gâ:×gÑ¤èJî-ñ/ñ¤â�à�Ó�è|n¬×�Õ=Ú[ó�Ùo�à�Ô�Ó | Ñ¤à�ágÓ�Ò=Ø�à�Õ4ÖgÙ l5��� æ
ó

l
�



An Implicit-Explicit Runge-Kutta-Chebyshev Scheme for

Diffusion-Reaction Equations

J.G. Verwer and B.P. Sommeijer

CWI

P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

jan.verwer@cwi.nl (www.cwi.nl/∼janv), ben.sommeijer@cwi.nl

Abstract

This preprint deals with the numerical time integration of diffusion-reaction problems with highly
stiff reaction terms. An implicit-explicit (IMEX) extension of the explicit Runge-Kutta-Chebyshev
(RKC) scheme is proposed. With respect to stability, the explicit scheme can be positioned in between
common explicit and implicit Runge-Kutta schemes. RKC is explicit and thus avoids algebraic system
solutions. It does however possess extended real stability intervals with a length proportional to s

2,
where s is the number of stages. This implies that the scaled stability interval length, which takes
into account the work load per time step, increases linearly with s, rendering RKC an attractive,
user-friendly scheme for integrating large-scale semi-discrete parabolic problems. In case of severe
stiffness RKC will become inefficient since then a very large number of stages will be needed for
reasonable step sizes. By treating the reaction terms implicitly, in this preprint this restriction is
removed for diffusion-reaction problems for which severe stiffness emanates from the reaction terms
and the reaction Jacobian has a real spectrum.

1 Introduction

This preprint deals with the numerical time integration of parabolic partial differential equations, in
particular diffusion-reaction problems with highly stiff reaction terms. We adopt the method of lines
approach, thus assuming that the PDE problem including its boundary conditions has already been
spatially discretized to a semi-discrete problem on a chosen space grid. This semi-discrete problem, being
an initial value problem for a system of ordinary differential equations (ODEs), is denoted as

w′(t) = FD(t, w(t)) + FR(t, w(t)) , t > 0 , w(0) = w0 , (1.1)

where FD represents the semi-discrete diffusion operator and FR contains the reaction terms. Typically,
the dimension of this system is huge, especially for multi-space dimensional PDEs (number of PDE
components times number of grid cells) and often this system is nonlinear and stiff. The stiffness rules
out easy-to-use standard explicit solvers and the huge dimension with the nonlinearity complicates the
use of implicit solvers.

In this preprint we propose an implicit-explicit (IMEX) extension of the explicit Runge-Kutta-
Chebyshev (RKC) scheme. This scheme has been designed by van der Houwen & Sommeijer [10] for
the numerical time integration of parabolic PDEs. With respect to stability, this scheme can be posi-
tioned in between common explicit and implicit schemes. RKC is an explicit Runge-Kutta scheme and
thus avoids algebraic system solutions. It does however possess extended real stability intervals with a
length proportional to s2, where s is the number of stages. This quadratic dependence is derived from
the first kind Chebyshev polynomial. The quadratic dependence is very attractive, since it means that
the scaled stability interval length, which takes into account the work load per time step (the number of

1



stages), increases linearly with s. Therefore RKC is an attractive, user-friendly scheme for integrating
large-scale semi-discrete parabolic problems. However, in case of severe stiffness, RKC will of course be-
come inefficient since then a very large number of stages will be needed to achieve stability with reasonable
step sizes. In such situations the use of an implicit, unconditionally stable scheme is advocated.

The IMEX extension proposed in this prepint is meant for problems (1.1) with a severely stiff reaction
function FR(t, w(t)) and a moderately stiff diffusion function FD(t, w(t)). This extension thus treats the
diffusion function FD(t, w(t)) still explicitly and the reaction function FR(t, w(t)) implicitly. With a zero
reaction term the original RKC scheme is recovered so that the IMEX extension maintains the attrac-
tive feature of the explicit scheme that no algebraic system solutions are required, except those of small
dimension (number of PDE components) coming from the reaction function. These small sized algebraic
systems can be dealt with by the classic solution approach based on modified Newton iteration and stan-
dard LU-decomposition. Note that they are decoupled over the grid and hence the reaction computation
can be easily parallelized, as is the case for the explicit diffusion computation. Furthermore, the IMEX
extension maintains the recursive Chebyshev nature such that we have stability for the testmodel

w′(t) = λDw(t) + λRw(t) ,

for all real non-positive λD and λR, as long as τλD lies in the original real stability interval (τ is here
the step size). In this sense the IMEX scheme is unconditionally stable for the reaction part, assuming
real eigenvalues.

In Section 2 we review the explicit RKC scheme from [10]. The construction of the new IMEX scheme
is discussed in Section 3. This new scheme is numerically illustrated in Section 4 for a highly stiff,
nonlinear radiation-diffusion problem. We conclude with Section 5 which collects some final remarks and
conclusions.

2 The explicit RKC scheme

In this section we review the explicit RKC scheme from [10] in order to prepare the construction of the
IMEX scheme. We here closely follow Ch. V of [11] where also more details and references to earlier and
additional work and related methods can be found.

2.1 The first-order scheme

To avoid too many technicalities in the beginning, we will start with the most simple form (first-order
and undamped). Let Ts be the first kind Chebyshev polynomial Ts(x) = cos

(

s arccos (x)
)

of degree s
with x ∈ [−1, 1] and consider the shifted Chebyshev polynomial

Ps(z) = Ts

(

1 +
z

s2

)

for z ∈ [−2s2, 0] .

This polynomial satisfies |Ps(z)| ≤ 1 for z ∈ [−2s2, 0] and approximates ez up to order z2 for z → 0,
i.e., ez = P (z)+O(z2). Consequently, any s-stage first-order consistent explicit Runge-Kutta scheme for
systems w′(t) = F (t, w(t)),

W0 = wn ,

Wj = wn + τ

j−1
∑

k=0

αjk F (tn + ckτ, Wk) , j = 1, . . . , s ,

wn+1 = Ws ,

(2.1)

giving the recursion wn+1 = Ps(z)wn, z = τλ, when applied to the stability test equation w′(t) =
λw(t), λ ∈ C, has Ps as stability function and [−β, 0] as real stability interval with real stability boundary
β = 2s2. This boundary is optimal, that is, for any consistent scheme (2.1) we have β ≤ 2s2.
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The quadratic dependence implies that the scaled boundary β/s which takes into account the number
of function evaluations per time step, linearly increases with s and hence for problems with large negative
eigenvalues (semi-discrete parabolic PDEs) it may pay to use s-stage schemes (2.1) having Ps as stability
function with s large. Within class (2.1) one can conceive different schemes giving Ps as stability function.
However, if s and β get large, internal stability (round-off accumulation over the stages within a single
step) must be taken into account in addition to the common step-by-step stability governed by Ps.
Without internal stability the range of applicable values of s is too limited [9].

The first-order RKC scheme for nonlinear systems w′(t) = F (t, w(t)) is internally stable and is con-
structed as follows. First, all functions Pj(z), 0 ≤ j ≤ s, satisfying Wj = Pj(z)wn at the internal stages,
similar to wn+1 = Ps(z)wn, are supposed to be given by the shifted, first kind Chebyshev polynomial

Pj(z) = Tj

(

1 +
z

s2

)

. (2.2)

Second, these functions are retrieved from the three-term Chebyshev recursion

T0(x) = 1 , T1(x) = x ,

Tj(x) = 2x Tj−1(x) − Tj−2(x) , j = 2, 3, . . . , s ,

where arguments may be complex-valued, giving

P0(z) = 1 , P1(z) = 1 +
1

s2
z ,

Pj(z) = 2Pj−1(z) − Pj−2(z) +
2

s2
Pj−1(z)z , j = 2, 3, . . . , s .

Third, for systems w′(t) = F (t, w(t)), the occurrence of Pj−1(z) is associated with a stage value Wj−1

and the occurrence of Pj−1(z)z with τFj(tn + cj−1τ, Wj−1) (and other occurrences likewise). This gives
the 1-st order RKC integration formula

W0 = wn ,

W1 = W0 +
τ

s2
F (tn, W0) ,

Wj = 2Wj−1 − Wj−2 +
2τ

s2
F (tn + cj−1τ, Wj−1) , j = 2, . . . , s ,

wn+1 = Ws .

(2.3)

From (2.2) follows Pj(z) = ecjz + O(z2) defining cj = j2/s2.
This scheme obviously belongs to class (2.1) and it can be applied for any (practical) value of s

without giving internal stability problems. We owe this to the three-term Chebyshev recursion [10, 18].
In actual application, first a step size τ is selected on the basis of accuracy considerations followed by an
adjustment of the number of stages s to provide step-by-step stability. That means that for efficiency
the smallest s is chosen such that at each integration step the heuristic stability condition

τρ (F ′(tn, wn)) ≤ β = 2s2 (2.4)

is satisfied, where ρ denotes the spectral radius and F ′ the Jacobian matrix which is assumed to have
a negative real spectrum (and normal and constant for a rigorous L2-analysis of stability and conver-
gence [18]). Consequently, the RKC method is applied as an unconditionally stable scheme in the sense
that no a priori restriction is laid on the step size τ . Of course, if the problem is excessively stiff leading
to a huge spectral radius, the minimal value of s required to satisfy (2.4) may become too large for a
feasible computation with this (stabilized) explicit scheme.

Remark 2.1 The real stability interval contains interior points z ∈ (−β, 0) where |Ps(z)| = 1. Hence an
imaginary perturbation on z might yield instability. For this reason, the Pj given by (2.2) are slightly
damped [8] resulting in

Pj(z) =
Tj(ω0 + ω1z)

Tj(ω0)
, ω1 =

Ts(ω0)

T ′

s(ω0)
, (2.5)
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where ω0 > 1 is a parameter and ω1 is chosen such that P ′

s(0) = 1, implying first-order consistency. The
real stability interval is determined by the relation −ω0 ≤ ω0 + ω1z ≤ ω0, giving β = 2ω0/ω1. In the
interior of the stability interval Ps(z) now alternates between Ts(ω0)

−1 and −Ts(ω0)
−1. A convenient

choice for ω0 is ω0 = 1 + ε/s2 with ε a small positive number. Expanding at ω0 = 1 and using T ′

s(1) =
s2, T ′′

s (1) = 1
3s2(s2 − 1) then shows Ts(ω0) ≈ 1 + ε and

β =
2ω0T

′

s(ω0)

Ts(ω0)
≈ (2 − 4

3
ε)s2 .

A suitable value for ε is 0.05. For practical problems this gives sufficient damping (approximately
5%) and it gives only a minor decrease of the stability boundary to approximately 1.93 s2. Figure 2.1
(borrowed from [11]) illustrates the stability region S = {z ∈ C : |Ps(z)| ≤ 1} for P5 with and without
damping. The effect of damping is that that at the interior of [−β, 0] the boundary of S has no points
on the real axis.

Finally, the damping leads to slightly different coefficients in (2.3); see Remark 2.3 and the general
RKC formula (2.9) wherein (2.3) is contained. 3
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P5, undamped
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P5 with damping

Figure 2.1: Stability region for the first-order shifted Chebyshev polynomial P5.

2.2 The second-order scheme

In actual computation first-order consistency may be too low. Van der Houwen & Sommeijer [10] therefore
have also constructed a second-order RKC scheme with

Bs(z) =
2

3
+

1

3s2
+
(1

3
−

1

3s2

)

Ts

(

1 +
3z

s2 − 1

)

(2.6)

as stability function which has
β ≈ 2

3
(s2 − 1)

as real stability boundary. This polynomial, due to [4], satisfies ez = Bs(z) +O(z3) and generates about
80% of the optimal stability interval for second-order polynomials, being β ≈ 0.814s2. Within the interior
of the stability interval Bs(z) alternates between ≈ 1/3 and 1.
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Remark 2.2 For stabilized schemes of order p greater than or equal to two, stability functions with
the largest possible real stability boundary are known to exist [15], but explicit analytical expressions
like (2.6) are not available. However, there do exist accurate approximations to the optimal boundaries
β = cp(s)s

2 for 2 ≤ p ≤ 11, see Section 2.5 of [1]. 3

The damped form of the stage polynomials Bj , j = 0, . . . , s, reads

Bj(z) = aj + bjTj(ω0 + ω1z) , aj = 1 − bjTj(ω0) , (2.7)

where ω0 = 1 + ε/s2 as in (2.5), ω1 = T ′

s(ω0)/T
′′

s (ω0), and

bj = T ′′

j (ω0) / (T ′

j(ω0))
2 , j = 2, . . . , s . (2.8)

The parameters b0 and b1 are still free. Here we put b0 = b1 = b2 (for the IMEX extension another choice
is made). Using T ′

s(1) = s2, T ′′

s (1) = 1
3s2(s2 − 1) and T ′′′

s (1) = 1
15s2 (s2 − 1) (s2 − 4), the boundary β of

the damped stability function Bs can now be seen to satisfy

β ≈
(ω0 + 1)T ′′

s (ω0)

T ′

s(ω0)
≈ 2

3
(s2 − 1)

(

1 − 2
15

ε
)

.

Taking ε = 2/13, we get approximately 5% damping in the interior of the stability interval and a reduction
in the stability boundary of about 2% compared to the undamped case. Figure 2.2 (borrowed from [11])
illustrates the stability region S of B5 with and without damping.
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B5, undamped
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−5

0
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B5 with damping

Figure 2.2: Stability region for the second-order shifted Chebyshev polynomials B5.

The construction of the second-order integration formula for systems w′(t) = F (t, w(t)) is a bit more
complicated then in the first-order case, but is basically identical:

W0 = wn ,

W1 = W0 + µ̃1τF0 ,

Wj = (1 − µj − νj)W0 + µjWj−1 + νjWj−2 + µ̃jτFj−1 + γ̃jτF0 ,

wn+1 = Ws ,

(2.9)
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where j = 2, . . . , s and Fk denotes F (tn + ckτ, Wk). Further,

µ̃1 = b1ω1 , µj =
2bjω0

bj−1
, νj =

−bj

bj−2
, µ̃j =

2bjω1

bj−1
, γ̃j = −aj−1µ̃j (2.10)

and c0 = 0, c1 = c2/T
′

2(ω0) = c2/(4ω0),

cj =
T ′

s(ω0)

T ′′

s (ω0)

T ′′

j (ω0)

T ′

j(ω0)
≈

j2 − 1

s2 − 1
(2 ≤ j ≤ s − 1) , cs = 1 .

Remark 2.3 By replacing ω1 by ω1 = Ts(ω0)/T
′

s(ω0) and (2.8) by

bj =
1

Tj(ω0)
, j = 0, . . . , s , (2.11)

(2.9) becomes just the first-order consistent scheme based on the damped stage functions (2.5). We then
have

c0 = 0 , cj =
Ts(ω0)

T ′

s(ω0)

T ′

j(ω0)

Tj(ω0)
≈

j2

s2
(1 ≤ j ≤ s − 1) , cs = 1 ,

and (1 − µj − νj) = 0 and γ̃j = 0. 3

Remark 2.4 If the stability function of a Runge-Kutta scheme approximates the exponential ez with
order p ≤ 2, the scheme also has order p ≤ 2 for general problems w′(t) = F (t, w(t)). This greatly
simplifies the construction of the RKC integration formulas. 3

Remark 2.5 A variable stepsize code based on the second-order scheme has been developed in [17].
1) This code also works with a variable amount of stages to minimize computational costs. For that
purpose it has been equipped with a spectral radius estimator. In Section 4 the explicit code RKC will
be numerically illustrated. 3

Remark 2.6 Related stabilized explicit methods are the ROCK [3, 2] and DUMKA methods [12, 13].
These have close to optimal real stability boundaries and can possess a higher order (up to order 4).
However, the formulas are not known in an explicit analytical form and are therefore less amenable for
extension to an IMEX scheme. Numerical comparisons between the 2-nd order RKC code from [17] and
a 4-th order ROCK code2) can be found in [3, 11]. 3

3 The implicit-explicit Runge-Kutta-Chebyshev scheme

In this section we will construct the IMEX-RKC scheme for the general nonlinear system (1.1).

3.1 The integration formula

For this system, the IMEX-Euler scheme that is obtained from modifying the first stage formula of (2.9)
reads

W1 = W0 + µ̃1τFD(tn, W0) + µ̃1τFR(tn + µ̃1τ, W1) , µ̃1 = b1ω1 , (3.1)

where the reaction term is treated implicitly. All subsequent stages of the RKC method (2.9) are modified
in a similar manner such that the recursive nature derived from the first kind Chebyshev polynomial is
maintained.

Consider the scalar stability test equation

w′(t) = λDw(t) + λRw(t) (3.2)

1) See ftp://ftp.cwi.nl/pub/bsom/rkc or http://www.netlib.org/ode/ for the source code.
2) See http://www.unige.ch/math/folks/hairer/software.html for the source code.
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with λD and λR standing for eigenvalues of (frozen) Jacobians F ′

D(t, w(t)) and F ′

R(t, w(t)), respectively.
Applied to this test equation, (3.1) yields

W1 = R1(zD, zR) W0 , R1(zD, zR) =
1 + b1ω1zD

1 − b1ω1zR
. (3.3)

As we will see, it is convenient to impose

b1 =
1

ω0
, (3.4)

so that

R1(zD, zR) =
1 + ω1

ω0

zD

1 − ω1

ω0

zR
. (3.5)

Observe that the choice (3.4) for b1 differs from the choice made in Section 2.2 beneath formula (2.8).
Here we exploit the freedom we have for b1 (like before, b0 is still free too and is again set equal to b2).
This choice enables the

Ansatz 3.1 All stage functions Rj(zD, zR), j = 0, 1, . . . , s, of the IMEX-RKC scheme are taken to be of
the form

Rj(zD, zR) = aj + bjTj

(

ω0 + ω1zD

1 − ω1

ω0

zR

)

, aj = 1 − bjTj(ω0) (3.6)

with bj copied from (2.7), so that for zR = 0 the Rj reduce to the stage functions (2.7). Of importance
is that the argument of the Tj is identical over the stages. 3

Thus the construction of the IMEX-RKC scheme is based on the rational function expression (3.6).
First we write

Tj(x) =
−aj

bj
+

Rj

bj
, x =

ω0 + ω1zD

1 − ω1

ω0

zR
,

where Rj = Rj(zD, zR) and apply the recursion Tj(x) = 2x Tj−1(x) − Tj−2(x). Inserting x gives

Rj · (1 −
ω1

ω0
zR) = aj (1 −

ω1

ω0
zR) + 2

bj

bj−1
Rj−1 · (ω0 + ω1zD)−

2
bj

bj−1
aj−1 (ω0 + ω1zD) +

bj

bj−2
aj−2 (1 −

ω1

ω0
zR) −

bj

bj−2
Rj−2 · (1 −

ω1

ω0
zR) .

From this relation we can now deduce the IMEX integration scheme for system (1.1) by identifying the
occurrence of Rj with Wj and RjzR with τFR(tn + cjτ, Wj) and aj with ajW0, etc. Using the coefficient
expressions (2.10) this gives

Wj − µ̃1τ FR,j = (aj − µjaj−1 − νjaj−2) W0 + µjWj−1 + νjWj−2 +

µ̃jτFD,j−1 + γ̃jτFD,0 − νjµ̃1τ FR,j−2 − µ̃1 (aj − νjaj−2)τ FR,0 ,

where FR,j = FR(tn + cjτ, Wj), etc. Next, using

aj − µjaj−1 − νjaj−2 = 1 − νj − µj ,

we find the aimed IMEX-RKC integration scheme

W0 = wn ,

W1 = W0 + µ̃1τFD,0 + µ̃1τFR,1 ,

Wj = (1 − νj − µj) W0 + µjWj−1 + νjWj−2 + µ̃jτFD,j−1 + γ̃jτFD,0 +

[γ̃j − (1 − νj − µj) µ̃1]τ FR,0 − νjµ̃1τ FR,j−2 + µ̃1τ FR,j ,

wn+1 = Ws ,

(3.7)

where j = 2, . . . , s.
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Remark 3.2 If FR is absent, the explicit scheme (2.9) is recovered. For the diffusion operator FD the
IMEX scheme thus operates in the same way as the explicit scheme. The difference is that (3.7) is implicit
in the stiff reaction operator FR, requiring at each stage the solution of a system of non-linear algebraic
equations

Wj − µ̃1τFR(tn + cjτ, Wj) = Vj , (3.8)

with Vj given and Wj as unknown vector. Because FR has no underlying spatial grid connectivity,
this system consists of a great number (the number of grid points) of decoupled small sized subsystems
with dimension the number of coupled PDEs to be solved. Hence the modified Newton method can be
used with a common LU-decomposition for the linear solves as is customary in the stiff ODE field. For
efficiency reasons it could be advantageous that the coefficient µ̃1 is independent of j, since this could
enable the use of LU-decompositions identical over the stages. 3

Remark 3.3 In many diffusion-reaction applications one is interested in transient behaviour and in
steady-state solutions w for autonomous problems

FD(w) + FR(w) = 0 .

Standard ODE integrators (Runge-Kutta and linear multistep methods) return steady states exactly.
This property is shared by all stages of the current IMEX-RKC scheme (3.7). It takes an elementary
calculation to prove this. Note that with operator splitting where the subsystems w′(t) = FD(w(t)) and
w′(t) = FR(w(t)) are integrated completely decoupled within time steps (time splitting), steady states
are not returned exactly. 3

3.2 Stability properties

We consider (linear test model) stability for equation (3.2). The underlying assumption here, made for
the sake of analysis, is that λD and λR stand for eigenvalues of frozen Jacobians AD = F ′

D(t, w(t)) and
AR = F ′

R(t, w(t)), respectively, with AD and AR normal matrices which commute. They then have
a common set of orthonormal eigenvectors implying that stability results in the L2 sense [11] for the
constant coefficient linear system w′(t) = (AD + AR)w(t) can be retrieved from the scalar equation
w′(t) = (λD + λR)w(t). Additionally, we suppose that both λD and λR are real and non-positive and
note that for many practical cases this imposes no restriction.

Thus, we will require stability for all possibles values (zD, zR) with

zD ∈ [−β, 0] and zR ≤ 0

for the IMEX-RKC stability function

Rs(zD, zR) = as + bsTs

(

ω0 + ω1zD

1 − ω1

ω0

zR

)

. (3.9)

Because zR is non-positive, implying
∣

∣

∣

∣

∣

ω0 + ω1zD

1 − ω1

ω0

zR

∣

∣

∣

∣

∣

≤ |ω0 + ω1zD| ,

it follows trivially that |Rs(zD, zR)| ≤ 1 as long as zD ∈ [−β, 0]. Hence with respect to the reaction
part the IMEX-RKC scheme is unconditionally stable and the stability with respect to the diffusion part
remains unchanged.

For zR → −∞ (infinite reaction stiffness) the argument of Ts approaches zero. Hence for the IMEX
scheme derived from the first-order formula having as = 0, it is advocated to choose s odd, giving
Rs(zD,−∞) = 0 for all zD. This gives optimal damping of stiff components from the reaction term.
Likewise, for the IMEX scheme derived from the second-order formula it is advocated to choose s odd,
giving Rs(zD,−∞) ≈ 2/3, or s such that Ts(0) = −1, giving Rs(zD,−∞) ≈ 1/3. For both cases this also
would lead to a strong damping of stiff components from the reaction term.
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3.3 Consistency properties

To see the change in consistency properties incurred by the IMEX extension, let us examine how the new
stability functions Rs(zD, zR) do approximate the exponential ez , z = zD + zR, for z → 0. Note that for
first- and second-order Runge-Kutta methods the consistency properties of the stability function largely
dictate the consistency properties for nonlinear problems, see also Remark 2.4.

First consider the IMEX scheme derived from the first-order explicit RKC formula. For simplicity of
presentation we put ω0 = 1 (no damping). Then the argument x of Ts in (3.9) satisfies

x =
1 + ω1zD

1 − ω1zR
= 1 + ω1z̃ , z̃ =

z

1 − ω1zR
(3.10)

with ω1 = 1/s2, so that (3.9) becomes

Rs(zD, zR) = Ts

(

1 +
z̃

s2

)

.

Assuming s sufficiently large and letting z̃ → 0, we can now use a known expansion of Ts [11] giving

Rs(zD, zR) ≈ 1 + z̃ +
1

6
z̃2 +

1

90
z̃3 + · · · .

It follows that

ez − Rs(zD, zR) ≈

(

1

3
−

1

s2

zR

z

)

z2 + · · · .

Compared to the explicit case, the leading term of the local error has become slightly smaller and this
small difference vanishes with increasing number of stages.

Next consider the IMEX scheme derived from the second-order explicit RKC formula and assume
again ω0 = 1 (no damping). The argument x of Ts in (3.9) then satisfies (3.10) with ω1 = 3/(s2 − 1) so
that we can write

Rs(zD, zR) =
2

3
+

1

3s2
+
(1

3
−

1

3s2

)

Ts

(

1 +
3

s2 − 1
z̃

)

.

With s sufficiently large and z̃ → 0 there holds [11]

Rs(zD, zR) ≈ 1 + z̃ +
1

2
z̃2 +

1

10
z̃3 + · · · ,

giving

ez − Rs(zD, zR) ≈
1

15
z3 −

3

s2 − 1
zRz + · · · .

This result reveals a reduction of the order from two to one due to the IMEX extension. However, the
new leading order term 3zRz/(s2 − 1) vanishes with increasing number of stages indicating that in actual
application the effect of the order reduction will remain small.

4 Numerical results

We will numerically compare the new IMEX scheme (3.7) derived from the second-order explicit RKC
scheme (2.9) with this explicit scheme. For that purpose the variable step size code RKC from [17]
implementing this explicit scheme is used (see Remark 2.5). The comparison is based on a radiation-
diffusion problem from [14]. The following description of this problem, the used spatial discretization,
and part of the numerical results (those for the explicit scheme for Z0 = 1, 5) were borrowed from Ch.V
of [11].
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4.1 A radiation-diffusion problem

The problem consists of two strongly nonlinear diffusion equations with a highly stiff reaction term (an
idealization of non-equilibrium radiation diffusion in a material). The dependent variables are E and T ,
representing, respectively, radiation energy and material temperature. These problems are for instance
found in laser fusion applications. The equations are defined on the unit square for t > 0,

Et = ∇ · (D1∇E) + σ(T 4 − E) ,

Tt = ∇ · (D2∇T ) − σ(T 4 − E) ,

with

σ =
Z3

T 3
, D1 =

1

3σ + |∇E|/E
, D2 = k T 5/2 .

Here |∇E| is the Euclidean norm and Z = Z(x, y) represents the atomic mass number which may vary
in the spatial domain to reflect inhomogeneities in the material. The temperature diffusion coefficient
k = 0.005 and

Z(x, y) =

{

Z0 if |x − 1
2
| ≤ 1

6
and |y − 1

2
| ≤ 1

6
,

1 otherwise .

The initial values are constant in space,

E(x, y, 0) = 10−5 , T (x, y, 0) = E(x, y, 0)1/4 ≈ 5.62 10−2 ,

and the boundary conditions are

1
4
E − 1

6σ
Ex = 1 at x = 0 ,

1
4
E + 1

6σ
Ex = 0 at x = 1 ,

Tx = 0 at x = 0, 1 ,

together with homogeneous Neumann conditions for E and T at y = 0, 1.
The solution consists of a steep (temperature) front moving to the right. For Z0 > 1 the movement is

hampered at the interior region with larger atomic mass number (and corresponding smaller diffusion).
The radiation energy E is for the most part almost equal to T 4, except near the front where it is slightly
larger with a steeper profile. Figure 4.1 shows contour levels and cross sections of an accurate reference
solution of the radiation temperature E1/4 and material temperature T at time t = 3 for Z0 = 10. More
illustrations for different values of the temperature diffusion coefficient (k = 0, 0.1) can be found in [14].

The spatial discretization has been performed on a uniform cell centered grid with grid size h by
means of second-order central conservative discretization. This gives a semi-discrete system w′(t) =
FD(w(t)) + FR(w(t)) of dimension 2/h2, for which the spectral radii of frozen Jacobians F ′

D, F ′

R are
estimated as

ρD = 8h−2 , ρR = 6000Z3
0 , (4.1)

assuming 1 ≤ Z(x, y) ≤ Z0. Note that we have at each grid point the nonlinear reaction system

fR(E, T ) =

(

Z3T−3(T 4 − E)
−Z3T−3(T 4 − E)

)

, f ′

R(E, T ) =

(

−α β
α −β

)

,

with

α =
Z3

T 3
, β = Z3

(

1 +
3E

T 4

)

and eigenvalues 0 and −(α + β). In the expression for α + β the term Z3/T 3 will be the dominating
one. Since we a priori know that 1/T 3 . 5.6 103, we can estimate ρR as 6000Z3. Thus in total we get
ρ = ρD + ρR which is to be maximized over the spatial region. With increasing atomic mass number
Z0, ρR thus quickly becomes much larger than ρD for realistic grid sizes h. This is the kind of situation
where the IMEX scheme will be significantly more efficient than its explicit counterpart.
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Figure 4.1: Contour levels and cross sections of the radiation temperature E1/4 and material temperature
T at time t = 3 for Z0 = 10. Contour levels: 0.1, 0.2, . . . , 1.2.

4.2 Test results for the explicit code RKC

The code RKC [17] works as most other variable step size ODE codes. A difference is that at each
time step it minimizes the number of stages s so as to satisfy the stability condition τρ ≤ β ≈ 0.65s2.
Variable stepsizes are based on a local error per step criterion (which implies that if all is going well, this
second-order code will reduce the numerical integration error by a factor of roughly 5 upon a tolerance
reduction factor of 10 [16]). The code uses a tentative initial step size τ0 = 1/ρ that is on scale with the
dynamics at t = 0.

In Table 4.1 temporal L2-errors are listed for t = 3 with various tolerances on 50 × 50 and 100 × 100
grids for Z0 = 1, 5, 10. These errors were obtained by comparison with an accurate reference solution.
Also given are estimated spatial L2-errors (obtained by comparison on grids with twice as many grid
points in both spatial directions). From the tables we see that with a decreasing local error tolerance
Tol , the temporal errors quickly become insignificant in comparison to the spatial errors. Hence further
decreasing Tol makes no sense and for this problem the code thus should work reliably for crude tolerances.

RKC solves the problem in all test cases reliably. However, with respect to efficiency we find the
results satisfactory only for Z0 = 1 where ρD still dominates. For Z0 > 1 the reaction problem becomes
increasingly stiff leading to very high stage numbers s and thus high costs. In this situation the IMEX
scheme is expected to do a much better job. Observe that the integration behaviour is more or less
independent of the increasing stiffness imposed by Z0. Also observe that on the finer grid more time steps
are used compared to the coarser grid. On the finer grid the front is better resolved, which presumably
also steepens up the temporal solution requiring more time steps. The relatively large number of step
rejections for the smallest Tol = 10−3 is odd; as yet we have no explanation for it.
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Z0 = 1 h = 1/50 err2,s = 3.0 10−2 h = 1/100 err2,s = 8.5 10−3

Tol err2,t Costs err2,t Costs

10−1 2.3 10−2 2175 (36+2, 82) 7.4 10−3 5207 (52+7, 122)
10−2 3.6 10−3 3020 (68+3, 101) 3.0 10−3 6393 (101+2 , 78)
10−3 1.3 10−3 5779 (180+33, 49) 4.4 10−4 12484 (266+47, 54)

Z0 = 5 h = 1/50 err2,s = 7.8 10−2 h = 1/100 err2, s = 2.7 10−2

Tol err2,t Costs err2,t Costs

10−1 2.3 10−2 11598 (33+3, 459) 9.1 10−3 15496 (52+7, 395)
10−2 4.1 10−3 15678 (67+2, 513) 3.6 10−3 18624 (99+2, 213)
10−3 1.5 10−3 28980 (173+27, 249) 4.3 10−4 31868 (254+20, 142)

Z0 = 10 h = 1/50 err2,s = 1.0 10−1 h = 1/100 err2,s = 3.0 10−2

Tol err2,t Costs err2,t Costs

10−1 2.2 10−2 33258 (34+3, 1297) 9.1 10−3 42805 (53+6, 1052)
10−2 4.2 10−3 44303 (67+2, 1448) 1.8 10−3 52842 (100+2, 601)
10−3 1.5 10−3 81259 (173+26, 702) 4.3 10−4 89640 (255+19, 402)

Table 4.1: Results for the explicit code RKC for the radiation-diffusion problem with L2-errors and Costs;
err2,t is the temporal error and err2,s is the spatial error. Costs is given as NF (Nacc + Nrej , smax) with
NF total number of function evaluations, Nacc number of accepted steps, Nrej number of rejected steps,
and smax the maximal number of stages per time step.

4.3 Test results for the IMEX scheme

Table 4.2 gives results obtained with a preliminary test version of the IMEX extension of the code RKC.
The result are presented in the same way as in Table 4.1, except that the total number of function
evaluations NF has been replaced by the total number of stages Nstage (Nstage = NF for the explicit
code). The gain due to the IMEX extension is very clear: to a great extent the workload is independent
of the stiffness imposed by Z0, which means high savings in numbers of stages for Z0 = 5, 10 compared
to the explicit case. Note also that for all nine test runs the number of accepted and rejected integration
steps is nearly the same as in the explicit case.

The (preliminary) IMEX code used the same step size and local error control as the explicit one and
thus differed only in the additional solution of the reaction systems (3.8). The additional solution costs
for these systems diminish of course the anticipated savings from the lesser amounts of stages. Thus the
efficiency of the solution process for systems (3.8) should be as high as possible. As noted in Remark 3.2,
it makes sense to use modified Newton iteration in the same way as in the stiff ODE field. The results
of Table 4.2 were indeed obtained with a standard modified Newton implementation that evaluates a
new Jacobian and performs a new LU-decomposition at each stage of the RKC scheme, and at each grid
point. Acceptance for the iterants was thus decided per grid point, allowing the number of iterations to
differ over the grid points.

As start vector the accepted iterant of the previous stage was used and the iteration process was
terminated as soon as the modified Newton correction was 1% smaller than Tol, or as soon as the
modified Newton residual was less than 10−9 (both measured in the maximum norm). A seemingly
cheaper alternative, based on recomputing the Jacobian and LU-decomposition only once per integration
step at the beginning of the step, turned out to be slightly less efficient requiring more integration steps
and more iterations. This of course is problem dependent.

Table 4.3 contains CPU times in seconds for the runs with the test case Z0 = 10 on the 100×100 grid
(measured on a SUN Workstation Ultra5). For this test case and on this grid, the IMEX code turned out
to be about 3.5 to 4 times faster than the explicit code, while it has spent about half of its total elapsed
CPU time on solving the reaction systems (3.8) which makes sense. The gain for the IMEX code would
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Z0 = 1 h = 1/50 err2,s = 3.0 10−2 h = 1/100 err2,s = 8.5 10−3

Tol err2,t Costs err2,t Costs

10−1 3.3 10−2 1954 (34+3, 76) 1.1 10−2 4708 (54+3, 115)
10−2 4.6 10−3 2610 (68+2, 80) 3.1 10−3 6167 (101+2, 75)
10−3 1.5 10−3 5209 (182+36, 39) 4.5 10−4 12306 (268+52, 52)

Z0 = 5 h = 1/50 err2,s = 7.8 10−2 h = 1/100 err2,s = 2.7 10−2

Tol err2,t Costs err2,t Costs

10−1 2.3 10−2 1834 (33+2, 76) 9.4 10−3 4835 (54+4, 126)
10−2 4.4 10−3 2590 (67+2, 80) 2.2 10−3 6144 (100+2, 69)
10−3 1.4 10−3 4726 (173+24, 39) 4.9 10−4 10754 (256+25, 49)

Z0 = 10 h = 1/50 err2,s = 1.0 10−1 h = 1/100 err2,s = 3.0 10−2

Tol err2,t Costs err2,t Costs

10−1 2.2 10−2 1816 (32+2, 76) 1.0 10−2 4601 (54+2, 115)
10−2 4.5 10−3 2589 (67+2, 80) 1.9 10−3 6151 (100+2, 69)
10−3 1.4 10−3 4774 (175+25, 39) 5.0 10−4 10840 (258+26, 49)

Table 4.2: Results for the IMEX version of the code RKC for the radiation-diffusion problem with L2-
errors and Costs; err2,t is the temporal error and err2,s is the spatial error. Costs is given as Nstage (Nacc+
Nrej , smax) with Nstage total number of stages, Nacc number of accepted steps, Nrej number of rejected
steps, and smax the maximal number of stages per time step.

increase with the reaction stiffness and recall that its computational effort (the numbers of stages) is
largely determined by the stiffness coming from the diffusion term. For the current problem the 100×100
grid gives a spectral radius ρD = 8.0 104, see (4.1), which is considerable of course. On the 50 × 50 grid,
giving ρD = 2.0 104, the IMEX code was about 6.5 to 7 times faster.

Table 4.3 also gives the average and the maximum number of modified Newton iterations, counted
over all grid points, all stages and all steps. These numbers are low and in accordance with stiff ODE
practice.

Time RKC Time IMEX Iterations

Tol Total Total Systems Rest Average # Maximum #

10−1 2127 510 (4.2) 228 282 1.03 2
10−2 2630 698 (3.8) 317 381 1.23 2
10−3 4400 1227 (3.6) 562 665 1.36 3

Table 4.3: CPU times with bracketed numbers the speed up and numbers of modified Newton iterations
at the grid points for the runs with the test case Z0 = 10 on the 100 × 100 grid.

5 Final remarks

The original second-order code RKC is fully explicit, stabilized, and requires little memory. This makes it
an attractive, user-friendly code for integrating large-scale semi-discrete parabolic problems. Its limitation
lies in the stiffness and hence for efficiency reasons RKC is not advocated for severely stiff semi-discrete
parabolic problems. By treating reaction terms implicitly and diffusion terms still explicitly (IMEX
approach), this limitation has been removed for severely stiff diffusion-reaction problems where severe
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stiffness emanates from reaction terms having a Jacobian matrix with a real spectrum. By the IMEX
approach the code remains user-friendly and memory usage is still low.

The results and conclusions reported in this preprint are based on ongoing research. The very good
comparative results for the radiation-diffusion problem are no doubt promising and justify further work
on the subject. In the near future we plan further development of the current preliminary IMEX code
and further testing including comparisons with the popular implicit BDF code VODPK [5, 6, 7] and the
linearly implicit Rosenbrock code ROWMAP [19] (both use iterative Krylov methods). Furthermore it
seems very worthwhile to develop an IMEX version of the RKC scheme that can also handle severely stiff
reaction terms having a Jacobian with a complex spectrum.
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THE IMPACT OF INTRAPARTICLE CONVECTION ON THE 
MULTIPLICITY BEHAVIOUR OF LARGE-PORE CATALYST PARTICLES 
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Abstract 
This paper analyses the impact of intraparticle convection on the steady-state multiplicity of isothermal large-
pore catalyst particles with external mass and heat resistances, where a first order irreversible exothermal 
reaction is carried out. The coexistence of internal convection and diffusion results in a maximum of five steady-
state solutions against the maximum of three obtained for diffusion only. The emergence of a second hysteresis 
loop due to convection increases the number of different possible types of bifurcation diagrams. The individual 
effects of diffusion and convection on the overall behaviour of the catalyst particle were determined. 
 
Keywords: intraparticle convection, large-pore catalysts, steady-state multiplicity, bifurcation diagram 
 
1. Introduction 
The occurrence of multiple steady states in isothermal catalyst pellets due to the interactions between mass and 
thermal resistances in the fluid-solid interface and internal concentration gradients is a well-known feature of 
catalytic processes. If large-pore pellets are used instead of conventional porous catalysts, the additional mass 
transport by convection inside the particles must be accounted for besides diffusion, leading to changes in the 
internal concentration profiles (Rodrigues and Quinta-Ferreira, 1988) and consequently to a different pellet 
behaviour in what concerns steady-state multiplicity. This work deals with the study of the multiplicity features 
of an isothermal catalyst particle with simultaneous mass transport by diffusion and convection and a first order 
irreversible exothermal reaction (o-xylene oxidation to phthalic anhydride). 
The mathematical technique developed by Balakotaiah and Luss (1982) for the global analysis of multiplicity 
features of lumped-parameter systems is used. When applied to the problem under study, this methodology 
allows the prediction of the maximal number of steady-state solutions for the particle temperature and the 
different types of bifurcation diagrams representing the particle temperature as a function of an operating 
variable such as concentration or temperature on the bulk phase. 
 
2. Evaluation of the bifurcation sets and corresponding bifurcation diagrams 
The dimensionless model equations describing the referred phenomena in a catalyst slab include the mass 
balance to the reactant inside the catalyst and the mass and thermal balances in the solid-fluid interface:  
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∂ ∂
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( ) ( )s s s s1 f Da f exp 1 1− = η θ −γ θ −    (2) 

( ) ( )s b s s sDa f exp 1 1θ −θ = ηβ θ −γ θ −    (3) 

where subscripts p and s refer to particle and surface conditions, respectively. The model parameters are listed in 
Table 1. The numerical values indicated were obtained in previous studies as a function of the system properties 
evaluated at a reference temperature To=625 K, for Rp=0.0013 m (Quinta-Ferreira, Costa and Rodrigues, 1996).  
 

Table 1 – Dimensionless system parameters. 
Name Definition Value  Name Definition Value  
Arrhenius 
number oE R Tγ =  21.8 intraparticle mass Peclet 

number o p ev R Dλ =  0,10,25,50 
Damkhöler 
number  o p fDa k(T ) R k=  8.7×10-3 adiabatic temperature 

rise f b o( H) k C h Tβ = −∆  0 – 3 

Thiele modulus p o eR k(T ) Dφ =  0.76 dimensionless bulk 
temperature b b oT Tθ =  0.8 – 1.24 

                                                           
* Author to whom correspondence should be addressed. 



Among these well-known parameters, the intraparticle mass Peclet number (λ) is the one accounting for the 
convective flow inside the particles; it represents the competition between the internal transport rates by 
convection and diffusion. When the convective flow is negligible in relation to diffusion, λ is set to zero and 
diffusion is the sole mechanism of transport accounted for, as it is commonly assumed in the classic 
mathematical treatment of porous particles. 
The mass balance to the catalyst particle subjected to the corresponding boundary conditions (eq. (1)), has 
analytical solution, which allows an explicit expression for the catalyst effectiveness factor: 

1 2
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1 2

1 1
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coth coth
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η θ φ λ =
α − α

 (4) 

where  

( )2 2
1,2 s s( , , ) 2 4 exp 1 1α θ φ λ = λ ± λ + φ −γ θ −    (5) 

By combining the mass and energy balances in the solid/fluid interface, a single algebraic equation is obtained, 
as a function of the dimensionless pellet temperature, θs, and the vector p, containing the six model parameters 
(θb, β, Da, γ, φ, λ): 

( )
( )

s s s
s s b

s s s

Da ( , , ) exp 1 1
F( , ) 0

1 Da ( , , ) exp 1 1

β η θ λ φ θ −γ θ −  θ = θ − θ − =
+ η θ λ φ θ −γ θ −  

p   (6) 

where η is given by eq.(4). The dimensionless solid temperature sθ  is bounded by bθ and bθ + β . 
In the forthcoming analysis, four of the six model parameters - Da, γ, φ, λ - are fixed (see values in Table 1) in 
order to reduce the problem dimension. The solution of the resulting equation F(θs,θb,β)=0 is a three-dimensional 
surface called the steady-state manifold, while the simultaneous solution of F(θs,θb,β)=0 and ∂F(θs,θb,β)/∂θs=0 
defines the singular set. When this set is projected in the θs direction, by eliminating θs from these last two 
equations, a two-dimensional bifurcation set is obtained in the θb-β plane. These graphs demarcate the regions of 
β (linearly dependent on reactant bulk concentration) and θb (linearly dependent on bulk temperature), for which 
a different number of steady-state solutions of equation (6) exist. Figures 1 show the bifurcation sets obtained for 
different values of λ: 0, 10, 25 and 50, where the number of steady-state solutions (1, 3 or 5) is indicated.  
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Figure 1 – Bifurcation sets for different values of λ (Da=0.0087, γ=21.8, φ=0.76). 



For λ=0, the pellet temperature exhibits at most 3 solutions (Fig. 1 (a)) and the lines shown in the graph are the 
locus of extinction and ignition points. However, when intraparticle convection is taken into consideration (λ>0), 
the shape of the bifurcation set changes significantly and a maximum of 5 multiple solutions can be achieved 
(Figs. 1 (b), (c) and (d)), as a result of the joint effect of diffusion and convection. 
The curves showing the dependence of the state variable θs on a bifurcation variable, β or θb, are nominated 
bifurcation diagrams. Each bifurcation set can be divided in a number of regions where the bifurcation diagrams 
have different shapes. In this paper the bifurcation diagrams θs vs θb are analysed. In such case, the shape of 
these bifurcation diagrams can change if an ignition or extinction point exists at any boundary of θb or either if β 
crosses one of the following varieties: 
a) the hysteresis variety, which is the locus of all feasible values of β that satisfy the equations 

2
s b s b

s b 2
s s

F( , , ) F( , , )
F( , , ) 0

∂ θ θ β ∂ θ θ β
θ θ β = = =

∂θ ∂θ
 (7) 

b) the double limit variety, which is the locus of all feasible values of β that satisfy the equations 
s1 b s2 b

s1 b s2 b s1 s2
s s

F( , , ) F( , , )
F( , , ) F( , , ) 0,

∂ θ θ β ∂ θ θ β
θ θ β = θ θ β = = = θ ≠ θ

∂θ ∂θ
 (8) 

Figure 2 (a) shows again the bifurcation set obtained for λ=0 and the corresponding qualitative features of the θs 
vs θb bifurcation diagrams that can be found in each one of the intervals of β: 0≤β<0.85, 0.85<β<1.5 and 
1.5<β≤3 – Figs. 2 (b), (c) and (d), respectively. The transition from region I to II occurs because β crosses a 
hysteresis variety, which appears in the bifurcation set as a cusp point, marked with a C, for which β=0.85, while 
the change from region II to III is due to the existence of an extinction point at the lower boundary of θb (θb=0.8, 
β=1.5). Figure 2 (b) shows a bifurcation diagram characteristic of the uniqueness region I, where θs is a single 
value function of θb. In region II two limit points (extinction and ignition) arise and a hysteresis loop emerges as 
shown in bifurcation diagram of Fig. 2 (c), where the 1-3-1 multiplicity pattern is represented by a S-shaped 
curve. Extinction and ignition points are indicated by arrows pointing down and up, respectively, and a dashed 
line is used to represent the unstable steady-state solution. In region III, the extinction point is below the lower 
boundary specified for θb, therefore the corresponding bifurcation diagrams show just the ignition point, as 
depicted in Figure 2 (d). 
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Figure 2 – Bifurcation set and bifurcation diagrams obtained for λ=0 (Da=0.0087, γ=21.8, φ=0.76). 

 



For λ>0, the bifurcation set is more complex and some more intricate bifurcation diagrams can be obtained, as 
illustrated in Figures 3, for λ=50. The bifurcation set (Fig. 3 (a)), is now divided in nine subintervals of β 
numbered from I to IX, where the bifurcation diagrams θs vs θb have different shapes, exemplified in the nine 
small graphs of Figs. 3 (b) –3 (i).  
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Figure 3 – Bifurcation set and bifurcation diagrams obtained for λ=50 (Da=0.0087, γ=21.8, φ=0.76). 

 
The transitions between regions I-II and II-III occur when β crosses the two hysteresis varieties corresponding to 
the two cusp points C1 and C2 indicated on the bifurcation set, respectively. The bifurcation diagrams typical of 
regions I and II, shown in Figs. 3 (b) and (c), are similar to those found for λ=0; however, in region III a second 
hysteresis loop emerges due to convection, generating a 1-3-1-3-1 multiplicity pattern – Fig. 3 (d). The following 
transitions between regions III-IV, IV-V and V-VI happen when β traverses double-limit points DL1, DL2 and 
DL3, respectively. This type of variety results from the intersection of two branches of the bifurcation set (see 
Fig. 3 (a)), with different values of θs at each branch. When β crosses a double-limit variety, the number of limit 
points (extinction and ignition points) in the bifurcation diagrams does not change, but the relative position of 
two limit points changes, as it can be observed by comparing the different 1-3-5-3-1 multiplicity patterns of Figs. 
3 (e), (f) and (g). In these cases the two even solutions for θs, represented by dashed lines are unstable. The 
remaining transitions between regions VI-VII, VII-VIII and VIII-IX arise from the intersection of the two 
extinction branches and one ignition branch of the bifurcation set with the lower boundary of the bifurcation 
variable θb, leading to the type of bifurcation diagrams shown in Figs. 3 (h), (i) and (j). The bifurcation diagram 
of Fig. 3 (j) is qualitatively similar to the one depicted in Fig 2 (d) obtained for λ=0. 



3. The individual effect of diffusion and convection on particle multiplicity 
In order to get a better understanding of the relative contribution of diffusion and convection to the global 
behaviour of the catalyst particle, the individual effect of each one of these mechanisms of mass transport 
(coupled with chemical reaction) was evaluated.   
 
3.1 The influence of diffusion 
In conventional porous catalysts pellets, the mass transport rate by convection is usually negligible when 
compared to diffusion. As referred before, for an isothermal particle this situation is mathematically described by 
the mass balance of eq. (1), taking λ=0. The corresponding effectiveness factor is given by eqs. (4) and (5) with 
λ=0, or alternatively by:  

( ){ }
( )

s

s
s

tanh exp 1 1
( , )

exp 1 1

φ −γ θ −  η θ φ =
φ −γ θ −  

 (9) 

Combining again equations (2) and (3) a unique equation F(θs, p
d)=0 is obtained, with the same expression of 

equation (6), but with η(θs,φ) given by eq. (9) and pd=(θb,β,Da,γ,φ). In the following analysis, the singular set 
was calculated by solving equations F(θs,p

d)=0 and ∂F(θs,p
d)/∂θs=0 for fixed values of Da, γ and φ. The resulting 

bifurcation sets are shown in Figure 4 for different values of φ: φ=0, 0.08, 0.24, 0.76 and 2.42 correspondingly to 
De/De(To)= ∞, 100, 10, 1 and 0.1. For φ=0, the solution was obtained by solving the system of equations with 
η(θs,φ)=1.  
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Figure 4 – Bifurcation sets for different values of φ (Da=0.0087, γ=21.8). 

 
For each φ, three steady-state solutions exist inside the regions bounded by the extinction and ignition lines, 
while a unique solution exists in the complementary space. The multiplicity region moves in the β-θb plane as φ 
changes, in such a way that for increasing values of φ both extinction and ignition branches appear at higher 
values of β and θb. 
  
3.2 The influence of convection 
If a large-pore catalyst particle is considered with such a porous structure that transport rate by convection is far 
greater than diffusion, very large values of λ are obtained. A rearrangement of equation (1) gives: 
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where Dap is a new dimensionless parameter, the particle Damkhöler number, expressing the competition 
between reaction rate and transport rate by intraparticle convection: 

2
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v
φ

= =
λ

 (11) 

To study the multiplicity features of this catalyst, a very small effective diffusivity of De=2.79×10-10 m2/s (104 
times smaller than De(To)) was fixed, in order to assure mass transport by diffusion negligible when compared to 



convection. Some bifurcation sets are going to be obtained for several values of Dap, calculated for different 
values imposed to the intraparticle fluid velocity vo. With fixed values for vo and De, λ can be calculated (see 
Table 1) and thus it is no longer an independent parameter. A unique equation F(θs, p

c)=0 is then obtained by 
eliminating fs from equations (4) and (5), being the parameter vector pc=(θb,β,Da,γ,Dap) and η(θs,Dap) calculated 
by eqs. (4)-(5) with φ2 replaced by the product Dap×λ. The singular set was evaluated by solving equations 
F(θs,p

c)=0 and ∂F(θs,p
c)/∂θs=0 for fixed values of Dap: Dap=0, 0.0012, 0.0117, 0.0234, 0.0584 correspondingly 

to vo= ∞, 1, 0.1046, 0.0523, 0.0209 and the resulting bifurcation sets are shown in Figure 5.  
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Figure 5 – Bifurcation sets for different values of Dap (Da=0.0087, γ=21.8, De=2.79×10-10 m2/s). 

 
The bifurcation sets obtained for the different values of Dap are similar to the ones of Figure 4, with three steady-
state solutions inside the regions bounded by the extinction and ignition branches and a unique solution outside. 
For increasing values of Dap, the multiplicity region decreases mainly due to the displacement of the extinction 
branch towards higher values of β. 
  
3. The combined effect of diffusion and convection on particle multiplicity 
The relative influence of diffusion and convection on the overall behaviour of the particle when both mass 
transfer mechanisms coexist can be assessed by comparing the results of the complete model, that includes 
convection and diffusion, (dc model) to those of the models that consider convection and diffusion separately (c 
and d models, respectively). To perform such comparisons, the parameters of the different models must be 
matched, such that λ of the dc complete model is the result of φ and Dap used in d and c models:  

2

p

(d)
(dc)

Da (c)
φ

λ =  (12) 

In Figure 6, the bifurcation sets obtained for the complete model and the curves resulting from the isolated effect 
of each one of the transport mechanisms are plotted together. In each graph, the value of λ used in the dc model 
and the values of φ and Dap used in d and c models satisfy eq. (12). The sets of parameters used are indicated in 
Figs. 6 (a), (b) and (c). The number of steady-state solutions (1, 3 or 5) in the different regions of the graphs was 
not indicated in order to avoid the graphs overload, but it is easily identifiable from the previous bifurcation sets.    
The influence of each transport mechanism on the overall behaviour of the catalyst particle is obvious: while the 
extinction branch of the complete model is mainly governed by diffusion, the location of the ignition branch is 
highly influenced by intraparticle convection. When the relative importance of convection over diffusion 
increases, the shape of the multiplicity region of the dc model becomes more identified with the one obtained for 
convection only, as shown in Fig. 6 (c) for λ=50. The regions of five steady-states appear for those operating 
conditions (β, θb) for which diffusion and convection have approximately the same relative importance.  
Finally, the discussion of the individual effect of diffusion and convection on the overall behaviour of the 
particle is complemented with the analysis of the different types of bifurcation diagrams θs vs θb corresponding 
to Figure 6 (c). For λ=50, the dc model predicts nine different types of these bifurcation diagrams shown in 
Figures 3 (b)-(i). In Figures 7, these are compared with the bifurcation diagrams obtained through d and c 
models.  
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Figure 6 – Bifurcation sets obtained for dc model (λ=10,25,50), d model (φ=0.7643) and c model  

(Dap=0.0584,0.0234,0.0117); (Da=0.0087, γ=21.8). 
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Figure 7 – Bifurcation diagrams obtained for dc model (λ=50), d model (φ=0.7643) and c model  (Dap=0.0117); 

(Da=0.0087, γ=21.8). 



Some general comments can be done based on Figures 7. In the lower temperature branches, the particle operates 
in chemical regime, with chemical reaction controlling the overall process rate and therefore in each graph the 
three curves remain coincident for lower values of θs. On the other hand, in the higher temperature branch, the 
particle operates in difusional regime and consequently the predictions of dc model follow the evolution of d 
model. When multiplicity occurs, the first hysteresis loop is clearly due to convection, as shown by the 
overlapping of the curves from dc and c models, while the appearance of a second hysteresis loop in region IV is 
caused by diffusion.  
 
4. Summary and Conclusions 
This study showed interesting multiplicity features produced by the coexistence of internal diffusion and 
convection on an isothermal large-pore catalyst particle with external resistances. By using the technique 
developed by Balakotaiah and Luss (1982), a maximum of five steady-state solutions was calculated for the 
particle temperature. Moreover, nine different types bifurcation diagrams representing the dependence of particle 
temperature on the dimensionless bulk temperature were determined, some of them showing two hysteresis 
loops. The separate effects of diffusion and convection on the pellet multiplicity were evaluated and related to 
the overall catalyst performance when the two mechanisms act simultaneously.     
 
Notation 
 
C – reactant concentration, mol/m3 
De - reactant effective diffusivity, m2/s 
Da - Damkhöler number, dimensionless 
E – activation energy, J/mol 
f – dimensionless reactant concentration, C/Co 
h – film heat transfer coefficient, J/m2 s 
k – rate constant, 1/s 
kf – film mass transfer coefficient, mol/m2 s  
R – perfect gas constant, J m3/mol K 
Rp - half-thickness of the slab, m  
T – temperature, K 
vo - intraparticle fluid velocity, m/s 
 
β - adiabatic temperature rise, dimensionless 
φ - Thiele modulus, dimensionless 

γ - Arrhenius number, dimensionless 
η- effectiveness factor, dimensionless 
λ - intraparticle mass Peclet number, dimensionless 

θ - dimensionless temperature, T/To 
∆H – heat of reaction, J/mol 
 
Superscripts: 
c – convection 
d - diffusion 
 
Subscripts: 
b – bulk phase conditions 
s – pellet surface conditions 
o – reference conditions 
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ABSTRACT

The dissolution of a slightly soluble sphere buried in a packed bed of sand, through
which water flows is considered in the present work with due consideration given to the
processes of transverse and longitudinal dispersion. Numerical solution of the equations was
undertaken to obtain point values of the Sherwood number, as a function of the Peclet and
Schmidt numbers over a wide range of values of the relevant parameters. A correlation is
proposed that describes accurately the dependence found numerically between these
dimensionless parameters.

INTRODUCTION

In several situations of practical interest a large solid mass interacts with the liquid
flowing around it through the interstices of a packed bed of inerts. Examples are the leaching
of buried rocks and the contamination of underground waters by compacted buried waste. The
dissolution of a slightly soluble sphere buried in a packed bed of sand, through which water
flows, is a useful model for such processes, and it is considered in the present work.

In a recent study on transverse dispersion in liquids, Delgado and Guedes de Carvalho
[1] showed that there is a significant dependence between the transverse dispersion coefficient
( TD ) and the Schmidt number (Sc), for 550Sc < . Since the rate of mass transfer around a

buried sphere, exposed to a flowing fluid, is strongly determined by TD [2], it may be
expected that mass transfer from a buried sphere will show a significant dependence on Sc.

THEORY

In terms of analysis, we consider the situation of a slightly soluble sphere of diameter

1d buried in a bed of inert particles of diameter d (with 1dd << ), packed uniformly (void
fraction ε ) around the sphere. The packed bed is assumed to be “infinite” in extent and a
uniform interstitial velocity of liquid, 0u , is imposed, at a large distance from the sphere.

(1) Corresponding author.
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Darcy’s law, pKu grad−= , is assumed to hold, and if it is coupled with the continuity

relation for an incompressible fluid, 0div =u , Laplace’s equation 02 =∇ φ is obtained for
the flow potential, pK=φ , around the sphere.

In terms of spherical coordinates (r, θ), the potential and stream functions are,
respectively [2],
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The analysis of mass transfer is based on a steady state material balance on the solute
crossing the borders of an elementary volume, limited by the constant potential surfaces φ
and δφφ + , and the stream surfaces ψ and δψψ + . The resulting equation is [2],
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The boundary conditions, to be observed in the numerical integration of Eq. (1), are: (i)
the solute concentration is equal to the background concentration, 0c , far away from the
sphere; (ii) the solute concentration is equal to the equilibrium saturation concentration,

*cc = , on the surface of the sphere and (iii) the concentration field is symmetric about the
flow axis.

In order to integrate Eq. (5), with the auxiliary Eqs. (1) and (2), it is convenient to
define the dimensionless variables:
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Equation (5) may be re-arranged to
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and the appropriate boundary conditions are
0, ≥Ψ−∞→Φ 0→C (12)
0, ≥Ψ+∞→Φ 0→C (13)







=
∂
∂>

=≤≤
=

(14b)0
Ψ

1Φ

(14a)11Φ1-
0Ψ C

C

+∞→Ψ , all Φ 0→C (15)
Discretisation

Equation (11) was solved numerically using a finite-difference method similar to that
adopted in [2]. A second-order central differencing scheme (CDS), in a general non-uniform
grid, was adopted for the discretisation of the diffusive terms that appear on the right hand
side of Eq. (11) [3]. The convection term, that appears on the left hand side of Eq. (11), was
discretised with the SMART high-resolution scheme [4], which preserves boundedness even
for convective dominated flows.

The discretised equation resulting from the finite-difference approximation of Eq. (11)
reads:
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where the values of the Φ and Ψ coefficients are easily computed using their definitions
(Eqs. (9) and (10)). Please note that these coefficients only have to be computed once, since
they are dependent on a priori known quantities, and are not influenced by the unknown
concentration field.
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Figure 1 - Sketch of computational grid.
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The jiC ,2/1+ and jiC ,2/1− values are conveniently interpolated from the known grid node

values (represented as circles in Figure 1) using the SMART high-resolution scheme to ensure
numerical stability and good precision:
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or, in compact form:
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Similarly, for the left face relative to node ( , )i j , one obtains:
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Substitution of Eqs. (17) and (20) into Eq. (16) leads to the final form of the discretised
equation, which can be casted in compact form as:

, 2, 1, 1, , 1 , 1( ) /i j i j i j i j i j i jC F C G C H C I C J C E− − + − += + + + + (22)

The resulting system of equations (22) was solved iteratively using the successive over-
relaxation (SOR) method [3], and the implementation of the boundary conditions was done in
the same way as described in our previous work [2].

It should be noted that we always started our calculations with a zero concentration field
on a coarse grid. A converged solution could be obtained very quickly (O(10 s) in a desktop
PC with a 1.4GHz AMD® processor) and then we proceeded to a finer grid (doubling the
number of grid points in each direction). Instead of restarting the calculations with a zero
concentration field in this new finer grid, we simply interpolated the solution obtained in the
coarse-level grid, leading to a significant decrease in the time of CPU required to attain
convergence. This fully automated procedure was repeated until the finest mesh calculations
were performed. The use of Richardson´s extrapolation to the limit allowed us to obtain very
accurate solutions (with errors in the computed hS ′ value below 0.1%). A more elaborate
multigrid technique could have been implemented to further increase the convergence rate,
but we found that this simple technique was sufficient to obtain mesh-independent solutions
in affordable CPU times.
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RESULTS

The converged solution calculated yields values of jiC , , from which the overall mass-

transfer rate from the sphere, n , could be calculated and expressed by means of an average
Sherwood number,
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The value of n was evaluated by numerically integrating the diffusive/dispersive flux of
solute perpendicular to the sphere along its surface,
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which in dimensionless discretised form reads:
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Values of TD for liquid flow have been reported recently in [1], in what seems to be the

only available study on the influence of Sc on TD . Their data showed the dependence of TD
on the Schmidt number for the range 550Sc ≤ , and an empirical correlation was found to
describe the measured data of TD for 550Sc ≤ :
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For 550Sc > the transverse dispersion coefficient is found to be independent of the Schmidt
number, and is given by:
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As for LD , it is fortunate that its value is not needed with accuracy, since for 1eP p >′ ,

the boundary layer for mass transfer around the sphere is thin, provided that the approximate
condition 10/1 >dd is observed. Indeed, for ( ) 10ePPe' 1p >′= /dd , the boundary layer is thin

and the term with LD , in Eq. (11), may be neglected; numerical computations were

undertaken in the present work that confirm the insensitivity of Sh´ to LD , for 10eP >′ .

For different values of Sc, Eq. (5) was solved numerically, with the point values of TD
given by the corresponding fitted curve (Eqs. (26) or (27)). From the numerical simulations,
plots of ε/Sh' vs. eP ′ were prepared, for given values of 1/ dd , in a similar fashion to what
was done in [2]; in the present case, a set of plots had to be made for each value of Sc. The
results of the numerical computations are shown as points in Figure 2, and an expression was
sought to describe the functional dependence observed, with good accuracy. The following
equation is proposed for 550Sc ≤ :

21(Sc)10log31834
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For 550Sc > , the value of Sh' is independent of Sc, since mT D/D ′ is independent of Sc.
Substituting 550Sc = in Eq. (28) leads to

21
2681

p
2p

21
32 eP10161
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4

4
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/
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/
/ . 








′×−

′
+



 ′+′+=

′ −

πε
(29)

and this may be expected to predict mass transfer coefficients for .550Sc ≥ In the plots shown
in Figure 2, the solid lines represent Eqs. (28) or (29) and it may be seen that they describe the
results of the numerical computations with good accuracy.

1

10

100

1000

0.1 1 10 100 1000 10000
Pe´

Sh'/ε

d/d1=0
d/d1=0.005
d/d1=0.02
d/d1=0.045
d/d1=0.1

Sc=52

d /d 1=0

d /d 1=0.005

d /d 1=0.02

d /d 1=0.045

d /d 1=0.1

(a)

1

10

100

1000

0.1 1 10 100 1000 10000
Pe´

Sh'/ε

d/d1=0
d/d1=0.005
d/d1=0.02
d/d1=0.045
d/d1=0.1

Sc=142

d /d 1=0

d /d 1=0.005

d /d 1=0.02

d /d 1=0.045

d /d 1=0.1

(b)

1

10

100

1000

0.1 1 10 100 1000 10000
Pe´

Sh'/ε

d/d1=0
d/d1=0.005
d/d1=0.02
d/d1=0.045
d/d1=0.1

Sc=288

d /d 1=0

d /d 1=0.005

d /d 1=0.02

d /d 1=0.045

d /d 1=0.1

(c)

1

10

100

1000

0.1 1 10 100 1000 10000
Pe´

Sh'/ε

d/d1=0
d/d1=0.005
d/d1=0.02
d/d1=0.045
d/d1=0.1

Sc=550

d /d 1=0

d /d 1=0.005

d /d 1=0.02

d /d 1=0.045
d /d 1=0.1

(d)

Figure 2 - Dependence of ε/Sh' on eP ′ for different values of 1d/d at (a) 52Sc = ; (b)
142Sc = ; (c) 288Sc = ; (d) 550Sc = .

It is worth emphasizing some important features of Eqs. (28) and (29). First of all, the
fact that the first term on the right hand side of both equations gives the dimensionless mass
transfer coefficient for low peP ′ , when both longitudinal and transverse dispersion are due to

molecular diffusion alone ( mTL 'DDD == ). This result was obtained in [2], where that fact

was emphasized by writing (for 10eP p .<′ )
21

32md eP
4

)e(P
5
4

4
hShS

/
/





 ′+′+=

′
=

′
πεε

(30)

The second term (with square brackets) on the right hand side of Eqs. (28) and (29) is
therefore an “enhancement factor” due to convective dispersion. It will be noticed that this
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enhancement factor is independent of Sc, for high values of this parameter, and dependent on
Sc for 550Sc ≤ . This is because mass transfer rates around the sphere depend strongly on

TD , and the value of mT / DD ′ is independent of Sc only for Sc>550, as shown recently by
Delgado and Guedes de Carvalho (2001) in a detailed study on dispersion in liquids.

The approximate conditions of validity of Eqs. (28) and (29) are: 25Rep < , 101 >d/d

and 1300Pe'p < , which are observed in a number of situations of practical interest. The

limitation on pRe ensures that Darcy’s law is observed with good approximation, 101 >d/d

is an approximate condition establishing that the active particles are large compared to the
inerts, and the limitation on pPe' is related to the dispersion data available used to obtain Eqs.

(26) and (27).

CONCLUSION

The present work shows that a theory for mass transfer between a sphere buried in a
packed bed of inerts and the fluid flowing past it, may be derived from first principles, that is
valid for any value of Sc. The numerical solution of the partial differential equation
representing this theory gives the “exact” values of ε/hS ′ , which are well represented by
Eqs. (28) and (29).

NOTATION

c Solute concentration
c0 Bulk concentration of solute
c* Saturation concentration of solute
C Dimensionless solute concentration (as defined in Eq. 6)
d Diameter of inert particles

1d Diameter of active sphere

LD Longitudinal dispersion coefficient

mD′ Effective molecular diffusion coefficient

TD Transverse (radial) dispersion coefficient
K Permeability in Darcy's law
k Average mass transfer coefficient
n Mass transfer rate
p Pressure
R Radius of the sphere
ℜ Dimensionless spherical radial co-ordinate ( Rr /= )
r Spherical radial coordinate (distance to the centre of the soluble sphere)
U Dimensionless interstitial velocity ( 0/ uu= )
u Absolute value of interstitial velocity
u Interstitial velocity (vector)

0u Absolute value of interstitial velocity far from the active sphere

θuur , Components of fluid interstitial velocity

Greek letters
ε Bed voidage
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Φ Dimensionless potential function (as defined in Eq. 9)
φ Potential function (defined in Eq. 1)

µ Dynamic viscosity
θ Spherical angular coordinate
ρ Density
τ Tortuosity
ω Cylindrical radial coordinate (distance to the axis)
Ψ Dimensionless stream function (as defined in Eq. 10)
ψ Stream function (defined in Eq. 2)
Dimensionless groups

eP ′ Peclet number based on diameter of active sphere ( m10 D/du ′= )

peP ′ Peclet number based on diameter of inert particles ( m0 D/du ′= )

pRe Reynolds number based on diameter of inert particles ( µρ /ud= )

Sc Schmidt number ( mD/ ρµ= )
hS ′ Sherwood number ( m1 D/kd ′= )

mdhS ′ Sherwood number when mLT DDD ′== (i.e. peP ′ < 0.1)
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$EVWUDFW�
A coupled model of concentration polarization and membrane transport is used to study the 

crossflow ultrafiltration of PEG-3400 solutions. For the intramembrane transport, the model 

incorporates the binary friction model (BFM) derived by Kerkhof [4] and that is a modification of the 

Maxwell-Stefan-Lightfoot equation. Good agreement between model predictions and experimental 

data (apparent rejections and pressure drops as function of the flux) has been obtained. A value of 0.49 

for the equilibrium partition coefficient K, the only adjustable parameter, was found. The model 

predictions also enabled us to study the effects of circulation velocity and partition coefficient on the 

apparent rejection and to get an insight into the concentration profiles in the polarization layer and in 

the membrane.  

 
.H\ZRUGV� Apparent rejection; Adaptive method; Maxwell-Stefan; Transport;  Ultrafiltration. 
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Modeling of mass transport phenomena present in the separation of solutes using inert membranes 

is important for the design and/or optimization of these new separation processes. In recent years, 

there has been an increased awareness on these type of processes since they can be an alternative to 

the conventional separations processes like distillation, centrifugation and others. They also find 

applications in a variety of fields, being the most prominent the food and bioprocess areas. 

A number of mathematical models and algorithms for their solution have been explored for the 

description of the transport of components through membranes. Some of them are special cases of the 

generalized Maxwell-Stefan equations [1-2] and can be derived from either statistical-mechanics or 

thermodynamics of irreversible processes [3].  In fact, the approach based on the Maxwell-Stefan 

theory for the transport in both the polarization layer and the membrane give a rigorous description of 

the problem and the thermodynamics effects involving more than one species can be well predicted. 

However, this kind of mathematical formulation results, for the binary case,  in two partial differential 

equations (PDE’s) defined in two different spatial regions, corresponding to the boundary layer and 

the membrane and  the use of commercial packages such the PDECOL and PDASAC to achieve a 

transient solution is difficult, since they were developed to solve straightforward PDE’s.  In most of 

the studies the steady-state behavior is considered, where the problem is described by a set of ODE’s 

and the solution is obtained by employing numerical methods based on finite differences. With this 

approach the coupled equations are solved via an iterative procedure and in many situations, problems 

of convergence and stability of the numerical method occur.      

This work focuses on the ultrafiltration of PEG solutions. For the intramembrane transport the 

binary friction model derived by Kerkhof [4 -5] was used. That is a modification of the Maxwell-

Stefan-Lightfoot equation,  and includes both interspecies (diffusive) and species-wall forces. The 

numerical scheme used for solution of the equations is based on the application of an adaptive method 

with grid refinement developed by Brito and Portugal [6].  
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The modeling of the transport of solutes through membranes involves a couple solution of two 
transport models. The first  model describes the transport phenomena in the concentration polarization 
layer on the feed side adjacent to the membrane, while the second model deals with the intramembrane 
(inside membrane pores) transport.  

The governing equations for the unsteady-state transport of species through the membrane can be 
described by the continuity equations. For the polarization layer (see Figure 1), we have, 
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where the flux per unit area of the membrane is written as (N)= [ ] [ ] cu
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Fickian molecular and turbulent diffusion matrixes are given by ['] = [%]-1[*�] and ['�] ='� [,], 
respectively; for the membrane, the equations are written as 
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where Nm is the flux per square meter of membrane area. 
 

 
              

 
The intramembrane transport can be subdivided into intermolecular fricction between different  

components, and the effective friction of each component with the wall. The detailed momentum 
balance for each component, and the averaging over the pore cross section, results in the binary 
friction model (BFM) that is an extension of the Lighfoot model [3],  
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where the last term of right side of the eq. (3) enables us to quantify the friction between the 
components and the membrane. This term includes the fractional viscosity coefficients ki that can be 
evaluated from the bulk mixture viscosity data. 

Finally, considering the binary case that involves the transport of a single solute, we obtain for the 
boundary layer,  

 

z

N

t

c

∂
∂−=

∂
∂

           (4) 

with N = cu
t

c
)DD( vt +

∂
∂+−  and D = D12Gc. 

&S�

W
&'' �

∂
∂+ )(

�������������������
�&P�

X��&�����������
&��
 
 
            EXON�

PHPEUDQH�
�
X��&��
�
SHUPHDWH�

z                                 -d                        0      Lm              



For the intramembrane transport, we have,  
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From eq. (3), by converting the chemical potential gradients in concentration gradients and developing 
the equation in terms of molar fluxes, Nm is given by, 
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with boundary conditions, 
�
]� ��d� ��: c = cb 

]� �� (interface polarization layer/membrane): c’ = K c and  N = Nm 

]� /�(interface membrane/permeate): N = uv cp (cp = c’/K)  

and initial conditions, 

W� ��: c = cb for z = -dpol and c = c’ = 0 for z > -dpol. 

 

For turbulent conditions the diffusion mechanism in the polarization layer should incorporate an 

additional transport contribution by the turbulent eddies. The usual procedure for prediction of Dt is to 

proceed through the calculation of kinematics viscosity, ut. Defining the turbulent Schmidt number as 

Sc = ut /Dt and considering that for most practical design purposes Sc value is taken equal to 1, i.e.,   

Dt = ut. If the turbulent viscosity is taken to vary according to Vieth correlation, 
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The reduced distance from the membrane wall is expressed as y
+
  = 

u
>< 2/fuy t  in which the 

fanning friction factor, is evaluated using the Blasius equation, f = (0.3164/4) Re
-0.25

. According to 

Kerkhof [4], a region limited by y
+
 ≤ 5 was considered as having the sufficient distance for the 

development of the composition profiles within of the boundary layer of thickness d. 

The coupled model of concentration polarization and membrane transport presented provides a 

consistent procedure for predicting the concentration and molar flux profiles throughout the system, 

the permeate concentration cp and the apparent rejection of the solute, given by, 

Rapp = 1 - 
b

p

c

c
          (7) 

For the total pressure gradient over the membrane ∆Ptot =∆Pflow+σ∆∏, in which ∆∏ is the osmotic 

pressure difference that depend on the concentrations on both membrane sides and of the osmotic 

reflection coefficient σ, the following expression was used for ∆Pflow evaluation, 
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The relationship between the pressure differences ∆P and the flux Uv for experiments with pure water 

enables the determination of the membrane resistance Rm. 
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. Hence, the ratio ε �τ can be evaluated from the Rm value and the 

geometrical properties of the membrane. 
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The adaptive mesh algorithm was developed for one-dimensional evolutive systems of Algebraic-
Differential Equations that can be resumed by the following general model: 
 

( ) 0,,, =]]]W XXXX)  

( ) 0=X*  

subjected to the boundary conditions: ( ) ( )WXW]X // =, and ( ) ( )WXW]X 55 =,  and the initial condition: 

( ) ( ) [ ]5/ ]]]]X]X ,;0, 0 Î= . The algorithm can be structured in two main stages: estimation of the 
discretization error and identification of the adaptive sub-domains; and solution of the sub-problems 
generated in the first stage, by the introduction of an adaptive grid technique. 
 
Stage I - Discretization  
 
The error estimation is based on the comparison of the solution obtained by solving the original 
problem on two different grids: a fine and a coarse grid (Grids of level 2 and 1, respectively). Initially, 
the fine grid is constructed by the bissection of each interval of the coarse one. The nodes in level 1 
grid, that do not satisfy the error criterion, are grouped together with the level 2 nodes placed between 
them, to define the sub-domains over which the adaptive sub-problems are generated and then solved. 
 
Stage II - Adaptive Integration of the Sub-problem 
 
The sub-problems are generated with increasing refinement level, by the repetition of the procedure 
described in Stage I, until every node in every grid verifies the tolerance condition associated with the 
error estimated by: 
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In this case, L
NM(8 1, +  represents the approximation to the spatial error, in a node j of a grid of 

refinement level n; L
NM:K 1, + and L

NMK: 1,2 +  are the approximations to the component i of the 

solution, obtained through integration between the times W� and W���, on the finer (level n) and the 
coarser (level n-1) grids, respectively; 13��� is the number of nodes in the grid of level n-1; and 13'( 
is the number of partial differential equations of the problem. 
The sub-domains of level n+1 are obtained by joining all nodes n-1 that satisfy the condition: 
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In each refinement procedure, the profiles of the solution are computed by interpolation of the profiles 
of level 2, at all the intermediary positions. 
The algorithm is coupled with a strategy for the treatment of boundary conditions in the refinement 
sub-problems that simply defines fixed Dirichlet conditions on each internal bound. The position of 
each bound, for the refinement level n+1 (for Q = 2, … , 1�����, where 1��� is the maximum 

refinement level) are coincident with the positions of the first nodes of level n-1 that verify the 



specified tolerance. The constant value of the boundary conditions is given by the solution obtained in 
the integration over the level n-1 grid. This kind of procedure is very simple and prevents 
discontinuities on the overall profiles but tends to introduce significant errors in the solution, in very 
specific cases. 

The model is divided in the overall length in relation to the concentration (normalized by the bulk 
conditions). The fluxes are later calculated using the concentration profiles. The spatial coordinate (�d 

≤ ] ≤ /�) is also normalized using the overall length: 
d+

d+=
�/
]]* . Therefore, in the bulk position: ] = 

�d, ]* = 0, and for the permeate position: ] = /�, ]* = 1. The differential equations that describe the 
time evolution of the concentrations are spatially discretized by finite differences approximations 
(either on the polarization layer as on the membrane sides) and solved simultaneously. Initially we 
assume a zero concentration profile on the whole domain (with the obvious exception of the bulk 
border). The bulk border is treated as a fixed 'LULFKOHW condition with & = &�. The inner border (which 
represents the transition between the polarization layer and the membrane) and the permeate border 
are treated with the introduction of two nodes (very close to one another) that represent the inner and 

outer conditions related to the membrane. For the inner border (positioned at ] = 0; 
d+

d=
�

�� /] * ) 

the solution on both nodes is calculated by the solution of two algebraic equations: the equality of the 
fluxes on both positions and the equilibrium condition. The strategy used for the treatment of the 
permeate border (positioned at ] = /�; ]* = 1)  is similar and it is based on the solution of two 
algebraic equation also: the equality of fluxes, which has to satisfy the border condition: 1 = X�´ &�; 
and the equilibrium condition. 
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In order to validate the model, we used data from ultrafiltration experiments of PEG-3400 

performed by Box, [7] in a cross-flow ultrafiltration module containing a tubular polysulfone 
membrane of 1 meter length, with two separated permeate sections. Samples for analysis were 
obtained from the second section of the tube, where the entrance effects are absent. The operating 
conditions of the system under study are given in Table 1.  

Regarding the physical properties of the solution, we used 2
pintptinsp )(0033.0)(1.0 ρη+ρη=η and 

ηint = 6.04x10-5Mn
0.90 with Mn(number-averaged molecular Mass) = 3158, for the calculation of the 

PEG3400  viscosity. From the viscosity data, the fractional viscosity coefficients k1 e k2 were 
estimated according to the following relationships: k1 = k2(1+ηsp/φ1), where k2 may be related directly 
to the pure solvent (water), ηw=ct RT k2. For the determination of the molecular Fickian diffusion 
coefficient in aqueous PEG-3400 solutions, the following relation was taken into account: D = (5wp + 
1.37).10-10 m2.s-1.  

 
Table 1-Conditions used in the simulation of ultrafiltration of PEG3-400 solutions 

Membrane characteristics           Solution properties           Flow conditions 
Lm=5.10-7 m                                 cb=2.78.10-3 kmol/m3       ut = 1.08; 1.57 m/s 
Rm=1.62.1016. Uv+5.39x1012m-1    M=3600                           d =86.10-6 m 

rp=9.00.10-9 m2                             
−

1V  =2.83 m3/kmol                                            

MWCO=50 kDa                            
−

2V =0.018 m3/kmol                   
ε = 0.50                                        ηw =8.0.10-4 Pa.s 
                                                     T= 298 K 

 



The comparison of experimental apparent rejections of PEG-3400 with the values predicted by the 
model are presented in Fig. 1. As can be seen, the model is able to describe well the experimental 
results for K = 0.49. In Fig.2, it is also visible a good agreement between the pressure drop calculated 
for σ= 0 and the ones measured.  

�
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The apparent rejection is affected by the circulation velocity along membrane tube as shows the 

Fig. 1. It can be observed that increasing X��results in a increase of the apparent rejection. Since the 
turbulent contribution for the mass transport in the polarization layer increases at high circulation 
velocities, the amount of solute accumulated on the surface membrane is expected to decrease. This 
will correspond to a lower value of the membrane surface concentration and thus less solute will be 
transported through the membrane and hence, the rejection will increase. 
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Concentrations in the membrane pore are related to the interfacial bulk concentrations through the 

partition coefficients.  Once the interfacial region is very small and therefore the differences in the 
chemical potential are negligible, to assume interfacial equilibrium conditions (Ki = ci’/ci) is a valid 

approximation.  The Ki value is determined by geometrical factors and by specific interactions of 

solute and pore wall. For spherical solutes in cylindrical pores and according to the exclusion theory, 

Ki only depends on the ratio of the molecular radius and the pore radius: Ki = (1 – λ i)
2
. Thus, for a 

given solute, the decrease of the partition coefficient is consistent with the use of membranes that 

exhibit lower pore radius and thereby, the solute concentration in the pores will tend to increase. 

Consequently, high values of solute rejection will be obtained as is depicted in Fig. 3. 
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For a flux of 10
-5

 m/s and at circulation velocity of 1.04 m/s, the evolution of PEG-3400 

concentration along the spatial coordinate for various time values are shown in Figures 4a and 4b. The 

conditions used in this simulation corresponds to the ultrafiltration experiment of PEG-3400 reported 

by Kerkhof [4]. In Fig. 4a,
 
the behavior of the solute transport in the polarization layer can be observed 

together with the propagation of the bulk concentration towards the membrane driven by the 
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Figure 1 – Apparent rejection of PEG-3400 

as function of the flux at two different 

circulation velocities. The predictions are 

the solid lines whereas the experimental 

data are presented by the symbols. 

Figure 2 – Pressure drop vs membrane flux. 

The predictions are the solid lines whereas 

the experimental data are presented by the 

symbols. 
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contribution of the convective and diffusive fluxes. At higher times the concentration near the 
membrane increases surface due to the exclusion of the solute by the membrane, therefore originating 
a back diffusion is generated influencing strongly the evolution of concentration inside the membrane. 
This phenomena is illustrated in Fig. 4b. 

�
Figure 3 – Effect of equilibrium partition coefficient on the apparent rejection of PEG-3400 
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Figure 4a – Concentration profiles of PEG-3400 as 

a function of time in the polarization layer. 
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Figure 4b – Concentration profiles of PEG –3400 as 

function of time in the membrane. 
 
&RQFOXVLRQV 
 

A coupled model of concentration polarization and membrane transport described by the binary 

friction model (BFM) is used to study the crossflow ultrafiltration of PEG-3400 solutions. 

 A numerical procedure based on the adaptive method with grid refinement, in which the model 

differential equations are spatially discretized by finite differences and solved simultaneously, was 

able to give the solution of the system without much computational power and yield a rigorous 

solution of the problem. It has been shown that the solution predicts quite well the apparent rejection 

of PEG-3400 and the pressure drop as a function of the flux. The model is capable of predicting the 

influence of fundamental physico-chemical parameters and operating conditions on the apparent 

rejection of the solute. In fact, the influence of some of these parameters namely, the circulation 

velocity and the equilibrium partition coefficient was shown in this study. The predictions of the 

model also provides a good insight regarding the concentration and flux profiles in the polarization 

layer and in the membrane. 

The numerical description of the ultrafiltration model used is versatile and allows in the future to 

extend this study to the multicomponent transport. 
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c: molar concentration (kmol.m-3) 
B0: permeability parameter (m2) 
D: Fick diffusion coefficient (m2 .s-1) 
D12: Maxwell-Stefan diffusion coeficient 
(m2 .s-1) 
Dt: turbulent diffusion coefficient (m2 .s-1) 
k: fractional viscosity coefficient 
K: equilibrium partition coefficient 
Lm: membrane thickness (m) 
M: molecular mass (kg .kmol-1) 
N: flux with respect to stationary 
coordinate (kmol.m-2.s-1) 
P: pressure (Pa) 
rp: pore radius (m) 
R: gas constant (J.kmol-1.K-1) 
x: mole fraction 
t: time (s) 
T: temperature (K) 
ut: circulation velocity (m.s-1) 
uv: average permeate flux (m.s-1) 

−
V : specific molar volume (m3.kmol-1) 
z: spatial coordinate (m) 
( ): vector 
[ ]: square matrix 
 

*UHHN�OHWWHUV�
d: thickness of polarization layer (m) 
 ε:porosity 
φ: volume fraction 
Gc: thermodynamic factor 
τ: tortuosity 
η:viscosity (Pa.s) 
µ: chemical potential (J.kmol-1) 
ρ: mass concentration (kg.m-3) 
wp: weight fraction (kg.kg-1) 

6XEVFULSWV�
b: bulk 
m: membrane 
p: permeate 
pol: polarization 
t: total 
 w: water. 
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Abstract: In the last decade hybrid modelling in the sense of knowledge has gained an increasing interest as a
technique for identification of biochemical processes. This new approach is based on a combination of partial
(traditional) first principles models with data-driven models (such as ANN). There are two main schemes of such
a modular integration – competitive and complementary.

The aim of this paper is to report our experience applying both hybrid modelling approaches to relevant case
studies: the competitive modular principle applied to a Sacharomyces cerevisae yeast (a biological process) and
the complementary modular principle to a fed-batch evaporative sugar crystallization (a chemical process). Due
to their specific nonlinear nature we were challenged to model the process kinetics sufficiently well by first
principles models only.

1. Introduction

Modelling through knowledge integration aims at exploring all available sources of a priori
knowledge/information about the process that should be optimally combined and incorporated in the process
model. There are different modelling techniques based on the nature of the information available. Most
generally, the models can be classified as first principles (or deterministic) models, fuzzy (based on heuristic
knowledge) models, statistical models and more recently, black-box (usually ANN) models.

The modular principle in knowledge integration consists of division of the process in several modules according
to the kind of knowledge available in the different process parts. There are two main modular architectures –
complementary and competitive. In the competitive structure different modules concur for the right to represent
the same part of the process (parameters, outputs, etc.). In the complementary structure different kinds of
knowledge complement themselves. Usually, for the known physical constraints (e.g. mass and energy balances)
the most reliable models are still the first principles models while for the less known parts the data driven
modelling is more efficient.

Two benchmark problems are considered in this paper: for the first case study, Sacharomyces cerevisae yeast,
the competitive modular principle of modelling is adopted; for the fed-batch evaporative sugar crystallization the
complementary modular principle of modelling is implemented.

2. Competitive modular modelling

The application of Artificial Neural Networks (ANNs) for modelling the reaction kinetics in biological systems
has been exemplified in many works (e.g. Schubert et al. (1994), Montague and Morris (1994)). Conventional
BP networks and RBF networks are the most employed architectures. One important issue related to the nature
of the cell system is the fact that cells may process substrates through different metabolic pathways. This is the
case of diauxic growth on two carbon sources. Or the case of aerobic/anaerobic growth depending on the
presence or absence of dissolved oxygen in the medium. For example, S. cerevisae can grow through three

* To whom the correspondence should be addressed
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different metabolic pathways for exploiting energy and basic material sources and is able to switch between a
respiratory metabolic state and a reductive metabolic state (Sonnleitner and Kappäli (1986)).
BPs and RBFs networks have some limitations for approximating discontinuous input-output systems. BPs tends
to exhibit erratic behaviour around discontinuities (Haykin, 1994). RBFs are voted for local mappings and suffer
from generalisation problems especially for resolution of fine details. There are strong reasons to believe that
modular networks architectures may be advantageous for modelling reaction kinetics in biological systems. A
modular network architecture consists of two or more (small) network modules mediated by a so-called gating
network which decides how to combine their outputs to form the final output of the system. The learning of such
networks is based on the principle of divide-and-conquer, i.e., the network modules compete to learn the training
patterns. This type of architecture performs task decomposition in the sense that it learns to partition a task into
two or more functionally independent tasks and allocates distinct networks to learn each task (Jacobs et al.
(1991). Microorganisms reaction kinetics are ruled by a rather complex network of metabolic reactions that can
be viewed as being composed by a set of interconnected modules representing different pathways: glycolysis,
TCA cycle, etc. Hence a modular network structure is hypothetically highly compatible with the internal
structure of the system ‘cell reaction kinetics’. A second relevant point in favour of modular networks is that
they fit better discontinuous input-output systems (Haykin, 1994). These features indicate that this type of
networks could be advantageous to model the reaction kinetics.
Three types of networks are compared: the ME, BP and RBF networks. The S. cerevisae yeast serves as an
example to illustrate the application of the networks. The main objective of this study is to verify if modular
network architectures, which are supposed to be able to perform task decomposition, are able to discriminate
between reaction pathways in complex biological reaction schemes.

2.1 Methods

The Mixture of Experts (ME) network developed by Jacobs and Jordan (1991) was adopted in this work. The
ME architecture consists of a set of k expert networks and one gating network (Fig. 1). The task of each expert i
is to approximate a function fi : x→y over a region of the input space. The task of the gating network is to assign
an expert network to each input vector x. The final output y is a linear combination of the expert networks.

Expert
network 1

Expert
network 2

Expert
network k

Σ

Gating
network

y1 y2 yk

g1
g2

gk

y = ∑
i=1

k

yi gi

…

...

x x x x

Fig. 1. Block diagram of a ‘mixture of experts’ network;
the outputs of the expert networks are mediated by a gating network.

The interesting property of this network is that it is able to learn to partition a task into two or more functionally
independent tasks and to allocate distinct networks to learn each task. The training of the ME network may be
performed using a maximum likelihood parameter estimator. For the class of nonlinear regression problems
(which is our case) the objective is to map a set of training patterns {x,d}.
The goal of the learning algorithm is to model the probability distribution of {x,d}. The output vector of each
expert can be interpreted as a parameter of a conditional target distribution. In the case of a Gaussian
distribution, the probability of a desired target d of dimension q, given the input x of dimension p and given the
expert i is
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The expert outputs yi corresponds in this case to the conditional mean of the desired response d given the input
vector x and that the ith expert network is used, )],|([ iPEi xdy = . The outputs of the gating networks gi are

interpreted as the conditional probability P(i|x) of picking the expert i given de input x. The probability of the
desired target given the input x is thus
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The learning algorithm for this architecture, and in the light of the probabilistic interpretation made so far, can be
viewed as a maximum likelihood parameter estimation problem. The criterion for estimating the synaptic
weights wi of each expert i and of the synaptic weights a in the gating network is to maximise the density
function of Eq. (2). Usually the natural logarithm of P(d|x) is preferable to use (notice that P(d|x) is a monotonic
increasing function of its arguments). Over a set of p training patterns and after some manipulation the maximum
likelihood function l(x,w,a) is
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being w=[w1,w2,…,wk]
T and a=[a1,a2,…,ak]

T the vector of weights of the expert networks and gating network
respectively. The expert modules may be linear, yi = wix, or nonlinear functions, for instance, a small BP
network. The gating network outputs have a probabilistic interpretation and must obey to two constrains: all gi

must be positive and they must sum to one for each x. The gating network may be defined by a set of k ‘softmax’
processing units (Jacobs and Jordan (1991)):
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1
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uu (4)

being ui a linear combination of input vector x and connection weights ai, ui = aix. The softmax functions
provide normally a ‘soft’ partition of the input space.
The learning algorithm must update the synaptic weights wi of all expert networks and weights ai in the gating
network in order to maximise function (3). Jacobs and Jordan (1991) applied gradient ascent weights updating
algorithm where the weights wi and ai are updated simultaneously. Jordan and Jacobs (1994) applied the
Expectation Maximisation (EM) algorithm for training the network, which proved to converge much faster then
the gradient ascent algorithm.

2.2 Results and discussion

Case Study 1: Model of the Specific Growth Rate by Blackman
In this simple example the objective is to approximate the Blackman model for the specific growth rate (µ) as a
function of substrate concentration (S):
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being µ* and KM two kinetic parameters. Eq. (5) has a discontinuity for S=KM; the objective of this study is to
assess the behaviour of the networks when dealing with such discontinuous models. Eq. (5) was used to generate
data, with KM=0.2 g/L and µ*=0.17 h-1, and for glucose concentrations ranging between (0 ,1) [g/l] with intervals
of 0.002 g/l.
A ME network with 2 linear experts and a softmax gating network was trained on this data with the gradient
ascent method. The total number of parameters was 8, which is the minimum number possible. The training
algorithm converged very easily and rapidly, yielding a final mean square error of 9.7×10-8. The results are
shown in Fig. 2. The ME network was able to partition the input space at the discontinuity, as expected, and each
of the experts were assigned to one or the other partition. One can notice a small curvature around the
discontinuity because the ‘softmax’ functions produce a soft partition of the input space. A BP network with one
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hidden layer, sigmoid activation functions and with 7 and 10 parameters produced a mean square error of
5.5×10-7 and 5.7×10-8 respectively. The performance of the BP net with the same number of parameters is quite
similar to that of the ME network. The RBF network with 8 and 31 parameters produced an error of 3.6×10-6 and
3.1×10-7 respectively. For describing this fine detail around the discontinuity, the RBF net requires much more
parameters than the other two networks.

Fig. 2. Approximation results of the ME network to the Blackman model. (a) specific growth rate,
(b) gating network outputs g1 (-, solid line) and g2 (--, dash line).

Case Study 2: S. cerevisae cultivation process
The S. cerevisae cells can metabolise glucose via two pathways under aerobic conditions: oxidative and/or
reductively, with ethanol being the end product of the reductive pathway. The cells are able to use ethanol as a
second substrate (the phenomenon of diauxic growth), but ethanol can be metabolised oxidative only. The 3
metabolic pathways may be stated by the following macroscopic reactions:

S + NH3 + O2 → X + CO2 + H2O (�os) (R1) - oxidative glucose uptake
S + NH3 → X + E + CO2 + H2O (�rs) (R2) - reductive glucose uptake
E + NH3 + O2 → X + CO2 + H2O (�oe) (R3) - oxidative ethanol uptake

where S is glucose, X is biomass and E is ethanol. µos, µrs and µoe are three specific growth rates associated with
each pathway. Sonnleitner and Käppeli (1986) proposed a kinetic model, assuming this reaction mechanism,
based on the bottleneck concept. The key concept in the bottleneck model is that there is a maximum rate for
oxidative glucose and ethanol uptakes, which are governed by the yeast’ maximum respiratory capacity. The
cells cannot grow simultaneously though pathways 2 and 3. Growth switches between pathways 2 and 3
depending on the available respiratory capacity (which depends on the concentration of dissolved oxygen) and
on the actual glucose uptake rate (which is dependent on the glucose concentration in the medium). The total
growth rate is the sum of three growth rates related to 3 pathways. The main goal in this case study is to model
the specific growth rate and to verify if the ME network is able to detect the switch between pathway 2 and 3.
Three batches were simulated with constant feed rates of 0.05, 0.5 and 2.5 l/h. Data of total growth rate as a
function of glucose concentration and ethanol concentration (we assumed that oxygen was never a limiting
substrate) was collected with sampling intervals of 0.1 h. The total number of points used for training was 78.
This data was used to train and compare the 3 networks. The results obtained with the ME network with 3 linear
experts (9 parameters) are plotted in Fig. 3. The gating network employed was a gaussian network and the
training algorithm was the EM algorithm. The mean square error obtained was 1.6×10-5. The interesting point to
be noticed in this example is that the ME was able to discriminate between the 3 possible combinations of
reactions. A BP network with 9 parameters produced a mean-square error of the same order of magnitude
(1.38×10-5), indicating that there is no apparent advantage of using a ME network in this example. The results
produced by a RBF network with 9 parameters are worst as it was in the previous case study. The mean square
error obtained was 1.7×10-3.

(a) (b)
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Fig. 3. Results for one batch. (a) specific growth rate estimates with a ME with 3 experts (9 parameters):
measured values (o, dots), estimated values (-, solid line). (b) Gaussian gating network outputs: g1 (…, dot line),

g2 (-, solid line) and g3 (--, dash line).

3. Complementary modular modelling

3.1 Sugar crystallization

In sugar production the purpose is to grow sucrose crystals with a required standard of quality, essentially
measured by the purity, by the shape and by the crystal size distribution (CSD). The crystallization process
occurs through mechanisms of nucleation, growth and agglomeration, which are known to be affected by several
operating conditions. Agglomeration, in particular, is an undesired phenomenon, to a large extent not yet
understood, which has significant effect in the CSD, i.e. in the final product quality. The search for efficient
process model is thus linked both to the scientific interest of understanding fundamental mechanisms of the
crystallization and to the relevant practical interest of daily production requirements, i.e. mainly optimisation and
control purposes.
The difficulty in crystallization modelling is essentially on the accurate description of the CSD and their related
quantities – mass averaged crystal size (MA) and coefficient of variation (CV). The experience with models
neglecting agglomeration and/or nucleation mechanisms shows that the CSD predictions do not correspond to
the experimentally obtained AM and CV at the end of the process run. Therefore, accurate modelling can only be
achieved by incorporating agglomeration and nucleation mechanisms.

3.2 Partial mechanistic model

The mechanistic model considered below is investigated by several authors (Feyo de Azevedo et al. 1993,1994)
and proved to give a relevant interpretation to the physical nature of the process considered.

Mass balance. The mass of water ( wM ), impurities ( iM ), dissolved sucrose ( sM ) and crystals ( cM ) are

included in the following set of conservation mass balance equations

vapwwfff
w JFBF

dt

dM −ρ+−ρ= )1( , )1( ffff
i PurBF

dt

dM −ρ= , (6.1)

crisffff
s JPurBF

dt

dM −ρ= , cris
c J

dt

dM = (6.2)

Energy balance. The second part of the model is the energy balance

dcJbFaJ
dt

dT
vapfcris

m +++= (7)

where a, b, c, d incorporate the enthalpy terms and specific heat capacities derived as functions of physical and

thermodynamic properties. Details with respect to the evaporation rate ( vapJ ) and the thermal conditions can be

found elsewhere (Georgieva et al, 2003a, 2003b).

(R1)+(R2)

(R1)+(R3)

(R1)

(R1)+(R2) (R1)+(R3) (R1)

(a) (b)
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Population balance (in volume coordinates). The kinetics mechanisms of nucleation, crystal growth and particle
agglomeration are defined by the population balance. There are different mathematical representations of it
depending on the crystallisation phenomena taken into account. Most of the crystalliser models reported in the
literature neglect the agglomeration effect. For the process in hand this assumption appears to be irrelevant since
agglomeration is registered in the process run. The population balance is expressed by the leading moments of
CSD in volume coordinates since agglomeration must obey mass conservation low,

2
0

0

2

1
mB

dt

dm β−= , 0
1 mG

dt

dm
v= ,

(8.1)

2
11

2 2 mmG
dt
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v β+= , 212

3 33 mmmG
dt

dm
v β+= . (8.2)

The main process nonlinearities are included in the crystallisation rate

dt

dm
J ccris

1ρ= . (9)

The kinetic parameters considered are the nucleation rate (B), the agglomeration kernel (β) and the linear growth
rate (G) from which the volume growth rate can be determined
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3.3 Complementary hybrid structure

The complementary structure is a combination between an ANN and first principle equations in a serial hybrid
structure, where the known physical constrains (the mass, energy and population balances) are modelled by their
analytical expressions (eqs. 6-10) and the kinetic parameters are approximated by an ANN, (see Fig.4). The
process variables S (supersaturation), solPur (purity of the solution) mT (temperature) and cυ (volume fraction of

crystals) are known to determine the process kinetics (resp. the kinetic parameters) therefore they are considered
as network inputs. Direct measurements are available only for mT , the other variables are computed through

software sensors (Feyo de Azevedo et al., 1993). Each kinetic parameter can be approximated either by training
of individual neural networks or all of them simultaneously as outputs of one common ANN. The latter structure
was preferred in this study as less computationally involved.

ANN
process

outputs and states

NNNNNN BG β,,











c

m

sol

T

Pur

S

υ Process inputs

Population
balance

(nucleation, growth,
agglomeration)

crysJ
Mass and energy

balance
equations

Fig. 4 Complementary hybrid (analytical and data-driven) modular structure

The supervised mode of network training requires target values for the kinetic parameters. As measurements of
these process variables are not available the sensitivity approach of hybrid network training is performed
(Psichogios and Ungar, 1992). The network outputs are propagated through a partial mechanistic model, to get
an output for which measurements or reliable estimations are available (see Fig.5). Note that the partial
mechanistic model involved in the hybrid network training is viewed as a fixed parameterised part of the

network. In the particular case the mass of crystals ( hyb

c
M ) is considered as the hybrid network output, which is

compared with software sensor estimations ( obs
c

M ) for the same variable. The residual between them is termed

as the observation error ( obshyb
obs cc

MMe −= ). The (training) error signal for updating the network weights is set
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as the observation error multiplied by the partial derivatives of the hybrid model output with respect to the
network outputs (see Georgieva et al, 2003b for more details)
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Fig.5 Hybrid ANN training procedure (sensitivity approach)

The main drawback of the hybrid modelling structure is that it suffers of a relatively long computational time, as
for every training step a solution of the set of ordinary differential equations is required: the partial mechanistic
model to get the mass of crystals and the sensitivity equations to get the partial derivative in eq. (11). In Fig. 6
the main CSD parameters, namely AM and CV, at the end of 10 batches are compared with corresponding
experimental data obtained by off-line laboratory (sieve) analysis of mass-size distribution. The hybrid model
predictions closely match the real data, which serves as a test for evaluating the model reliability. The model is
now investigated as being an essential part of nonlinear model based predictive control algorithm.

Fig. 6 Final CSD (CV and AM) – experimental data and hybrid model predictions
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4. Conclusions

The present work illustrated the application of two modelling alternatives: competitive and complementary
architectures.

The competitive approach was formulated in the framework of modular networks for modelling reaction kinetics
in biological processes. The study was restricted to the very simple ME architecture, with linear expert modules.
The main results showed that the ME was able to perform task decomposition, in the sense that it could
decompose the input space in three partitions that in reality correspond to 3 different growth pathways. In terms
of modelling errors, it was shown that the ME did not represent an advantage in relation to the BP network, at
least for the 2 simple case studies presented. Additional studies with more complex multidimensional problems,
with the ASM2 wastewater treatment model (Gujer et al., 1995), are in progress. Nonlinear expert networks were
tested. The results obtained so far show that the expert networks are able to discriminate and to develop expertise
in describing all metabolic pathways involved.

The complementary modular principle applied to sugar crystallization modelling consists of a serial combination
of a partial mechanistic model reflecting the mass, energy and population balances and the poorly known kinetic
parameters (nucleation rate, growth rate, agglomeration kernel), are replaced by a feedforward ANN. This
knowledge-based hybrid model demonstrates good agreement with the experimental data available.
A reliable description of the kinetic parameters is of special importance not only for the academic understanding
of the crystallisation phenomena but also for the purposes of optimising the manipulated input time profiles, with
the objective to obtain sugar crystals with desired quality characteristics.

Modelling based on the competitive or complementary modular principles of integrating the process knowledge
offers a reasonable compromise between the extensive efforts to get a fully parameterised structure, as are the
mechanistic models and the poor generalisation of the complete data-based modelling approaches.
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Abstract 

In this work, an approach of the concept of dead core in a porous catalytic particle is made, and a 
mathematical model for analysis of the dead core for a single, irreversible and isothermal steady state chemical 
reaction is presented. The main factors that influence the existence of the dead core are defined, the distribution 
of reactant concentration and the position of dead core for zeroth and first order reactions, in catalysts with 
classical geometry of an infinite slab are calculated. The software Mathematica, which generates the solution of 
the differential equations, implements the calculation and the corresponding graphs that confirm the required 
conditions to the existence of the dead core. The results agreed with those published in the literature. 
 
Notation 
u = dimensionless concentration 
X = dimensionless coordinate 
φ  = Thiele modulus 
a  = magnitude of dead core (0 < a < 1) 
α = geometric factor (α = 1, slab; α = 2, cylinder; α = 3, sphere) 
n = reaction order 

 
Introduction 

For some cases in heterogeneous catalysis, the catalyst has the shape of a porous grain and reactant diffusion 
into the grain occurs. 

If the reaction rate is low, when compared with the diffusion rate, the size of the grain does not represent any 
problem for the concentration in inner points be almost the same from those at the surface. 

Otherwise, if reaction occurs much faster than diffusion, equilibrium can be reached even before that all 
reactants have spread inside the whole catalyst particle. In this case, a region within the catalyst particle will 
appear, where reaction will never take place. This region is called Dead Core. 

Depending on the dimensions of the grain, the catalyst is not entirely active, and then the reaction yield is 
low. 

 
Mathematical Model of Dead Core 

A mathematical model of the reaction-diffusion phenomenon for analysis of the dead core in porous catalysts 
for a single, irreversible and isothermal steady state chemical reaction, was developed. For an isothermal particle 
of any geometry, diffusion and a chemical reaction of nth order are described by an ordinary second order 
differential equation , [1] and [2]:  

 1- -1 2  
d du nX X u

dX dX
α α φ=

 
 
 

 (1) 

Assuming the existence of the dead core, the problem can be posed in the form of Equation (1), with the 
following boundary conditions: 
 1 1X u= ⇒ =  (2) 

 0
du

X a
dX

= ⇒ =  (3) 

and the condition:  
 0X a u= ⇒ =  (4) 
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where “a” represents the dead core position, with 0 < a < 1. 
 
Case 1: Slab, Zeroth Order Reaction: 

The resulting equation for a zeroth order reaction is an ordinary second order linear differential equation as 
follows: 

 
2

2
2

d u

dX
φ= . (5) 

The analytical solution of (2) is: 

 ( )
2 2

2 2 21
2 2

u X a aX X
φ φ

φ φ= − + − + . (6) 

The position of the dead core will be given when u(a)=0 

 
2 2

2 2 2 21     0
2 2

a a a
φ φ

φ φ− + − + = , (7) 

if 2φ > , then the dead cores exists and its position is: 
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φ
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The concentration profile is 
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Case 2: Slab, First Order Reaction 

Applying α =1 and n = 1 to equation (1) gives: 

 
2

2
2

d u
u

dX
φ= . (10) 

 
Which has the solution: 

 ( ) ( )2 2

2 2

X a X

a

e e e
u X

e e

φ φ φ φ

φ φ

− +
=

+
. (11) 

 
Dead core position will be given when u(a) = 0 

  ( ) 0Sech aφ φ− = . (12) 
 
However, on determination of the dead core position, u(a) → 0 for a → ± ∞ and, as 0 < a < 1, there is no 

occurrence of dead core in this case. 
 

Mathematica Solution 
The following procedure models the dead core, [3]. 
 

Case 1 Solution: 
1. Clear all previous inputs and assign the corresponding values for geometric factor  and reaction order: 

 
2. Define a function for equation (1): 
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3. Solve equation (1) with the assigned boundary conditions: 

 
4. Simplify solution: 

 
5. Solve for “a”: 

 
6. Select root 0 < a < 1: 

 
7. Simplify concentration expression assigning the value of “a”, for which the concentration is zero: 

 
One observes that concentration is a function of  position “X” and of Thiele Modulus “φ”. Three-

dimensional graphs of the function u = u (X, φ) will be generated, as shown in Figures 1 and 2. 
 

 
Figure 1 – Sample 3D Graph: concentration vs. Thiele modulus vs. position. 

 
Figure 2 shows the option ViewPoint which allows a different graph perspective. PlotRange zooms in 

the image for a better definition of a particular region. 
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Figure 2 – Zoom in for detailed view. 

 
The following procedure generates the graph that shows the positions of dead core and reactant concentration 

profiles for several values of Thiele modulus: 

 

 
 

 
Figure 3 –Positions of dead core for several values of φ. 
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The purple line in Figure 3 represents a value of 2φ = . For such a value, the concentration is zero exactly 
at the catalytic particle center (a = 0). As the Thiele modulus increases, one can see that the dead core occurs at 
positions closer from the surface and a → 1 for φ → ∞. Then, the dead core tends to occupy the whole particle 
when φ → ∞. 
 
Case 2 Solution: 

An analog procedure for solving Case 2 equation was adopted and it is shown below: 
1. Clear all previous inputs and assign the corresponding values for geometric factor and reaction order: 

 
 
2. Define a function for equation (1): 

 
3. Solve equation (1) with the boundary conditions: 

 
4. Attempt to solve for “a”: 

 
As seen in the previous analytical solution, there is no dead core. 
 

5. Simplify the solution of Equation (1): 

 
 

The following three-dimensional graphs have been generated, plotting concentration versus Thiele Modulus 
versus position. 
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Figure 4 – Sample 3D graph for first order reaction in slab geometry. 

 

 
Figure 5 – Different view of concentration profiles vs. Thiele Modulus vs. position. 

 
To generate plots of reactant concentration profiles for several values of φ, a similar procedure to the Case 1 

was adopted.  
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Figure 6 – Reactant concentration profiles for a first order reaction in a slab. 

 
The plots show that reactant concentration never reaches zero when the reaction order is 1 for a slab and there 

is no occurrence of dead core in this case, that agrees with results from [4]. This is confirmed by viewing a 
zoomed-in section of the previous graph. 

 
Figure 7 – Zoomed-in concentration profiles. 

 

Conclusions 
The analytical solutions and the results generated by Mathematica agree with those published in the literature. 

The use of Mathematica as a computational tool to solve the proposed problem provides an application of the 
software in catalysis. 
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Abstract
In this work a strategy is described for designing chemical processes with improved economic and
environmental performance, using computer modeling and simulation. This strategy is applied during
process development stages of process synthesis and conceptual design, where the flowsheet of a
chemical process is developed and evaluated. The several steps of this strategy include process
synthesis, modelling and simulation, preliminary assessment, generation of alternative design options,
detailed assessment, feasibility analysis and finally screening of alternatives to arrive to the best
design option. This strategy takes into account the process flowsheet, the open and fugitive emissions
and the potential environmental impacts (PEI’s) of a chemical process. It places a high emphasis on
pollution prevention and waste minimisation, focusing on those chemical components and process
streams that have the largest contribution to the PEI’s and the largest economic potential, revealing
where attention should be focused when designing a chemical process.

Introduction

The chemical industry provides a vast array of products and materials that are essential for modern
societies. However gaseous, liquid and solid wastes are inevitably generated during the manufacture of
any product. In the past three decades industry have been in the position of responding to legislation
imposed as a consequence of a perceived environmental crisis. The mode of operation was essentially
unplanned and always reactive rather than proactive. There has been little operational guidance about
how to do better.

Apart from creating potential environmental problems, wastes represent losses from the production
process of valuable raw materials and energy, requiring significant investment in pollution control
practices. The waste generated by chemical industries is often associated to inefficient processes. Thus
reducing waste by improving efficiency will maximise profits, while reducing the environmental
impacts. To address this challenge, rather than using the traditional end-of-pipe approaches chemical
engineers need to assess, improve and integrate the environmental performance of processes with the
objective of avoiding waste generation.

During process synthesis and conceptual design important decisions are made that will determine
the economic viability, safety and environmental impact of the final design. In these preliminary
stages of process development an optimised structure of a chemical process is determined and a
number of suitable process alternatives or possible structures are identified and then evaluated to get
the best solution.

While detailed environmental impact assessments have been performed for decades, their
implementation has generally been restricted to evaluations of final designs. A better approach would
be to evaluate environmental performance in the design development process. At the earliest stages of
process design, only the most elementary data on raw materials, products and by-products may be
available resulting in a large number of design alternatives that need to be considered. Although there
are trade-offs between different environmental impacts decisions must be made. Supporting these



decisions require environmental assessment tools that chemical engineers will need to master.
Environmental assessment tools are required not only to quickly assess the potential environmental
impacts and toxicity potential of products and processes but also to identify key compounds of
concern or emission points in a chemical process. For example, the waste reduction algorithm (WAR)
from U.S. EPA (Young et al., 2000) is an environmental assessment tool, which can be used to
evaluate the potential environmental impacts of alternative design options.

The original version of the WAR algorithm, developed by Hilaly and Sikdar (1994), introduced the
concept of a pollution balance, which was strictly mass based. Cabezas et al. (1999) introduced the
generalised WAR algorithm with a PEI balance, which assigned environmental impact values to
different pollutants, as an improvement upon the original WAR algorithm. Young and Cabezas (1999)
extended the PEI balance to include the consumption of energy by the process into the environmental
evaluation.

Chemical engineering practice has traditionally relied on experience-based and heuristic or rule-of-
thumb type methods to evaluate some feasible process design (Douglas 1988). Mathematical
algorithms are used to find the optimal solution from these manually determined feasible process
design options. The fault in this process is that it is virtually impossible to manually define all of the
feasible process system options comprising more than a few operating units (Bumble 2000). Chemical
process simulation techniques have emerged as tools for providing process design and developing
clean technology for pollution prevention and waste minimisation. Most state of the art process
simulators are powerful tools for the analysis of pollution prevention alternatives in a wide range of
industrial processes.

Steady state process simulators make it possible to run the plant as a model on a computer and test
out operation scenarios (e.g. higher flowrates, different feedstocks, modified operating conditions,
etc.) before they are tried on the actual plant. Examples of commercially available process simulators
that can be used to model chemical processes are ASPEN PLUSTM by Aspen Technology Inc.,
CHEMCADTM by ChemStations, Inc., HYSYSTM by Hyprotech Ltd. and PRO/II by Simulation
Sciences Inc., etc. With the ever-increasing capabilities in computer power and accurate models for
describing process units, process simulators make it possible to do rigorous analyses and exploring
different design alternatives. In addition to the classical experimental approaches (e.g. bench scale,
mini-plant, pilot plant, market development plant), the use of modelling and simulation tools is
becoming increasing popular and powerful.

In this work a strategy is described for designing chemical processes with improved economic and
environmental performance, using computer modelling and simulation. This strategy allows the
identification and evaluation of different process design alternatives, resulting on the creation of more
energy-efficient, mass-efficient and environmental benign industrial processes. This strategy has been
tested through example processes, which results can be viewed in Smith et al. (2001a, 2001b) and
Mata et al. (2001, 2003). By applying this strategy one can easily and quickly evaluate and identify
chemical process design options with superior economic and environmental performance. Also it
incorporates the assessment of the potential environmental impacts of a chemical process, which are
usually ignored in traditional process design, where attention is only paid to bring the process into
compliance with discharge standards. This strategy allows the identification of the tradeoffs between
process economics and potential environmental impacts, revealing where attention should be focused
when designing a chemical process.

Strategy for Chemical Process Design

This strategy consists in the selection and design of cost-effective alternatives for chemical processes
with significant environmental and economic improvements. Figure 1 shows the several steps included
in the strategy for designing chemical processes with good economic and environmental performance,
using computer modeling and simulation. The several steps of this strategy include process synthesis,
modelling and simulation, preliminary assessment, generation of alternative design options, detailed
assessment, feasibility analysis and finally screening of alternatives to arrive to the best design option.

After basic research and development, process synthesis is the earliest stage in the developing



process of a chemical process design. Then it proceeds to conceptual design, preliminary design,
detailed design and finally to construction and start up. The strategy described in Figure 1 is applied
during the earliest stages, i.e. process synthesis and conceptual design. In these stages a conceptual
flowsheet of the chemical process is developed and evaluated.

Process synthesis:
• basic R&D and data collection (e.g. kinetics,
thermodynamics)
• definition of the process flowsheet

Preliminary assessment and generation of alternative
 design options:
• objectives definition 
• establishment of priorities
•  identification of potential  obstacles
• define, prioritise and select pollution  prevention options 
(e.g. recycling a waste stream to extinction, changing operating
 conditions of temperature and pressure, heat and mass integration)

Modelling and simulation of the chemical process

Detailed assessment and feasibility analysis:
• technical
• environmental (identify and characterise waste, identify sources
 of waste, evaluation of the potential environmental impacts)
• economic (economic potential, capital and operating costs)

Screen alternatives:
• acquire data
• analyse results

Best design option(s)

Figure 1. Strategy for designing chemical processes with good economic and environmental performance,
using computer modeling and simulation

Process Synthesis. Normally starting with a market need or a business opportunity basic research
and development is performed and an input-output diagram may be sketched out. This overall
transformation of raw materials into desired products is then divided into several processing steps that
provide intermediate transformations (e.g. reaction, separation, mixing, heating and cooling). One can
break down the process into its basic functional elements such as the reaction and separation sections.
Then identify recycle streams and unit operations to reach desired temperature and pressure
conditions. These basic elements lead to a generic process block flow diagram. After preliminary
equipment specifications the process flow diagram is made.

The process of selection and evaluation of the individual transformation steps and their
interconnections to form a complete structure that achieves the required overall transformation is
usually called process synthesis. The outcome of process synthesis is normally expressed in terms of
process flowsheets. A “flowsheet” is the diagrammatic representation of the process steps and their
interconnections, i.e. it is composed by pieces of equipment (e.g. reactors, heat exchangers,
compressors and distillation columns) interconnected by streams.



Generally process synthesis starts at the reactor, if one is required, since it is the place where raw
materials are converted into the desired products. Following the reactor and according to the normal
sequence in the process flowsheet, the separation and recycle systems are designed. Then follows the
design of the process heating and cooling duties, which are dictated by the reactor, separation and
recycle systems together. Finally those heating and cooling duties, which cannot be satisfied by heat
recover dictate the need for external utilities (steam, cooling water, fuel, etc.). This hierarchy can be
represented symbolically by the layers of the “onion diagram” as described by Smith (1995). The
“onion diagram” diagram emphasises the sequential or hierarchical nature of process design. When a
process do not require a reactor (e.g. in some refinery processes) the design starts with the separation
system and moves outward to the heat exchanger network and utilities.

Modelling and Simulation of Chemical Processes. After the structure of the process is
determined models are needed as partial substitutes for their prototypes to assist in designing,
understanding and predicting the behaviour of the prototype. They must represent significant
characteristics of their prototype. Simulation is the use of the model to predict plant’s performance and
its economics.

The flowsheet generated can be further refined using process simulators. They use more rigorous
models of process units, impossible to be performed without a computer. They also provide a way to
integrate all the relevant aspects in the process synthesis, therefore reducing the development and
implementation time.

Preliminary Assessment and Generation of Alternative Design Options. When the design is
specified, methods for generating alternatives are used. Pollution prevention and waste minimisation
options must be analysed in this step. Pollution prevention consists of eliminating or minimising waste
generation at source, i.e. reducing waste or pollutants before they are created, prior to recycling,
treatment or disposal. Pollution prevention via source reduction of a chemical process involves
replacing or modifying conventional chemical production processes. There are some basic strategies
for reducing process wastes at their source. The flowrate of a purge stream can be reduced by
decreasing the purge fraction, by using a higher purity feedstock, or by adding a separation device to
the purge or recycle stream that will remove the inert impurity. Reaction by-product production can be
reduced by using a different reaction path, by improving catalyst selectivity, or by recycling by-
product back to the reactor so that they accumulate to equilibrium levels. Waste minimisation via
alternative reactor operating conditions and parameters are other possible examples.

Waste minimisation can be achieved through for example, changes in design and operating
conditions that alter the flowrate and composition of pollutant-laden streams, by promoting
substitution, recycling and reuse, by applying strategies to minimise, moderate and simplify or by
addressing the fundamental chemistry of processes. Other measures such as process modifications
(temperature, pressure changes, etc.), unit replacement, feedstock substitution and reactor separation
network design can be manipulated to achieve cost-effective waste minimisation.

In process synthesis there are a very large number of ways that one might consider to accomplish
the same goal, i.e., there are a very large number of possible alternative processes for converting raw
materials into the desired products (Douglas 1988). The analysis of the alternatives usually starts with
basic engineering analysis such as mass and energy balances. Predictions are made of the expected
performance of the system. Inputs and outputs of the process, flow rates, compositions, pressure,
temperature and physical properties of material streams, energy consumption and sizing of the
equipment units are listed and analysed.

Chemical process simulators simplify the process of evaluating the different design alternatives
without the need of making to much process assumptions and considering the entire process structure.
A process simulator has the capability to input and modify the configuration of the process flowsheet
and to perform design calculations considering the complete process flowsheet, before they are tried
on the actual plant. This way it is possible to model and predict the behaviou of the process flowsheet
and to study different operation scenarios (e.g. higher flowrates, different feedstocks, modified
operating conditions, various levels of energy integration, etc.) in combination with evaluations of the
process economics and potential environmental impacts.



Detailed Assessment and Feasibility Analysis. If a process design appears to be profitable, more
rigorous design calculations can be used to develop a final design for the best alternative or the best
few alternatives. Usually more rigorous design and costing procedures are used for the most expensive
equipment items. However to improve the accuracy of the approximate-material and energy-balance
calculations, it is also important to add detail in terms of small and inexpensive equipment items that
are necessary for the process operations but do not have a major impact on the total plant cost (e.g.,
pumps, flash drums, etc.) (Douglas 1988).

A feasibility analysis is then performed. As the mechanical and instrumentation details are
considered and the piping and instrumentation diagram is created, estimations of equipment size and
costing and the economic and environmental merits of the process are analysed. For example, the
economic performance can be readily quantified, by estimating capital investment and operating costs
using simple correlations that approximate the actual costs (Biegler et al. 1997, Peters and
Timmerhaus 1991). Other criteria such as safety, environmental constraints, flexibility, easy control
and operation are not readily quantifiable and yet often requires the judgement of the designer (Smith
1995). Properly done, it requires a balance of reliability, safety and economics, while having an
acceptable impact on the environment and society. The initial choice of the process is not expected to
be optimal. However it is usually possible to improve the process by a different choice of process
flows and conditions, e.g., by parameter optimisation.

Open and fugitive emissions of chemicals escape to the atmosphere posing a large risk to public,
employee and environmental health. While open emissions are usually controlled or remediated,
fugitive emissions are still escaping from processes and are becoming a relatively large source of
environmental impacts. Emissions from equipment leaks occur in the form of gases or liquids that
escape to the atmosphere through many types of connection points (e.g. flanges, fittings, etc.) or
through the moving parts of valves, pumps, compressors, pressure relief devices and certain types of
process equipment. Valves are usually the single largest source of fugitive emissions (Goyal 1999).
Point sources of fugitive emissions, such as a single piece of equipment are usually small. However,
cumulative emissions throughout a plant can be very large, based on the large number of equipment
pieces that can leak such as valves, pumps, flanges, compressors, etc.

In order to determine fugitive emissions losses, the U.S. EPA conducted emission test programs in
petroleum refineries, which resulted in a set of average emission factors for process equipment (U.S.
EPA, 1980, 1996). These average factors are listed in AP-42 (1995) and total losses are estimated by
combining the losses for all the pieces of equipment based on their average factors. The Protocol for
Equipment Leak Emission Estimates (U. S. EPA, 1995) describes the testing procedures, such as
screening or bagging (or both) involved in the development of emission factors. According to Sydney
(1989) there are several variables that can affect the emission factors such as the fluid phase, pressure,
temperature, unit type, equipment size, type of valve, flange, compressor, pump, etc. The use of
emission factor methods is based on the assumption that the leak frequency and the equipment
emission rates are similar to those of the average process in EPA’s studies (Schaich, 1991). Therefore,
these methods are most valid for estimating emissions from a process or population of equipment and
for a large period of time.

For the environmental analysis, environmental assessment tools can be used such as the waste
reduction algorithm (WAR) (Young et al., 2000). WAR has made available a method to simply
evaluate processes with a library of approximately 1600 chemicals. The WAR algorithm applies a
balance equation around a process to evaluate the potential environmental impacts. It considers eight
impact categories including human toxicity potential by ingestion (HTPI), human toxicity potential by
exposure (HTPE) through dermal and inhalation routes, aquatic toxicity potential (ATP), terrestrial
toxicity potential (TTP), photo-oxidation chemical (smog) potential (POCP), acidification potential
(AP), ozone depletion potential (ODP), and global warming potential (GWP). Potential environmental
impact scores are available in the WAR database for chemicals based on a representative
measurement. For a more complete description of the WAR algorithm see Cabezas et al. (1999) and
Young et al. (2000).

Screen Alternatives. Finally after detailed assessment and feasibility analysis, data is acquired and
results are analysed to arrive to the best design option or the best few options.



Conclusions

The described strategy aims to link traditional process design with environmental assessment, i.e. to
evaluate the potential environmental impacts of a chemical process into the environment, while
recognising the diversity of value judgements regarding the environmental issues. This strategy
focuses attention on those chemical components and process streams that have the largest contribution
to the potential environmental impacts and the largest economic potential. It takes into account the
process’s fugitive emissions and their potential environmental impacts when designing a chemical
process, which is normally ignored in traditional process design.

With this strategy one can easily incorporate environmental assessment in chemical process design,
while devising alternative designs with superior environmental and economic performance. Since the
environmental protection is an important aspect of the performance of chemical processes, this
strategy has many advantages for the modern industry. It makes possible for a company to anticipate
compliance with environmental regulations, representing a new procedure and tool capable of
exploring different alternative designs and of identifying design features leading to potential
environmental problems and process costs. It can be applied to the design of new processes or to the
retrofit existing ones. It allows that process design alternatives with superior environmental and
economic performance are identified, which is often associated with materials and energy efficiency.
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Abstract

This paper addresses the main phases and challenges met during the global simulation and optimization
of a continuous process for the production of aniline. A fixed process topology is considered, based on the
process implemented by Quimigal S.A., using the liquid phase hydrogenation of nitrobenzene. Simulation and
optimization studies addressed separately the reaction and purification stages of the process. This illustrates the
application of a systematic mathematical approach for the simulation and optimization of a chemical process,
using detailed mechanistic models of the units.

1 Introduction

The process under analysis, for production of aniline by liquid phase hydrogenation of nitrobenzene, can be divided
in two major stages: reaction and purification. The reaction occurs in slurry (three phase) reactors, while the
purification stage consists in a complex configuration of liquid-liquid separators and distillation columns.

Different steps were involved in the construction of process models for the individual units, and for simula-
tion/optimization studies. These included the selection and validation of property and parameter estimation meth-
ods, the choice of the degree of model complexity for the individual units, and the numerical methods for their
solution. In both cases, the overall strategy was to start with the simplest approaches available, adding complexity
only when required for reliability and accuracy of the results (Levenspiel, 2002).

2 Knowing the process

Industrial data was extensively gathered during the initial phase of this work, by collecting samples and monitoring
flows of all process streams. A data reconciliation methodology was defined, to produce a consistent stationary
view of the process. These values were later used as an essential simulation target and as a base case for process
benchmarking. The reconciliation of process values was accomplished in 2 steps, due to the diversity of the data
available, and the uncertainties present. In the first part, the overall mass flowrates were reconciliated using a
simple least squares formulation, assuming the remaining variables fixed. This was done in GAMS language, by
solving a quadratic problem of the form:

min
F,ε

nc∑
i=1

ε2BP,ipi + ε2BT

s.t.
ne∑

j=1

wi,jFj =
ns∑

k=1

wi,kFk − εBP,i i ∈ C

ne∑
j=1

Fj =
ns∑

k=1

Fk − εBT

Fu,l ≤ Fj ≤ Fu,u, j ∈ E, S

(1)
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In these equations,Fj are the flowrates to be determined,εi are errors associated with each balance equation, andpi

are the weights attributed to each of these error terms. This formulation was applied to simultaneously to all process
units, with additional linear mass balance equations to express the relations between the different process streams.
This step was followed by simultaneous reconciliation of flowrates and composition, using a NLP formulation, and
the previous determined values of the flowrates as reference values. The mathematical formulation of this second
phase can be expressed as:

min
FC,wC,γ

∑
u

γ2
F,upF,u +

∑
i

∑
u

pw,i,uγ2
w,i,u

s.t.
ne∑

j=1

wC
i,jF

C
j =

ns∑
k=1

wC
i,kFC

k

ne∑
j=1

FC
j =

ns∑
k=1

FC
k

FC
u = Fu + γF,u

wC
i,u = wi,u + γw,i,u

FC
u,l ≤ FC

u ≤ FC
u,u

wC
i,u,l ≤ wC

i,u ≤ wC
i,u,u

(2)

The GAMS language was used to solve this nonlinear problem involving around 900 variables and 740 equations.
During this preliminary phase, laboratory experiments were also performed, to characterize the complexity of the
equilibria phenomena that need to be considered in the separation phase, including the identification of azeotropic
mixtures and the selection and validation of equilibria estimation methods (UNIFAC for V/L, and NRTL for L/L
equilibria).

3 Simulation of the reaction phase

Distinct physical and chemical processes are known to occur inside the multiphase reactors used, including gas-
liquid and liquid-solid mass transfer, diffusion, adsorption and reaction on the catalyst, as well as desorption of
the products. These reactions are often described through elaborate schemes, with several intermediate chemical
species and alternative pathways to the desired products and byproducts. This can lead to systems with com-
plex behavior, where certain sets of variables exert a major influence on overall system performance. Given the
complexity of the phenomena that occur in the three-phase hydrogenation reactors, and the limited amount of
measurements available relative to these systems, two detailed mechanistic models were built for them, combined
published kinetic information (Turek et al., 1986) with mass transfer models for this type of systems (Chaudhari
and Ramachandran, 1980). The following main hypothesis were used in the development of these models:

• Perfectly agitated liquid phase, with catalyst particles and hydrogen bubbles uniformly dispersed in the
reacting mixture.

• Efficient removal of the reaction heat, allowing a constant liquid phase temperature.

• Constant volume of the reactant mixture.

• Monodisperse catalyst particles (of identical diameter), with active centers uniformly distributed and equally
accessible throughout the solid volume.

Both models were implemented computationally, using theMathematica language (Wolfram, 1999). The first
model neglects intraparticle diffusion processes. A simplified description of the catalyst particles is used, in a
pseudo-homogeneous approach, by considering the temperature and concentrations constant in the solid phase.
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In the second case the concentration and temperature profiles within the particles are explicitly considered. The
balance to a reactant (e.g. hydrogen) in the solid phase is expressed by an equation of the form

Deff,H2

(
∂2CH2,S

∂r2
+

2
r

∂CH2,S

∂r

)
= −αH2kf(CNB,S, CH2,S)

mp

Vp
, (3)

valid in the domainr ∈ [0, rp]. In this expressionCH2,S(r) andCNB,S(r) are functions of the radial position in
the particle, resulting in a distributed parameter model. The corresponding boundary conditions are

∂CH2,S

∂r

∣∣∣∣
r=0

= 0, Deff,H2

∂CH2,S

∂r

∣∣∣∣
r=rp

= KLS,H2

(
CH2,L − CH2,S(rp)

)
,

with similar partial balances considered for the remaining components and conservation of energy in the solid
phase, originating a system of algebraic-differential equations.

The system of differential equations of the second model was solved using finite differences, with centered for-
mulas, resulting in a classical scheme with convergence of second order relatively to the spacement in the space
grid. Since both models were written in theMathematica language, a generic discretization package was written,
using the symbolic manipulation capabilities of this system, including the automatic treatment of the boundary
conditions and their singularities.

The algebraic equations corresponding to both models were also solved in theMathematica system. While the
simplest model (composed of 11 variables and 11 algebraic equations) was easily solved, the more complex one
exhibited serious convergence problems during the solution of the discretized model, using variations of Newton’s
method. This was due to the presence of very steep intraparticular profiles that caused convergence to solutions
of the system without physical meaning (e.g., negative concentrations), if the initial guess was not extremely (i.e.,
pathologically) close to the final solution, even after proper scaling of the variables and equations.

Since traditional methods for the solution of systems of algebraic equations did not seem to provide efficient
solutions for this problem, an alternative strategy was implemented by directly imposing known solution bounds
during the determination of the search direction of a Newton-type method. This is done through the solution of a
linear program of the form

min
∆xn,ε

‖ε‖1

s.t. f(xn) + J(xn)∆xn = ε

xl − xn ≤ ∆xn ≤ xu − xn

(4)

instead of solving the linear systemJ(xn)∆xn = −f(xn). The former approach reduces to the solution of
the linear system when an entirely feasible solution can be found. Bullard and Biegler (1991) propose a similar
approach for the simulation of constrained systems. However, in their approach infeasible intermediate iterates can
be generated, if associated with a sufficient decrease of the merit function used. In the case of (4), by guaranteeing
that the iterate candidates always remain inside the feasible region, and considering explicitly its bounds, model
failures can be avoided, and less effort can be required during the step search phase.

Simulation results exhibit good agreement between the models, and also with available industrial data. Figure 1
illustrates some of the results obtained. As can be concluded by observation of Figure 1(a), reaction takes place
in a thin layer close to the particle surface, with a thickness of only 5-7% of the particle radius, resulting in
an effectiveness factor of10−4. This is mainly due to the depletion of the reagent MNB in the catalyst particles,
caused by an extremely high mass transfer resistance for this component in the solid-liquid film. As a consequence,
the concentration and temperature profiles within the pellets are nearly flat, after the external layer, and this allows
good agreement between the results obtained with both models (Neves et al., 2002).

4 Reaction phase — optimization studies

Optimization of the reactors units can be easily performed by a sensitivity analysis of the simulation results rel-
atively to each of the main process variables and design parameters available. In the present configuration, the
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Figure 1: (a) intra-particular profile of MNB concentration, (b) dependence of the residual concentration of ni-
trobenzene with particle diameter. ).

most important optimization variable was found to be the diameter of the catalyst particles. Figure 1(b) illustrates
the variation in the concentration of mono-nitrobenzene in the liquid phase with the catalyst dimensions. As can
be observed, a decrease in the particle diameter from 25µm to 5 µm allows an 80% reduction in the residual
concentration of MNB in the effluent, without further process changes.

The models were also used to diagnose the variability of the operating data from identical industrial reactors,
where significant differences in the catalyst consumption and effluent concentration of MNB were observed in
practice (Neves et al., 2002). The analysis of the catalyst present in the reactors with better performance showed
that a significant portion of the catalyst in use (approximately 2/3) had diameters of the order of 1-3µm, although
the fresh catalyst that is added to the reactors has a mean diameter of 20µm. These values are in agreement
with Turek et al. (1986), where significant degradation of the catalyst was reported to occur in a similar (although
laboratory) reactor, due to the effects of intense agitation. The analysis of the specific area (BET) and porous
volume indicated that the catalyst in use had suffered a significant decrease in its values relative to the fresh
catalyst, without noticeable loss of activity. These results, together with the model predictions, suggest that since
the reaction occurs essentially at the solid surface, the mechanical degradation of the catalyst actually improves
the reactor performance. Simultaneously, in the industrial reactors where higher catalyst consumptions and higher
MNB effluent concentrations were observed, the analysis showed a closer proximity between the properties of
the used and fresh catalysts. Their lower performance is therefore attributed mostly to problems in the separation
system, unable to adequately retain the catalyst particles of smaller dimensions that lead to greater conversion.

5 Simulation of the purification phase

The models developed for the various separation units are composed of systems of algebraic nonlinear equa-
tions, describing the various equilibrium stages that are assumed to occur in this phase of the process. These are
large-scale and highly nonlinear, mostly due to the nonideal models necessary to accurately describe the relations
between the compositions of the various phases, and physical variables such as pressure and temperature. Instead
of relying on purely algebraic handling, these models are usually more conveniently solved by a combination of
shortcut and self initialized equation-tearing methods (Seader and Henley, 1998).

Various equation-tearing methods can be used with these models — plate-to-plate, matricial or relaxation. The
(matricial) rigorous iterative method of Wang-Henke was chosen to refine the results provided by the short-cut
method of Fenske-Underwood-Gilliand-Kirkbridge. In fact, the simplicity of implementation of the Wang-Henke
method, together with good convergence properties, was decisive to exclude the relaxation (time consuming) and
plate-to-plate (difficult to converge). With the examples tested, the Wang-Henke method produced accurate esti-
mates of the separation profiles (validated by the split fractions obtained in the reconciliation data exercise) and,
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Figure 2: Normalized profiles of the liquid (a) and vapor (b) phase concentrations of one of the distillation columns.
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Figure 3: (a) Liquid (. . . .) and vapor ( __ ) phase flowrates and (b) temperature profile for one the distillation
columns.

in 4 units, was able to converge reasonably fast to the solution. On other hand, for 2 of the 6 distillation columns
involved in this process, the Wang-Henke method presented severe difficulties in handling wide boiling mixtures
— the method failed, because negative values of compositions and flowrates were calculated at a given iteration,
causing the “blow up” of terms in some of the equations. This was a characteristic reported by Friday and Smith
(1964), who suggested some empirical modifications to the base algorithm, whenever in presence of such cases.

To improve the convergence properties of Wang-Henke method’s for wide boiling mixtures (∆TB > 50◦C), a
strategy based on dumping of the loop variables was implemented. This consisted, essentially, in constraining the
admissible changes on the values ofVj andTj , between two consecutive iterations, by a factor of, e.g., 10% of the
full correction. It has also been observed that, in some cases, perturbing the initial values of theKij coefficients
in the first iteration was also beneficial. The solutions obtained by the Wang-Henke method were compared with
the solution of these same models in the commercial simulator ASPEN PLUS 11.1. Figures 2 and 3 show these
profiles for one of the distillation columns simulated.

The next step consisted in trying to converge, simultaneously, all of the separation units, taking in consideration the
connections between them. The presence of several recycle streams increased the difficulty of this task. According
to Barton (2000), a sequential-modular approach corresponds usually to the best choice. For convergence of
outer loops (resulted from the tearing of recycle streams), Newton, Quasi-Newton, successive substitutions and
Weigstein methods, among others, are valid options. The solution adopted is represented schematically in Figure 4.
It implements a successive substitutions strategy, performed in 2 steps. During the first step, the rigorous models
concerning each unit are solved by the most appropriated scheme. This requires the estimation of all of the
unknown input streams for each unit, in the first iteration. For distillation columns the Wang-Henke method is
used, as discussed, and for the liquid-liquid separators, a classic Newton method is able to converge easily.
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Figure 4: Schematic representation of the strategy for overall simulation of the purification stage.

The second step involves the solution of a linear system of equations corresponding to the partial mass balances
around each unit, using the split fractions obtained in the first step. The solution of these equations provides updated
values for the flowrates and compositions of the input streams, and a new loop takes place until the differences
between the updated values of two consecutive iterations satisfy a pre-specified tolerance. The great advantage of
this strategy consists in the easy implementation and the reduced calculation effort at each iteration. Although no
guarantees can be made in general, the speed of convergence observed with the present case was very reasonable:
only 5–6 iterations were needed to achieve the solution of this flowsheet.

When the flowsheet was solved, the results obtained for the composition and flowrates of every stream were
compared with the results obtained during the data reconciliation exercise. If some deviations were observed, the
specifications of the problem were adjusted, and the flowsheet solved again until the simulation of the purification
stage matched the industrial reality.

6 Purification phase — optimization studies

Once the performance of the purification phase was considered to be conveniently reproduced in the simulation,
the next step consisted in finding optimization opportunities. Distillation columns are in general responsible by
the consumption of a great share of the energy resources available on most processes. For equipment with fixed
physical specifications it is possible to adapt operational features like the localization of the feed plate and reflux
ratio in order to order to decrease the consumption of utilities for a given separation. For this purpose, the strategy
shown in Figure 5 was developed.

The sequential-modular strategy is not suitable to solve optimization problems, and therefore an equation-oriented
(EO) strategy had to be employed for this purpose. However, trying to solve directly theMESH (Mass-Equilibrium-
Summation-Heat) for a distillation column is not a easy task. The simultaneous solution of this highly nonlinear
set of equations requires extremely good initial values, bounds and scaling factors, to avoid the failure of exist-
ing implementations of optimization algorithms (e.g., SQP or GRG). For this reason, extreme care was taken in
building a suitable initialization phase.

Another key to the successful application of an optimization algorithm to this problem is the introduction of ad-
ditional slack variables in the MESH equations. These usually allow a faster solution start, avoiding problems
caused by infeasibilities during the early solution stages. After the first feasible point is determined, maintaining
bounds for the maximum magnitude of these variables corresponds to the definition of a trust region, that con-
straints the maximum amount of deviation from a feasible physical configuration at any point during the iteration.
This procedure is also generally beneficial to converge rate of these problems, given its highly nonlinear nature.

With the capability of solving a column model with fixedNT, NF andRR, by a EO strategy, the next step was
to define how to optimize the consumption of utilities in a given column. This corresponds to the minimization
of reflux ratio (RR), subject to additional operational constraints, such as the the degree of separation of some
components, internal flows, etc. Typical results for the process considered indicate that savings of 10 000 euro/year
per column are possible, through the solution of these optimization problems.
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Figure 5: Schematic representation of the strategy for individual optimization of the distillation columns.

The GAMS environment was used to solve these optimization problems. Among the solvers tested,CONOPT3
presented usually the best performance, converging fast and without difficulties to the optimal solution.MINOS ex-
hibited some difficulties if few iterations of the Wang-Henke method were performed in the pre-processing phase.
This means that the initial point required by this solver needs to be better than the one required byCONOPT3. The
weakest performance belonged toSNOPT, a SQP implementation, where much slower convergence was always
observed. However, the systematic interpretation of these results is still currently being considered.

7 Future work

An additional aspect of optimization of these separation systems, not considered in the present work, is the optimal
design problem. Here, more degrees of freedom are available, and different strategies to deal with discrete variables
(such as the total number of equilibrium stages, or the location of the feed streams) are available. This problem has
been addressed over the past decade as a mixed integer nonlinear programming (MINLP) problem (Barttfeld et al.,
2003). But tools for solving MINLPs are not widespread, especially in connection with detailed simulation models.
The other alternative, presently available, is the introduction of a differentiable distribution function (DDF) (Lang
and Biegler, 2002). In this formulation, all streams around a column, except the top and bottom products, are
directed to all of the column trays using the DDF. However, due to their nature, these functions can introduce
numerical ill-condition in the problem to be solved. Developments of this technique are needed to allow a wider
applicability of optimization to solution problems of this type.
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MICRO–SCALE ANALYSIS OF CRYSTAL DISSOLUTION AND PRECIPITATION

IN POROUS MEDIA

I. S. POP AND C. J. VAN DUIJN

Abstract. A micro–scale model for precipitation and dissolution processes in porous media is discussed.
Weak solutions are shown to exist in case of general domains. Next we consider the case of thin strips,
where we look for dissolution and precipitation fronts. These are located at a free boundary, which is
continuous and monotone. Letting the ratio between the thickness and the length of the strip go to 0 we
end up with the upscaled transport–reaction model proposed in [9]. This paper summarizes the results
obtained in [3].

1. Introduction

Mathematical models for reactive flow in porous media are of great importance for understanding soil
chemistry processes. In general such models are coupled systems of partial and ordinary differential
equations, involving different kinds of nonlinearities describing reaction, adsorption, precipitation or
dissolution rates.

A significant amount of mathematical literature is devoted to the macroscopic (core–scale) models. In
this sense we mention [1], [2], [4], [5], or [10] for questions concerning existence and uniqueness of a
solution and of travelling waves.

Upscaled models can be derived form microscopic ones by homogenization techniques. An extended
overview in this sense can be found in [6]. To make the upscaling procedure mathematically rigorous,
not only the upscaled model, but also the microscopic one has to be analyzed. In this respect, rigorous
homogenization results are obtained in [7] (for linear reaction rates and isotherms, see also [11]) and
extended to certain types of nonlinearities in [8].

In this paper we consider the microscopic (pore) scale situation, which is strongly related to the upscaled
model introduced in [9]. Two ions are dissolved into a fluid occupying the void space of a porous medium.
The ions can precipitate in form of a crystalline solid, which is attached to surface of the porous matrix
(the grains). The reversed process is also possible. Here we make a simplifying assumption: the flow
geometry, as well as the fluid density and viscosity are not affected by the chemical processes.

Modelling aspects are detailed in [3]. Here we restrict ourselves in studying the resulting dimensionless
problem. Let Ω ⊂ R

d (d > 1) be a bounded, simply connected domain in R
d (the pore space). Its

boundary ∂Ω is assumed Lipschitz and consisting of three disjoint parts: an internal (grain) boundary
ΓG and an external boundary where Dirichlet (ΓD) or Neumann (ΓN ) conditions are prescribed. Both
ΓG and ΓD ∪ ΓN have positive measure. Further, ~ν denotes the outer normal to ∂Ω and T > 0 is a
maximal value of time. With XT := (0, T ) × X , the model under consideration reads:
Ion transport (in the pore space):

(1.1)























∂tu + ∇ · (~qu − D∇u) = 0, in ΩT ,
−D~ν · ∇u = εn∂tv, on ΓT

G,
u = uD, on ΓT

D,
~ν · ∇u = 0, on ΓT

N ,
u = uI , in Ω, for t = 0,
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Figure 1. Flow domain with grains.

Precipitation/dissolution (on the grains):

(1.2)







∂tv = k(r(u, c) − w), on ΓT
G,

w ∈ H(v), on ΓT
G,

v = vI , on ΓG, for t = 0.

Here ~q denotes the fluid velocity, which is obtained by solving a Stokes system in the pore space. We
assume no flow at the grain surface. c stands for the electric charge inside the fluid, which, assuming both
solutes have the same diffusion coefficient D, is a conserved quantity. It can be seen as the solution of a
convection–diffusion problem (like (1.11)), with no–flow conditions on grains. By u and v we denote the
cation concentration (relative to the water volume), respectively the precipitate concentration (relative
to the grain surface). The third unknown w is introduced for describing a multi-valued nature of the
dissolution rate in (1.22), where H stands for the Heaviside graph.

The model studied in [3] is completed by equations for the flow and the charge. Here we restrict ourselves
to the description of the chemical processes, which is the challenging part of the model. Specifically, we
investigate (1.1)–(1.2), a parabolic advection–diffusion problem that is coupled to an ordinary differential
equation on a lower dimensional manifold (the grain surface). Moreover, the dissolution rate in (1.2 2)
is multi-valued. Following [9], the anion concentration is eliminated from the model, since it can be
obtained straightforwardly if the cation concentration and the total charge are known.

For the precipitation rate r(u, c) in (1.2) we assume:

(Ar) (i) r : R
2 → [0,∞), r ≥ 0 and locally Lipschitz in R

2;

(ii) r(u, c) = 0 for all u ≤ 0;

(iii) for each c ∈ R there exists a unique u∗ = u∗(c) ≥ 0, with u∗(c) = 0 for c ≤ 0 and u∗ is
strictly increasing for c ≥ 0, such that

r(u, c) =

{

0, for u ≤ u∗,
strictly increasing for u > u∗ with r(∞, c) = ∞;

(iv) for each u > 0, r(u, c) strictly decreases with respect to c whenever r > 0.

With [x]+ denoting the positive cut of x, a typical example is

(1.3) r(u, c) = K ([u]+)
m

(

[

mu − c

n

]

+

)n

,

for some K > 0, where m and n are natural numbers (the valences of the two ions). Thus u∗(c) = [c]+
m

(see also Figure 2).

Boundary and initial data are assumed essentially bounded and non-negative. Boundary data are traces
of H1–functions.
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Figure 2. Typical examples for u∗ (left) and r (right).

The parameter ε in (1.12) expresses the ratio of two length scales: the characteristic pore scale length
and the problem related scale. When upscaling to a macroscopic model one takes ε ↘ 0. However, this
limit case is considered here only for thin strips.

The results given below are obtained in two cases. For general general domains we prove existence of a
weak solution. If the flow domain is a two–dimensional strip, a dissolution front occurs after a waiting
time, and its location is a free boundary. Letting ε - the ratio between the width and the length of the
strip - go to 0, we end up with the upscaled model proposed in [9] (see also [2]), for which we also obtain
uniqueness.

2. General domains

Below we use function spaces and notions that are commonly encountered in books for functional analysis
and partial differential equations (see, e. g., [12]). The main difficulty in the analysis is due to the multi-
valued function describing the precipitation and dissolution. With

U := {u ∈ uD + L2(0, T ; H1
0,ΓD

(Ω))/∂tu ∈ L2(0, T ; H−1(Ω))},

V := {v ∈ H1(0, T ; L2(ΓG))},

we look for weak solutions of (1.1)–(1.2), which are defined as below.

Definition 2.1. Find (u, v, w) ∈ U × V × L∞(ΓT
G) such that (u(0), v(0)) = (uI , vI), and

(2.1) (∂tu, ϕ)ΩT + D(∇u,∇ϕ)ΩT − (~qu,∇ϕ)ΩT = −εn(∂tv, ϕ)ΓT

G

,

(2.2)
(∂tv, θ)ΓT

G

= k(r(u, c) − w, θ)ΓT

G

,

w ∈ H(v),

hold for all (ϕ, θ) ∈ L2(0, T ; H1
0,ΓD

(Ω)) × L2(ΓT
G).

By definition w is between 0 and 1. Here u and v stand for concentrations, so we expect similar properties.

Lemma 2.1. If (u, v, w) is a weak solution of (1.1)–(1.2), then u, v and w are positive and bounded.
Specifically, two constants Mu and Mv depending on the boundary and initial data can be found such that

(2.3) 0 ≤ u ≤ Mu, and 0 ≤ v ≤ Mv,

almost everywhere. Here Mv may also depend on T and on the precipitation rate r.

Remark 2.1. Assuming ΓD of 0–measure we obtain the following mass balance
∫

Ω

u(t, x)dx + εn

∫

ΓG

v(t, s)ds =

∫

Ω

uI(x)dx + εn

∫

ΓG

vI(s)ds.
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2.1. Existence of a solution. Above we have stated the definition of a weak solution, and seen that
such solutions are essentially bounded. Nevertheless, it is not clear yet that such solutions exist. To
prove this we use a regularization argument.

With δ > 0 being an arbitrary small parameter, we consider the following regularization of the Heaviside
graph:

(2.4) Hδ(v) :=







0, if v < 0,
v/δ, if v ∈ (0, δ),
1, if v > δ.

Now a regular perturbation of (2.1)–(2.2) can be defined.

Definition 2.2. Find (u, v) ∈ U × V such that (u(0), v(0)) = (uI , vI) and the following hold

(2.5) (∂tu, ϕ)ΩT + D(∇u,∇ϕ)ΩT − (~qu,∇ϕ)ΩT = −εn(∂tv, ϕ)ΓT

G

,

(2.6) (∂tv, θ)ΓT

G

= k(r(u, c) − Hδ(v), θ)ΓT

G

,

for all (ϕ, θ) ∈ L2(0, T ; H1
0,ΓD

(Ω)) × L2(ΓT
G).

To show existence and uniqueness of a solution for the problem above we proceed by iteration. To this
end we consider the following closed and convex sets

(2.7)
KU := {u ∈ uD + L2(0, T ; H1

0,ΓD
(Ω))/ 0 ≤ u ≤ Mu a. e. in ΩT },

KV := {v ∈ V/ 0 ≤ v ≤ Mv a. e. in ΓT
G}.

Given an u ∈ KU , equation (2.6) has a Lipschitz–continuous right hand side. For the initial data vI , it
has a unique solution v ∈ V , which is also bounded by 0 and Mv. Analogous, given v ∈ KV , equation
(2.5) with initial data uI has a unique solution u ∈ U , which is uniformly bounded by 0 and Mu.

Thus for any u ∈ KU we have constructed a unique element T u ∈ KU . In other words, we have defined
an operator

(2.8) T : KU → KU .

A solution of (2.5)–(2.6) is a fixed point of T . If a fixed point exists and it also belongs to H 1(0, T ; H−1(Ω)),
it also solves (2.5)–(2.6).

In proving existence of such a fixed point we make use of a–priori estimates that are uniform w. r. t. δ.
Once these are obtained we can show that, for small times, T is a contraction in KU with the usual norm
associated to L2(0, T ; H1

0,ΓD
(Ω)). This upper time limit does not depend on the data, so the fixed point

can be extended for all t ∈ (0, T ]. This is summarized by

Theorem 2.2. For any δ > 0, the regularized problem stated in Definition 2.2 has a solution (uδ, vδ),
which is a fixed point of T . A constant C > 0 not depending on δ exists s. t. for any t ∈ (0, T ] we have

(2.9)

‖uδ(t)‖
2
Ω + ‖∇uδ‖

2
ΩT + ‖∂tuδ‖

2
L2(0,T ;H−1(Ω)) ≤ C,

‖vδ(t)‖
2
ΓG

+ ‖∂tvδ‖
2
ΓT

G

≤ C/ε.

Remark 2.2. In a porous medium, ΓG denotes the total surface of the porous skeleton, while meas(Ω) the
total void volume. Since we have interpreted ε as the ratio between the pore scale and the characteristic
length, a natural assumption is that

εmeas(ΓG) ≈ meas(Ω).

When upscaling to a macroscopic model, the total internal surface goes to infinity as ε ↘ 0. The
assumption above allows us to control this growth and is usually made in homogenization of periodic
structures (see, e. g., [6]). In this setting, the a–priori estimates are independent not only on δ but also
on ε, offering us a useful result for the homogenization procedure.
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Figure 3. Particular domain: strip.

Theorem 2.2 provides a sequence {(uδ, vδ, wδ := Hδ(vδ))}δ>0 ⊂ U × V×L∞(ΓT
G), and the corresponding

a-priori estimates. Then, by compactness arguments, a solution of the original problem exists.

Theorem 2.3. The problem stated in Definition 2.1 has a solution (u, v, w). This solution is uniformly
bounded (as shown in (2.3)) and satisfies the a–priori estimates in (2.9).

3. Flow in a strip

In this section we investigate the formation of dissolution and precipitation fronts. These fronts are
located at a free boundary separating regions of ΓG where no crystals are present (v = 0) from those
including some precipitate (v > 0). To this aim we restrict ourselves to a particular geometry in two
spatial dimensions, Ω = (0, L) × (0, H/2), with L > 0 possibly much larger than H > 0. We assume
symmetry at z = 0, and take ΓG = (0, L) × {H/2}, ΓD = {{0} × (0, H/2)} ∪ {{L} × (0, H/2)}, and
ΓN = (0, L) × {0} (see also Figure 3). In agreement with previous interpretations we have ε = H/L.

In this case the flow has a parabolic profile and can be written explicitly,

(3.1) ~q(x, z) = (q(z), 0), with q(z) = Cq(H
2/4− z2),

where Cq is a given maximal velocity. Following [9] and [2], we assume here a homogeneous total charge
c. This situation occurs if the charge is constant (c0 ∈ R) both initially and at ΓD, and this value is
compatible with the boundary data for the solute. Then the charge remains constant everywhere. By
(Ar), a unique pair of positive reals (u∗, u

∗) exists such that

(3.2) r(u∗, c0) = 0 and r(u∗, c0) = 1.

Since now the charge is assumed constant, in this section we skip the second argument of r.

We first look for dissolution fronts on ΓG. In doing so we assume that initially crystals are present
everywhere on ΓG, and the system is in equilibrium. This situation is perturbed by injecting fluid
containing less solute, but having the same charge c0. Specifically we take

(3.3) vI(x) ≡ v0 > 0, uI(x, z) = uD(t, L, z) = u∗, uD(t, 0, z) = u∗,

for all x ∈ (0, L), z ∈ (0, H/2), and t > 0.

Under the assumptions above some additional properties of u and v can be given.

Lemma 3.1. If initial and boundary data are taken as mentioned in (3.3), then both u and v are
decreasing in time and increasing in the x–direction. Moreover, v ∈ C(ΓT

G), while u(t) is continuous up
to the boundary of Ω for almost every t > 0.

As follows from above, a dissolution front moves in the flow direction and separates regions on Γ G where
all the crystals have been dissolved from those where precipitate is still present. Denoting by s(t) the
position of the dissolution front at time t > 0, we expect that v(t, x) = 0 for all x ≤ s(t), while v(t, x) > 0
for all x > s(t). This situation is displayed intuitively in Figure 4, showing the evolution in time for both
the precipitate and the free boundary.

The free boundary is defined rigorously in
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tt*
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v0 v(t*)
x
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Figure 4. Evolution of the precipitate v and of the free boundary s.

Definition 3.1. For any t we define s : [0, T ] → [0, L] as

(3.4) s(t) = sup
{

x ∈ [0, L]
/∫ x

0 v(t, y)dy = 0
}

.

Remark 3.1. Due to the regularity of v, s is well defined for all t. Moreover, because v is positive, we get
v(t, x) = 0 for a. e. x < s(t).

Viewing s as the position of the dissolution front is justified by the following theorem, which also shows
that a waiting time t∗ has to pass until the dissolution front starts to move.

Theorem 3.2. For the free boundary s we have

(i) v(t, x) = 0, w(t, x) = r(u(t, x, H/2), c0) for a. e. x < s(t);
(ii) v(t, x) > 0, w(t, x) = 1 for a. e. x > s(t);

(iii) s(t) = 0 for all t < t∗, where

t∗ =
v0

k(r(u∗) − r(u∗))
;

(iv) s is continuous and strictly increasing for t > t∗.

Remark 3.2. Theorem 3.2 holds for the initial and boundary data given in (3.3). The results can be
extended to more general data, assuming these are compatible and satisfy

(3.5) vI(x) ≥ 0, uI(x, z) ≤ u∗, u∗ ≤ uD(t, 0, z) < uD(t, L, z) ≤ u∗,

for all x ∈ (0, L), z ∈ (0, H/2), and t > 0. In such situations precipitation cannot occur even locally, or
for a short time, since v is decreasing in time. In particular, assuming that vI is “hat–shaped”, while
u fulfills (3.3), then two dissolution fronts will appear and move toward each other until crystals are
completely dissolved. The support of v is shrinking in time.

Remark 3.3. Similar results can be obtained for precipitation fronts. Specifically, if the initial and
boundary data are such that

vI(x) = 0, uI(x, z) = uD(t, L, z) = u = u∗, uD(t, 0, z) = ū > u∗,

then a precipitation front will move in the flow direction. It separates regions on ΓG where precipitate is
present from those not containing crystals.

3.1. Thin strips. Now we turn our attention to thin strips. The small parameter ε = H/L plays an
essential role, thus below all quantities depending on it are indexed. We maintain the setting above, and
study the limit as ε ↘ 0.

As before, the flow takes place only in the x–direction, while the velocity qε is z–dependent,

(3.6) ~qε(x, z) = (qε(z), 0), with qε(z) = Cq

(

1 −
z2

ε2

)

,
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Figure 5. Cation at t = 3.

where Cq = 3
2Q and Q = 1

ε

∫ ε

0
qε(z)dz is the averaged velocity.

All the properties shown in Sections 2 and 3 are valid here too. For any ε > 0, the problem posed
in Definition 2.1 (for the domain Ωε, and the corresponding boundaries) has a solution (uε, vε, wε) ∈
U × V × L∞(ΓT

G,ε). Further, uε and vε are uniformly bounded, continuous, decreasing in time and

increasing in x, and we can define a continuous and strictly increasing free boundary sε as in (3.4). With

(3.7) U ε(t, x) :=
1

ε

∫ ε

0

uε(t, x, ξ) dξ, V ε(t, x) := vε(t, x), W ε(t, x) := wε(t, x),

and letting ε ↘ 0, we expect that (U ε, V ε, W ε) approaches the solution of the one-dimensional upscaled
model proposed in [9] and [2]:

(3.8)











∂t (U + nV ) + Q∂xU = D∂2
x2U,

∂tV = k(r(U) − W ),

W ∈ H(V ),

in QT = (0, T )× (0, L), satisfying

(3.9)

{

U(t, 0) = u∗, U(t, L) = u∗, t ∈ (0, T ],

U(0, x) = u∗, V (0, x) = v0(x), x ∈ (0, L).

As before, ε–independent a–priori estimates for (U ε, V ε, W ε) and compactness arguments give

Theorem 3.3. The upscaled model has a unique solution (U, V, W ), which is the limit of {(Uε, V ε, W ε)}ε>0.

Remark 3.4. The uniqueness result is a consequence of Gronwall’s lemma. This also implies weak con-
vergence for the entire sequence {(U ε, V ε, W ε)}ε>0, and not only for a subsequence.

Remark 3.5. For each ε > 0 a free boundary sε exists in the sense of Definition 3.1. Similarly, a free
boundary S can be defined for the upscaled model, featuring the same properties as sε. As ε ↘ 0 we
also obtain that sε(t) → S(t) for all t.

4. Numerical example

Here we present some numerical results obtained for the particular geometry considered in Section 3. We
take Ωε = (0, 1) × (0, ε), where ε = 1/50. The initial and external boundary conditions are as given as
in (3.3), with v0 = 1.0, u∗ = 0.1 and u∗ = 1.0. We also take D = k = 1.0, while q is given in (3.6) with
Q = 9.0. The precipitation rate r (in 1.3) is obtained for m = n = 1, K = 10/9 and c 0 = 0.1, namely
r(u, c0) = K[u]+[u − c0]+.

Computations are done by finite differences with explicit time stepping. The results are obtained for a
constant time step τ = 0.0001 and a uniform grid of mesh–size h = 0.05.

Figure 5 shows the cation at t = 3. Here the strip width is enlarged 5 times, and the picture is flipped
over the symmetry axis. Flow takes place from left to right.
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Figure 6. Evolution of the free boundary.

Numerical results for the precipitate at different moments are presented in the left picture of Figure 6.
The horizontal axis stands for the grain boundary, and the dissolution front moves from left to right.
The picture on the right displays the evolution of the free boundary. Time is represented on the vertical
axis, while the free boundary location can be measured on the horizontal axis. In our computation, up
to t̃∗ = 1.1424 crystal is present everywhere on the grain. According to Theorem 3.2, the waiting time
here should be t∗ = 1/0.9 = 1.11 . . . . After a short time the dissolution front moves to the right with
a constant velocity, which we estimate numerically to ã = 4.202. This is a reasonable approximation of
the travelling wave velocity determined in Proposition 1.2 of [2], a = Q u∗

−u∗

(u∗
−u∗)+v0

= 4.263 . . . . Refining

both the time step and the spatial mesh gives a better approximations for the waiting time and the front
speed, therefore we conclude that numerical results are in good agreement with the theoretical ones.
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Amsterdam) and Dr. G. Prokert (TU Eindhoven) for useful discussions and suggestions.

References

[1] C. J. van Duijn and P. Knabner, Solute transport in porous media with equilibrium and nonequilibrium multiple-site

adsorption: travelling waves, J. Reine Angew. Math. 415 (1991), pp. 1–49.
[2] C. J. van Duijn and P. Knabner, Travelling wave behaviour of crystal dissolution in porous media flow, European

J. Appl. Math., 8 (1997), pp. 49–72.
[3] C. J. van Duijn and I. S. Pop, Crystal dissolution and precipitation in porous media: pore scale analysis, RANA

Preprint (2003), Eindhoven University of Technology.
[4] A. Friedman and P. Knabner, A transport model with micro- and macro- structure, J. Differential Equations, 98

(1992), pp. 328–354.
[5] D. Hilhorst and M. A. Peletier, Convergence to travelling waves in a reaction-diffusion system arising in contam-

inant transport, J. Differential Equations 163 (2000), pp. 89–112.
[6] U. Hornung, Homogenization and Porous Media, Interdisciplinary Applied Mathematics, Vol. 6, Springer Verlag,

Berlin, 1997.
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SEQUENTIAL METHOD FOR KINETIC MODELS DISCRIMINATION

Paula Portugal, Hélio Jorge, Rosa M. Quinta-Ferreira
Chemical Engineering Department, Pólo II, 3030-290 Coimbra, PORTUGAL

On the Chemical Reaction Engineering area is mandatory to access to valuable kinetic
expressions for modelling and simulation of reactional systems. Bos et al.[1] published a survey
indicating the need for improved methods to determine reaction kinetics. Based on the work presented
by Donati et al. [2,3,4] that uses a sequential method for kinetic models discrimination, it was made an
effort to develop a toolkit for optimal kinetic model development. The economic advantage of the
present work arises from the fact that it would result in time saving and effectiveness in
experimentation, parameters estimation, and searching for the optimum model from the usually wide
range of theoretical models proposed for a reactional system.

Since kinetic models are usually non-linear in parameters, we used commercial routines for
non-linear regression: NL2SOL and GREG. Statistical criteria were also used to reject models that fit
worse experimental results such as F Hypothesis Test and Model Probability Estimation, with Bayes
Theorem. Commonly just one model must be selected (the optimum one) so, discrimination process is
iterative and after a statistical discrimination step it continues by designing a new set of experiments
providing data for a new discrimination cycle. The used Maximum Divergence Criteria [5][6], maximises
the mean difference between different model previsions.

The developed computational code (in MATHLAB) was tested for two examples referred by
Donati et al.[4], where a simulator model was pre-defined and algorithm robustness was measured by
the convergence for the defined model, which happened for all studied cases. In despite of
encouraging results, additional efforts have to be made in order to meet our goal, namely seek for best
non-linear fit codes, and other examples (even more complex) for testing the developed code.

Keywords: Kinetic models, sequential methods, Parameters estimation, Design of
Experiments, Models Discrimination

1. Sequential Methods
Engineering problems involve frequently
process models construction. Since models are
built by considering the contribution of
different competitive physique-chemical
phenomena, they can be presented
theoretically with many different
configurations. The problem is, then, centred
in finding out the best model. It must be, by
one hand, the one which fits closely the
experimental results and, by the other hand, the
one which contains physically acceptable
values for parameters. Such as pre-exponential
factor and activation energy in kinetical
models. The quality of the accepted (chosen)
kinetic model influences greatly the global
process model behaviour, that’s why Bos et
al.[1] published a survey indicating the need for
improved methods to determine reaction

kinetics in industrial processes. For this
purpose, statistical discrimination methods
have already been used, namely, by Donati et
al. [2,3,4].. These are usually called Sequential
Methods, because they involve three basic
sequential steps:
1. Parameters Estimation for all theoretical

candidate models, using optimisation
methods for available experimental data
fit. Usually the Method of Least Squares.

2. Models quality comparative statistical
analysis (with experimental data), using
statistical known parameters and tests.
This step ends by worse models rejection.

3. Design of experiments, providing better
experimental data for a new calculation
cycle.

 After step 3, starts a new calculation cycle in
step 1 (see figure 1).  The iterations continue
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till the convergence point, where just one
model is left. At the beginning of the
discrimination process, if there is available any
information that one group of models can be
better than the others, there is no need of
considering the last ones as candidates for the
sequential methods discrimination.

Figure 1 – Sequential Methods for Models
Discrimination

1.1  Parameters Estimation
The common method for parameters
estimation from experimental data fit is the
Method of Least Squares (MLS):

  ( )∑
=

β
−=

n

1i

2
ii ŷySmin (1)

with ( )β= ,Xfŷ ii i = 1, 2, ... n

f can be either linear or non-linear. In kinetic
models, f is usually non-linear, because it often
appears, for instance, exponential terms in
denominator (ex. Hougen- Watson Models).
The MLS gives good results when the error of
the measured value(yi), E, has a normal
distribution − ),0(N~E 2

Eσ . To assure this
error behaviour, the experimental conditions
must be well controlled and all the used
apparatus should be in perfect calibrated
conditions.
Sá[7]  e Gouveia [8] made a previous
comparative study of two different routines for
non-linear fit: GREG and NL2SOL. They
concluded that these routines are generally not
appropriated for the required purpose. GREG
does not produce well fitted results, and his
poorly results became even worse as the
number of estimated parameters rise (>4). On
the other side, despite better fitting results of

NL2SOL, it demands the consideration of
parameters constraints in the optimisation
problem formulation, such as, fixed partial
orders for kinetic Hougen-Watson models.
According to the authors this probably is due
to the huge different size between the partial
orders and the other parameters, such as, pre-
exponential factors and activation energy.
Since we used MATHLAB to construct our
computational code, the results for data fit here
presented were obtained with the non-linear
regression toolbox from MATHLAB, which
uses the Gauss-Newton Method for
optimisation of the MLS objective Function.

1.2  Statistical Analysis
The statistical parameters considered for
comparison between candidate models were
the Mean Relative Error, Er:
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where 0<R2<1, and it is the ratio between the
model previsions variability and the
experimental data variability. Models that have
R2 closer to 1 have better chances of being
considered good models. It is a general rule
that an acceptable model should not have a R2

value less than 0,99. It is important remember
that if a model is statistically considered as not
good, we should simply accept it as not good,
or eventually change it and test it again. For
the contrary, if it is statistically considered as a
good model, that does not prove that it is
correct, just that there is no statistical evidence,
with the available data,  that allow us to reject
it.
Two statistical criteria were used to
discriminate models:
- F Hypothesis Test (F Test of Variances)[9]

- Model Probability Estimation (Bayes
Theorem)[5,6]

1.2.1 F test

        Design of
       experiments

Models Discrimination

        Parameters
        estimation

        Statistical
         Analysis
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F test considers two basic hypothesis:
- H0 : The model fits well the experimental

results
- H1: The model does not fit well the

experimental results.
If ( ) α=≤ 0FFPr  the model is accepted,
where F is a statistical function with

pp nn,nF − distribution, calculated by:

(4)

and α is the significant level, usually it
assumes the values 0,10 , 0,05 or 0,01. F0 is the
cumulative distribution 

pp nn,n%,100)1(F −⋅α− . In

other words: if F≥F0, H0 is accepted, if not, H1

is accepted. Donati and Ferraris[2,3,4] used F
test, but they refer that some researchers use ψ
coefficients in order to get better confidence in
the method for linear models discrimination. In
this case the acceptance rule is 0m FF ψ≥ .
Donati and Ferraris suggest, also, an empirical
value of 4 for the ψ parameter, but for non-
linear fit the F test is less adjustable, so the
same authors suggest a value of 10 for these
cases.

1.2.2  Models Probability
The model probability is the probability of
being the best model among the other
candidates. This parameter is actualised from
one calculation cycle to another. It can be seen
as a model behaviour indicator as actualised
experimental data is provided from iteration to
iteration. If there is no information that can
make us think that one model is better than the
others, the initial model probability is the same
for all of them. Anyway it should be true that:

    ( ) 1MPr
m

1i
0,i =∑

=

                                    (5)

Where m is the number of candidate models.
In the nth iteration the actualised i model
probability is calculated by using the Bayes
Theorem with normalised values to respect the
constraint in eq. 5:
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where ( )ni yML  is the likelihood function,
which is:
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1.2  Design of Experiments
If the design of experiments is made to
improve confidence in parameters estimation
we say that the sequential method is
constructed for optimal estimation. In the
present work the goal is to find out a method
for optimal model discrimination, that is why
we do not use a traditional design of
experiments, but rather the Maximum
Divergence Criteria [5,6]. This method selects
the best experimental conditions that maximise
the difference between the mean previsions of
all candidate models. The new set of
experimental conditions, nX , is then given

by: ( )∑ ∑
−

= +=

−
1m

1i

m

1ij

2
ji

X
ŷŷmax

n

                        ( 8)

In the present work a direct search method was
used to find out the optimum. A discrete grid
of feasible operating conditions is predefined
and the maximum objective function
(Divergence) value is inspected by comparison
of a set of two values at a time. Note that we
could also made a continuous search by using
any optimisation method for multivariable
functions in a predefined range of
experimental feasible values.

2. Developed Code for Models
Discrimination

As it was already said the programming
language used was MATHLAB. Figure 2 is a
program flowsheet that shows the needed data,
and the information flow. The program was
tested without experimental real data. In fact
we choose one of the candidate models to
simulate experimental results for all the cycles.
These data was generated by random
extraction from a normal population with a
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pre-defined variance (called experimental
variance).
After some attempts to achieve convergence in
the data fit optimisation process, we noted that

it greatly depends on the initial estimated
values, so the program was improved to
overcome this problem by changing the initial
estimated value.

Figure 2 – Program Flowsheet for Models Discrimination.

3. Results
Two examples referred by Donati and
Ferraris[4]  were used to test the program, but
just one is here presented.
The four models candidates to describe the
kinetic behaviour of a  reaction A → B are:

Model 1: 

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( )[ ] 2

1
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Model 4:
( )[ ] 3

1
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Feasible
0

β values definitionFeasible iX  values
definition
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NON-LINEAR REGRESSION

Data for experimental simulation:

β , simulator model, σE

Experimental initial data:

iyiX , , X  boundaries

Models:

models, 
0

β , parameters boundaries
Data for statistical analysis:

( )0,Pr iM , α  e ψ

EXPERIMENT SIMULATION

DESIGN OF A NEW EXPERIMENT

Change  initial estimated values

k=kmax ?

 convergence not achieved

END
Y

N

DATA

k=k+1

MMOODDEELLSS
DDIISSCCRRIIMM IINNAA TTIIOO NNSTATISTICAL ANALYSIS

K=1
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Where y is the concentration of A, x1 the
reaction time, x2 the  temperature and βi1 e βi2

the model i parameters.
Nine tests were made to study different effects
in the calculated results.

Test 1 - Model 2 was chosen as simulator with
β11 = 50 and β12 = 3500 and σE = 0,05. The x1

and x2 boundaries are:
               0≤x1≤150       450≤ x1≤600
The F test significance level (α) was 0,05 and
the first starting four experiences were planed
by Donati and Ferraris[4] with a two level
factorial design of experiments (table 1):

Table 1 – Simulated experimental data
for the first test 1 iteration.

Exp x1 x2 Y

1 25,0 575,0 0,4854

2 25,0 475,0 0,7231

3 125,0 575,0 0,1059

4 125,0 475,0 0,3523

The initial model probabilities were assumed
to be the same for all of them, which means

( )0,Pr iM  = 1/m = 0,25.
Just 5 iterations were sufficient to conclude
about best model 2 behaviour, as can be seen
in table 2 and figure 3. In fact they can be

ordered from the best to the worse as 2→ 3→
1 → 4. The F test may be a wrong indicator for
models discrimination  because F0 decreases as
interations progress, which means that F test
becomes less demanding in model selection.
For instance, it is easier to reach 10xF0 in the
5th iteration than in the 1st one, which means
that as iterations progress all the models can
easier satisfy the F test and be considered good
models.

Tests 2 and 3– As in test 1, model 2 was
chosen as simulator with the same initial
conditions. The objective was to study the
influence of the program random error effect
generator in the model discrimination. The
obtained results indicated that this factor has a
neglected effect in the models selection. Just as
in test 1 the model 2 continues to be the best
one and model 3 is the closest one. It was also
observed that there was no significant effect in
the new planed experiments, which leads us to
conclude that the Maximum Divergence
Criteria is an applicable method for design of
experiments.

Tests 4 , 5 and 6 - Model 3 was chosen as
simulator for the same conditions of tests 1 to
3. The results presented in the figures 4 to 6
and tables 3 to 5, are apparently discordant

Table 2 – Results from the Test 1 (model 2 as simulator)
Model Model

1 2 3 4 1 2 3 4

R2 Er
1 0,983 0,996 0,982 0,958 23,9 11,2 31,5 46,2
2 0,975 0,996 0,977 0,944 30,6 9,7 33,3 50,7
3 0,000 0,997 0,983 0,957 100,0 8,3 29,8 46,7
4 0,980 0,998 0,989 0,973 29,7 7,6 25,6 41,1It

er
at

io
n 

n.

5 0,978 0,997 0,983 0,960 33,9 10,8 34,7 54,2
F F0 10× F0

1 59,3 273,4 53,1 22,9 19,00 190,0
2 58,8 416,0 63,5 25,5 9,55 95,5
3 0,0 700,6 116,0 44,9 6,94 69,4
4 122,4 1007,1 233,5 89,1 5,78 57,8It

er
at

io
n 

n.

5 130,8 954,7 178,5 71,9 5,14 51,4
 Underlined values – fitted values where F ≥ 10 F0
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 Figure 3 – Models probabilities for test 1.

between the statistical parameters (R2 Er(%)
Ftest) and the model probabilities, and also
discordant about the best model election. In
test 4, model 4 was elected the best one (figure
4), in test 5 it was chosen model 2 (figure 5)
and in test 6 the model 3 (figure 6). This may
be due to similar 2, 3 and 4 models behaviour
when model 3 is selected to be the simulator.

Table 3 – Results from the 3 last iterations for test 4
(model 3 as simulator).

I Model 1 Model 2 Model 3 Model 4

R2

8 0 0,9821 0,9950 0,9947
9 0 0,9832 0,9952 0,9952
10 0 0,9847 0,9953 0,9953

Er(%)
8 100 15,319 7,397 7,311

9 100 14,274 7,218 6,886

10 100 13,225 8,072 6,782

F
8 0 246,9 893,6 845,0

9 0 291,8 1026,1 1028,8

10 0 354,7 1159,5 1154,3

Table 4 – Results from the 3 last iterations for test 5
(model 3 as simulator).

i Model 1 Model 2 Model 3 Model 4

R2

8 0 0,9920 0,9934 0,9890
9 0 0,9927 0,9930 0,9879
10 0 0,9935 0,9937 0,9888

Er(%)
8 100 12,872 13,806 17,047

9 100 12,260 13,365 17,059
10 100 11,408 12,550 16,365

F
8 0 557,6 677,9 406,1

9 0 679,1 708,1 409,5

10 0 841,4 862,5 483,6

Table 5 – Results from the 3 last iterations for test 6
(model 3 as simulator).

Figure 4 – Models probabilities for test 4

Figure 5 – Models probabilities for test 5
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i Model 1 Model 2 Model 3 Model 4

R2

8 0 0,9882 0,9976 0,9956
9 0 0,9881 0,9977 0,9959
10 0 0,9887 0,9977 0,9962

Er(%)
8 100 14,018 6,340 7,165

9 100 13,174 6,236 6,674

10 100 12,285 6,138 6,272

F
8 0 375,5 1863,9 1007,7

9 0 416,1 2127,0 1220,2

10 0 482,3 2374,5 1448,0

Alternated elections between these 3 models
probably occur  because the simulated error
variance is, in this case (similar models
behaviour), large enough that, with some
simulated experiments the model 2 slightly
“benefits”, and with other simulated
experiments the model 4 or 3 slightly
“benefits”. The previous presented explanation
is even more plausible as we observe the
results from tests 7, 8 and 9, where
experimental error variance was reduced.

Tests 7 , 8 and 9 – As for tests 4 to 6, model 3
was chosen as simulator, but the variance of

simulated experimental errors was changed to
half of his value (σE = 0,025). Figure 7 and the
correspondent table 6 are the results of test 9,
here presented as an example from the set 7 to
9 tests, because for the others tests we obtained
similar results. The model 3 is in this case
clearly better than the others comparatively to
the simulated cases (test 4 to 6) where the
variance was 0,05.  It proves that the
experimental error variance has a determinant
effect in models selection.

Table 6 – Results from the 3 last iterations for test 9
(model 3 as simulator).

i Model 1 Model 2 Model 3 Model 4

R2

6 0 0,9816 0,9968 0,9961
7 0 0,9832 0,9972 0,9964
8 0 0,9851 0,9975 0,9967

Er(%)
6 100 17,831 7,574 6,618
7 100 16,380 6,861 6,237
8 100 14,972 6,310 5,912

F
6 0 186,72 1083,96 884,35
7 0 234,22 1420,14 1107,92
8 0 297,07 1802,13 1344,44

Figure 6 – Models probabilities for test 6

Figure 6 – Models probabilities for test 9
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4.Conclusions
The present work shows that it is possible to
construct a sequential method for kinetic
models discrimination. The starting steps for
the toolkit development are here presented.
Improvements pass for search for better non-
linear fit routines. It is important to keep in
mind that may be necessary a set of different
fit routines to satisfy particular kinetic models
demands. As it was said before, a statistically
acceptable model does not make it good for
process simulation, because it can contain
physically impossible parameters values. So it
is important to introduce other discriminating
criteria, or optimisation problem constraints, or
even more sophisticated design of experiments
in order to assure that the chosen model is
really the right acceptable one to incorporate
the global reactor  model.  As final statement it
should be remembered that it was here proven
that experimental errors (even simulated) play
an important role in the discrimination process.
So it is important, as expected, that researchers
provide validated experimental data for
optimal model discrimination.

Nomenclature:

X Array of independent variables of a
model

( )ni yML  Likelihood function of model i after the
yn observation

ε Residual value of a model estimated y
value

σ2 Variance

Er Mean relative error

F F function = Variances ratio

J Jacobian matrix with dimension (n-1)×np
= model differential equations  in order
to parameters in the n-1 experiments

jn Jacobian matrix with dimension 1×np in

the point nX
m Number of candidate models to be

discriminated
MLS Least Squares Method

n Number of experiments (system
observations)

np Number of model parameters

Pr(Mi) Model i probability

R2 Determination Index

y Dependent variable of a  model

Greek
α Significant level of F statistical test

β Array of model parameters

σE
2 Experimental error variance

σi
2 Variance of the mean estimated values

by  model i

σε
2 Residual values variance

σm
2 Model fit variance

ψ Safety coefficient for non-linear
application of F test
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Abstract 
 
This work considers the solution of various fundamental models for simultaneous mass transfer and 
chemical reaction in heterogeneous fluid media. Several operational regimes are possible for these 
systems, depending on their relative Hatta numbers. When mass transfer phenomena assume a similar 
importance to chemical reaction, the predictions from these models can differ significantly. However, 
this type of regime corresponds to the conditions of specific industrial interest for some heterogeneous 
reactions. An accurate solution of the combined mass transfer and reaction models is therefore 
important to understand the behaviour of these processes. 
 
The nitration of liquid benzene with nitric acid, using sulphuric acid as a catalyst, is used to illustrate 
the application of these models. 
 
 
1. Introduction 
 
Fluid phase heterogeneous reactions play an important role in the chemical industry. In these systems 
the chemical compounds are located in distinct physical phases and mass transfer occurs between them 
by diffusion and/or convection, simultaneously with chemical reaction. A modelling approach often 
used reduces the complexity of these problems by identifying the rate determining steps and using the 
corresponding asymptotic solutions (Doraiswamy and Sharma, 1984). However, in some cases, the 
different phenomena that take place cannot be considered independently and an accurate description of 
the system behaviour requires more complex mathematical models and sophisticated numerical 
solution techniques. 
 
An example of complex interaction between reaction and mass transfer occurs in the nitration of liquid 
benzene with nitric acid, where sulphuric acid is used as a catalyst. The reaction takes place in the 
aqueous phase and involves the mass transfer of the organic compounds into and from the reacting 
phase. In the more interesting conditions for industrial operation, reaction and mass transfer assume 
similar importance. This leads to complex dependence of conversion and amount of secondary 
products formed on the input flow rates, ratio of organic/aqueous reactants, temperature and degree of 
mixing in the reactors. In this work a continuous stirred pilot plant reactor was used to conduct 
benzene nitrations under industrial operating conditions and the experimental data will be used to 
validate the mathematical models developed. 
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2. Modelling the benzene nitration process 
 
This liquid-liquid reaction involves an organic phase dispersed in an aqueous one. The organic 
reactant, benzene (B), is transferred into the aqueous phase where it reacts with the nitronium ion, 
formed from the nitric acid (N), in the presence of sulphuric acid (S) acting as catalyst (Hughes, et al., 
1950 and Olah, et al., 1989). The product, mononitrobenzene (MNB), is then transferred to the organic 
phase. The strength of the sulphuric acid used is extremely important to define the operating mode. 
This may range from a purely kinetic regime, limited by the reaction rate, to a fast reaction regime, 
controlled by the mass transfer between the two liquid phases (Cox and Strachan, 1972).  
 
The modelling procedure for the process involves the simultaneous mass transfer and chemical 
reaction steps which depend on important parameters related to the assumed mechanisms.  
 
2.1 – Mass transfer with chemical reaction 
 
Several studies involving gas-liquid and liquid-liquid reactions accompanied by chemical reactions 
have been undertaken and important contributions are reported in Danckwerts (1970), Doraiswamy 
and Sharma (1984) and Westertertp, et al. (1990). 
 
To quantify the reaction regime the Hatta number (Ha) or reaction-diffusion modulus is used. For a 
first or pseudo-first order reaction Ha can be calculated by (Westertertp, et al., 1990) 
 

Lk
kDHa = ,           (1) 

 
where k is the first or pseudo-first order reaction rate constant, D is the diffusion coefficient of the 
specie and kL is the mass transfer coefficient. When Ha is less than 0.3, the process is controlled by the 
reaction rate, corresponding to the kinetic regime. If Ha is greater than 2, the reaction is very fast, 
occurring predominantly near the liquid-liquid interface, and the diffusion resistances to mass transfer 
dominate the global process rate. In the intermediate regime both phenomena prevail and it is not 
possible to dissociate their influences. In order to characterise the regime in the reactor the Hatta 
number is one of the first parameters to be calculated. Parameters like rate constant and diffusion and 
mass transfer coefficients can be difficult to obtain, especially when the heterogeneous reactions are 
catalysed, as is the case of the aromatic nitrations. Therefore, there is a degree of uncertainty 
associated to the value of the Hatta number. The studies reported in literature consider well defined 
regimes: the slow, the fast or instantaneous, and avoid the intermediate regime since it is difficult to 
work in a region where mass transfer and chemical reaction compete (Zaldivar, et al., 1995 and 1996, 
Roizard and Wild, 2002). 
 
The diffusion coefficient of aromatic compounds in mixed acid can be obtained by equations 2 and 3 
according to Perkins and Geankoplis (1969) and Cox and Strachan (1972) and modified latter by 
Chapman and Strachan (1976), 
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where x and M are the mole fraction and the molecular weight, respectively. 
 
The mass transfer coefficient in the continuous phase can be obtained by expression 4 suggested by 
Calderbank and Moo-Young (1961) and used in recent works on liquid dispersions (van-Woezik and 
Westerterp, 2000): 
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Here P is the power dissipated by the agitator 
 

53
imixtureo DnPP ρ=           (5) 

 
and Po is the power number, which for a two paddle impeller stirrer and the range of Reynolds number 
used in this work has the value of 0,63 (Azbel and Cheremisinoff, 1983). 
 
 
3. Experimental results 
 
Several experiments were conducted in the pilot plant described by Quadros and Baptista (2003), and 
their main operating conditions are summarised in Table 1. These experiments were conducted under 
realistic industrial operating conditions, with a Hatta number ranging from 0.4 to 1.5, which 
corresponds to the intermediate (competing) regime. The corresponding output concentrations were 
measured. These results are presented in Figure 1. 
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Figure 1 – MNB production as a function of the reaction temperature for runs 1, 3, 4, 5 and 6. 
 
It is desired to correlate these process data, in order to assess the relative importance of the steps 
involved, and to develop a mechanistic model that can be used to diagnose and optimise the 
corresponding industrial process. This requires the use of kinetic data for this particular reaction 
(Quadros et al., 2003), combined with a model to describe the mass transfer step. 
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Table 1 – Operation conditions used in the experimental runs. 
Run FB/FN TMixed acid TNitration Stirring speed ε Qaq/Qorg % HNO3

(ºC) (ºC) (rpm) (w/w)

1 0,96 99,7 94,6 - 121,7 398 - 895 0,132 - 0,169 8,43 5,64
2 0,98 89,5 85,7 - 113,2 395 - 911 0,130 - 0,169 8,38 5,61
3 1,07 102,6 96,2 - 135,3 394 - 1700 0,130 - 0,170 8,11 4,99
4 1,07 88,9 85,2 - 121,2 396 - 1342 0,142 - 0,172 8,09 5,10
5 1,09 81,3 99,1 - 114,3 858 - 1381 0,156 - 0,171 8,09 4,97
6 1,10 84,8 81,1 - 111,4 398 - 885 0,131 - 0,175 7,86 5,29
7 1,15 90,2 86,2 - 117,2 394 - 870 0,132 - 0,180 7,75 5,06  

 
 
4. Mechanistic models for mass transfer 
 
Among the mechanistic models available to model mass transfer, the film model is probably the 
simplest one. It considers a stagnant film near the interface between the two phases where the 
resistance to mass transfer is concentrated, and assumes a steady state transfer process. In contrast, the 
penetration models of Higbie and Danckwerts make use of non-stationary conditions to describe the 
diffusional transport process, requiring more complex solution methods. 
 
Each of these three approaches is considered to be a one parameter model, since it depends on a 
fundamental parameter. They originate the same asymptotic solutions when the reaction rate is fast 
and the rate determining step is the mass transfer mechanism or, at the other extreme, when mass 
transfer is fast and the reaction rate is slow. However, when intermediate conditions are used and 
neither mass transfer nor chemical reaction prevails, the solutions can differ significantly according to 
the model used (Westerterp et al., 1990). 
 
4.1 – The film model 
 
The usual approach to model heterogeneous reactions uses the film model to quantify the phenomena 
involved in these reactions. Despite being known as the simplest representation of a very complex 
phenomenon, recent papers report that its use can lead to reasonable predictions of the corresponding 
mass transfer rates (Zaldivar, et al., 1995 and 1996, Roizard and Wild, 2002 and D’Angelo, et al.¸ 
2003). This model considers the mass transfer process as stationary and divides the fluid where the 
reaction occurs into two different zones: a stagnant film of thickness δ (the fundamental parameter) 
and a well mixed bulk. Figure 2 represents a simplified scheme of the pilot reactor using the film 
model, and Figure 3 illustrates the expected concentration profiles across the two phases and interface.  
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Figure 2 – Schematic representation of the film 
model in the pilot reactor.  
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Figure 3– Representation of concentration profiles 
across the two phases and interface. 
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As the mass transfer is assumed to proceed via a stationary process the film model leads to a set of 
algebraic equations that describe the simultaneous mass transfer and reaction steps. 
 
Considering the basic assumptions of the film model, it is possible to express the mass transfer and the 
chemical reaction at stationary state: 
 

02

2

=− B
B

B kC
dx

CdD           (6) 

 
Boundary Conditions: CB = CB, film (0)  for  x = 0 

CB = CB, bulk  for  x = δ 
 
Additionally, the film thickness δ can be defined by the ratio between the diffusion and the mass 
transfer coefficients. The solution of this differential equation for a pseudo-first order reaction leads to 
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 for 0 ≤ x ≤ δ (7) 

 
The molar flux of benzene across the interface between the organic phase and the aqueous film can be 
obtained by differentiation of this equation at x = 0. Applying the same strategy for x = δ gives the 
molar flux from the stagnant film to the bulk phase. 
 
A mass balance to the organic phase can be written as: 
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The mass balance to the bulk of the aqueous phase results is in this case: 
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4.2 – The penetration model – Higbie and Danckwerts models 
 
The penetration models consider that the interface is covered by small stagnant fluid elements that 
remain there for a specific contact time and are replaced by new fluid elements when they move into 
the well-mixed bulk. In these models the mass transfer process is assumed as non stationary and, like 
the film model, they require the use of one fundamental parameter. In the Higbie model this is the 
specific contact time θ of the fluid element with the interface, which is assumed to be constant for all 
stagnant fluid elements. The Danckwerts model uses as main parameter the probability (s) of 
replacement of a element of fluid at the interface. At any time, each element, independently of its age, 
has this probability of being removed from the interface. Both models assume that the mass transfer 
into or from the stagnant elements takes place by diffusion (Westerterp, et al., 1990) and the combined 
reaction mass transfer model includes partial and ordinary differential equations, even for steady-state 
processes.  
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Figure 4 presents a schematic representation of the concentration profiles in the stagnant elements as a 
function of contact time with the interface. 
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Figure 4 – Concentration profiles in the stagnant element as function of contact time – penetration 
model. 

 
The Higbie penetration model assumes that after a contact time θ, the liquid element at the interface 
mixes with the bulk, producing a homogeneous aqueous phase concentration, before being replaced by 
a new fresh element from the bulk. The following equations describe the mass balances to the organic 
phase and to the interface and bulk of the aqueous phase: 
  
Mass balance to the benzene in the organic phase: 
 

aVJCQCQ
dt

dC
V BBB

B −−= 3311
3ε         (10) 

 
Mass balance to the benzene in the liquid element at the interface, for 0 < t < θ: 
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Mass balance to the benzene in the bulk of the aqueous phase for the time 0 < t < θ: 
 

bulkB
bulkB kC

dt

dC
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, −=           (12) 

Initial Conditions:   BbulkB CC 4, )0( =

 
At the time t = θ, the liquid element mixes with the bulk, and an average concentration of aqueous 
phase is attained instantly. The corresponding average concentration can be calculated by: 
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Results 
 
Figure 5 compares the experimental values for the output MNB concentration with the corresponding 
predictions, using the film model for the mass transfer with simultaneous chemical reaction. As can be 
observed, good agreement is obtained between these sets of values, with estimation errors smaller than 
15%. This can be considered to be very satisfactory, given the number of estimated parameter 
involved (mass transfer and diffusion coefficients, rate constants, solubilities, power input and 
effective interfacial area, among others). Work in progress to compare these experimental results with 
the predictions of the penetration models, for the same system. 

% MNBExperimental

0 20 40 60 80 100

Predicted

0

20

40

60

80

100

run 1 
run 2 
run 3 
run 4 
run 5 
run 6 
run 7 

+ 15 %
- 15 %

 
Figure 5 – Experimental versus predicted values of MNB concentrations in the organic phase outlet. 

 
 
Conclusions 
 
The operating conditions of industrial interest for some heterogeneous reaction systems correspond 
often to the intermediate regime between kinetic and mass transfer controlling steps. The simulation of 
these units requires an accurate solution of process models combining mass transfer and kinetic 
information. Although producing identical asymptotic solutions, the choice of the mass transfer model 
for this intermediate region can have a significant influence in the prediction capabilities of the 
combined models. 
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ABSTRACT 

 

In this work the formulation of the Moving Finite Elements Method (MFEM) proposed 
by Sereno was expanded for two phase systems, with only one space dimension, between 
fixed boundaries and with an internal moving interface, constituted by a system of parabolic 
Partial Differential Equations (PDE´s) subject to linear boundary conditions in the external 

and fixed boundaries of the system and assuming non linear conditions exists at the interface. 

Our computer code in FORTRAN language resulting from numerical algorithm 

implementation was tested in the simulations of heterogeneous solid-fluid reaction and of a 

system of solid → fluid phase changes. 

 

 

1.  INTRODUTION 
 

The classical example of a problem with moving boundaries, often called Stefan 

problem, is the fusion of a solid or the freezing of a liquid. Problems of this type appear in 

many areas, [4,5]. The numerical simulation of mathematical models of dynamic two-phase 

systems described by PDE’s is a difficult problem particularly when a moving interface is 

involved and/or the solution develops steep moving fronts. Many suggestions have been made 

on how to overcome the difficulties to numerically solve this type of problems, [4,5,7]. A 

possible approach is the MFEM, proposed by the group of K. Miller of the University of 

Berkeley, [8,10]. Our aim in this work is to apply the formulation of MFEM proposed by 

Sereno [12] to the simulation of dynamic two-phase systems with moving boundaries. 

In the development of the numerical algorithm Sereno [12,14] uses the MFEM with the 

following characteristics: i) the grid of finite elements associated to each one of the dependent 

variables is independent from the others ones; ii) each dependent variable is approximated by 

a Lagrange interpolating polynomial of any degree in each one of the finite elements; iii) the 

position of interior nodes in each finite element are optimized as in the orthogonal collocation 

method; iv) the numerical approximation of each one of the dependent variables is smoothed 

in a neighborhood of the separation nodes through cubic Hermite polynomials. 
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The implicit time-dependent ODE system resulting from the spatial discretization of the 
mathematical model is solved by the LSODI package developed at the Lawrence Livermore 
National Laboratory [6]. 

 
 

2.  METHOD DEVELOPMENT 
 

Let us consider the general mathematical model of two-phase system [4] with only one 
space dimension, between fixed boundaries and with an internal moving interface, constituted 
by a system of parabolic PDE´s whose P-th equation is 
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 ( )W;[D V≤≤  if IQP ≤  and ( ) E[W; V ≤≤  if QPQ ≤<I , (2) 

and ( )W; V  is interface position at the instant W. The equation (1) is subject to linear boundary 

condition in the external and fixed boundary. Assuming non linear condition exists at the 

interface, the movement is defined by 
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This class of systems of PDE´s is an extension of those considered by Sereno [12, 14] where 

all differential equations have the same fixed spatial domain. 

The MFEM is a discretization process in two stages: first spatial discretization using 

finite elements, in which we focus our attention, and secondly the time integration of the 

resulting ODE´s system. 

 

 

2.1 SPATIAL DISCRETIZATION 
 

The grid connected to the P-th PDE is obtained by partitioning the spatial domain of 

P\  in 1+P1  finite elements by 1−P1  interior separation nodes, 

 PP  :   ( ) ( ) ( ) ( ) 0121 ³<<<< + W�W;W;���W;W; �� 1�P1�P�P�P . (4) 

One of the nodes ( )W; �� 1 , ( )W; �1�P 1+  is independent of time variable and the other is defined 

by  the interface position along time. In the M-th finite element of grid PP  

 ( ) ( ){ }W;[W;[, ��������� 1: +≤≤ÂÎ= , 0³W , (5) 
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we approximate P\  by a 1−���S  polynomial obtained by Lagrange interpolation through 
���S  interpolation points whose relative positions are optimized as in the orthogonal 

collocation method, [12,13]. Locally, in ���, , we define the polynomial approximation 

( )W�[< 	
�  as 

 ( ) ( ) ( )[W<W�[< L
M�P

S

L
L M�PM�P

�
�
l∑

=
=

1

 (6) 

where ( )[L
M�Pl  is the L-th Lagrange basis function, ( ) ( )W�5<W<

� �
��

�
��

� �
�� =  and 

� �
��5  is the L-th 

interpolation point. The first and second spatial derivatives of ( )W�[< 	
�  are also polynomials 

and can be defined using the same interpolation points. 
Globally the approximation P<  to P\  in the spatial domain is the continuous piecewise 

polynomial function defined by 
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where { }�1a�P�P�PP ������ ξξξ 21=X  is the ordered set of all nodes, spatial nodes and interior 

interpolation points, associated to PP , ( ) ( )W<<
� �
 !" !! =ξ , for L and M such that 

# $
%&'%& 5=ξ  

and ()*F  is the N-th global interpolation basis function defined as 
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This approximation (7), at each instant, depends on the nodal amplitudes 
/ 0
12<  and on the 

nodal position 1+345; , 
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where 6τ  is zero if P1M =  and is one otherwise. Therefore, the interface position V;  is not 

included in list of effective dependence parameters of the method. 
 
 

2.2 ODE SYSTEM 
 

To determine the semi-discrete variables 
/ 0
12<  and 1+345;  we must integrate, in time, 

the system of ODE´s generated by minimization of the following objective function 
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with respect to time derivatives of nodal amplitudes and nodes positions, where P5  is the 

PDE residual associated with the P-th equation 
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345ε  and 3456  are the internodal viscosity and spring penalty functions, respectively, as 

defined in [10]. Observe that we introduce Miller’s penalty functions into the minimization 

process to avoid the singularities associated with the method, due to parallelism and element 

folding. The penalty functions depend on of positive constants supplied by the user for each 

element of each grid and we use the previous work of Sereno [12] to choose these constants. 

 

 

2.3 INTEGRALS CALCULATION 
 

To get the explicit form of general equations of method is necessary, first, define the 

partial derivatives of P<  in order to time variable and in order to effective parameters listed in 

(8) and, secondly, calculate the integrals that results from minimization of ) , in which we 

focus our attention. One problem to solve is that to define the approximations of spatial 

derivatives of P<  (a continuous piecewise polynomial). For this aim we used a smoothing 

process based on cubic Hermite polynomials in a neighbourhood of the separation nodes 
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where 0>�d . By this process, all the integrals are well defined as a limit when 0→�d  

replacing in integrate function of those P<  by the smooth numerical approximation P<a  

defined as 
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where �+  is the cubic Hermite polynomial satisfying 
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We divide the common spatial domain in a unique fine partition constituted by all 

separation nodes of the first IQ  grids and after repeat the process for the last ones. After that 

we use numerical Radau or Lobatto quadratures to compute the integrals of the smooth 

approximation. 

To solve the implicit time-dependent ODE system resulting from the spatial 

discretization by finite elements of the mathematical model, we use the package LSODI 
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developed at the Lawrence Livermore National Laboratory [6] and all routines JACOBI, 
DFOPR, RADAU and INTRP from [15]. 

 
 

3.  NUMERICAL EXAMPLES 
 

We present two numerical examples to demonstrate the working and performance of our 
MFEM. All the numerical results presented are obtained on a Power Mac 8600 at 200 MHz. 

The minimum permissible cell width is 510− . The ODE solver tolerances, for nodal 

amplitudes and for nodal position are 72/1
310−=  and 72/2

510−= , respectively. We use 
Lobatto quadrature with 3 interior quadrature points to compute the integrals appearing in 
each one of the equations of the ODE systems. 

 
 

3.1 HETEROGENEOUS SOLID-FLUID REACTION 
 

The computer code resulting from numerical algorithm implementation was tested 
initially in the simulation of heterogeneous solid-fluid reaction 

 ( ) ( ) products.reaction AC fs →+J  (14) 

In this model reactant A diffuses through the porous layer of reaction products, reacts at 
interface of the solid unreacted core C, producing porous reaction products. Assuming that the 
reaction is isothermal and instantaneous, which implies a zero concentration of reactant A in 
the solid-reaction products interface, and a plan geometry system where phase I is constituted 
by products of reaction and phase II by solid C, the shrinking core model is described in 
dimensionless form by  

 ( ) 00
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and initial conditions ( ) ( )qV;[��[& ≤≤= 000  and ( ) 00 VV ;; = . The solid-reaction 

products interface movement is defined by 
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. (17) 

When ∞→P%L  and 00 →V; , (15)-(17) tends to the model described in [5] which have 

analytic solution 
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1 =−= , (18) 



 6 

where ( ) ( )∫ −=
η ξ ξπη
0

2
2 GHHUI  and Vη , which is related with interface position at instant 

q  by Þ= Vηη ( )qV;[ = , is the solution of ( ) ( ) ( )VV HUIH � ηηgπ η 2
1 = . We compute the 

analytic solution and determine the new interface position at each instant for which we obtain 
numerical results using Lobatto quadrature with a multiple of 10 interior quadrature points to 
estimate the integral appearing in HUI function and the Newton-Raphson method to solved the 

last equation, with relative errors bound by 810− . 
We computed the solution for 2=g  and 1000=P%L , with 4 finite elements and a 

polynomial approximation of degree 5 in each element, on a time interval from 0=q  to 

0qq =  such that ( )0V; q  is closeness but lower than 1. Nodes are initially concentrated 

near the left fixed boundary of the system. Figure 1 presents the concentration profiles in 
phase I for various values of q , figure 2 shows the evolution of interface and figure 3 presents 
the trajectories of separation nodes. It was observed that the numerical solution is in 
agreement with the analytical solution of the model. 

Figure 1: Concentration profiles in phase I for various values of q  
 

Figure 2: Evolution of interface                           Figure 3: Trajectories of separation nodes 
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3.2 SOLID →FLUID PHASE CHANGES 
 

The second problem that we studied is a model of a system of solid → fluid phase 
changes, described in [4]. Initially the system is at fusion temperature having heat flow in two 
phases and we change the temperature of environment adjacent to fluid and to solid phases to 
values great and lower than fusion temperature, respectively. Assuming that system has plan 
geometry, the phase I is constituted by fluid and phase II is the solid phase, the equations that 
defined this model are, in dimensionless form, 

 ( )qzz
zq V�88
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∂
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2
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2
1 ,          ( ) 1

2
2

2
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∂ zqz
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α
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where interface movement is defined by  
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with boundary conditions 
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z
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and initial conditions ( ) ( ) 000 21 == �8�8 zz  and ( ) 41020 −´=Vz . We used the following 

values of model parameters: 3
1 10421 −´= �α , 2

2 10158541 −´= �α , ( )-1o C 254331�=g , 

010854�=k ,  100021 == %L%L  and  C10 o
21 =−= EE 88 . 

The numerical solution was computed using 4 finite elements in each system of finite 
elements and a polynomial approximation of degree 5 in each element, on a time interval 
from 0=q  to Xqq =  such that qz GG V  is minimum. Nodes are initially concentrated near 

the fixed boundaries of the systems. 

Figure 4: Temperature profiles in both phases for different values of q  
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Figure 4 presents the temperature profiles in booth phases for different values of q , 
figure 5 shows the evolution of interface and figure 6 presents the trajectories of separation 
nodes and the interface. 

Fig 5: Evolution of interface                     Fig. 6: Trajectories of separation nodes and interface 
 
 

5.  CONCLUSIONS 
 

In this work the formulation of the MFEM proposed by Sereno was expanded for two 
phase systems, considering the interface just one more moving node. The computer code 
resulting from numerical algorithm implementation was tested in the simulations of two phase 
systems It was observed that the MFEM has capacity to produce quite good solutions. In 
particular, the results obtained in the instantaneous reaction are in agreement with the 
analytical solution of the present model. 
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Abstract

This work describes the development of mechanistic models for the suspension polymerization of vinyl chlo-
ride (VCM), and their subsequent use for optimization and control of an industrial batch reactor. The methodology
used for dynamic optimization of this system uses a feasible path approach with roots on nonlinear Model Predic-
tive Control (MPC) theory. The approach is sufficiently flexible to accommodate general objectives and common
constraints. This allows a tighter integration between the control and optimization layers, while making these
problems addressable by software packages that start to be commercially available. The results obtained with
both models clearly illustrate the advantages and possible improvements in the operation of a typical discontinu-
ous processes.

1 Introduction

Pressure to reduce costs and improve competitiveness in the process industries has led to renewed interest in the
development of rigorous process models. These models are frequently based on first principles, and include a
detailed description of the various physico-chemical phenomena that take place in the system. When coupled
with modern solution and optimization algorithms they constitute valuable tools to diagnose abnormal behavior,
improve product quality, and minimize the environmental impact while simultaneously improving the productivity
and safety aspects.

Within the chemical industries, polymerization systems, often operated in discontinuous (batch) mode, present
interesting challenges in their control and online optimization, due to their non-stationary nature and highly non-
linear behavior. In many cases, these operations are still carried according to recipes based on heuristics and past
experience. The use of detailed mechanistic models, experimentally validated, to understand and systematically
optimize these processes can therefore have a clear and significant impact in their operation.

This work describes the development of mechanistic models for the suspension polymerization of vinyl chloride
(VCM), and their subsequent use for optimization and control of an industrial batch reactor. This is an heteroge-
neous system, involving four distinct phases (monomer, polymer, aqueous and gas phases). Based on the kinetic
information of Xie et al. (1991a) and Kiparissides et al. (1997), two mechanistic models were built, allowing a
comparison of the optimization results and their sensitivity to be established. The methodology used for dynamic
optimization of this system uses a feasible path (sequential) approach with roots on nonlinear Model Predictive
Control (MPC) theory; the algorithms described can be applied eitheroff- or on-line. This provides a well inte-
grated methodology for optimal supervision of batch polymerization processes.
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2 Problem Formulation and Solution Strategy

A dynamic optimization strategy is used to solve problems formulated in a general manner as

min
u(t)∈Hik

Ψ(t, u(t), x(t)) = G(x(tF)) +
∫ tF

t0

F (x(t), u(t), t)dτ

s.t. ẋ = fp(x, u, d; θ)
y = gp(x; θ)

ul ≤ u ≤ uu

xl ≤ x ≤ xu

yl ≤ y ≤ yu

(1)

wherefp andgp are usually assumed differentiable and continuous, except perhaps at a finite number of switching
points. The state variables are denoted byx ∈ Rns , u ∈ Rni are the input variables andy ∈ Rno is the output
vector.G andF are assumed to be general twice differentiable nonlinear functions. This formulation is sufficiently
flexible to accommodate different objectives and constraints of various nature such as:

• Direct minimization of the operation time:
Ψ(•) = tF. (2)

• Treatment of soft constraints, especially related to final product properties, that can be formulated as

Ψ(•) = (yF − ysp)TQ(yF − ysp), (3)

whereysp represents the desired final values,yF is the value of a set of output variables at the end of the
run, andQ is a weighting matrix. Polymers with improved final properties can also be sought, by direct
minimization or imposing restrictions on the variance of the chain length distribution,

Ψ(•) =
∫ ∞

0

f(r)(r − r̄)2 dr

wherer is the chain length andf(r) is the polymer weight fraction with chain lengthr.

• Objectives related to tracking an arbitrary trajectory, for a set of properties expressed in terms of the input,
state and output variables, similarly to the nonlinear MPC strategy (Oliveira and Biegler, 1995),

Ψ(•) =
∫ tk+toh

tk

(y − ysp)TQy(t)(y − ysp) + (u − ur)TQu(t)(u − ur) dτ. (4)

• Optimal initial conditions for the operation (e.g., amounts and composition of initiators) can be determined.

As mentioned, a feasible path approach is used to solve the dynamic optimization problem (1). The problem is first
discretized using stepwise constant input profiles. To simplify the notation, augmented vectorsU , X andY are
defined, containing all values of the corresponding variables inside an operating horizon. An exact linearization of
the model around a nominal trajectory can be written as

Ŷ ≈ Ȳ +
∂Y

∂U

∣∣∣∣
U=Ū

∆U = Ȳ + Sm∆U,

whereSm represents thedynamic matrix of the model, containing the first order information for the system relative
to the input variables. This matrix can be efficiently computed from the original differential model through the use
of appropriate sensitivity equations.

2



When the objective has the form of (4) or (3) the algorithms described in Oliveira and Biegler (1995); Santos et
al. (1995) can be directly used. However, some modifications are required in this formulation to treat minimum-
time problems. In these problems, the final time is usually defined by a certain output variable, which reaches a
predefined valueyF at the end of the operation. We assume that this happens during thenth discretization interval,
from tn to tn+1, inside a larger horizon defined as a maximum bound ontF . Given the previous assumptions about
the model, it is possible to writetF as an implicit function of the initial condition and input variables during this
interval

tF = h(xn, un). (5)

The first order information fortF can then be obtained by writing a Taylor series in this interval:

tF = t̄F +
∂tF
∂xn

∣∣∣∣
x=x̄

· (xn − x̄n) +
∂tF
∂un

∣∣∣∣
u=ū

· (un − ūn).

The derivatives∂tF

∂xn

∣∣∣
x=x̄

and ∂tF

∂un

∣∣∣
u=ū

are, in some cases, difficult to obtain directly, by integration of the sensitiv-

ity coefficients, since (5) is usually not available in explicit form. However, since these coefficients are only needed
in the last time interval, they can also be approximated by finite differences, without a great penalty. Applying the
previous concepts, the linearization oftF with respect to the input variables can be written as

tF = t̄F + S∗∆U.

This allows formulation of the optimization problem as the successive quadratic programming (SQP) iteration of

min
∆U

J2 = t̄F + S∗∆U + ∆UTH∆U

s.t. Uld ≤ ∆U ≤ Uud

Yld ≤ Sm∆U ≤ Yud

Smn,j
∆U = ∆yF ,

where∆yF = ysp − y(tF ), andH represents an approximation of the Hessian of the Lagrangian of (1). This
formulation is closely similar to the one used in the nonlinear Newton control law, making the algorithms developed
for its solution applicable for minimum-time problems as well. A more complete description of the solution
strategy can be found in Silva and Oliveira (2002).

3 Suspension Polymerization of vinyl chloride

The suspension polymerization of VCM is a heterogeneous reaction involving four phases: polymer rich phase,
monomer rich phase, aqueous and gas phase. Here, the kinetic information provided by Xie et al. (1991a,b)
and Kiparissides et al. (1997) was used to build two detailed mechanistic process models, in order to compare the
optimization results and their sensitivities. These kinetic models contain all of the important elementary reactions
for two-phase polymerization, namely:

• The distribution of monomer by the different phases, as a function of the conversion and the reactor operation
conditions.

• The conversion and reaction rate.

• The pressure inside the reactor.

• The characteristics of the polymer formed1.

1Xie’s model gives the accumulated molecular weight averages, and the molecular weight distribution. Kiparissides’s model predicts the
molecular weight averages, the short and long-chain branching, and the number of terminal double bounds.
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Figure 1: (a) Conversion profile for isothermal operation and (b) conversion dependence of number and weight
average molecular weight(− · ·− Kiparissides’s model,− Xie’s model).

Predictions from the two models are compared in Figure 1, using a constant polymerization temperature of 55◦C,
with an equimolar mixture of initiators (A and B). As can be observed, the conversion profiles remain close until
a conversion of 70% is reached. Their divergence after this point can be attributed to the fact that in Kiparissides’s
model the initiation efficiency after the critical conversion is not diffusionally controlled as in Xie’s model. In Xie’s
model the values of the propagation and termination rates at high conversion are lower than the corresponding rates
in Kiparissides’s model. The profiles of the average molecular weights given by both models can also be observed
in Figure 1(b) . For similar operating conditions, the models predict polymers with slightly different properties at
the end of the operation. This can be due to the value of the kinetic parameters used in each model, especially the
chain transfer to monomer that controls the molecular weight of the polymer.

4 Optimization Results

The main decision variables available for optimization of this system are the reaction temperature and the initiator
quantities. These variables can be changed in small steps during the operation and, in the case of the initiator, the
amounts of each species to be added at the beginning of the operation can also be independently specified. By
optimizing directly the reaction temperature, our results are relevant to polymerization reactors of different sizes.
Therefore, this framework can also be helpful in identifying physical limitations of existing process equipment and
to confirm retrofit decisions.

In the following two cases, optimal profiles are calculated to originate a polymer with desired properties (polidis-
persivity and molecular weight averages) inminimum time. The desired values for these properties were taken as
identical to the polymer obtained using constant temperature profiles of Figure 1. In the last case, an optimal pro-
file is calculated to manufacture products withimproved final properties, not possible when constant temperature
profiles are used.

Case I - Operation with optimal temperature profile

Figure 2 shows the optimal temperature profile that minimizes the batch time, subject to upper and lower bounds
of 5◦C relatively to the nominal temperature. Xie’s model shows smaller deviations relatively to the nominal tra-
jectory, due to higher sensitivity to this variable. Figure 3 compares the conversion and molecular weights obtained
with Xie’s model, in the optimal and base cases. As can be observed, the molecular weights are essentially identi-
cal (due to imposed constraints), although the final conversion is obtained much faster. In fact, in the suspension
polymerization of VCM and in the absence of limitations in the cooling capacity, the cycle time can be reduced
between 9% and 23%, compared with traditional isothermal operation.

The on-line implementation of the temperature profile obtained in the Kiparissides’s model is considered, using a
nonlinear MPC controller based on a formulation similar to the previous optimization strategy. This is illustrated
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Figure 2: Normalized optimal reactor temperature policy (− · ·− Kiparissides’s model,− Xie’s model).
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Figure 3: Comparison between the optimal and base profiles using Xie’s model: (a) Average molecular weights
and (b) conversion profiles (· · · base case,− optimal).

in Figure 4 and these results are also compared to a linear controller PI, representative of the current industrial
practice. For the predictive controller the tuning parameters used wereQ1 = I, Q2 = 10−3I, with a sampling
time of 200 seconds. The discrete PI controller used a sampling time of100 seconds,kc = 20 andτI = 1500
seconds. As can be observed, the MPC controller is able of better tracking the optimal trajectory, while exhibiting
smaller amplitude changes in the input profiles.

Case II - Operation with optimal initiator concentrations

In this section, the impact of changes in the initiator concentrations during isothermal operation is studied, consid-
ering both their addition at the beginning or in a continuous manner during the entire operation.

Case IIa - Operation with optimal initiator amounts added at the beginning of the opera-
tion

In this case, the initiator amounts to be added at the beginning of the operation are optimized. The results obtained
in this situation are described in Table 1. As can be observed, both models predict a similar composition of this
mixture, slightly different from the nominal case (50/50%). The optimal total amount is also slightly higher than
the nominal case; if the increased amount of initiator to be used is considered problematic in terms of residuals
trapped inside the polymer particles at the end of the operation, it can also be limited by including a corresponding
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Figure 4: (a) Normalized inlet temperature jacket profile for (b) the optimal profile of the reactor temperature (· · ·
PI; − MPC).

Table 1: Optimization of the initial quantities of the initiators.

Isothermal case Xie’s model Kiparissides’s model

Total amount (mol) 18,0 19,4 22,1
Initiator A (%) 50 53 53
Initiator B (%) 50 47 47
Reduction in the cycle time (%) – 7,2 14,4

hard constraint in formulation (1). The cycle time reduction obtained with Kiparissides’s model is higher, because
the initiation efficiency is not considered to be diffusionally controlled for higher conversions, as in Xie’s model.

Case IIb - Operation with optimal initiator amounts added during the operation

Figure 5 shows the optimal profiles of initiator amounts to be added during the operation, in order to minimize the
operation time. This feed is considered an equimolar mixture of initiators A and B. Due to operation constraints,
bounds of 0mol/min and 6mol/min were imposed.

As can be observed, the profiles are quite different. In Kiparissides’s model the initiator is mainly added in the
first stage of reaction, and then the quantity added begins to decrease. In Xie’s model, the initiator should be
added almost entirely enduring the last stage of operation. The optimal amount of initiators added during the
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Figure 5: Optimal feed rate of initiators policy (− · ·− Kiparissides’s model,− Xie’s model).
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Table 2: Total and residual amounts of the initiators used in Xie’s model.

Isothermal case Case IIa Case IIb

Total amount added at the beginning (mol) 18,0 19,4 18,0
Total amount added during the operation (mol) – – 36,3
Total residual amount (mol) 8,0 9,8 44,1
Reduction in the cycle time (%) – 7,2 18,7

Table 3: Total and residual amounts of the initiators used in Kiparissides’s model.

Isothermal case Case IIa Case IIb

Total amount added at the beginning (mol) 18,0 22,1 18,0
Total amount added during the operation (mol) – – 5,2
Total residual amount (mol) 7,4 10,1 11,0
Reduction in the cycle time (%) – 14,4 14,5

operation is much higher in case of Xie’s model. Xie’s model predicts a total reduction of cycle time of 18,7 %. In
Kiparissides’s model, the reduction is smaller (14,5%) and similar to the one obtained in the case IIa.

Comparison of cases IIa and IIb

The constraints imposed on the polymer require that the final products in both of these cases have similar properties,
in terms of their polidispersivity and molecular weight averages. However the total amounts of initiators used (and
residual) can be different; these are described in Tables 2 and 3. These tables show that the residual amounts of
initiator increase with the amount of initiator added during the operation. Kiparissides’s model predicts that the
addition of initiators at the beginning or during the operation has a similar similar effect, in terms of reduction in the
operation time possible. Their addition at the beginning leads to smaller residual amounts and its implementation
can be considered more practical. In contrast with these findings, Xie’s model predicts that higher reductions in the
cycle time are possible when the initiators are added continuously during the operation, at the cost of an increased
residual amount of initiators in the final product.

Case III - Manufacturing of innovative products

In this section we consider the application of the previous optimization strategy to manufacture innovative products,
with improved final properties. An optimal temperature profile is calculated in order to originate a polymer with
desired molecular weight distribution, e.g. with a smaller polidispersivity (narrower molecular weight distribution).
A temperature constraint of50◦C < T < 62◦C is enforced. Figure 6(b) shows the optimal profile obtained. As
can be observed from Figure 6(a) the distribution obtained closely matches the desired one.

5 Conclusions

The kinetic information, available in the literature, for the suspension polymerization of vinyl chloride was in-
corporated in two detailed mechanistic models. Their prediction was used for optimization and control of an
industrial batch reactor. Optimal trajectories for this process, leading to products with specific properties in min-
imum time was considered. The capability of manufacturing innovative products with innovative products with
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Figure 6: (a) Final PVC polymer molecular weight distribution and (b) the normalized optimal profile of the
temperature polymerization (• obtained;− desired).

improved properties was also considered. The results obtained with a batch suspension polymerization system
clearly illustrates the advantage and possible improvements in the operation of typical discontinuous processes.
This framework can also be helpful in identifying physical limitations of existing process equipment and to con-
firm retrofit decisions.

An important additional advantage of the application of this strategy to the study of polymerization systems,
when combined with experimental tests, is that it can provide an efficient screening methodology for alternative
model structures. In the present case, two mechanistic model structures that produce essentially similar results
for isothermal polymerization (Figure 1a) show very different sensitivities to the main operating variables such as
reaction temperature and amount of initiators used.
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Abstract

A Disjunctive Program (DP) is a mathematical program whose feasible region is the con-
vex hull of the union of convex sets. The objective function is also convex. Disjunctive Pro-
gramming models are very frequent as a modeling framework for setup costs or constraints,
and models with constraints that are better expressed as disjunctions. Some Process Sinthe-
sis Design models arising from Chemical Engineering are mixed integer convex programming
models which are particular instances of a Disjunctive Program. In this talk we will address
questions that are raised when conceptualizing a Branch-and-cut algorithm for mixed-integer
convex programming.

1 Introduction

The process synthesis network problem problem in Chemical Engineering is the problem of
simultaneously determining the optimal structure and operating parameters for a chemical
synthesis problem. This problem can be modeled as a mixed 0-1 convex program where the
continuous variables represent process parameters such as flowrates and the 0-1 variables
represent the potential existence of a process unit. The nonlinear elements come from the
intrinsic nonlinear input-output performance equations of some process units, see [3] where
this model is proposed and [8, 4] for related models.

Other models of Network Design in communication and transportation networks are
discrete by nature. The 0-1 variables represent the potential existence of multiplexers, con-
centrators, or interface message processors in computer communication networks, junctions
in pipeline networks, interchanges in highway networks, and so on. Discrete variables may
also represent the discrete quantity of physical arc units of certain characteristics between
two junctions of the network. In a simple model, described in [5], the nonlinear element
comes from modelling delay at some link (i, j) as proportional to the fraction of the rate of
messages crossing the link (i, j) to the available capacity of the same link.

We propose a cutting-plane algorithm for solving the following mathematical program
that we will refer to as a mixed zero-one convex program,

min f(x)
s.t. G(x) ≤ 0

xi ∈ {0, 1}, i = 1, . . . , p,
(1)
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where f : IRn → IR is a closed convex function and G: IRn → IRm is a vector function of
closed convex functions. The variables xi, for i = 1, . . . , p, are zero-one constrained and the
variables xi, for i = p + 1, . . . , n, are simply nonnegative. We will further assume that both
f and G are continuous in an open set containing the continuous relaxation, i.e., when {0, 1}
is replaced by [0, 1].

Our work extends to the nonlinear setting the lift-and-project approach of Balas, Ceria
and Cornuéjols [1, 2], which is seen as one of the most important practical contributions
to the solution of mixed zero-one linear programs by general-purpose cutting-plane based
algorithms since the work of Gomory in the sixties. As proposed by Stubbs and Mehrotra
[7], we solve the cut generation problem in its dual form. Some of the distinctive features of
our algorithm are the following: our algorithm guarantees the existence of a cut whenever
an optimal solution was not yet found; we solve the cut generation problem using standard
nonlinear programming algorithms; and, we fully extend the lifting procedure to the nonlinear
setting.

The article is structured in the following way. In Section 2 we describe the basic cutting-
plane algorithm specialized to solve Program (1). In Section 3 we explain how the cut
generation problem can be solved in a smaller-dimension space, taking advantage of the fact
that some variables are already integral. In the talk, the algorithm will be illustrated on a
small example. A practical implementation of this method is part of an ongoing research
project.

2 The basic cutting plane algorithm

Our approach requires that we use the following equivalent formulation of program (1),

min xn+1

s.t. f(x) ≤ xn+1

G(x) ≤ 0
xi ∈ {0, 1}, i = 1, . . . , p.

(2)

Since f is convex then this formulation is still a mixed zero-one convex program. Moreover,
the feasible region K can be replaced by P = conv (K) without loss of generality, where we
note that P is closed. As a matter of notation, we will still use the same f(x) and G(x)
eventhough we are refering to these functions as functions of the first n components of the
vector x that now lies in IRn+1.

A specialization of the basic cutting-plane algorithm is presented in Figure 1. The algo-
rithm requires performing three basic steps in each iteration. In the first step, the relaxation
step, we seek an optimal solution x̄ of the following convex program

min xn+1

s.t. x ∈ P̄ ,
(3)

whose feasible region P̄ is defined by

P̄ ≡
{

x ∈ IRn+1:
f(x) ≤ xn+1, aix ≤ bi, i = 1, . . . ,m1,
G(x) ≤ 0, xi ∈ [0, 1], i = 1, . . . , p,

}
, (4)

where m1 is the number of cuts generated so far. In the second step, the optimality check
step, we try to reduce as much as possible the number of fractional components of x̄ while
keeping the same value of the component x̄n+1. In the third step, the separation step, we
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use the last index j tried in the second step to define the following disjunctive programming
relaxation P̄j of P ,

P̄j ≡ conv
((

P̄ ∩ {x:xj = 0}
)
∪
(
P̄ ∩ {x:xj = 1}

))
. (5)

The following proposition shows that a nonoptimal x̄ 6∈ P̄j , from where we are able to
guarantee the existence of a separating hyperplane.

Proposition 1 In each iteration of the algorithm BCP4MINLP, Step 2 is performed at most
p times. Moreover, if j is the last index tried in Step 2 then either x̄ is optimal or x̄ 6∈ P̄j.

Proof: We recall that in Step 2 of the algorithm BCP4MINLP, the integer-constrained
variables are sequentially fixed at one of their bounds, zero or one, until an index j is found
such that

min
i=0,1

 min xn+1

s.t. x ∈ P̄ ,
xF ′ = x̄F ′ , xj = i

 > x̄n+1, (6)

where F ′ identifies the variables that are fixed in the process. Since F ′ can have at most p
elements then Step 2 is performed at most p times until either (6) holds or all the integer
constrained variables are fixed in which case we would have found an optimal solution.

Now, we prove the second part of this proposition. Let j be the last index tried in
Step 2 so that (6) holds. Assume, by contradiction, that x̄ ∈ P̄j . Then, the point x̄ can be
represented by one of the following three possible ways:

a. x̄ = δz + (1− δ)y, where δ ∈ (0, 1), z ∈ P̄ ∩ {x:xj = 0} and y ∈ P̄ ∩ {x:xj = 1};
b. x̄ = z + dy, where z ∈ P̄ ∩ {x:xj = 0} and dy is a direction of the set P̄ ∩ {x:xj = 1}

if this set is nonempty or the zero vector otherwise.

c. x̄ = dz + y, where y ∈ P̄ ∩ {x:xj = 1} and dz is a direction of the set P̄ ∩ {x:xj = 0}
if this set is nonempty or the zero vector otherwise.

If x̄ can be decomposed as in a. then, since x̄k ∈ {0, 1}, for every k ∈ F ′, we must have
zk = yk = x̄k, for every k ∈ F ′. Thus,

x̄ ∈ conv
((

P̄ ∩ {x:xF ′ = x̄F ′ , xj = 0}
)
∪
(
P̄ ∩ {x:xF ′ = x̄F ′ , xj = 1}

))
which contradicts (6). If x̄ can be decomposed as in b. then, since dyi = 0, for every
i ∈ {1, . . . , p}, zk = x̄k, for every k ∈ F ′ ∪ {j}. Thus, x̄ ∈ P̄ ∩ {x:xF ′ = x̄F ′ , xj = 0} which
contradicts (6) once again. If x̄ can be decomposed as in c. an analogous argument as in b.
applies. 2

3 The cut generation problem

We explain how the cut generation solution procedure should be implemented to take advan-
tage of the fact that many variables have been fixed during the second step of the algorithm
BCP4MINLP. Our cut generation problem uses the following duality result

sup αx̄− β
s.t. (α, β) ∈ polar (P̄j),

‖αF ‖∗ ≤ 1
=

inf ‖x− x̄‖
s.t. x ∈ P̄j ,

xF ′ = x̄F ′ .
(7)
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Data: Functions f and G. The scalars n and p.
Initialization: Set k = 0 and define P 0 as

P 0 ≡
{

x ∈ IRn+1:
f(x) ≤ xn+1,
G(x) ≤ 0, xi ∈ [0, 1], i = 1, . . . , p,

}
,

Iteration-k:

Step 1: (Relaxation) Let x̄ be the optimal solution of
min xn+1

s.t. x ∈ P k ,

Step 2: (Optimality check) Define F ≡ {j ∈ {1, . . . , p}: 0 < x̄j < 1} and
F ′ = {1, . . . , p} \ F . If F is empty then stop: x̄ is an optimal solution
and x̄n+1 is the optimal value. Otherwise, let j ∈ F .

Step 2.1: Find an optimal solution x̂ of

min


min xn+1

s.t. x ∈ P k

xF ′ = x̄F ′

xj = 0

,

min xn+1

s.t. x ∈ P k

xF ′ = x̄F ′

xj = 1


Step 2.2: If x̂n+1 = x̄n+1 then let x̄ = x̂ and restart Step 2;

Otherwise set xk = x̄ and continue to Step 3.

Step 3: (Separation) Let j be the last index tried in Step 2. Find a
separating hyperplane “ak+1x ≤ bk+1” between P k

j and xk.
Define P k+1 = P k ∩

{
x: ak+1x ≤ bk+1

}
and set k := k + 1.

Figure 1: The basic cutting-plane algorithm for mixed zero-one convex programming
(BCP4MINLP)
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Let us assume without loss of generality that the relaxation P̄ is defined by

P̄ ≡ {x ∈ IRn: G(x) ≤ 0, x ≥ 0, xi ≤ 1, i = 1, . . . p} . (8)

and P̄j is defined by (5). Let F be an index set that may or may not be related to the Step 2 of
the cutting-plane algorithm, and F ′ = {1, . . . , n}\F be its complement. If x̂ = (x̂F , x̄F ′) ∈ P̄j

is a known optimal primal solution in (7) then the subgradient ξ̂ = (ξ̂F , ξ̂F ′) of the function

f(x) =
{
‖xF − x̄F ‖ if xF = x̄F ,
+∞ otherwise, (9)

at the point x̂ that satisfies ξ̂(x− x̂) ≥ 0, for every x ∈ P̄j , defines an optimal dual solution
(α̂, β̂) ∈ polar (P̄j).

However, the main purpose of (7) is to define the cut generation problem using a smaller
number of variables. This means that after solving the primal problem

min ‖xF − x̄F ‖
s.t. xF ∈

{
xF : (xF , x̄F ′) ∈ P̄j

} (10)

we have at hand an optimal primal solution x̂F and a subgradient ξ̂F of the function ‖·−x̄F ‖
at x̂F , such that ξ̂F (xF − x̂F ) ≥ 0, for every xF ∈

{
xF : (xF , x̄F ′) ∈ P̄j

}
. Thus, a natural

question is whether we can extend ξ̂F so that ξ̂ = (ξ̂F , ξ̂F ′) is a subgradient of the function f

defined by (9) at x̂ = (x̂F , x̄F ′) that satisfies ξ̂(x− x̂) ≥ 0, for every x ∈ P̄j . Another natural
question is whether we can apply a similar mechanism even when x̂F is not optimal.

Our answers to these questions require that x̄F ′ = 0. This can be done without loss of
generality because when x̄k, for some k ∈ F ′, is nonzero then as long as it coincides with one
of its bounds on Program (2) a variable transformation allows for the requirement to hold.
In this setting, xF is feasible for Program (10) if and only if xF belongs to

conv
({

xF : (xF , 0) ∈ P̄ , xj = 0
}
∪
{
xF : (xF , 0) ∈ P̄ , xj = 1

})
. (11)

Note that the two individual sets that define this convex hull are the feasible regions in
(6) and consequently at the end of Step 2 we already know whether those sets are empty
or nonempty. This feature is important because it determines which is the best solution
procedure to use on Program (10). If both sets are nonempty then the program can be
handled using the solution procedures described on Sections 5.4 and 5.5 of [6]. If one of
them is empty then Program (10) is a standard convex program, and may therefore be
solved by a standard nonlinear programming algorithm. If the two sets are empty then there
is no feasible solution x to Program (2) such that xF ′ = x̄F ′ . In this case the following
inequality ∑

k∈F ′:x̄k=0

xk +
∑

k∈F ′:x̄k=1

(1− xk) ≥ 1,

separates x̄ from the convex hull of the feasible region of Program (2).
Now, we explain how the lifting procedure works under two distinct situations, depending

on the fact that one or none of the sets in (11) is empty. We start by assuming that none of
them is empty. Let x̂F be a feasible solution for Program (10) and ξ̂F be a subgradient of
the function ‖ · −x̄F ‖ at x̂F such that for a given scalar β satisfying ξ̂F x̄F < β the following
holds

min
i=0,1

 min ξ̂F zF

s.t. (zF , 0) ∈ P̄ ,
zj = i

 ≥ β. (12)
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We remark that x̂F need not be optimal for Program (10), though if it were optimal then
the existence of a subgradient and a scalar satisfying (12) would be guaranteed. Under a
constraint qualification, the optimal solution ẑi

F of each one of the problems in (12) also
solves a linear program defined by a suitable matrix Ai ∈ ∂G(ẑi

F , 0) so that

min
i=0,1


min ξ̂F zF

s.t.

 G(ẑi
F , 0) + Ai(zF − ẑi

F , 0) ≤ 0,
zk ≥ 0, k ∈ F, zj = i,
zk ≤ 1, k ∈ F ∩ {1, . . . , p},

 ≥ β (13)

The feasible region of each one of these linear programs defines an outer-approximation of
each one of the sets in (11). Our lifting procedure applies to these linear programs, so that by
the outer-approximation argument it also applies to our original nonlinear sets. Proposition 2
below describes the lifting mechanism in generic terms.

Proposition 2 Let F be an index set and F ′ = {1, . . . , n} \F . For a given arbitrary vector
αF , let ẑF be an optimal solution of the following linear program:

min αF zF

s.t. AF zF ≤ b,
lF ≤ zF ≤ uF ,

(14)

where lF and uF are the, possibly infinite, lower and upper bounds, AF ∈ IRm×|F | and
b ∈ IRm. Then, for any extended matrix A = [AF , AF ′ ] ∈ IRm×n there is a closed-form
extended vector α = (αF , αF ′) such that the vector ẑ = (ẑF , 0) is an optimal solution of the
following linear program:

min αz
s.t. Az ≤ b,

lF ≤ zF ≤ uF ,
zF ′ ≥ 0.

(15)

Proof: Let v̂ ≤ 0 be the optimal dual multipliers associated with the matrix constraints in
Program (14) and define

αk ≡ max

(
0,

m∑
l=1

v̂lalk

)
,

for every k ∈ F ′. Now, consider Program (15) and use the same dual variables to price the
new primal variables zk, for every k ∈ F ′. Since the reduced costs are ρk = αk−

∑m
l=1 v̂lalk ≥

0, for every k ∈ F ′, we conclude that ẑ = (ẑF , 0) is optimal for Program (15). 2

This proposition shows by construction how to define extended vectors ξ̂i = (ξ̂F , ξ̂i
F ′)

such that ẑi = (ẑi
F , 0), for i = 0, 1 are still optimal in the following linear programs

min
i=0,1


min ξ̂iz

s.t.

 G(ẑi) + Ai(z − ẑi) ≤ 0,
z ≥ 0, zj = i,
zk ≤ 1, k ∈ F ∩ {1, . . . , p},

 ≥ β (16)

whose feasible regions are larger than the set P̄ ∩ {x:xj = i}, respectively. Since zF ′ ≥ 0,
for every z ∈ P̄j , then

ξ̂ = (ξ̂F , max
i=0,1

(ξ̂i
F ′))
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is a subgradient of f at x̂ such that ξ̂x ≥ β, for every x ∈ P̄j . Moreover, since ξ̂x̄ < β then
we have found a separating hyperplane.

Now, we assume that one of the sets in (11) is empty. Thus, Program (10) is solved as
a standard convex program because its feasible region is defined by the nonempty set only.
However, the fact that one of the sets in (11) is empty does not imply that the same has
to occur in (5), when the variables xF ′ are no longer fixed. Proposition 3 below describes
in generic terms how to define the extended vector ξ̂i = (ξ̂F , ξ̂i

F ′) so that ξ̂iz ≥ β, for every
z ∈ P̄ ∪ {x:xj = i}, when the set P̄ ∩ {x:xF ′ = 0, xj = i} is empty.

Proposition 3 Let F be an index set and F ′ = {1, . . . , n} \F . For a given arbitrary vector
αF , let ẑF be the optimal value of the following linear program:

min αF zF

s.t. AF zF ≤ b + t̂e,
lF ≤ zF ≤ uF ,

(17)

where lF and uF are the, possibly infinite, lower and upper bounds, AF ∈ IRm×|F |, b, e ∈ IRm

where e is a vector of “all-ones”, and t̂ ≡ min{t:AF zF ≤ b + te, lF ≤ zF ≤ uF } > 0. Then,
for any extended matrix A = [AF , AF ′ ] ∈ IRm×n and scalar β there is a closed-form extended
vector α = (αF , αF ′) such that αz ≥ β, for every z such that Az ≤ b, lF ≤ zF ≤ uF , zF ′ ≥ 0.

Proof: First, consider the linear program that defines t̂. Let (t̂, z̃) be an optimal solution
and ŵ be the optimal dual multipliers associated with the matrix constraints. Then,

t̂ = ŵb + γ̂F z̃F , (18)

where γ̂k = 0 −
∑m

l=1 ŵlalk is the reduced cost associated with the variable zk, for each
k ∈ F .

Now, consider Program (17) and let v̂ be the optimal dual multipliers associated with
the matrix constraints. Then,

αF ẑF = v̂
(
b + t̂e

)
+ ρ̂F ẑF

⇐⇒ αF ẑF − t̂v̂e = v̂b + ρ̂F ẑF , (19)

where ρ̂k = αk −
∑m

l=1 v̂lalk is the reduced cost associated with the variable zk, for each
k ∈ F .

If β ≤ αF ẑF − t̂v̂e then define αk = max(0,
∑m

l=1 v̂lalk), for every k ∈ F ′. For every z
such that Az ≤ b, lF ≤ zF ≤ uF , zF ′ ≥ 0 we have that

αz = αF zF + αF ′zF ′

≥
∑
k∈F

(
ρ̂k +

m∑
l=1

v̂lalk

)
zk +

∑
k∈F ′

(
m∑

l=1

v̂lalk

)
zk (20)

= ρ̂F zF + v̂Az

≥ ρ̂F zF + v̂b (21)
≥ ρ̂F ẑF + v̂b (22)
= αF ẑF − t̂v̂e (23)
≥ β, (24)

where the inequality (20) follows from the definition of ρ̂F , the definition of αF ′ and the fact
that zF ′ ≥ 0; the inequality (21) follows from the fact that v̂ ≤ 0 and Az ≤ b; the inequality
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(22) follows the fact that ρ̂k(zk − ẑk) ≥ 0, for every k ∈ F , which is consequence of the
values of the reduced costs at optimality; the inequality (23) follows from (19); and finally
the inequality (24) holds by hypothesis.

If β > αF ẑF − t̂v̂e then a similar formula works but we need to increase v̂ by a suitable
positive multiplier of ŵ. Observe that ẑF is feasible for the linear program that defines t̂ and
so, from (18), we have that t̂ ≤ ŵb + γ̂F ẑF , or equivalently,

β −
(
αF ẑF − t̂v̂e

)
≤ δŵb + δγ̂F ẑF , (25)

where δ =
(
β −

(
αF ẑF − t̂v̂e

))
/t̂ > 0. Now, define αk = max (0,

∑m
l=1 (v̂ + δŵ)l alk), for

every k ∈ F ′. For every z such that Az ≤ b, lF ≤ zF ≤ uF , zF ′ ≥ 0 we have that

αz = αF zF + αF ′zF ′

≥
∑
k∈F

(
ρ̂k +

m∑
l=1

v̂lalk

)
zk +

∑
k∈F ′

(
m∑

l=1

(v̂ + δŵ)l alk

)
zk (26)

= ρ̂F zF + (v̂ + δŵ) Az + δγ̂F zF

≥ ρ̂F zF + v̂b + δŵb + δγ̂F zF (27)
≥ ρ̂F ẑF + v̂b + δŵb + δγ̂F ẑF (28)
≥ ρ̂F ẑF + v̂b +

(
β −

(
αF ẑF − t̂v̂e

))
(29)

= β (30)

where the inequality (26) follows from the definition of ρ̂F , the definition of αF ′ and the fact
that zF ′ ≥ 0; the inequality (27) follows from the fact that v̂ + δŵ ≤ 0 and Az ≤ b; the
inequality (28) follows the fact that ρ̂k(zk − ẑk) ≥ 0 and γ̂k(zk − ẑk) ≥ 0, for every k ∈ F ,
which is consequence of the values of the reduced costs at optimality; the inequality (29)
follows from (25); and finally the equality (30) is a consequence of (19). 2

This result can be easily generalized to a situation in which a distinct t variable occurs
for each constraint. This is in fact the usual procedure with most phase-one implementations
of the Simplex algorithm for linear programs.

When solving a nonlinear program whose feasible region P̄ ∩{z: zF ′ = 0, zj = i} is empty,
most standard nonlinear programming algorithms are not ready to provide some point (t̂, z̃i

F )
that solves the following program

min t

s.t.

 G(zF , 0) ≤ te,
zk ≥ 0, k ∈ F zj = i,
zk ≤ 1, k ∈ F ∩ {1, . . . , p},

(31)

and in this way proving infeasibility. In fact, it may occur that what seems to be an infeasible
problem is just a numerical difficulty of meeting the constraints to a desired accuracy. The
solution of the program (31) provides a verification of infeasibility and, as saw in the proof
of Proposition 3, the dual variables that may be required for the lifting procedure. Since the
Slater condition holds, the optimal solution (t̂, ẑi

F ) of Program (31) also solves the following
linear program defined by a suitable matrix Ai ∈ ∂G(ẑi

F , 0),

min t

s.t.

 G(ẑi
F , 0) + Ai(zF − ẑi

F , 0) ≤ te,
zk ≥ 0, k ∈ F, zj = i,
zk ≤ 1, k ∈ F ∩ {1, . . . , p},

(32)
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Then, to complete the lifting procedure we just have to solve

min ξ̂F zF

s.t.

 G(ẑi
F , 0) + Ai(zF − ẑi

F , 0) ≤ t̂e,
zk ≥ 0, k ∈ F, zj = i,
zk ≤ 1, k ∈ F ∩ {1, . . . , p},

(33)

and, as explained in the proof of Proposition 3 we are now able to define ξ̂i = (ξ̂F , ξ̂i
F ′) ∈

∂f(x̂) such that ξ̂iz ≥ β, for every z ∈ P̄ ∩ {z: zj = i}. Since zF ′ ≥ 0, for every z ∈ P̄j , then
again

ξ̂ = (ξ̂F , max
i=0,1

(ξ̂i
F ′))

is a subgradient of the function f at x̂ such that ξ̂x ≥ β, for every x ∈ P̄j . Moreover, since
ξ̂x̄ < β then we have found a separating hyperplane.
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