MODELLING AND SIMULATION
IN CHEMICAL ENGINEERING

Coimbra, June 30 - July 4, 2003

Alirio E. Rodrigues, Paula de Oliveira, José Almiro Castro,

José Augusto Ferreira, Maria do Carmo Coimbra

//
//

CENTRO INTERNACIONAL de MATEMATICA



The Workshop Maodelling and Simulation in Chemical Engineering took place in
Coimbra in July 2003, integrated in a thematic term devoted to Mathematics and Engineering
which was supported by the Centro Internacional de Matemadtica (CIM).

Its main objective was to bring together mathematicians and chemical engineers to
improve the understanding of the problems of process engineering and the mathematical tools
available to solve them. To enhance the dialogue among theoretical research, computational
aspects and reactive flow behaviour short courses and plenary conferences were given covering
topics like Mathematical Modelling and Chemical Engineering Systems, Packages and
Numerical Methods to Solve P.D.E’s, and Optimization Techniques. Twenty contributed talks
were also presented.

The workshop was attended by about fifty researchers working in numerical simulation
of Chemical Engineering problems. We believe that the texts included in this publication will
give a reasonable overview of the state of the art as far as the main challenges posed in our days
by the Numerical Simulation of Reactive Flows are concerned.

Coimbra, Julho de 2003
The Organizing Committee

Alirio E. Rodrigues
Paula de Oliveira

José Almiro Castro

José Augusto Ferreira
Maria do Carmo Coimbra



Contents

Courses
W.Hunsdorfer, Splitting techniques for advection-diffusion-reaction equations

A.E. Rodrigues, Modelling and Simulation in Chemical Engineering

Plenary talks

M. Baines, M. Hubbard, P.K. Jimack, Adaptive finite element solutions of time-dependent
partial differential equations using moving mesh algorithms

K. Laevsky, RM.M. Matheij, Numerical analysis of the motion of glass under external
pressure

L.Petzold, Y. Cao, S.Li, R.Serban, Adaptive numerical methods for sensitivity analysis of
differential-algebraic equations and partial differential equations

JVewer, B.P. Sommeijer, An implicit-explicit Runge-Kutta-Chebyschev scheme for
diffusion-reaction equations

Z. Zlatev, Numerical and computational challenges in environmental modelling

Contributed talks

M. Bause, W. Friess, P. Knabner, I. Metzmacher, F. Radu, Modeling drug release from
collagen matrices undergoing enzymatic degradation

C.A. Costa, R.M.Quinta-Ferreira, The impact of intraparticle convection of the multiplicity
behaviour of large-pore catalyst particles

JM.P.Q. Delgado, M.A. Alves, J.R.F. Guedes de Carvalho, Mass transfer and dispersion
around an active sphere buried in a packed bed of inerts

L. Ferreira, P. Brito, A. Portugal, M. Blox, P. Kerkhof, A Simulation Study on the Transport
Phenomena in Ultrafiltration

P. Georgieva, J. Peres, R. Oliveira, S. Feyo de Azevedo, Process modelling through
knowledge integration — competitive and complementary modular principles

M.A. Granato, L.C. Queiroz, Dead core in porous catalysts: modelling and simulation of a
case problem using Mathematica

C.P. Ledo, F.O. Soares, E.G.P.Fernandes, Multiple nonlinear regression analysis for the
Baker’s yeast fermentation parameters estimation



T.M. Mata, C AV. Costa, Computer modelling and simulation in chemical processes
pollution prevention

F.JM. Neves, D.C. Silva, JI.L.C. Tourais, N.M.C. Oliveira, Global simulation and
optimization of a chemical plant

I.S. Pop, C.J. Van Duijn, Micro-scale analysis of crystal dissolution and precipitation in
porous media

P. Portugal, H. Jorge, R.M. Quinta-Ferreira, Sequential method for kinetic models
discrimination

A. Prechtel, F. Radu, P. Knabner, Modelling and numerical simulation of variably saturated
flow and coupled reactive, biogeochemical transport

P.A. Quadros, N.M.C. Oliveira, C.M.S.G. Baptista, Modelling of heterogeneous reactions:
simultaneous mass transfer and chemical reaction

R. Robalo, C. Sereno, A. Rodrigues, Moving finite elements method.: application to moving
boundary systems

D.CM. Silva, N.M.C. Oliveira, Model-based optimization of discontinuous chemical
polymerization systems

J.L. Soares, Convex programming tools for disjunctive programs



Splitting Techniques for Advection-Diffusion-Reaction Equations

Willem Hundsdorfer
CWI, Amsterdam, The Netherlands

Abstract

Notes for minicourse at the Workshop on Modeling and Simulation in Chemical Engineering —
Coimbra, 2003. In these notes some classical and modern splitting techniques are reviewed
for transport-chemistry problems, modeled as time-dependent advection-diffusion-reaction
equations. The material is largely based on the forthcoming book [6], where a more detailed
exposition and additional numerical tests can be found.

1 Introduction

Many physical, chemical and biological models take the form of advection-diffusion-reaction
problems. Problems of this type occur for instance in the description of transport-chemistry
in the atmosphere, surface- and ground-water and we shall consider the equations with such
applications as reference.

Consider a concentration u(z,t) of a certain chemical species, with space variable x and
time ¢. If the species is carried along by a flowing medium with velocity a(z,t), with diffusion
coefficient d(z,t) and with sources, sinks and chemical reactions described by f(u,z,t), then the
mass conservation law leads to the advection-diffusion-reaction equation

%u(az,t) + %(a(m,t)u(x,t)) - %(d(x,t)%u(x,t)) + f(u(z, t), 2, 1) . (1.1)

We shall consider the equation in a spatial interval 2 C R with time ¢ > 0. An initial profile
u(z,0) will be given and we also assume that suitable boundary conditions are provided.
If we consider multiple spatial variables, say € R? or R?, then we get

0
au—f—V- (au) =V - (Du) + f(u,z,t) (1.2)

with velocity a = a(z,t) and diffusion (tensor) D = D(z,t). Moreover, with r chemical species
we will have a vector u(x,t) = (ui(z,t),us(z,t),...,ur(x,t))T containing concentration values
of the chemical species. Each chemical component might have a different velocity or diffusion
coefficient. The coupling between the chemical components is then provided by the reaction
term. Although more general problems often occur — where, for example, @ and D also depend
on u — the system (1.2) already has many applications, for instance in pollution problems [14, 18].

One might want to apply different time stepping methods to the different parts of the equa-
tions. For example, the chemistry can be very stiff, which calls for an implicit ODE method. On
the other hand, if the advection is discretized in space with a flux-limiter, then explicit methods
seem much more suitable for that part of the equation. Moreover, use of an implicit method to
the full equation will lead to a huge algebraic system, with coupling over the species as well as
over the space.



1.1 Spatial discretizations and the “method” of lines

We shall consider the discretization of spatial and temporal derivatives as separate processes. If
the spatial derivatives are replaced by difference quotients on some spatial mesh €2, we end up
with a large system of ordinary differential equations

w'(t) = F(t,w(t)) (1.3)

where each component w;(t) of the vector w(t) approximates the PDE solution u(z,t) in a grid
point z; or a surrounding cell. Such an ODE system is often called the semi-discrete system
since the space is discretized but time is still continuous. We will consider (1.3) for ¢ > t¢ with
given initial condition w(tp).

Although spatial discretization will not be considered here, some brief remarks are in order.
Advection: The advection just gives a translation of the solution along the steamlines (charac-
teristics) described by the velocities. This usually results in large solution gradients. Standard
second-order differences (uz(z;) ~ (2h) " (u(z + h) — u(z — h)) then may give large numerical
oscillations. Therefore more complicated discretizations, possibly with limiters to suppress os-
cillations, are then advisable; see for instance [7, 6]. The use of an explicit time stepping method
will lead to a stability restriction 7/h < C where 7 is the time step and C' > 0 will depend on
the size of a and the methods used.

Diffusion: Diffusion has a smoothing effect on the solution. The standard second-order differ-
ences (Uzq(x;) ~ h™%(u(z + h) — 2u(x) + u(z — h)) usually provide a good discretization. For
diffusion terms an explicit time stepping scheme will lead to a time step restriction of the form
7/h? < C. On a fine mesh such a restriction is not acceptable (too many steps) and therefore
implicit methods should then be used.

Reaction: Chemical reaction often have very different time scales, where only the slower scales
need to be resolved; the fast scales typically correspond to radicals which are important for the
process but not in the final output. However, with an explicit time stepping method also the
fast scales need to be resolved for numerical stability reasons. Hence also for reaction terms,
implicit methods may be more advisable.

After a discretization in space, a semi-discrete system (1.3) is obtained which then is dis-
cretized in time. This separate treatment of time and space is often called the method of lines.
It is not a ‘method’ in the numerical sense, but rather a way to construct and analyze numerical
schemes.

Due to the different operators and time scales of the processes it is often advisable to use a
splitting of F' into easier parts, say

F(t,w) =F1<t,'w)—|—F2(t,’w), (1.4)

such that the individual processes v'(t) = Fj(t, v(t)) are easier to solve than (1.3). Some examples
are given below, but for the moment we may think of splitting a two-dimensional equation into
two one-dimensional equations; or splitting a reaction-diffusion (or reaction-advection) equation
into a diffusion (or advection) equation and a separate reaction equation. The latter type of
splitting, also applies to general spatial discretizations on unstructured grids. Here the advantage
lies in the fact that the reaction will only have a coupling over the chemical components whereas
advection-diffusion will only give a coupling over space.

More general, one can consider a multiple splitting

F(t,w) = Fo(t,w) + Fi(t,w) + - - + Fy(t, w) (1.5)



where Fjy will stand for the contribution of non-stiff terms, suitable for explicit treatment, and
the other terms I, ..., I are stiff and need implicit time integration.

Example 1.1. Standard second-order spatial discretization for (1.1) on a uniform mesh leads
to the semi-discrete system
, 1

w .

i on (aj—%(wj—l +wj) — a1 (w) + ij))

1
+ ﬁ(Dj_%(wj—l —wj) = Dy 1 (wj - wj+1)) + flwj zj,t).

Here w; = wj(t) is viewed as an approximation to u(z;,t) or the average value over the cell
[z; — %h,xj + %h] at time ¢, with grid points x; = xg 4+ jh. If u is a vector of r chemical
components, then each w; is also a vector in R".

Boundary conditions will lead to a system with dimension ~ rh~!. As mentioned above, the
reaction term is usually stiff and also the diffusion term usually makes explicit time stepping
costly. On the other hand, with an implicit method for the whole system we get in each time
step a large algebraic system with coupling over space and chemical components.

If we put the advection and diffusion terms in F; and reaction in F5 then this simultaneous
coupling is avoided. Advection may also be put separately in Fjy, which can then be treated
explicitly. This is in particular attractive if more complicated (nonlinear, limited) discretizations
are used for the advection. Moreover, for multi-dimensional problems on a Cartesian mesh, the
diffusion terms in different directions may be further split to get simple one-dimensional sub-
systems. &

2 Time splitting methods

In this section we shall discuss some methods were the equation is split into several parts, which
are all solved independently on the time intervals [t,,tn+1]. Such methods are usually called
(time) splitting methods or fractional step methods. In case the splitting is such that different
physical processes are separated, the term ‘operator splitting’ is also commonly used. If a
multi-dimensional problem is split into 1-dimensional sub-problems, this is called ‘dimensional
splitting’.

2.1 First-order splitting
Consider an ODE system, linear for simplicity,
w'(t) = Aw(t),

with A = Aj+ Asg, arising for example from a linear PDE with homogeneous boundary conditions
or periodicity conditions. We have

W(tni1) = e w(ty). (2.1)

If we are only able, or willing, to solve the ‘sub-problems’ v'(t) = Ajv(t) and v/'(t) = Asv(t),
then (2.1) can be approximated by

Wnpy = ™2™y, (2.2)



which is the simplest splitting method. In actual computations the terms e™* will, of course,
be approximated by some suitable ODE method.

Replacing (2.1) by (2.2) will introduce an error, the so-called splitting error for this particular
splitting. Inserting the exact solution into (2.2) gives w(t, 1) = e™42e™1w(t,) 4 7p, with local
truncation error p,. Note that 7p, is the error introduced per step. We have

1
e = (I+ T(A1 + Ag) + 572(A1 + A5)% + - .)7

1
eTAzeTAl — (I + T(A1 + Ag) + 57'2(14% +245A1 + A%) + - )
Hence the local truncation error equals

S = e V() = SrlAv, AdJu(tn) + O(), (2.3)
with [A1, As] = A1 Ag— Az A; the commutator of A; and As. We see that (2.2) will be a 1st-order
process, unless A; and As commute. Note that we assume here tacitly that terms like A; Asw(t)
are O(1), which seems reasonable only if there are no boundary conditions or the PDE solution
satisfies certain compatibility conditions.

For general nonlinear ODE systems

w'(t) = Fi(t,w(t)) + Fa(t,w(t)),

we can apply (2.2) if the terms et are interpreted as solution operators. Written out, we solve
subsequently

Lw*(t) = Fi(t,w*(t)) for t, <t <tnyr with w*(t,) = wy,

L (t) = Fo(t,w*(t)) for t, <t <tppq with w™(t,) = w*(tet1),

giving wp41 = w**(tp41) as the next approximation. If w, = w(t,) we now get the local
truncation error

1 8F1 8F2 2
27’ a—wFQ — a—wFl (tn, w(tn)) + O(77),

similar to (2.3). This formula can be derived by Taylor expansions of w**(tp41) and w*(¢,41)
around t = t,.

2.2 Higher-order and multi-component splittings

In (2.2) one starts in all steps with A;. Interchanging the order of A; and Aj after each step will
lead to more symmetry and often to better accuracy. Carrying out two half steps with reversed
sequence gives the following splitting, due to Strang [12],

1 1 1 1 1 1
Wyl = (eiTA?giTAl) (eiTAleﬁTAQ)wn = e27 26T A3 A2y, (2.4)

By a series expansion and some tedious calculations it follows that the local truncation error is
given by

21—472 (143, [4a, 41]] — 241, [Ay, Ao]] Juw(tn) + O(r). (2.5)
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Due to symmetry, the truncation error will only contain even order terms.
If we work with constant step sizes, then (2.4) will require almost the same amount of
computational work as (2.2), since for constant 7 we can write the total process (2.4) as

1

1
Wy, = €2TA26‘I'A1 e‘rAz . eTAlezTAQwO.

In general, with variable step sizes it will be more expensive, of course.
Generalization to nonlinear systems is straightforward, we get

Lw*(t) = Fy(t,w*(1)) for tn, <t <t,i1/0 With w*(tn) = wy,
Lw*(t) = Fi(t,w*(t))  for tn <t <tne1 with w*™(tn) = w*(tyy1/2)
%w***(t) = F2 (t, w***(t)) for tn+1/2 S t S tn+1 with w***(tn+1/2) = w**(tn+1) y

giving wp41 = w***(t,41) as the approximation on the new time level.

With regard to stability of the splitting schemes, there are not that many practical, pertinent
results available. However, as a rule, if the individual steps are treated in a stable manner then
the whole process will be stable.

Higher-order splittings are possible, but such splittings will contain negative coefficients or
negative time steps (Sheng, 1989; Goldman & Kaper, 1996; see [6]). For example, let

ST — e%TAQeTA16%TA2
be the 2nd-order Strang splitting operator. Then a 4th-order splitting is given by
Wny1 = Sor S(1—2€)T Sor wn

with § = (2 — ¥/2)™! ~ 1.35. Here we have 1 — 20 < 0, so that a step with negative time has
to be taken. For partial differential equations with boundary conditions such splittings with
negative time steps seem of limited value. We note, however that they are frequently used for
time reversible problems, which arise for instance with certain mechanical problems, see [11].

With more splitting components, for example A = A; 4+ As+ A, then the first-order splitting
(2.2) can be generalized to

TAS3 eTAQ e’T‘Alw

Wp+1 = € n-

Likewise, the Strang splitting (2.4) leads to the 2nd-order formula

1

1 1 1A
Wpt1 = 627A3€27A2€TA1627A262TA3’[1)”.

Note that this is just a repeated application of (2.4): first approximate e™ by e37As eT(AﬁAQ)e%TAS,
and then approximate e”(41742) in the same fashion. Application to more components and non-
linear systems carries over in the same way.

2.3 Solving the fractional steps

To solve the sub-steps, one may select a method such as Euler or Trapezoidal Rule. If these
are applied with the same step size 7 that is used for the splitting itself, a specific (classical)
splitting method arises. Numerous examples are found in Yanenko [17], Mitchell & Griffiths [9]
and Marchuk [8].



For instance, first-order splitting combined with backward Euler gives the first-order method

w;;-i-l = wn+TF1(tn+1,w;‘L+1), (26)
W1 = Wy + TF(tnt1, Wntr).

If /7 and F5 contain discretized space derivatives in x and y direction, respectively, this method
is called the 1st-order LOD method (locally one dimensional) method. It is obvious that we can
generalize this method for F' = Fy 4+ F5 + ... + F.

The 2nd-order LOD method is obtained by combining Strang splitting with the trapezoidal
rule (or, likewise, the implicit midpoint rule),

why o= w, + %T(Fl(tn,wn) + Pt + (5 + )7, w;‘LH)),

Wt = Wiy + 37 (Falta+ (b = O wi0) + Paltuen wnr)), .
Whig = Wpt2 + %T<F2(7fn+1a Wnt1) + Fa(tni1 + (5 + 0, w2+2))v |
warz = whp+ 3m(Filtun + (G = 7w 0) + Filtui wase)):

Note that here Strang splitting is applied on the interval [t,,t,+2]. For ¢ we can take for
example c =0 or ¢ = % What is best will depend on the problem, and there is no choice that
seems preferable a priori. This is due to the fact that the intermediate vectors w; 4, are not a
consistent approximation to the full problem at some given time level. Again, generalization to
more F-components is straightforward. Method (2.7) is known as Yanenko’s method; see [17].

With the above splitting methods all sub-problems are treated in the same fashion and with
the same time step. In general, it seems better to solve the fractional steps with a method that
is suited for that particular sub-step, possibly with a sub-time step 7 < 7. Here one may chose,
for example, an implicit or explicit Runge-Kutta method, depending whether the sub-problem
w'(t) = F;(t,w(t)) is stiff or non-stiff, with an appropriate 7. This latter approach is the one we
recommend for general problems.

2.4 Boundary corrections

The major difficulties with splitting methods occur for problems were the boundary conditions
are important. If we consider a PDE problem with boundary conditions, then these are physical
conditions for the whole process and boundary conditions for the sub-steps (which may have
little physical meaning) are missing.

Therefore one may have to reconstruct boundary conditions for the specific splitting under
consideration. For example, consider a linear semi-discrete problem w'(t) = Aw(t) + g(t), were
g(t) contains the given boundary conditions. Suppose that

Av+g(t) = (Alv + gl(t)) + (sz + 92(t)),

with gi(t) containing the boundary conditions relevant to Aj. The exact solution satisfies

W(tni1) = e w(ty,) + / e (t, + s)ds.
0



If we consider 1st-order splitting, with inhomogeneous terms g1, g2, then

T T

T— eTA2eT ALy, 4 eTA2 / e(T_S)Algl (tn + s)ds + / e(T_S)AQQQ(tn + s)ds.
0 0

Even with commuting matrices, A1As = AsA;, and constant boundary terms we will get a

splitting error if we take g = gr. An exact formula for this case is obtained by choosing

Giltn +8) = e 2201 (t, +5), Galtn+5) =T 9N (t, +5).

Note that this correction for g; requires a backward time integration with Ay, and this may not
be feasible with an implicit ODE method, due to the fact that the implicit algebraic relations
need no longer be well defined with negative step size. One might replace e 42 by some explicit
polynomial approximation P(—sAs), but the effect of this on stability and accuracy is unclear.

As a rule of thumb, it can be said that the treatment of the boundaries should coincide as
much as possible with the scheme in the interior of the domain. Examples for specific LOD (and
ADI) methods can be found in Mitchell & Griffiths [9, Ch. 2]. A general analysis of boundary
conditions for splitting methods is, at present, still lacking. Therefore we conclude this subject
with an example.

Example. Consider the model advection-reaction equation
U + uy = u?, 0<zx<l1, 0<t<1/2
with given initial value at ¢ = 0 and Dirichlet condition at = = 0, derived from the exact solution

sin(m(z —t))?
1 —tsin(m(z —1t))?

u(t,x) =

Here spatial discretization is performed with 4th-order central differences in the interior and
3rd-order one-sided approximations at the boundaries. The advection step is solved with the
classical 4th-order Runge-Kutta method at Courant number 7/h = 2, and the ‘reaction’ u; = u>
is solved exactly. Since the nonlinear term is nonstiff, splitting is not really necessary in this
example, but it is instructive to consider the errors.

Let us consider :
(7) Simple splitting (with reaction followed by advection) where in the advection step the given
boundary values are used;
(ii) Strang splitting where after each time step the order of the fractional steps is reversed, also
with the given boundary conditions;
(7i7) The same splitting as in (¢) but with corrected boundary conditions

u(t,0)
1- (tn-i-l - t)u(tv 0)

u*(t,0) = for t € [tn,tn+1]-

The errors in the Lo-norm, together with the estimated orders of convergence, are given in the
following table.



Simple splitting Strang splitting Corrected bd.
T7=1/20 | 0.26 107! 0.14 1071 0.88 1073
T=1/40 | 0.14107! (0.94) | 0.48 1072 (1.58) | 0.91 10~* (5.27)
T=1/80 || 0.721072 (0.96) | 0.17 1072 (1.54) | 0.13 10~* (2.80)
7 =1/160 | 0.36 1072 (0.98) | 0.58 1073 (1.52) | 0.22 107° (2.57)

Table 2.1. Lo-errors (and estimated orders) for (4.1) at ¢ = 1/2 with 7 = 2h.

Note that the simple splitting with boundary corrections is more accurate than its Strang
type counterpart. The convergence rate of the scheme with boundary corrections is less than 4,
but this is due to order reduction of the Runge-Kutta method, it is not caused by the splitting
procedure. A similar order reduction can be observed with Strang splitting: in the absence of
boundary conditions it has (at least) order 2, but in the above table an order 1.5 behaviour can
be observed. &

3 IMEX, ADI and AMF methods

With time splitting by the fractional step approach we have to solve sub-problems that are not
consistent with the full model. As we saw this creates difficulties with boundary conditions, and
similar problems arise with interface conditions. Also, stationary solutions of the problem are
not stationary solutions of the fractional step methods. Moreover in the time splitting approach
multi-step schemes cannot be used in a natural fashion. In this section some alternatives to time
splitting will be briefly reviewed.

3.1 The -IMEX method

Suppose that the semi-discrete system is of the form

W(t) = F(t,w(t)) = Folt,w(t)) + Fi(t, w(t)) (3.1)

where Fj is a term suitable for explicit time integration, for instance discretized advection, and
Fy requires an implicit treatment, say discretized diffusion or stiff reactions.
We consider the following simple method

Wn+1 = Wnp + TFD(tn’ w’ﬂ) + (1 - H)TFl (tnv wn) + QTFl(tn-i-l’ wn-‘rl)’ (32)

with parameter 6 > % Here the explicit Euler method is combined with the implicit #-method.
Such mixtures of implicit and explicit methods are called IMEX schemes. Note that in contrast
to the time splitting methods there are no intermediate results which are inconsistent with the
full equation.

Insertion of the exact solution in the scheme gives the truncation error

%(w@nﬂ = w(tn)) = (1= O)F (tn, w(tn)) = OF (tns1, w(tns1))—

0 (Foltsr, w(tnin)) — Foltn,wita))) = (% —O) 7w (t) + O (1) + O(r?)
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where p(t) = Fo(t,w(t)). If Fy denotes discretized advection and nonstiff terms, smoothness of
w will also imply smoothness of ¢, independent of boundary conditions or small mesh widths
h. Therefore the structure of the truncation error is much more favourable than with the time
splitting methods considered in the preceding section. For example, with a stationary solution
w(t) = w(0) we now have a zero truncation error. However, with methods of this IMEX type it
is stability that needs a careful examination.

Let us consider the scalar, complex test equation

w'(t) = Mow(t) + Mw(t), (3.3)

and let z; = 7A;, 7 = 0,1. In applications to PDEs these A; will represent eigenvalues of the
two components Fy and F}, found by inserting Fourier modes. One would hope that having
|1 + 29| < 1 (stability of the explicit method) and Rez; < 0 (stability of the implicit method)
would be sufficient to guarantee stability of the IMEX scheme, but this is not so in general.
Application of the IMEX scheme to this test equation yields wy4+1; = Rw,, where R = R(zg, 21)
is given by

. 1+Z0—|—(1—9)Z1

R 3.4
1-— (921 ( )
Stability for the test equation thus requires |R| < 1.
First, consider the set
Do = {20 : the IMEX scheme is stable for any z; € C™}. (3.5)

So, here we insist on A-stability with respect to the implicit part. Using the maximum principle,
it follows by some straightforward calculations that zy = xg 4 iy¢ belongs to this set iff

0242 + (20 — 1)(1 + x0)? < 20 — 1.

Plots are given in Figure 3.1. If § = 1 we reobtain the stability region of the explicit Euler
method, but for smaller values of 6 the set start to shrink and for 6 = % it reduces to the line
segment [—2,0] on the negative axis.

8=051

Fig. 3.1. Boundaries of regions Dy (left) and D; (right) for the 6-IMEX method (3.2) with
6 =0.5,0.51,0.6 and 1.



Alternatively, one can insist on using the full stability region of the explicit method Sg =
{20 : |1 + 20| < 1}, but then z; has to be restricted to the set

D; = {z1 : the IMEX scheme is stable for any zy € Sp}. (3.6)
It easily follows that z; € Dy iff
1 + (1 — 9)|Zl| S |1 — 021|7

see the right plot in Figure 3.1. Again it is only for § = 1 that we get the stability region of the
1

implicit f-method. If 6 = 5 the set D; equals the negative real line R™.

Note that the implicit #-method with 6 > % is strongly A-stable (that is, A-stable with
damping at co) whereas the trapezoidal rule, § = %, is ‘just’ A-stable. Apparently, using a
strongly implicit method gives better stability properties within an IMEX formula.

On the other hand, the above criteria are rather strict. For instance, if we take zg such that
lp + 20| < p with p < 1, then the method with 6 = % will be stable if z; = 21 +1y; € C™ is
within the hyperbole p?y? + 4p?(1 — p) < 4(1 — p)(p — x1)%. Therefore, the IMEX method with
0= % should not be discarded, only extra care should be given to stability when applying this
method.

In the above the values of A9 and A; have been considered as independent, which is a
reasonable assumption if F and F} act in different directions, for instance if Fy ~ a(d/0x)
(horizontal coupling) and Fy ~ d(9?/02?) (vertical coupling) or Fj a reaction term (coupling
over chemical species).

Different results are obtained if there is a dependence between \g and A1. Then the implicit
treatment of A\; can stabilize the process so that we do not even need zg € Sg. Consider for
example the 1D advection-diffusion equation u; + au, = dug, with periodicity in space and with
second-order spatial discretization. If advection is treated explicitly and diffusion implicitly,

then the relevant eigenvalues (Fourier decomposition) are
20 = ivsin2¢, 21 = —4psin® ¢ (3.7)
with v = ar/h, p = dr/h? and 0 < ¢ < 7. A straightforward calculation shows that |R| < 1 iff
1—8(1—0)us +16(1 — 0)*u?s® + 4v%s(1 — 5) < 14 80us + 1602 1% s>
where s = sin? ¢. This holds for all s € [0, 1] iff
v <2u and 2(1—20)p < 1. (3.8)

So for any 6 > % we now just have the condition v? < 2u, that is a?7 < 2d.

Finally we note that the above IMEX method with # = 1 could be viewed as a time splitting
method where we first solve v'(t) = Fy(t,v(t)) on [t,, tn41] with forward Euler and then v/(t) =
Fi(t,v(t)) with backward Euler. This explains the favourable stability results with this method.
However, the structure of the truncation error is very different from the time splitting methods.
This is due to interference of the first-order splitting error with the first-order Euler errors.

In the following subsections we shall consider several generalizations of (3.2). Such general-
izations are necessary for practical problems since the explicit Euler method is not well suited for
advection, and also first-order accuracy is often not sufficient. Moreover, we may want additional
splittings of the implicit terms to resolve the implicit relations more efficiently.
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3.2 IMEX multi-step methods

As mentioned already, in the time splitting approach multi-step schemes cannot be used in a
natural fashion. Straightforward use of a multi-step scheme with step size 7 to solve the sub-
problems v'(t) = Fj(t,v(t)), tn <t < t,4+1 leads to inconsistencies since the available past values
Wp—1, Wn_2, - - are approximations to the whole problem, not to the particular sub-problem at
hand. Here we shall consider an other approach to combine implicit and explicit multi-step
methods.
One of the most popular implicit methods is the second-order BDF2 method
3

1
§wn+1 — 2wy, + §wn—l = TF(tn—l—la wn—i—l)

where the left hand side is the 2-step backward differentiation formula, hence the name BDF.
Along with wyg, the starting value w; should be known. It can be computed by a one-step
method, for instance Euler. The popularity of this implicit BDF method is due to its stability
and damping properties. These are very useful properties for diffusion equations.

Convection equations are often treated more efficiently by an explicit method, such as

3 1
iwn—i—l — 2wy + §wn—1 = QTF(tnvwn) - TF(tn—la wn—l)a

to which we shall refer as the explicit BDF2 method. The stability region of this explicit method
is plotted in Figure 3.2.

With advection-diffusion-reaction problems, explicit advection and implicit diffusion-reaction
can then be combined through the IMEX formula

3 1
§wn+l — 2wy, + Ewn—l - 27—}?0(751% wn) + 7_}70(7511—15 wn—l) +7F (tn+17 wn-‘rl)a (39)

where Fj contains convective terms only and Fj denotes discretized diffusion together with
reaction.
The above can be generalized as follows: consider a fully implicit multistep method

k

k
D i =7 B (FO(thrlfja Wnt1-5) + Fi(tnt1-j, wn+1—j))7 (3.10)
=0 =0

with implicit treatment of advection and diffusion-reaction. We can handle the advection ex-
plicitly by applying an extrapolation formula

2
Ptnt1) = Y ve(tni1—j) + O(r9) (3.11)
j=1

with ¢(t) = Fo(t,w(t)). This leads to the method

k

k k
D jwapij =7 BiFo(tni1j wap1-5) +7 > BiFi(tnt1—js wnt1-j), (3.12)
=0 j=1 =0

with new coeflicients ﬁj = B; + Boyj. Methods of this implicit-explicit multistep type were
introduced by Crouzeix [2] and Varah [13].
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Accuracy of the IMEX multistep methods is easy to establish.

Theorem 3.1. Assume the implicit multistep method has order p and the extrapolation pro-
cedure has order q. Then the IMEX method has order r» = min(p, q).

Proof. With ¢(t) = Fy(t,w(t)), the local truncation error can be written as
1 k
- Z(ajw(thrlfj) - Tﬂjw/(thrlfj)) + ﬂo( (tnt1) Z Vi (tnt1-; )
=0

= C’pr(p+1)(tn) + Ot + ﬁoC'qup(Q) (tn) + O(T9TY),

with constants C,C’ determined by the coefficients of the multistep method and the extrapola-
tion procedure. a

Note that in this truncation error only total derivatives arise, and therefore the error is not
influenced by large Lipschitz constants (negative powers of the mesh width) in Fy or Fj.

Stability results for the IMEX multistep methods are quite complicated, even for the simple
test problem (3.3). We consider here two classes of 2-step IMEX methods. Let Sp,S1 be the
stability regions of the explicit and implicit method, respectively.

The first class is based on the BDF2 method,

%wn—}—l — 2wy, + %wn—l = QTFO(tnvwn) - TFO(tn—lvwn—1)+

3.13

+97'F1(tn+1,wn+1)—|—2(1—9)TF1(tn,wn) — (1 —H)TFl(tn_l,wn_l) ( )

with parameter § > 0. The order is 2 and the implicit method is A-stable for 6 > %. With

0 = 1, Fy = 0 we reobtain the fully implicit BDF2 method. If § = % the implicit method is
‘Just’ A-stable (equivalent with the trapezoidal rule).

We also consider the following class of IMEX methods, based on the two step ADAMS for-

mulas,
Wn+1 — Wp = %TFO(tnawn) 27'F0( n—1, Wn— l)

: (3.14)
+97—Fl(tn+lawn+l)+(§ _29)7—F1(tnawn) ( _)TFl( n—1, Wn— 1)

again with order 2. Here the implicit method is A-stable if § > % If0 =+ the implicit method
reduces to the trapezoidal rule.

In the Figure 3.2 the stability regions Sy of the explicit methods are plotted together with
the regions Dy, defined as in (3.5). We see from the figure that here Dy is really smaller than
So and if the implicit method is just A-stable, the region Dy reduces to a line. Formulas for the
boundary of Dy can be found in Frank et al. [3] In that paper also results on the set D, see
(3.6), are presented. It seems that, as a rule, if zp € Sy and z; < 0, then the IMEX scheme is
stable. Moreover, if the implicit method is strongly A-stable then the IMEX scheme is stable
for z; in a wedge W, = {¢ € C : |arg(—()| < a}, with positive angle a. These results were
not proven for arbitrary IMEX schemes, only for some specific schemes in the above BDF2 and
ADAMS2 class.
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Fig. 3.2. Explicit stability regions Sy (dashed) and regions Dy for the IMEX BDF2 methods (left) and
ADAMS2 methods (right).

With these regions Dy, zg and z; are considered as independent. As said before, this holds for
example if Fj represents horizontal advection and F; stands for vertical diffusion plus reaction
(for air pollution problems these are the most relevant terms, the other processes, such as
horizontal diffusion, are small and they can be lumped into Fp). Results for 1D advection-
diffusion equations can be found in Varah [13] and Ascher et al. [1]. More general stability
results of this type, valid for noncommuting operators, are given in Crouzeix [2].

3.3 Douglas ADI methods

The acronym ADI stands for alternating direction implicit. Originally these methods were
developed for dimension splitting with two- and three-dimensional parabolic problems from
numerical oil reservoir models, see Peaceman [10]. We will use the name ADI for more general
splittings in which all internal stages are consistent with the whole problem.
A familiar ADI method is the second-order Peaceman-Rachford method
w;+1/2 = wp+ %TFl(tn,wn) + %TFQ(tn+1/2,w:l+l/2), (3.15)
Wny1 = Wyt TF1(tny1/2, Wnt1) + 3T (tns1, wZH/g)-
This could be viewed as a Strang splitting with alternative use of forward and backward Euler,
in a symmetrical fashion to obtain second order, but it seems more natural to consider this ADI
method as a method of its own. Note that the intermediate value w} 41/ 18 consistent with the
whole equation, unlike with the LOD methods. On the other hand, this ADI method does not
have a natural extension for more than two components F);. Therefore we consider a related
ADI method that does allow more components.
Suppose we have a decomposition

F(t,v) = Fy(t,v) + Fi(t,v) + - - - + Fy(t,v). (3.16)

It will be assumed here that the term Fj is nonstiff, or mildly stiff, so that this term can be
treated explicitly. The other terms will be treated implicitly, in a sequential fashion.
The 6-IMEX method regarded at the beginning of this section can be generalized as follows,

vo = wp+ T7F(ty, wy),
vji = vji—1+ 9T(Fj(tn+1ﬂ)j) - Fj(tn,wn)) (J=12,-,s), (3.17)
Wn+1 = Vs,
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with internal vectors v;. In case Fy = 0 this is the first-order Douglas-Rachford ADI method if
0 =1, and the second-order Brian-Douglas ADI method if § = 3; see [6, 9] for references. This
method is also known as the method of Stabilizing Corrections [8]. Note that all internal vectors
vj are consistent with w(t,41) and therefore the accuracy for problems where the boundary
conditions are influential is often better than with the time splitting schemes considered in the
previous section. In particular, stationary solutions @ of w’(t) = F(w(t)), that is F(w) = 0, are
also stationary solutions of the ADI method, as can be seen by considering consecutive v;.

Observe that in this ADI method the implicit terms also allow a splitting, which is not the
case with the IMEX multistep methods. However, as with the IMEX methods, stability of the
method should be carefully examined. The most simple test problem is

w'(t) = Mow(t) + Mw(t) + -+ + Asw(t). (3.18)

Let z; = 7A;, 7 = 0,1,...;s. Then the ADI method yields a recursion w,+; = Rw, with
R = R(zp, #1, ..., 2s) given by

R=1+ (f[(1 - ezj))fl izj. (3.19)
=0

J=1

Obviously, stability for the test problem requires |R| < 1.

Consider the wedge W, = {¢ € C : |Jarg(—()| < a} in the left half-plane. We consider here
stability under the condition that z; € W,, j > 1. If F} is a discretized advection-diffusion
operator and A; an eigenvalue in the Fourier decomposition, then o < %7‘(‘ means that advection
is not allowed to dominate too much. For pure diffusion we have z; = 7A; € Wj, the line of
non-positive real numbers. As before, zg, 21, ..., zs; are assumed to be independent of each other.

Theorem 3.2. Suppose zp =0 and s > 2,1 <r <s—1. For any 6 > % we have

. 1 =«
>~ i o P = a5 .
IR| <1 forall z; e W,, 1<i<s <= a< 13 (3.20)
8 —
|IR| <1 forall z1,...,25—r € W, 1 =«
<— < — .
and zg_pq1,...,25 <0 a_s—r2 (3.21)
Proof. Necessity in (3.20) is easy to show: if we take all z; = —te’®, j > 1, then for t — oo we
get '
ste'™ S 1—s iofl— 1
R=1- Hstseisa + O(ts+1) =1- %t Sela( 8)(1 + O(t ))7

and consequently Re(R) > 1 if ¢ is sufficiently large and a(1 —s) > 1.

To illustrate necessity in (3.21), consider s = 3 and z3 < 0. Since R is fractional linear in
z3, it follows that we have |R| < 1 for all z3 < 0 iff this holds with z3 equal to 0 or co. This
amounts to verification of the inequalities

21 + 29 1

1 <1 1-— <1
+ (1—92’1)(1—922) ‘ -7 ‘ 9(1—921)(1—922) -

For the first inequality we know from (3.20) that a < %71 is necessary and sufficient, but for the
second inequality it can be shown as above that we need o < %77. The proof of the other results
is technical; these can be found in [4, 5]. O
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Note that in (3.21), with » = 1 we get the same angles « as for » = 0. Moreover, it is somewhat
surprising that there is no difference between 6§ = % and § = 1. In [5] also results are given
for |1 + z9| < 1, and then the having § = % or § = 1 makes a difference. If # = 1 the above
statements remain the same. If § = % we now need a = 0, as we saw already with the 6-IMEX
method.

In the following figure the boundary of the stability region |R| < 1 is plotted for two special
choices, namely 20 =0, z; =2 (1 <j<s)and 20 =0, z; = 2 (1 < j < s—1), zg = 00. Plots for
the method with 6 = % look very similar. Also drawn, as dotted curved lines, are contour lines
of |[R| at 0.1, 0.2,,...,0.9. From this it is seen that we have little damping in general. If there are
two z; with large values then |R | will be close to 1. The same holds if we are outside the region
of stability, where we may have |[R| > 1 but very close to 1. Consequently, there may be a very

slow instability.

-
I
-
I
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I

3k . 4 3k 4

Fig. 3.3. Regions of stability |[R| <1 for § =1, zp = 0, with equal z; = z or z; = co. Left picture s = 2,
right picture s = 3.

In conclusion, if we consider @ = %77, then the essential condition for stability is 21 € Wy /o
and z9,...,2zs < 0, so only one of the implicit term should have eigenvalues that are large in
modulus and not near the negative real axis. If this is violated, instability can be expected.
This instability will be quite slow and therefore difficult to detect before it is too late.

Example. To illustrate the slow onset of instability, we consider the following advection equa-
tion with a simple linear reaction term,

up = auy +buy, + Gu, (x,y) €[0,1)% 0 <t (3.22)

The velocities are given by a(z,y,t) = 2r(y — 3), b(z,y,t)) = 2r(5 — x). Further,

ui(z,y,t) —k1 ko
u=u(x,y,t)= , G = .
( 4 ) ( UQ(J/’,y,t) ) ( kl _kQ
We take k1 = 1. The second reaction constant ko can be used to vary the stiffness of the reaction

term, and is taken here as 2000. Note that the matrix G has eigenvalues 0 and —(k; + k2), and
we have a chemical equilibrium if u; /ug = ko/k;.
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The initial condition is chosen as
ui(z,y,0) = ¢, ua(x,y,0) = (1 —c) + 100 ky " exp(—80((z — §)* = 80(y — 3)*),

with ¢ = ko/(k1 + k2). After the short transient phase, where most of the Gaussian pulse is
transferred from wuo to w1, this is purely an advection problem, and the velocity field gives a
rotation around the center of the domain. At ¢ = 1 one rotation is completed. The exact solution
is easily found by superimposing the solution of the reaction term onto the rotation caused by
the advection terms.

Dirichlet conditions are prescribed at the inflow boundaries. At the outflow boundaries we
use standard upwind discretization, in the interior second-order central differences are used.
We consider splitting with Fp, F5 the finite difference operators for advection in the x and y
direction, respectively, and with F3 defined by the linear reaction term. All three terms are
treated implicitly. The corresponding eigenvalues A1, Ao will be close to the imaginary axis
whereas A3 = 0 or —(k1 + k2). The test has been performed on a fixed 80 x 80 grid, and with
T =1/160.

1.05 1.05

0.95
1

0 0 ' 00

Fig. 3.4. Numerical solutions advection-reaction problem (3.22) at t = 1,2, 3, 4.

The numerical solution of the first component w1 for the scheme with 6 = % is given in in

Figure 3.4 at time ¢t = 1 (top left), ¢ = 2 (top right), t = 3 (bottom left) and ¢ = 4 (bottom
right; different scale). There are some smooth oscillations in the wake of the Gaussian pulse, but
these are caused by the spatial discretization with central differences. The instabilities occur
near the corners where both advection speeds, in x and y direction, are large. The build up of
the instabilities is very slow, and therefore it will be difficult to detect this with error estimators.
To some extend the slowness of the instability can be attributed to the fact that they occur near
an outflow boundary, but related tests have shown that it is mainly caused by the fact that we
have amplification factors only slightly larger than 1 in modulus.
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Finally it should be noted that the advection treatment here, implicit with central differences,
is only justified for problems with smooth solutions. If steep gradients may arise some upwinding
or flux limiting is to be preferred. The experiment here merely serves as an illustration of the
theoretical results on the stability of the ADI method with s = 3. &

3.4 Rosenbrock methods with approximate matrix factorization (AMF)

With the above ADI method we still still are dealing with the explicit Euler method for Fy. To
allow a second-order explicit method we first consider a linearization of this ADI method. In
the following only autonomous equations are considered.

As starting point we consider the linearized 8-method

Wn1 = wp + (I — 0TA) " '7F (w,) (3.23)

where A approximates the Jacobian matrix F’(wy,). This is a so-called Rosenbrock method. It
has order 1 if 6 # 3 and order 2 if § = 1 and A — F'(w,) = O(7) .

We consider the form where in the Jacobian approximation the nonstiff term is omitted and
the rest is factorized in approximate fashion, that is

W1 =Wy + (I —O07A) e (I = 07Ay) NI — 07 A) 1 F(wy) (3.24)

with A4; ~ FJ’ (wy). The order of this approximate factorization method is 1 in general. For
second-order we need 0 = % and Fp = 0. If the problem is linear this approximate factorization
method is identical to the Douglas ADI method. Hence the linear stability properties are the
same.

A 2-stage generalization of the above approximate factorization method is given by

3 1
Wnt1 = Wn + 5k1 + 5k,

3.25
Mkj:TF(tn,wn), MkQZTF(tn"i_CT’w"—i_kl)_Zkl’ ( )

where M = [[7_,(I — 074;), Aj = Fj(w,) and 0 is a free parameter. The order of this method
is 2 (in the classical ODE sense). If Fy = 0 and F; = F this is a well-known Rosenbrock method
that has the special property that the order is not influenced by the Jacobian approximation.
This Rosenbrock method is A-stable for § > i. On the other hand, if F' = Fy we now get a
second-order explicit Runge-Kutta method.

The above method has been proposed in Verwer et al. [15], and in that paper the scheme was
applied successfully on some 3D atmospheric transport-chemistry. problems. There operator
splitting was used with Fy advection, F} diffusion and F5 reaction, and the free parameter was
taken as = 1+ %\/5 to have optimal damping (L-stability). The eigenvalues of F; and F5 were
close to the negative real axis, and therefore stability problems were not expected, and indeed
did not occur.

It is for such problems, where the structure of the eigenvalues can be well predicted in
advance, that these approximate factorization methods seem suited. For general applications
values 6 in the range [%, 1] seem more suitable than § =1 + %\/5, because the latter value gives
relatively large error constants.

The above Rosenbrock methods are formulated here for autonomous problems. A nonau-
tonomous problem w'(t) = F(t,w(t)) can be written as v'(t) = G(v(t)) with v = (¢t,w)’ and
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G(v) = (1, F(t,w))T, and so the methods can be applied to this artificial autonomous problem.
Then ¢t is formally also considered as an unknown, but it is easily seen that the approximation
t, found with this method still equals n7. When reformulated on the original level, in terms of
wy,, the methods will now also involve approximations to the derivatives Fy(t,w). For example,
with Aj ~ 8ij(tn+9,wn) e Rmxm, bj ~ 8tFj(tn+9,wn) € R™ and

o 1 0---0 (m+1) % (m+1)
Bj = < (I — 07 A;)0rb; (I — 0rA )" ) €R )

the factorized Rosenbrock scheme (3.23) then reads

tn+1 tn T
- B,---ByB .
< Wna1 ) < Wy, ) + bs 21 ( TF(ty, wy) )

We will have t,, 11 = t,, + 7, as it should be, and the computation of w,; can be written in the
more transparent recursive form

dvo = 7F (tp,wy), dvj=I— HTAj)_1(9T2bj + dvj_l) (1<j<s), wpt1=wy+dvs.

Note. It is also possible to linearize a multistep method and then use approximate factorization.
Such methods can be found in Warming & Beam [16]. Runge-Kutta methods of the IMEX type
have been studied recently by many authors, see the references in [6]; if such methods are applied
in a linearized form, they are similar to the above factorized Rosenbrock methods with s = 1.

Remark: Modified Newton Iterations. Instead of the above techniques, one could also
use a well-known fully implicit method and then try to modify the Newton process such that
the computational ease is comparable to the IMEX or approximate factorization methods. The
advantage is that if the iteration converges, then the theoretical properties of the fully implicit
method are valid.

Consider a generic implicit relation

Wpt1 = Wy + 07F (wp41) (3.26)

where W, contains the information up to t,. This may be for instance Backward Euler (6 =
1, W, = wy,), the Trapezoidal Rule (0 = %, W, = w, + %TF(tn,wn)) or the BDF2 method
(0= %, W, = %wn — %wn_l). Then the Newton iteration to solve the implicit relation will look
like

i1 = uj — ML (u 9T F(u;) — Wn) . i=0,1,2,.. (3.27)

with initial guess ug. Standard modified Newton would be M = I — 67 A with A ~ F'(vp). For
systems of multi-dimensional PDEs this leads to a very big linear algebra problem that has to
be solved by a preconditioned conjugate gradient or multigrid method for example.

As an alternative one can consider approximate factorization inside the Newton process,

M= ﬁ([ —07A,) (3.28)
j=1

with A; ~ Fj’ (vp), but now we have to look at convergence of the iteration.
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When applied to the scalar test equation this iteration process has a convergence factor

s

S=1- (H(l—ezj))_l<1—azs:zj) (3.29)
=0

J=1

and for the iteration to converge we need |S'| < 1. This looks very similar to the stability factor
with the Douglas ADI method. Indeed, the statements given previously for |R| < 1 with the z;
in wedges are also valid for the convergence factor, see [5].

In the next figure the boundaries of the convergence region are plotted for special choices
of z; with zp = 0, similar to Figure 3.3. The dotted curved lines are the contour lines for |5 |
with all z; equal. If the z; assume large negative values, then |[S| is close to 1 and thus the
convergence will be very slow. Moreover divergence may occur if s > 3 and two or more of the
zj are close to the imaginary axis.

3k 4 3k 4

I I I I I I
-5 -4 -3 -2 -1 0 1 2 -5 -3 -2 -1 0 1 2

Fig. 3.5. Regions of convergence |S| < 1 for § = 1 with equal z; = z or z, = co. Left picture s = 2,
right picture s = 3.

In conclusion it can be said that the convergence of such a modified Newton iteration with
approximate factorizations is often very poor, so it is not an approach that is recommended
for general equations. Of course, there are special cases, especially with smooth solutions (no
high Fourier harmonics), where this approach may work well. However the class of problems
where the iteration does not diverge seems close to the class where the Rosenbrock schemes
with approximate factorizations are be stable, see Figures 3.3 and 3.5. In those cases the
simpler Rosenbrock schemes with approximate factorizations will be more efficient, and with
such Rosenbrock schemes smoothness of the solution is not required.

3.5 Numerical illustration

In this section some numerical illustrations are given for the schemes applied to a simple 2D
advection-diffusion-reaction equation (see [6] for more realistic problems). We shall refer to the
1-stage scheme (3.23) as ROS1 and to the 2-stage scheme (3.25) as ROS2, and for both schemes
parameter values 6 = % and 1 are considered.

We consider here the following 2D equation, on spatial domain = [0,1]? and ¢ € [0, 1],

up + g + uy) = €(Ugg + uyy) +yu (1 —u), (3.30)
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with traveling wave solution
-1
u(z,y,t) = (1 +exp(a(z +y — bt) + c)) . (3.31)

Here a = \/y/4¢ determines the smoothness of the solution, b = 2a + /7€ is the velocity of the
wave and ¢ = a(b—1) a shift parameter. Initial and Dirichlet boundary conditions are prescribed
so as to correspond with this solution. Due to the time-dependent boundary conditions, the semi-
discrete problem is non-autonomous and the Rosenbrock methods are applied to the extended
autonomous form.

For this scalar test example splitting is not really necessary, but the structure of the equations
is similar to many real-life problems where splitting cannot be avoided with present day computer
(memory) capacities. In Verwer et al. [15] application the ROS2 method can be found for a
large scale 3D problem from atmospheric dispersion.

Reaction-diffusion test. First we consider the above test equation with o = 0. To give an
illustration of the convergence behaviour of the various methods we take v = 1/e = 10, which
gives a relatively smooth solution.

For this smooth problem the spatial derivatives are discretized with standard second-order
finite differences. Let D®)(t,u) = A@qy + g(*)(¢) stand for the finite difference approximation
of euy, with the associated time-dependent boundary conditions for x = 0 and « = 1. Likewise
DW)(t,u) approximates €y, with boundary conditions at y = 0, y = 1. Further, G(¢,u)
represents the reaction term yu?(1 — u) on the spatial grid. We consider the following two
splittings with s = 3 and Fy = 0,

(A4) -+ F =D [=DW =3¢,
and
(B) --- F =G, F,=DW, F=DW,

Since the reaction term in (3.30) with v = 10 is not stiff, we also consider here the case where
this term is taken explicitly,

Cc) -~ F=G, F=DW F=DW.

The spatial grid is uniform with mesh width A in both directions. The errors in the Ls-norm
are calculated at output time T'= 1 with 7 = h = 1/N, N = 10, 20,40, 80. In the Figure 3.6
these errors are plotted versus 7 on a logarithmic scale. The results for the ROS1 scheme are
indicated by dashed lines with squares if § = 1 and circles if § = % Likewise, the results for the
ROS2 scheme are indicated by solid lines with squares if § = 1 and circles if 8 = %

For comparison, results of the well-known fractional step (LOD) method of Yanenko are
included, indicated by dotted lines with stars. With this method fractional steps are taken with
the implicit trapezoidal rule v; = vj_; + %TFJ (tn,vj—1) + %TFJ (tnt1,v5), with vg = wy,. After
each step the order of the F} is interchanged to achieve symmetry and second order (in the
classical ODE sense), see formula (2.7) with ¢ = % If an explicit term Fp is present, the implicit
trapezoidal rule is replaced by its explicit counterpart for the fractional step with Fjp.
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Splitting (A)

Splitting (B) Splitting (C)

-5 -5 —a
2 —1 2 —1 2 -1

10~ 10 10~ 10 10" 10

Fig. 3.6. Lo-errors versus 7 = h for the splittings (A), (B) and (C). Methods ROS1 (dashed lines) and
ROS2 (solid lines) with 6 = 1 (circles) and § = 1 (squares). Results for Yanenko’s method are indicated

with stars.

It is known that Yanenko’s method needs boundary corrections to obtain second-order con-
vergence for initial-boundary value problems, otherwise the order of convergence can be lower;
see e.g. [6]. In the present test we get convergence with order % approximately. The test
was repeated with boundary corrections, but still the results were less accurate than with the
second-order ROS schemes. Finally we note that boundary corrections were also attempted on
the Douglas scheme, similar to formula (101) in Mitchell & Griffiths [9]. In the above test this
did lead to smaller errors, reduction with a factor ranging between 1.2 and 2, but the conver-
gence behaviour did not change fundamentally. Since boundary corrections have to be derived
for each individual problem, it is a favourable property of the stabilizing correction schemes that

such corrections are not necessary to get a genuine second-order behaviour.

Advection-diffusion-reaction test. To illustrate the improved stability behaviour of the 2-stage
scheme ROS2 over ROS1 if a substantial explicit term is present, we now consider the test
equation with a advection term with o« = —1 that will be taken explicitly. Further we choose

= 100 and € = 0.01,0.001 which gives solutions that have a steep gradient, relative to the
mesh widths used here.

The splitting is such that Fj contains the convective terms, Fy, F5 diffusion in z and y
direction, respectively, and F3 the nonlinear reaction term. The convective terms are discretized
with third-order upwind-biased differences (4-point stencil). For the diffusion terms standard
second-order differences are used as before.

The results with € = 0.01 are given in the Figures 3.7, 3.8. In the plots of Figure 3.7 the
solutions h = 1/40 and 7 = 1/80 are found, represented as contour lines at the levels 0.1,
0.2,...,0.9, with solid lines for the numerical solution and dotted lines for the exact solution.
Quantitative results are given in Figure 3.8, where the Ls-errors are plotted as function of the
time step for a 40 x 40 and 80 x 80 grid with 7 = h, %h and so on. As in Figure 3.6 results for
ROS1 are indicated with dashed lines, for ROS2 with solid lines, and with squares if 6 = 1 and
circles if 6 = %

It is obvious that the 2-stage schemes ROS2 give much better results than the corresponding
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1-stage schemes ROS1. To achieve a level of accuracy comparable to the ROS2 schemes we
need much smaller time steps with the ROS1 schemes, see Figure 3.8. This is primarily due to
the more stable treatment of the explicit advection term with the ROS2 schemes. The explicit
2-stage Runge-Kutta method underlying ROS2 is stable for third-order advection discretization
up to Courant number 0.87 (experimental bound). On the other hand, some of the eigenvalues
associated with this discretization are always outside the stability region of the explicit Euler
scheme. In this test it is the (implicit) diffusion part that provides a stabilization for the smaller
step sizes. (In fact, for e = 0.01 similar results were obtained with second-order central advection
discretization, but not anymore with e = 0.001). Further we note that instabilities do not lead
to overflow since the solutions are pushed back to the range [0,1] by the reaction term, but the
resulting numerical solutions are qualitatively wrong.

ROS1,6=1 ROS1,6=1/2

0.2 0.4 0.6 0.8

ROS2, 6=1/2

0.2 0.4 0.6 0.8

Fig. 3.7 Contour lines numerical solutions for € = 0.01 with h = 1/40, 7 = 1/80.

0.7 0.35 ——— =5
. 0
0.3 p -
Ve —~
0.25 AR ~
/
0.2 p/ L
7
0.15 S
, o
0.1 B 7
/
0.05f - ©
49//9
0 0
0 0.005 0.01 0.015 0.02 0.025 0 0.005 0.01 0.015

Fig. 3.8. La-errors versus time step 7 on 40 x 40 grid (left) and 80 x 80 grid (right) for e = 0.01.
Various methods indicated as in Figure 3.6.
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Decreasing the value of the diffusion coefficient € gives a clearer distinction between the
methods. Results with € = 0.001 are given in the Figures 3.9 and 3.10. The grids chosen are
80 x 80 and 160 x 160, since the 40 x 40 grid gives quite large spatial errors with this small
€. The results are essentially the same as above: the 1-stage schemes ROS1 need much smaller
time steps than the ROS2 schemes to obtain reasonable solutions.

For more realistic problems with stiff reaction terms, nonlinear advection discretizations
with flux limiters are recommended to avoid oscillations, and this fits easily into the present
framework due to the explicit advection treatment.

ROS1, 6=1/2

0.8
0.6
0.4
0.2

ROS2, 6= 1 ROS2, 8= 1/2

0.8 ] 0.8
0.6 ] 0.6
0.4 ] 0.4
0.2 0.2

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

Fig. 3.9 Contour lines numerical solutions for e = 0.001 with A =1/80, 7 = 1/160.

1 1.4
1.2
0.8
1
0.6 0.8
0.4 0.6
0.4
0.2
0.2
0 o
0 0.005 0.01 0.015 0 8

Fig. 3.10. Ls-errors versus time step 7 on 80 x 80 grid (left) and 160 x 160 grid (right) for e = 0.001.
Various methods indicated as in Figure 3.6.
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A short note

José Almiro Abrantes de Menezes e Castro (1953-2002)

This is an opportunity to dedicate this presentation to José Almiro. I met him in 1978 when I was coming on
saturday to teach System Dynamics and Design courses at the University of Coimbra and he was starting his
academic carreer. Later he went to the University of Leeds where he worked with Prof C. Mc Greavy and

defended a PhD thesis on “Aspects of modeling chemical processes for adaptive control” (1983) .

He contributed a lot for the use of modeling and simulation tools not only in academia but also in industry. The
last time I met him was during Chempor’2001, September 2001 in Aveiro. I was asked to organize this Workshop
as a CIM event “Mathematics and Chemical Engineering” (2003) in collaboration with José Almiro and Paula
Oliveira (Department of Mathematics, University of Coimbra). The deadline to submit the proposal was
approaching and I tried to call José Almiro. After several trials I learned that he was leaving the Hospital where
he knew he had a big fight awaiting him. Our phone conversations occurred immediately after and at a time he

was optimistic but unfortunately he could not win the difficult battle.

I hope his example will flourish in Coimbra.



INDEX

Following the advise of Dwig Prater given to Jim Wei [1] on how to present a communication (“tell them what
you will tell them, then you tell them and finally you tell them what you have just told them™) my talk will be

organized as follows:

Back to origins
Unit operations-first paradigm of Chemical Engineering
Engineering Science Movement- second paradigm of Chemical Engineering
Momentum, heat and mass transfer: Newton, Fourier and Fick.
Philosophy of modelling
“Le Génie Chimique c’est pas de la plomberie” (P. Le Goff)
Models: “idealize” and “know” the reality
Strategy of modelling
The “art” of modelling
Scaling and dimensionless groups
Averaging
Choice of variables
From model results to “real life”
Obtaining useful relations between state variables
108, 100$ e 10003 models(Levenspiel)
Boundary layer and film (heat, mass) models
Diffusion, convection and reaction in isothermal catalysts - intuition is not enough
Fluid flow in chemical reactors: Residence Time Distribution and tracer technology
More 10§ models
1000$ models
Simulation
Chromatographic processes
Perfusion chromatography
Simulated Moving Bed
Conclusions

References
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Back to the origins

Unit operation- first paradigm of Chemical Engineering

George E. Davis (1850-1906) made a proposal (without success) in 1880 for the creation of the "Society of
Chemical Engineers in London". In 1887 he gave a seties of lectures on Operation of Chemical Processes at
Manchester Technical School and published the "Handbook of Chemical Engineering” (1901). His approach, in
terms of unit operations, emphasizes the importance of experimentation at pilot scale and safety rules; he uses the
term "chemical engineering" to designate the profession then emerging which corresponds in a certain way to

today’s chemical engineer.

Lewis Mills Norton (1855-1893), Professor of Industrial and Organic Chemistry at MIT, taught in 1888 the first 4

years  course  in  Chemical

Engineering -"Course X". The first
chemical engineer to complete that
course in 1891 was William Page
Bryant; his job was in insurance
auditor for the Boston Board of

Fire Underwriters. Any similarity

with current market situation is

el

William H. Walker (1869-1934), George Davis Lewis Norton

merely coincidence.

Warren K. Lewis (1882-1975), and Arthur D. Little are the pioneers who defined chemical engineering as a
profession with proper
approach and  fraining

methods.

Arthur D. Little was the
first to use the term
"unit operations” in a
report  (1915) to the
president of MIT. He

) William H. Walker Arthur D. Little Warren K. Lewis
created in 1886  the (1869-1934) (1882-1975)

company later known as

Arthur D. Little, Inc. In 1900 he is associated with William H. Walker (BSc in Chemistry, Penn State and PhD

Organic Chemistry, Gottingen) but Walker left to restructure the curriculum of ChE at MIT and in 1908 the
Research Laboratory of Applied Chemistry is created. Students worked in real problems given by industry which
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was also paying the grants! Warren K. Lewis, who attended the ChE programme at MIT and PhD in Organic
Chemistry from the University of Breslau, became a staff member of MIT in 1908; his ability to theorize
engineering problems and his strong character contributed to strengthen the programme. The teaching of unit
operations became quantitative. In 1916 three units of the School of Chemical Engineering Practice were opened
where students worked 8 weeks on experimental work. This period is condensed in the teaching manual: The
Principles of Chemical Engineering (1923) by Walker, Lewis, and William H. McAdams. Walker, sometimes
considered the father of ChE goes back to consulting. Lewis continues in MIT in collaboration with Standard

Oil Company (later Exxon) and with Gilliland is the inventor of FCC of petroleum (gasoline for WWII) [2].

Engineering Science Movement- second paradigm of Chemical Engineering

This movement is illustrated
by the book of Bird, Stewart
e  Lighfoot  “Transport
phenomena” [3] which treats
in parallel transfer processes
of momentum, heat and
mass, which are after all a

major portion of the ChE

activity. ~ The  transport

Bird Stewart Lighfoot

phenomena approach was
initiated by Kramers (Delft University of Technology) where Bird spent a semester and knew the lecture notes

Physische Transportverschijnselen.

dv

X

dy

Momentum transfer — Newton’s law: 7, = -l

‘ : dT
Heat transfer by conduction — Fourier’s law : g, = —k——

dy

. - . __p 46
Mass transfer by diffusiono — Fick’s law: j, = =D, P at constant 0
'y
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PHILOSOPHLY

PRINCIPFILA
MATHEMATICA

Newton Fourier Fick

The above laws assume infinite velocity of propagation of the signal. This problem is eliminated following the
proposal of James Clerk Maxwell for momentum transfer

00 ou
Op *T—5 = —ﬂ;‘ [1]
where T is the time constant and the shear stress 0, in a fluid or solid body 0 ;
o] oc
Jjt T—_J =-D—
ot ox

for mass transfer [4Jand

17 oT
q+ T—_q =—k—
ot ox

[3]
for heat transfer ( VC equation of Vernott and Cattaneo) [5] . In homogeneous substances the relaxation time is

108-10 s and Fourier’s law works for normal heating processes. But in biological systems T is of the order of

10-30 s and CV equation applies.
Philosophy of process modelling

“Le Génie Chimique c’est pas de la plomberie” (P. Le Goff)

I remember Professor Pierre Le Goff when I was a student in Nancy. He said that a chemical engineer when

solving a problem writes [6]:
*  conservation equations (mass, energy, momentum, electric charge)

*  equilibrium law at the interface (s)
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* constitutive laws (for example, ideal gas law )
* kinetic laws of transport (heat/mass) and reaction
*  initial and boundary conditions
*  optimization criteria

This methodology has been useful to analyze problems at various scales involved in ChE :
*  pore scale (catalyst, adsorvent) : 1nm — 1000nm
*  particle scale : 10 lm- 1 cm

e reactor/ separator scale: 1m- 10m

[154

According to Aris [7] a “mathematical model” or simply model “is a
complete and consistent set of mathematical equations which are supposed to
correspond to some entity — its prototype - which can be a physical,
biological, social...entity although here we deal with physicochemical
systems”. A process model is a relation between “outputs” and “inputs” (feed

conditions, design parameters, process adjustable parameters; Shinnar) in view

of : 1) scale-up from lab to industrial scale; 1i) prediction of process dynamics

and 1if) optimisation of operating conditions.

Models: simplification of reality ; to “better” know the reality

The detail of mathematical description can be guided by objectives which can seem contradictory:

a) Simplification of reality - idealization

In an excellent paper Levenspiel [8], a pioneer of Chemical Reaction Engineering mention Denbigh [9] : “In
sclence it is always necessary to abstract from the complexity of the real world, and in its place to substitute a
more or less idealized situation that is more amenable to analysis”. This idealization leads to the creation of new
models, simplified, which are a “digital impression” of our profession. Examples are: i) boundary layer theory; ii)
model of film heat transfer; h; 1if) model of film mass transfer; k; 1v) theory of residence time distribution (RTD)

and tracer technology.

b) Detatled model to “better” know the reality
An example is the Maxwell-Stefan model for multicomponent diffusion [10].
The driving force is the gradient of chemical potential, ) which is for ideal gas:

K, =4 +RTInp, [4]

MODELLING AND SIMULATION IN CHEMICAL ENGINEERING | Alirio E. Rodrigues 6



The diffusive flux due to this gradient is balanced by friction forces:

dp,
—_— 5
pa 5]

where fis the friction coefficient and #;is the velocity of species i.

Ju, ==

The flux is:
RT dinp, dC,
Nj = ujCj = _—_pl—l
f aInC, dz (6]
e o _RT .
where the “corrected diffusivity” is D, =—— and the thermodynamic J.C. Maxwell
(1831-1879)
dlnp,
factor is =y
oInC,

For binary systems if the change in partial pressure of species 1 is -dp; over distance 43, the force acting in 1 per

. D, . . . . . D .
volume is === ; if the concentration of 1 is C; the force per mole of species 1is =———— and for an ideal gas
z y4
1

_E% = _RT_dlnpl

or
p, dz dz
_grdinp __du 7]
dz dz

This force is balanced by the friction between species 1 and 2, proportional to the difference of velocities and to

the concentration of component 2, expressed by x2. The balance of forces acting in species 1 is

d RT
_7'21 :sz(ul_”z) (8]
ot

1 4 1
_;_];l = D XX 2(”1 - ”2) [9]

For # components:

J=0 ix,.N. -x N, (0]
=[x =

i i = C,Dj}lS

Strategy of modelling

A philosophy of modelling can be based in 4 points [11]:
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a. Start with simple models; obtain from such models information which remains valid for more complex
models (10§ approach of Levenspiel [8]: “Always start by trying the simplest

model and then only add complexity to the extent needed ).

b. The validity of a model is not just a result of a “good fit”; more important is
the capability to predict the system behavior under operating conditions

different from those used to get model parameters.
c.  Good results can only be obtained if the model “well” represents the

d. Use models to obtain useful design parameters and their dependence on

operating conditions; use independent experiments if possible to get model

par ameters.

Levenspiel

In short: model development is a task to be carefully done to avoid waste of energy in

the next simulation step. “Keep things as simple as possible, but not simpler” (Einstein)

The “art” of modelling

The “art” of modelling uses some techniques (tricks) such as: adimensionalization and scaling, averaging,

appropriate choice of independent variables.

Scaling and dimensionless groups

Chemical engineers have some habits as normalization of variables to get scales between 0 and 1. As a

consequence of that mathematical operation dimensionless groups appear with a physical meaning,

An example: diffusion/reaction in an isothermal porous catalyst with slab geometry. The mass balance in steady
state for irreversible reaction of order 7 1s:

d’c, "
De?—kci =0 [11]

with boundary conditions (symmetry condition in the center and surface condition)

s=0% -0
dz [12]
z=lc;, =c

1

The normalization of space variable and concentration variable by:

x=zl¢

fi=eleg

leads to
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&if 2kc

7 — f [13]

which shows the dimensionless group governing the reaction/diffusion problem:

kc
/2
=¢= Da, [14]
where @is the Thiele modulus. Cis regime quimico Cis
; : : : . regime
The physical meaning of the dimensionless group is: =

2 ‘ U e ,
¢" =Da,, =reaction rate/diffusion rate= diffusion time

constant/ reaction time constant. T'wo extreme cases:

regime difusional

a) reaction rate << diffusion rate — concentration profile

inside the catalyst is almost equal to the surface |

concentration; the catalyst works on “chemical z=-| z=0 z=

regime”; Figure 1'. Ch'cmica'l regime and diffusional
regime in an isothermal catalyst
b) b) reaction rate >> diffusion rate — the catalyst works

in “diffusional regime” .

Averaging

Let us illustrate this technique with the LDF model (linear driving force) of Glueckauf [12].

For a spherical “homogeneous” adsorbent particle the mass conservation equation is:

% : 2 oqr
ot "R dR B? 1]

with boundary conditions (symmetry at the center and equilibrium with the fluid concentration at the surface

through the adsorption equilibrium isotherm f(c;)):
R= 0,% =0
OR

R=R,.q=f(c)

The averaging operation consists on multiplying both members by R?dR, and integrate over the particle volume

[16]

(between 0 and R;) and introduce average concentration <q;>; the result is:

olq.l 3D, og, 3D, q,—Lgq,L 15D
q; :_hi - n 4is 4q; - h (q,-g _@jD) [17]
a R, orl, R, ar

P P »
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dolg,[ 15D

ot R?

r

: (qis_m]im):kh(%s_m]im) [18]

Choice of variables

To illustrate this technique let us consider a;(R)
the equilibrium model of an isothermal

adsorption column with plug fluid flow of a

diluted stream (frace system). Model equations C.
is
are the mass balance of the solute in a bed
Figure 2. LDF model
volume element and the equilibrium law at

the interface fluid/solid:

oc, oc, oq,
—+e—+(1-6)—+=0
b e ( )d[
q, = flc,)

For an adsorption isotherm of “ constant separation factor” type and normalizing the dependent variables,

[19]

~ " q
C‘:_lﬂf = we get:

o [20]

1+ (K -1c,
A first dimensionless parameter appears: the “capacity parameter” of the adsorption column
1-¢ g,
& =——<4o [21]
€ Cp
A combination of the independent variables £ and 7in only one variable T ( throughput parameter of Vermeulen

[13] ) defined as the ratio of moles of solute passed through the bed section located at v=Az and the number of

moles retained in the adsorbent contained in the volume v, is:
T= co(V-£v)/(1-8)qov [22]

4 1 Lyt .
The new variable T :f— - ]) allows us to write the mass balance as:
m 4

4q,
dc.

1

=T 23]
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and taking into account the adsorption equilibrium isotherm

dq, _ K

de, [L+e (K -f [24]

we get

0 1 2 3 4

T

Figure 3. Breakthrough curves for unfavourable
isotherms

From model results to real life

Back to the reaction/diffusion problem for first order reaction in isothermal catalyst. The concentration profile
is:
cosh(¢x)

T 26
The effectiveness factor of the catalyst (ratio between the observed rate and the reaction rate at reference
conditions, e.g., surface) calculated by the Italian or German method (students will recognize Gauss theorem

relating divergence and flux...) is:

_ tanhg

27
p [27]

It is important to know the effectiveness

factor to calculate the amount of catalyst one

needs to have in the reactor to get a given o1

* Te

0.1 1

. 10
reactant conversion. (I)i

Figure 4. Effectiveness factor versus Thiele modulus.

But to know the Thiele modulus the kinetic

constant £ must be known(and many times it is not ...).
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Hopefully there are always bright people

around to transform theoretical results in 1y
practical tools. Weisz and Prater [14] n
changed the plot /7= f(¢) in another

more useful /]:g(17¢2) where /]¢2 does

not require the knowledge of 4; but only

measurable quantities since: ‘ ‘ ‘ ‘
0.01 0.1 1 10 100

2
— rnbsgz n ¢
ng =-— [28] - | 2
C,.SDe Figure 5. Effectiveness factor versus ¢

Obtaining useful relations between dependent variables

Consider the diffusion/reaction/conduction problem in a non-isothermal catalyst. For slab geometry and first

order irreversible reaction conservation equations of mass/energy are:

d’c,
DEE —k(T)c,=0

d’T
—_t(— =
A, e (-AH)k(T)c, =0 291
ooqde 9T g
dz dz

Z:f’ci :ciS;T:Ts

Multiplying the first equation by the heat of reaction (-AH) and adding the second we get:

d’c, d’r
D,(-AH -+ A,— =0 30
e( ) d22 e dZZ [ ]
Integrating twice we obtain:
D.(-AH Cis i
r-1=2L80 151] — —

oA N Gi(R)
This equation was derived by Damkohler [15] and provides a E
relation between concentration and temperature in a point inside the
catalyst. A similar treatment holds for adiabatic catalytic reactors T

using pseudo-homogeneous models. It is easier to measure
Figure 6. Concentration and
temperature profiles in a non-
isothermal catalyst.

temperature than concentrations!
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Models of 10$, 100$ e 1000$ (Levenspiel)

Boundary layer concept

How is the fluid velocity affected when it flows near a solid surface?

The answer was given by Karman-Prandtl (1934). For flow parallel to a flat plate
in laminar regime , Re.=vpx/U<2.10 model equations are:

ov ov G2y
v X 4 vy X = x

&

o
L+—==0 [32]

Y Prandtl

The velocity distribution in a tube from the laminar sublayer up to the central turbulent core is, in terms of

I,/p

1 :‘/T:_/,O versus " = N E

V+:y+,5>y+>0

v'=-3.05+5Iny";30>y" >5 [33]
v*=55+25lny*;y* >30

Prandtl (1904) [16] proposed a simpler model for the velocity profiler — linear variation with distance from the
solid sutface or du/dy=0 and u=0 at y=0 in the viscous layet- and a non viscous layer away from the solid. Von
Karman comment about Prandtl: “Prandtl (1875-1953) was an engineer by training. His control of mathematical
methods and tricks was limited...However, he had a unique ability to describe physical phenomena in relatively
simple terms, to distill the essence of a situation and to drop the unessentials. His greatest contribution is in

boundary layer theory”.

Film Model for heat transfer, b

When studying heat transfer from a hot fluid flowing around a cold surface W.K. Lewis (MIT, 1916) [17]

proposed a linear profile of temperature in the film without additional variation away from the surface.
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By analogy with Fourier’s law, the total heat flux (J/s) through the film is

. AT .
q =/\AA— or q =hAAT where the film heat transfer coefficient is
WV

A hd
h :A— . For isolated spheres _AE =2+0.6Re"*Pr’®.
WV

Film Model for mass transter

Whitman (1923) [18] used a similar treatment for mass transfer from a fluid

to a solid surface and again proposed a linear concentration profile in the

film; the total mass flux through the film for species i (mole/s) according to T. Sherwood

. ) . D
Fick’s law is N, = DA% or N, = kAAc, where k=— is the
By By

film mass transfer coefficient. For isolated  spheres

W

w XD

*uislunmﬂ 3
rem WAL valocity profite {
kd p 12 o 13 . S fiietielon
=2+0.6Re" “Sc™". The Sherwood number appears in the " W
D B S i
— =— vistout
lhs of equations above; a chemical engineer should remenber some G o 2 ! Lo
(ab velocity, u ) velogity, o

nllmbers aﬂd one Fig 1. Velogity profile near & wall: {a) actual profie, and (h) smplified

profile.
1S Sh min=2.
_dia.'m_u
T $acdd actual T gragent from
qudimr { e film model

Fig. 2 Temperasure by a wall: (a) sctual profile, snd {b) simplified profile

Figure 7. Film Model

Analooies between momentum, heat and mass transter.

When Sc and Pr are of the order of 1 the analogy of Reynolds between the three transport modes is:
Msn=Ms,=£/2 or:

kK h
—= =712 34
P f [34a]

When Sc is 1000 (liquids) in laminar flow a small turbulence can affect the transport of heat/mass even if the

velocity distribution is not much affected. The analogy of Chilton-Colburn is then applied:
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jm :jh :f/2
Jm = MsmSCZ/3
»/3 [34b]
Jn=Ms,Pr

Diffusion, convection and reaction in isothermal catalysts, - intuition is not enough

The importance of intraparticle convection in the catalyst effectiveness was analysed by Nir and Pismen [19] in
1977 for first order irreversible reaction in isothermal catalysts. The problem was first dealt with by Wheeler in
1954 [20] ; he concluded that intraparticle convection would be important only for gas phase systems at high

pressure in catalysts with very large pores. For the reaction A — B in slab catalysts the mass balance is:

d’ d
L2, L -agif =0 [35]
dx dx )
with BC: f=1 at x=0 and x=1. Model parameters are:
2 C. regime quimico .
. . . 1S 1S
Thiele modulus @ =/¢_[— (¢2 ratio between time _
‘1 D s regime
¢ N intermédio
constants for pore diffusion and reaction); intraparticle M
Vol , )
Peclet number A, =—— (ratio between time
De regime difusional
constants for pore diffusion and convection). The
concentration profile inside the catalyst is: |
z=-1 z=0 z=l
_ sha g™ —shae™* ™ 36 Figure 8. Assymetric concentration profiles
/= shia, - a,) [36] in large pore catalysts
A, £ R +4@
where &, = .
2
The effectiveness factor is:
o, -1/a,
Mo = 157]
cotha, — cotha.,
o . tanh ¢ . -
When convection is not important, i.e., Agjy =0 /], = . The effect of convection can be seen in Figure 9

S
where Ndc/Nd is plotted versus Am and @s. In the intermediate region of Thiele modulus (similar reaction and

diffusion rates) the effectiveness of the catalyst is improved by convection. The pore convection will apparently
increase diffusivity and move the catalyst working regime from diffusional to “chemical” controlled. The message

is: intuition is not enough!
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Fluid flow in chemical reactors: Residence Time Disttibution (RTD) and tracer technology

Danckwerts (1953) [21] approached the study of fluid flow in reactors in a brilliant and simple way :“introduce a
pulse of tracer into the fluid entering the reactor and see when it leaves”. The normalized outlet concentration
versus time is the Residence Time Distribution (RTD). The study of RTD of flowing fluids and its consequences
can be put under the umbrella of tracer technology. This is important for
chemical engineers, researchers in the medical field, environment, etc to
diagnose the reactor behaviour, drug distribution in the body, etc. When
I taught this subject at the University of Virginia students saw the
application when in a Department Seminar someone from Merck, Sharp
and Dome talked about pharmacokinetics! Danckwerts built a theory
based on the characterization of fluid elements of a population inside the
reactor (age and life expectation) and leaving the reactor (residence
time). Then he introduced the “distribution™ relative to each character;
the residence time distribution E(t) is then defined as E(t)dt being the

fraction of fluid elements leaving the reactor with residence time

between # and #+df. The next question is how to experimentally have

Danckwerts

access to E(t). This brings the tracer technology to the center of the
arena. The normalized response to an impulse of tracer C(t) is directly related with the RTD,ie., C(f) = IE (f);
dF (1)

7 .

or the normalized response to a step input of tracer F(t) cutve of Danckwerts is £ (t) =

This is a characteristic of linear systems: the response to an impulse is the derivative of the response to a step

input. How this linearity appears in this macroscopic vision of fluid flow where Navier-Stokes

Dv 2 o . L .
pE = pg— UP + uld"v applies in a detailed description is a matter of think about.
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It is also interesting to note that the RTD is the inverse Laplace transform of the transfer function G(s) , ie.,
E() =L"G(s).

This relation allows the calculation of the moments of E(t) from G¢(s) and its derivatives at s=0 ( Van der Laan

theorem).

La

Finally the chemical engineer uses the hydrodynamic

o . .. E©) |
characterization to connect with the reaction kinetics
obtained in a batch reactor, crach (t)) and predict the -
average outlet concentration in a real reactor:
m
ﬁ-
0 i
<c>= [ E(0)cy0 ()t [38] _
0
[
This result is valid for first-order reactions. For other L;" ,

reaction kinetics it gives the limit when the flow is
completely segregated; in the limit of maximum Figure 10. Residence time distribution, RTD

micromixing the Zwietering equation holds.

Morel10$ models: adsorption columns. Physical concepts from simple models

The model assumes isothermal operation, plug fluid flow, infinitely fast mass transfer between fluid and solid

phases (instantaneous equilibrium at the interface) and trace system. Model equations are:

oc, oc, olgl
% g% 1-g 2
- e, TTE)

o [39
(4,05 g, = f(c)
where <q> is the average concentration in the adsorbent and ¢, = f(c,) is the concentration at the surface in

equilibrium with the fluid concentration 4. Using the cyclic relation between partial derivatives (yes...they are

usefull) we get:

iz u
P o o
Ci C.
é

This is De Vault equation (1943) [22]. Those interested in understanding adsorptive and chromatographic
processes will recognize this is the most important result to retain. It shows that adsorption in fixed beds is a
phenomenon of propagation of concentration waves. The simplest model shows that the nature of the
equilibrium isotherm is the main factor influencing the shape of the breakthrough curve. The physical concepts
to be retained are: dispersive waves are formed when isotherms are unfavourable; each concentration propagates

with a velocity given by De Vault equation. Compressive waves are formed for favourable isotherms and the
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physical limit is a shock which propagates with a velocity #,, = , where the slope of the chord

ui
1+1;£%
£ Ac,

linking the feed state and the bed initial state appear instead of the local slope of the equilibrium isotherm.

nk nk

—) —\ — — - — — -
P
X X
(a) (®)
Figure 11. (a) Unfavorable isotherms and dispersive fronts (b) Favorable isotherm and compressive
front.
1000$ models

Levenspiel [8] summarizes the progress on the study of fluid flow: “In the 19" century there were two
approaches to study fluid flow: hydrodynamics (dealt with ideal frictionless fluid; highly mathematical stuff) and

4

hydraulics developed by civil engineers “ who amassed mountains of tables of pressure drop and head loss of
fluids in open and closed channels of all sort...”. At the beginning of the 20* century Prandtl said
“Hydrodynamics has little significance for the engineer because of the great mathematical knowledge required for
an understanding of it and the negligible possibility of applying its results. Therefore engineers put their trust in

the mass of empirical data collectively known as the “science of hydraulics”. Prandtl was the genius who patched

together these different disciplines with his simple boundary layer theory. The result is modern fluid mechanics.

On the other hand numerical methods for the solution of PDE’s exist and the combination of two solid
disciplines appears with a new name: “Computational Fluid Dynamics”. Twenty years ago I published in ISCRES
“Residence time distribution in laminar flow through reservoirs from momentum and mass transport equations”
[23]. It is a problem of 2-D flow in a reservoir of length L and height H where a stationary laminar flow exists
between inlet and outlet (Fig. 12). The formulation is made in terms of vorticity and stream function; the flow field

is obtained and the RTD is obtained by solving the mass conservation equation :
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This problem was solved with modern tools (Fluent) recently. It could be another CFD package (CFX, FIDAP,

etc).
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Figure 12. 2-D flow in a reservoir and RTD.
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Simulation

Chromatographic processes

The first chromatographic experiment dates from 1903 and was reported in 1905 by Professor of Botany
M.Tswett to the Warsaw Society of Natural Sciences: “On a category of adsorption phenomena and their application to
biochemical analysis” [24]. He coined the term “chromatography” inspired in the experiment : elution of a sample of
green leaves extract through a column of calcium carbonate which was separated in a yellow fraction(carotenes)
and green fraction (chlorophyll). These studies were rediscovered in 1931 by the Nobel Prize R. Kuhn working
on natural pigments. The theory of adsorption chromatography was developed in 1940 by Tiselius and partition
chromatography in 1941 by A. J. P. Martin and A. L. M. Synge (all Nobel) (1941). Another vision of history
shows David Talbot Day [25], geologist and engineer at the Mineral Resources of the US Geological Survey, who
presented in 1900 at the 15t International Petroleum Congress in Paris (1900) one experiment where “crude oil
Jorced upward through a column packed with limestone changed in color and composition” . This is the basis of PONA analysis

established in 1914 and still used in petroleum industry where the adsorbent is silica-gel.

1) (2
Figure 13. Experiments of M. Tswett (1) and D. T. Day (2).

Modeling of chromatographic processes

The factors influencing the behaviour of a fixed bed column can be classified in two categories: equilibrium and

kinetic factors (hydrodynamics, heat/mass transfer).
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IntraParticle Convection

IntraParticle Diffusion

Models can be classified in  two groups: I- Chemical

kinetics type and II- Physical kinetics type depending on

Film Mass Transfer

the rate law used[26,27] . The nuclei-model are Thomas

[28] for Type I and Rosen [29] for Type II. Hydrodynamics (RTD)
Equilibrium Data

Figure 14. Factors governing the behavior
of an adsorptive process

Thomas Model

oc oc l-¢eon
u—+—+——=0 [42a]
ox ot & ot

D ey —n) - (e, )] 425
ot

X
x=0;c=¢ Utandt<—;2=0 Ox
u

1 "(1-x") L. L ~ U
r i}(l ;*)wuh %—0% and y" = % [42c]

q

The solution is:

i:—1+—f snzZ [43]
c, 2 A

where 41 and B are functions of the model parameters. The Anzelius/Schumann model [33,34] developed for

heat transfer is a simplification when film resistance is considered. The solution is —= J(N,N;,T) where the
0

number of film mass transfer units Nfo is based on the bed length.

The chromatographic column as a dynamic system

For linear systems the transfer function of the column G¢(s) is the Laplace transform of the normalized impulse

response E(t) and the moments of E(t) are obtained from G(s):

_[t E@)dt=(- l)k d G(s) [44]

For the original model of Martin e Synge [35](The Plate Theory of Martin and Synge) the transfer function is:
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G()= [T (9 =a+= 45

where T =Jv7/U s the space time of the fluid phase and & = m /g =(n5/ M)eq s the ratio of amount of solute

in each phase and the stoichiometric time is 7. = T (1+£). The outlet normalized concentration is:
157 _J o
E(r) = %— ' 46
O="H8 oo 4]

The moments of E(#) are p =1, 1, =T(1+£) and 02 = £2/]; the peak maximum is 7,,,=7%(1-1/]) and the peak
width at mid-height for high J , is 20 =21 [\ .

The model (Mixing cells in Cascade with Exchange) [36] is obtained when the mass transfer between phases has

finite rate. Model equations are:

d
Uc,=Ucq +vfﬁ +k,,5(c, —ﬂ)
' m

[47]
n dn
kyS(e, - ) =v,
m dt [48]
B ttit—mvs—mht fer function G(s) 1
uttn: - - the transter runction S) 1S:
yp g m kmS kmap

-J
49
Gls)= g J 1+ts% w

The moments of the chromatographic peak are:

2
t,=1(1+k) and L=ty 2 b
t, J l+kt

r

~Y

Van Deemter, Zuiderweg and Klinkenberg viewed the

column as a continuous system [37] with

O L

k
where M(s)=
1+¢

. The variance is obtained by
S
m

0 1 2

-y

replacing 1/] by 2/Pe.
Figure 15. Influence of Jand Ng=kpapt (1-e)/¢
on the shape of a chromatographic peak for
k=1.
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Progressive modelling

A complete treatment details the particle description. When film resistance is included we have:

&)
kap(c _cs): Vp7 [51]
where (¢'/0)cq=€p + Ppk,= m and
c. ddic
c=—"+ —_< > [52]
m  k, di
The relation between <¢> and ¢’y can be obtained by solving the particle mass balance
TABLE 2. Characteristic dimension, H(s) and shape factor.
Geometry Characteristic Dimension _/ N\ /_ Shape Factor
=1/ 5 H(s)—<c> Cs u
slab of thickness 2/ / tanh¢ 1/3
4
infinite cylinder of ra- R/2 1,(2¢) 1/2
dius R a (29
sphere of radius R R/3 1L 1 1L 3/5
@anh 3p 3¢E
any shape d 1 M
1+ ugf
d’s
with =—
¢ )
A good approximation is H(s) = 1/(1+4z) with z;= Hd?/D, and then
<c'> m m
L(s) =——= [53]

o UH@s)+1s 1+(f+1)s

For finite adsorption rate I(s) Um/[1+(t+1+1,)5] where 1,=p,K,/mk, In general M(5)=k/(1+1,) with

Ly=tr+ 11, e G(5)=Gy[s(1+M(s)] where G(s) is the column transfer function in absence of adsorption.

Perfusion chromatography- Importance of intraparticle convection in large-pores

In chemical engineering there are materials (catalysts, adsorbents, membranes) with large pores (> 1000 A) for

transport and smaller pores to provide adsorption capacity and catalytic sites. As mentioned in the section
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“Intuition is not enough” my interest in this area started with a problem of measurement of effective diffusivity
in large pore catalysts using a chromatographic method and tracer technology. The analysis of results obtained by

Ahn [38] with a conventional model led to the conclusion that effective diffusivity was changing with flowrate.
Results were reanalyzed by assuming transport not only by diffusion , D, but also by convection (pore velocity vo)

and the equivalence with the conventional model where both mechanisms were lumped in an apparent Dc
allowed us to show that[39]:
~ 1
D, =D,—— [54]
D)
The apparent diffusivity is augmented by convection and the enhancement factor is 1/f(A). This result explains

the functioning of perfusion chromatography which appeared in 1990.

Based on the work of Nir and Pismen [19] on diffusion, convection and reaction in large pore catalysts (5000 A)

data from Ahn were analyzed.

For a non adsorbable tracer the Para um tracer the “lumped” diffusion/convection model for transient state is:

- .

~ 0°C oc

D—=&,— [55]
()% ot

The particle transfer function is:

5 () <c¢> tanhy1,s 5
s) = =
8 z 7.5 [56]

with an apparent diffusion time constant 7, =& pf 2/ D,.

The detailed diffusion/convection model is:

o‘c oc oc
DEE—VOE— P [57]
and
i
e it
gp(s) - (ez,,z _ ez,i) TdS [58]

>

’ i
with 7, =—2 + %H + 7,8, T{F&Zpﬂ/De e A =y)//D,=1,/1, (intraparticle Peclet number).

Model equivalence leads to equation [54].
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where the enhancement factor for pore diffusivity due
to convection is 1/f{A) shown in Figure 16, with

_§[ 1 __1[
f(/])_/\ ahA AL

The practical application of this concept is the

[59]

separation of proteins by HPLC. The pore velocity can
be estimated from the equality between bed pressure
drop relative to the bed length and particle pressure
drop assuming that Darcy’s law is valid; the result is: z,
=au, where a 1is the ratio of particle and bed

permeabilities.

Van Deemter equation for conventional packings is:

£ (1-¢,)b°
HETP= a4+ 242 _&U078) ST U
u 3g +e,A-¢,)b]

[60]

where €, is the particle porosity, & is the
interparticle porosity and b=1+{(1-€,)/€p} The slope

of the equilibrium isotherm is ; or

HETP= A + B/u+ Cu [61]

For large-pore particles Rodrigues [40,41] derived an

extension of the Van Deemter equation:

HETP =A+£+Cf(/\)u [62]
u

Rodrigues equation

At low velocities f{A)=1 both equations are
similar ; at high velocities f(A\)=3/A and the
last term of Rodrigues equation becomes
constant since vy, is proportional to u . The
HETP reaches a platean which does not

depend on the solute diffusivity but only on

10F 1/f(A)

1 10 A 100

Figure 16. Enhancement factor for
diffusivity due to convection, 1/ f{A)

pellicular HPLC packings

porous
particle

3 reduce
particle size

improve particle permeability
(flow-through particles)

Figure 17 — How to decrease intraparticle
mass transfer resistance?

z Rodrigues equation

Py
f -
/  Van Deemter equation
conventional supports

large-pore supports

0.2 0.4 0.6 0.8 1.0
U, em's

Figute 18. HETP versus u (Van Deemter eq. and

Rodrigues eq. )
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the particle permeability and pressure gradient (convection-controlled limit). In large-pore supports the column
performance is improved since HETP is lower than with conventional supports (the C term of Van Deemter

equation is reduced ) and the speed of separation is increased without loosing efficiency.

Simulated Moving Bed

The operation of Simulated Moving Bed, SMB is easily understood by
analogy with a True Moving Bed (TMB) shown in Fig. 19. The system
is divided in four zones each with a specific task; the less retained
species is recovered in the raffinate and the more retained in the
extract. If we want to separate a binary mixture in the TMB we need

to follow the constraints shown in Fig. 20;

& >1 OuCan >1 and Qi <1

Osqp Osq 411 Osq g D. Broughton
Ouiam >1 and Qs <1 O Cay <1
Osq amr Os4sm Osq a1y

For linear isotherms the separation region isatriangle shownin figure 21.

In order to avoid friction between particles flowing in the true moving bed UOP developed the SMB
technology [42] industrially used now for the separation of p-xylene (Parex process), production of HFCS
(Sarex process). In the SMB the solid is fixed and the solid movement is simulated by periodically shifting
the inlet/outlet positions of streams with a rotary valve. Recently the technology was adopted by the
paharmaceutical industry for the separation of enantiomers [43]. In this case there are typically 6 columns
with valves associated to each column as shown in Figure 23 @) and b. If mass transfer resistance inside
particles is important the constraints imposed by the equilibrium theory have to be modified; that is why the
concept of separation volume was introduced [44] to illustrate in a 3-D diagram the effect of flowrate in
region | where the adsorbent is regenerated (Figure 24).
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Conclusions

Modelling is the activity which identifies a generation
of chemical engineers associated with the Second
Paradigm of Chemical Engineering. Simulation tasks
can be simplified eventually with the availability of
software with friendly user interfaces. The question
of validation of results remains and in principle more
time will be available to analyze results. The Third
Paradigm of Chemical Engineer should come out
soon; in the meantime we keep the reflection of
Astarita: “the amount of information available grows
continuously but the amount of information that any

one of us can usefully digest does not grow".
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Abstract

A Lagrangian moving finite element algorithmn is presented whose
mesh velocity is determined by the invariance of the local ”mass”.
The method is applied to second and fourth order nonlinear diffusion
equations with moving boundaries in one and two dimensions.

1 Introduction

We consider adaptive finite element solutions of second order and fourth order
nonlinear diffusion equations with moving boundaries using a Lagrangian
moving finite element method. The method is prompted by recent interest
in geometric integration and scale invariance (for references see [6]) which
has rekindled interest in the use of adaptive moving meshes in the solution
of these equations, suggesting new numerical approaches. The invariance
properties combine independent and dependent variables, suggesting that
these variables should be treated similarly in numerical work. A natural
consequence is to use moving adaptive meshes.

Scale invariance implies a local relationship between the variables which
can be used to drive mesh movement. The mechanism is similar to the use of
monitor functions to control the movement of the mesh, as in the MMPDE
(Moving Mesh Partial Differential Equations) method [9]. It is also related to
the Geometric Conservation Law [11] and its associated invariance property
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[7]. The local relationship induces a mesh movement which retains the scale
invariance properties of the original PDE.

The method is a generalisation of the finite volume approach used in [3, 4]
in one dimension. It uses a weighted form of the invariance equation on a
patch of elements, as in [1], resulting in a Lagrangian moving finite element
method. In order to obtain uniqueness in higher dimensions we exploit the
idea of a mesh velocity potential, as proposed in [7]. The link between the
method and classical fluid dynamics is discussed in [2].

We describe the Lagrangian moving finite element method and its role in
free boundary problems requiring adaptivity. The method is tested against
the radial self-similar solution of the two-dimensional Porous Medium Equa-
tion (PME) with a free boundary. We also consider applications to prob-
lems governed by a fourth order nonlinear diffusion equation with a moving
boundary.

We begin by setting up a moving framework for the theory.

2 Fixed and Moving Frames

Consider a scalar PDE in the general form

ou
5 = Lu (1)
where u = u(x,?) in a fixed frame of reference with coordinate x and L is a
multidimensional operator involving space derivatives only.

Instead of working in the fixed frame we take a Lagrangian viewpoint.
Define an invertible mapping between fixed labelling coordinates a at time 7
and moving coordinates x at time £, of the form

x=x(a,71), t=1

so that
u(x,t) = u(x(a,7),7) = d(a,7)

say, where 4, X are Eulerian coordinates.

By the chain rule,
ot ox Oudt

or V" ar Tarar



where % means differentiation with respect to time £ with x frozen, so that
% is given by the PDE (1). Hence, writing

. 0u . 0%
°u = — X = —
or’ or’
we obtain the form of the differential equation in the moving frame,
uw—Vu-x= Lu. (2)

Clearly, a second equation is required to determine the two unknown Eulerian
velocities 7 and x.

An integral form similar to (2) may be obtained using Leibnitz’ rule on
a moving test volume (¢) in the form

d 0
— dQ) = — Q I'= Q
dt /Q(t) “ ot /Q(t) ud$2 + an(t) ux-d / ( TVl )> ()

giving the integral form in the moving frame (cf. (2)),

- / udQ) — / (uk)dS2 = / Lud® (4)

where we have made use of the integral form of the PDE (1) in the fixed
frame.

For the finite element method we need weak forms. Given a set of suitable
test functions w; moving with the velocity field x a generalisation of the
Leibnitz rule (3) gives

d 0
— w;udf) = — w;udS) + w;ux - dI’
dt Ja) ot Jaw) a0(t)

au awz .
/ ( U +V. (wiux)> dQ

Assuming that the test functions w; are advected with velocity x, we have

ow;
au; +x-Vw; =0 (5)
leading to the integral weak form in the moving frame,
d
— wiud) — w;V - (ux)dQ = w; LudQ (6)
dt Jo Q(t) Q(¢)

where we have made use of the weak form of the PDE (1) in the fixed frame.
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3 A Distributed Conservation Principle

Assume that the problem and the boundary conditions are such that the

total mass
/ ud$)
Q)

is conserved in the moving frame. Motivated by the scale invariance of this
quantity, we assume that the velocity x of the moving frame is determined
locally by the distributed conservation principle

/ w;udQ) = ¢; = constant in time. (7)
Q(t)

Differentiating (7) with respect to time,

1 / w;udQ) =0
dt Ja)

giving from (6)

- / WiV - (ux)d = / w; Lud() (8)
o) o)
or, after integration by parts,
- 7{ wiuk - dC + [ uk VwdQ= [  wLudS. 9)
80(t) Q(t) Q(t)

Equation (8) is in effect an equation for the divergence of ux. It is insuf-
ficient by itself to determine x uniquely but if the vorticity curlx is specified
(together with a suitable boundary condition) then, given u, equations (8)
or (9) determine the velocity x.

For example, suppose that curlx = curlq is specified. Then there exists
a velocity potential ¢ such that

x=q+ V¢ (10)

so that (8) can be written

- /Q(t) w;V - (uVeg)dQ = /Q(t) wi (Lu+V - (uq)) dQ (11)



and (9) becomes

_ 7{ wuVe - dT' + / UV - VuydQ
80(%) Q(t)

/ w; Lud$) + wiuq - dI’ — / uq - Vw,;dS2. (12)
@) (1)

o0(t)
Equation (12) can be used to determine ¢, after which x is given by the
weak form, from (10),

/ wikdQ) = / w;VdS + / wiqd€). (13)
Q(t) Q(t) (t)

4 A Moving Finite Element Method

A Moving Finite Element method may be constructed using the weak forms
(7), (12) and (13)

Linear elements are used for u, x, and ¢, here denoted by upper case U,
X, and ®, on a (moving) trlangulatlon of the region. Since X is piecewise
linear and Wi is the advected form of W; (cf. (5)), the corresponding functions
W; are the usual linear basis functions on the moving mesh. The support of
the integrals in the 7’th equation (12) is taken to be the patch of elements
I1;(X) surrounding the node. The Dirichlet condition U = 0 is not imposed
strongly at the boundary in the solution of (7), but weakly in the first term

of (12).
In effect we solve the ODE system
d=> =.o
—X =FX 14
ZX =F(X) (14)

using the following sequence to evaluate F(X):

e Given X recover U from (7)
e Given U calculate ® from (12)
e Calculate F(X) from (13)

e Return

The overall algorithm requires the solution of a single ODE system, where
each evaluation of the right-hand side of (14) involves the solution of three
(four in the case of a fourth order problem, as outlined below) symmetric
linear algebraic systems.



4.1 A Second Order Problem
The Porous Medium Equation in a fixed coordinate system (PME)

au_

5 = V- (u™Vu), (15)

is a well-known model equation for gas flows in porous media, spreading
liquids etc. It admits compact support solutions with a free boundary for
which comparison results are known [6, 10]. In integral form (15) is

d
el QO = A(y™ 0 = m -dl’ 1
= /Q 1= [V Y 7{ (@™Vu) - d (16)

a0(t)

so that if 4™ Vu vanishes on the boundary the total mass is conserved, i.e.

/ ur®'dr = constant in time. (17)
Q(t)

Note that for this particular problem (12), with q set to zero, becomes

_ 7{ wuVe - dT' + / uVé - VuydQ
80(%) Q(t)

= - / UV, - VudS, (18)
2()

where it is again assumed that ¥™Vu vanishes on the boundary.
The radially symmetric form of (15) (in d dimensions) is

ou 1 0 ( 41 n0u

Equation (19) is invariant under the scalings
t— M, 7o Mr, u— NNy, (20)

If the boundary conditions are such that the total mass is invariant, then it
follows that 8 =1/(2 + md). A source-type self-similar solution,

to) ¥+ 2 Y\ 2 pp/(2+ma)
uUss = (TO) (1 - (W)) re < Kt (21)
0 r? > K2/(2+tmd)



may be deduced from (20) [6], where %y, K are constants, which may be used
to test numerical results. The function ugg vanishes at the moving boundary
and a typical profile is sketched in cross-section in Figure 1 for m > 1. For
m = 1 the slope at the boundary is finite while for m > 1 it is infinite. Recall
that the global mass is conserved.

For this equation there also exists the following comparison principle [10]:
given three sets of initial conditions,

’U,l(IE,y,t()) S ’U,Q(IE,y,to) S u3($,y,t0) V(Ib,y) € Q? (22)
then

ul(x,y,t) < u2(x,y,t) < U3($,y,t) V(Ib,y) € Q: t 2 lo - (23)

Figure 1: Typical behaviour of the self-similar solution of the PME.

4.2 A Fourth Order Problem
A corresponding fourth order equation (in the fixed coordinate system) is
2—7: + V- (W"V(V?)) =0 (24)

which arises in the flow of surface-tension dominated thin liquid films (m = 3)
and the diffusion of dopant in semiconductors. In integral form it is

d

— dQ = — - (u™ 2u))d) = — m 2u))-dT' =0

dt /Q(t) “ /Q(t) V- (@mV(Viu)) ?{an(t) WV (Viu)) (25)
25



so that if ¥™V(V?u) vanishes on the boundary the total mass is constant in
time (cf. (17)). The equation (24) may be physically split up into the pair of
second order equations

us + V- (u™Vp) =0, p=Viu (26)

where p is a pressure. In this case, instead of (12), with q set to zero, we
now have

_ 7{ wuVé - dT + / UV - VydQ)
80(%) Q(t)

- — / WV w; - VidQ (27)
a()

again assuming that u™V(V?u) vanishes on the boundary. In (27) 7 is a
weak approximation to the pressure given by

/ w;mdS) = — Vuw; - Vud(}, (28)
Q(t) Q(t)

where an additional boundary condition, stating that the normal derivative
of u is zero throughout 9€(¢), has been used.

The fourth order radially symmetric equation (24) in d dimensions (in
split form) is

ou 1 0 ( 41 mOp 1 Ou
—+ m=1=0 = ——— 29

ot * rd-19r (T “or ’ P= iy, (29)
which is invariant under the scalings

t—o M, z— Mr, u— NN/, (30)

Again, if the boundary conditions are such that the total mass (17) is con-
served, it then follows that § = 1/(4 4+ md).

(From (30) it follows that for m = 1 there exists a source-type self-similar
solution in the closed form

d/(4+d) 2 2
Ugg = (%&Q) (1 — (W)) 7"2 S Kt2/(4+d) (31)
0 r? > Kt2/(4+d)

where ty, K are constants, which may be used to test numerical results. More
details of this similarity solution may be found in, for example, [8].
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5 Numerical Results

5.1 The Second Order Problem

Two sets of results are presented to illustrate the accuracy with which the
method approximates the second order problem presented in Section 4.1. The
first set is in one dimension (d = 1). Figure 2 shows that the rate at which
the L' error in the approximation decreases is roughly proportional to (Azx)?
in the m = 1 case, where Az is taken to be the length of a cell in the initial
(uniform) mesh. The order of accuracy is noticeably lower (approximately
1 for the boundary position and 1.4 for the solution values) when m = 2
because the exact slope of the solution at the boundary is now infinite.

Second order problem, m=1: T=2.0 Second order problem, m=2: T=2.0

-1.5[ —— Boundary error T ] _15F
-6~ Soluti rror

— - slope=2
of i o}

25

3}

35

LOG(error)

—at

LOG(error)

_45)

51

55

—6l

-2.6 -2.4 -2.2 -18 -1.6 -1.4 -2.6 -2.4 -2.2

-2 -2
LOG(dx) LOG(dx)

Figure 2: Orders of accuracy in the L' norm of approximations to one-
dimensional self-similar solutions of the PME for m =1, T =t — & (left) and
m =2, T =t— ¢ (right). The dashed line indicates a slope of 2.

Figure 3 shows snapshots of the evolution of a solution given by equation
(21) in the cases m = 1 and m = 2 in two dimensions (d = 2). It is
approximated on a genuinely unstructured, but still uniform, 2349 node,
4539 cell, mesh. Further results, presented in [1, 2], give more details and
show that the order of accuracy obtained in two space dimensions is the same
as in one.

It should be noted that mass is conserved to machine accuracy in all of
these calculations, and indeed also for those presented in the next subsection
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for fourth order problems. Furthermore, although the curl of the mesh ve-
locity field is assumed here to be zero, it is possible to successfully impose a
background velocity field q on the mesh movement equations via the extra
vorticity term in (12) [1].

5.1.1 Comparison results

The new scheme is not restricted to modelling self-similar solutions.

We have investigated a comparison property of the approximate solu-
tions which reflects the same property of the exact solution of the PME (see
(22,23)). This property holds for the approximate solution derived here, as
can be seen in Figures 4 and 5 which show two experiments in which the ini-
tial conditions are perturbed. In Figure 4 a random perturbation is applied
to the initial solution and its evolution compared with two radially symmet-
ric solutions scaled according to the minimum and maximum perturbations.
In Figure 5 a sinusoidal perturbation is applied to the initial position of the
boundary and its evolution is found to be sandwiched in a similar manner. In
both cases the initial random perturbations are smoothed out very rapidly.

PME:m=1;t=0.0 PME:m=1;t=1.0
o

Figure 4: Slices of the initial conditions (left) and approximate solutions at
t = 1 (right) taken through the origin, illustrating the ‘sandwiching’ of a
randomly perturbed solution to the PME with m = 1.
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PME: m=4;t=1.0

-0.75
-0.75 -05 -0.25 0 0.25 0.5 0.75

X

Figure 5: Slices of the initial conditions (left) and approximate solutions at
t = 1 (right) taken through the origin, illustrating the ‘sandwiching’ of a
sinusoidally perturbed mesh for the PME with m = 4.

5.2 The Fourth Order Problem

Similar sets of results are presented for the fourth order problem described
in Section 4.2. Figure 6 shows that the L! error now decreases in proportion
to (Az)! when m = 1 and d = 1 (for which the exact self-similar solution
(31) exists). Az is defined as before.

Figure 7 shows snapshots of the evolution of a solution given by equation
(31) in two dimensions (d = 2), approximated on a uniform unstructured 545
node, 1024 cell mesh. The accuracy of this approximation is comparable to
that obtained in one dimension. Note, though, that explicit time-stepping is
being used and finer meshes are very expensive to use because the stability
of the method appears to require At to reduce in proportion to (Az)*.
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Fourth order problem, m=1: t=32.0

““["—— Boundary error | '
-~ Solution error
— - slope=4

LOG(error)
>

2 *118 *1‘6 *1‘4 *1‘2 Loé(dx)*OjB *0.‘6 *014 *012 0
Figure 6: Order of accuracy in the L' norm of an approximation to a one-
dimensional (d = 1) self-similar solution of the fourth order equation with
m = 1.

6 Conclusions

A Lagrangian moving finite element method has been described which is
based on local mass conservation, in line with the scale invariance of problems
that exhibit global mass conservation. The method is illustrated on second
order and fourth order nonlinear diffusion problems with moving boundaries
for which nass is conserved and analytic self-similar solutions exist. Results
show that the method is accurate and exhibits approximate scale invariance.

Self-similar solutions have been considered here for the purpose of illus-
trating the accuracy of the method, but the method can be applied far more
generally. For example, we have shown that in the case of the second order
problem the comparison principle (22,23), as well as a similar principle for
the boundary, is sustained on a numerical level.
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Fourth order problem, m=1: t=1.0 Fourth order problem, m=1: t=16.0

Founh‘order problem, m=1: t=32.0 Faurth‘omer problem, m=1: t=64.0
x10° x10°
6~ 6
5 5
4 4|
34 3

Figure 7: Snapshots of an approximation to a radially symmetric self-similar
solution to the fourth order equation at four different times.
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Abstract

We give a mathematical model of the forming of a glass product in a mould under pressure.
It turns out the the equations of motion are the Stokes equations. One part of the boundary is
given, another part is free. The latter means that the velocity there comes from an external force,
in particular from a piston that drives a moving part of the mould (the plunger) into the glass.
This provides for an additional (kinematic) boundary condition. The complication here is that
the movement of this piston on one hand and the counter force from the glass on the other are
coupled. The equation of motion are the Stokes equations. The boundary condition couples
these with the motion of the plunger, being an ordinary differential equation. It turns out that
the resulting equation for the plunger velocity is stiff, so it should be solved by an implicit
method. However, due to the afore mentioned coupling a straightforward implementation of
such an implicit scheme is impossible. We give a solution to this problem.

1 Introduction

Glass is a simple material and is available in all sorts of applications. Yet production and forming
are matters that still pose questions the answers to them relying more and more on mathematical
modelling and simulation, cf.[2], [3], [4]. In this paper we consider the motion of molten glass by
pressure, which is an important step in the production of container glass. In particular we model
the pressing of a preform or parison in a mould used in the mechanical production of container
glass. In Figure 1.1 we have sketched the various parts making up for the mould. The actual
mould consists of the baffle, the blank, and the neckring. Initially the baffle part is removed and
the mould is open from above (cf. Figure 1.1a). Once a gob of glass is inside the mould, the baffle
is closed and the plunger moves up by the force of a piston (cf. Figure 1.1b,c). This parison (see
Figure 1.1d), is then blown into it final shape in the next stage (see Figure 1.2).

Although the temperature plays an important role in this modelling [5], it can be shown that
during the pressing phase the temperature changes are rather small because of the short time the
pressing takes. Hence we consider the problem to be isothermal. We shall model the process
assuming all parts of the mould and the plunger to have axisymmetric geometry. An appro-
priate choice for the coordinate system to be used in order to solve the equations numerically
are then cylindrical coordinates. The motion of a fluid can be described by Navier Stokes. By
dimension analysis it can be shown that they simplify to Stokes equations, cf. [4] The Stokes
equations in cylindrical coordinates can be formulated as follows, cf [1]. Find the velocity field
v = (u,(r,z,9), u:(r,z,9), uy(r,z,¢))" and pressure field p := p(r, z, @), which satisfy



¢
§
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Figure 1.1: Pressing process.

V.o(v,p) = 0,

Vv = 0,
where o(v, p), the stress tensor, is given by

o(v,p) = —pl+n(Vv+Vvl).

Here [ is the identity tensor.
Using the formula for the gradient in cylindrical coordinates we obtain

rop | or r r dp = 0z

Equations (1.2), (1.1), rewritten in terms of cylindrical coordinates, read as

4D ou, 6u,+6uz lau,_’_%_i
P L AR or 1 r 0@ or
- ou, Ou, ou, 1 0u, Ou,
7= n<(9z+(3r> pamng n(rc’)(p+az
n(lf’ur+%_%> n(lauzﬁuw) _p+2n<1%+

Uy
;

)

)

1.1)

1.2)

(1.3)

(1.4)
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Figure 1.2: Pressing process.

Cup | Cuy 10w  10u 20u, u _ 10p (15)
o2 022 12092 ror r2dp 12 nor’ ’

aZuZ aZuZ l azuz 1% — lal (1.6)
o2 9z2 209> ror  noz’ '

621,[(,, azu(p " lazu(p 1% Eau, Uy _ iaﬁp (1.7)
ar? 0z2 202 r dar r2dp 12 nrdp’ ’

Oou, Ou, 10u,  u,
- - . 1.
or 0z r Ogp + r 0 (18)

2 Rotational Symmetry

As was explained in Section 1 both the mould and the plunger are axisymmetric. Since the
plunger is moving in vertical direction the velocity, V,(t) say, we can write

v, (t) = Vp(t)es := (0, V,o(£), 0)7, (2.1

where e; is the unit vector in z direction. We may reduce the dimension of the problem and
consider (1.1), (1.2) in two-dimensional axisymmetric coordinates. The velocity field then has the
components

V.= (ur(r/ z, (p)/ uz(r/ z, (P)/ O)T/ (22)

and the pressure field

p:=p(r z 0). (2.3)

From (1.4) we obtain the stress tensor for the axisymmetric case



ou, ou, Ou,
_p+2n6r ”(az 6r> 0
ou ou ou
o= o, Ttz z (2.4)
n<az+6r> P+2”az 0
0 0 —p+ Zn%
The Stokes equations (1.5)- (1.8) take the following form
2 2
0", 0%uy 1% _ W — laj, (2.5)
or? 0z2  ror 12 n or
2 2
0°u, 0, 1% — laj, (2.6)
or? 0z2  r or n 0z
aur auz + & - 0. (27)

or 0z r

Clearly, the pressure p is defined up to a constant. One can should notice singularities in (2.4)-
(1.7) when v = 0.

3 Boundary Conditions

As we have an axisymmetric problem we obtain a domain Q, as sketched in Figure 3.1. The
boundary I' := 0Q of the domain consists of four parts

Fr=nUT, UT, UTy, 3.1)

where the indices s, m, p, f represent the symmetric, mould, plunger and free boundaries respec-
tively. Let
t=(t,t,0)7

n = (n,,n, O)T, (3.2)

be the normal and tangent unit vectors respectively for the boundary I" in the directions as dis-
played in Figure 3.1. Then we find the following boundary conditions. Because of symmetry, the
boundary conditions on [ are

v.-n = 0, (3.3)
on-t = 0. (3.4)
It is easy to see that
n=(-1,0,07" t=(0,-1,0), on=(-0, —0v,0)" (3.5)
on ;. Using the expressions for the stress tensor components (2.4) we obtain
ou,  Ou, _
u, =0, 3z + 3 0. (3.6)

Since u, = 0 on T}, it follows that the derivative along T is also equal to zero, i.e., 9u,/dz = 0.
As a result the boundary conditions on I can be written as



Figure 3.1: Problem domain.

ou,
or
For the mould and the plunger we will allow both slip and no slip boundary conditions and
everything in between. A partial slip boundary condition for the mould means that the nor-
mal component of the velocity should be zero and the tangential component proportional to the
tangential stress, i.e.

u, =0, =0. (3.7)

v-n = 0, (3.8)

(on+Byv)-t = 0, 3.9)
where (3,, is a friction coefficient. The first equation clearly represents a Dirichlet boundary con-

dition, and the second a Robin boundary condition.
For the plunger which moves with velocity v, (see (2.1)), we find

(v=vy)n = 0, (3.10)

(on+By(v—-v,))-t = 0. (3.11)

Note that v, does not depend on 7, z, and 3, is again the friction coefficient. The physical meaning
of these conditions is the same as for (3.8), (3.9), with the only difference that here we consider



the velocity relative to v, i.e., v — v,. Also we are using the fact that o(v — v, p) = o (v, p). Let
V, > 0 be the absolute velocity of the plunger, then

v, = Vye, = (0,V,,0)". (3.12)

Actually, the velocity of the plunger V), is an unknown function of time ¢, so we should write
V,(t). Nevertheless, for the boundary conditions below and the Stokes problem as such, we view
this as just a parameter. Hence, the boundary conditions read as follows

v-n = Vpe; n, (3.13)

(on+B,v)-t = ByVpe, -t (3.14)
Finally the boundary conditions at the free boundary I’ are defined as the vector relation

on = —pon, (3.15)

where py is the external pressure. We can take the inner product of (3.15) with n, t and obtain the
boundary conditions in the form of two scalar equations

on-n = —py, (3.16)

on-t = 0. (3.17)

Note that the velocity field found from (1.1), (1.2) with the boundary conditions (3.3) — (3.17),
is independent of the value of py. From a physical point of view this can be explained by the
incompressibility of the fluid.

4 An Ordinary Differential Equation for the Plunger Velocity

The velocity V,(t) of the plunger is not known beforehand and in fact coupled to the motion of
the glass itself. Indeed, the plunger movement is the result of a certain pressure p, applied to its
bottom. Let F(t) denote the total force on the plunger and 1, be the mass of the plunger. Then

dv,(t)  F(t)
;t = (4.1)

This total force is the sum of

F(t) = F, + F(t), 4.2)
where F, remains constant through the whole process and F,(t) is the force on the plunger from
the glass. The constant force can be computed as

F, = S,p, = beingsomeconstant. (4.3)

Here S, is the area of the surface where pressure p, is applied. The second term F,(t), is the force
on the plunger from the glass. The force from the glass can be expressed in terms of the stress
tensor (2.4)

F(t) = / on-e,dS, (4.4)
b S(t)

where 0 = o(t) is the stress tensor, and S(t) the part of the plunger surface which is in contact
with the glass at time f. The formula requires integration of the second component of on only,
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Figure 4.1: Geometry of the plunger.

as the first one will vanish due to such integration because of the axisymmetrical nature of the
problem.

Consider Figure 4.1 which depicts one half of the plunger (cf. Figure 4.1) turned by 90 degrees.
If z is the axial variable and R(z) denotes the form of the plunger we can derive (cf. [7]

dS =2m Ry(s)ds =27\ /1 + R, (2)? Ry(2) dz, (4.5)

where s represents the length over the plunger profile. The two dimensional surface S(t) is
related to the interval [zo, z1] on the z axis. Then (4.4) can be written as follows

21
E(t) = 27r/20 on-e. \/1+R,(2)2 Ry(z) dz. (4.6)
The values of on can be obtained as follows The normal components #,, n, (see Figure 4.1) are

computed as follows

N (1, Ry(2), 0)". 4.7)
14 Ry (2)?

Using the expressions (2.4) for the stress tensor components, (4.6) reads

Ey(t) = 271/2:1 <(p - zna;;> R)(z)+n (‘Z + aa”;)) R,(z) dz. 4.8)

Now in order to compute the velocity of the plunger V,(t) as a function of time, one should solve
the ordinary differential equation

W) _ R, B
dt mp mp (4.9)
Vp(0) = Vo,

where V) is some initial velocity of the plunger. Note that we can compute Pg(t), once Uy, Uz, p
(or on) are known. The latter are obtained from solving the Stokes equations. In order to solve
the Stokes equations one needs some value for the plunger velocity V), in (3.13) and (3.14). So, at
time t = 0 we use V; from (4.9) and find F;(0). We can thus perform an explicit integration step
in (4.9). In general, suppose we use the Euler forward scheme

Fo () + F
VE = V4 A ) +h (4.10)

My
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Figure 4.2: Velocity of the plunger (numerical instabilities).

Having solved the Stokes equations, with the new velocity of the plunger V]’,f“, we can com-
plete the boundary conditions for the Stokes problem at t = t**1. To this end the velocity of the
plunger obtained from (4.10) is used. However, as illustrated in Figure 4.2, the algorithm turns
out to be unstable. Looking more carefully at Figure 4.2 we detect a phenomenon that looks like
stiffness. To overcome this we should take recourse to implicit methods. A fully implicit scheme,
however, practically impossible as we do not know the plunger velocity at t**!; thus we cannot
use it for the boundary conditions (3.13), (3.14). Of course, a predictor-corrector scheme for such
an implicit integrator will only converge for infeasible small time steps because of stiffness.

5 A Stiffness Phenomenon

In this section we like to investigate the stiffness of the ordinary differential equation (4.9). Clearly,
we need to have a closer look at F(t), as derived in (4.8). In general it is impossible to compute
it exactly so we take recourse to a thin film approximation. Here we shall approach the problem
analytically in order to point out the stiffness phenomenon detected in numerical simulation. For
a more detailed discussion see [7]. We shall consider a simple, yet meaningful geometry for the
mould and the plunger, see Figure 5.1. Let each of them be defined by a parabola, say

Ru(z) =duvz, Ry(z) =dpy/z— 2z, (5.1)

where coefficients d,,, d, have positive values and z is the position of the plunger.

Let us define ¢ := D/L as the ratio between the length scales corresponding to the parison’s
wall thickness D and the height of the parison L. Since D is smaller than L, ¢ is a small parameter.
The variables can be then scaled as follows

VL
r=Dr, z=17Z, u,=¢eVu, u,=Vu, p= %p’, (5.2)

where V is the typical flow velocity. Using (5.2) we can make (4.8) dimensionless
Fy(t) := 2mnVLF(t). (5.3)
Then (4.8) can be approximated by the following expression
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Figure 5.1: Mould and plunger geometries defined by parabolas.

2 ou', ou,  oul
R = [ ((p'_zgz az,>R;’<z'>+ (52 o+ ay,))R;,(z’)dz

z4 U
~ / <p/R;’(z')+%”;f> R () dz.
20

Using (5.2) it is possible to find the exact solution of the Stokes equations (2.5), (2.6), (2.7) (see [7])

(5.4)

R},
T %%/ rul (v, 2') dr,
(5.5)
!/
u, = %r’Z%—i-A(z’) In v + B(2),

where A(z') and B(z’) can be obtained from the boundary conditions. The eventual dimensional
force F,(t) takes then the following form

7 Cm — Cp

Fg(t) ~ 27TT1VL V;,(t/) /26 (bm — bp)z — (am — ap)(cm — Cp)

Here V;] (t') is the dimensionless velocity of the plunger scaled with V; a,,, a,, b, by, ¢, ¢, denote

dz. (5.6)

am = In R, (') + 8 /R}, ('), ap =InR,(2') +5,/R,(Z'),
b = R,*(2)(1+ 25 /R},(2)), by = R,*(2')(1425,/R,(2)) (5.7)

em = R, (2) (1445, /R, (2))), cp = R;,4(z’)(1 +4s,/R,(2')),

respectively. Here s,,, s, are dimensionless parameters similar to the friction coefficients 3,,, 3,
as defined in Section 3. Note that all defined quantities are dimensionless.

The dimensionless integral in (5.4) can be computed numerically. The graph in Figure 5.2
shows the results of this integration as a function of upper bound z| in (5.4). Using the same
scaling (4.9) reads



Figure 5.2: Force on the plunger as a function of z}

av) 2
r — V/I 27TL T)

L= V(1) Vo e (5.8)

where t = t'L/V,V, = VV], I(t) is the dimensionless integral from (5.4) and C some constant.

The typical values for L and V are 10~! m and 10~! s respectively. The mass of the plunger device
my is of order 1. The viscosity coefficient 1 for our problem is a large number

n~10* kg/sm. (5.9)

One can see that the coefficient of V, on the right-hand side of ??chapter6/section2: equation8)
is large. Indeed, taking I(t) ~ 1 (see Figure 5.2) we find

27l?n

4
Vs 10%. (5.10)

I(#)
This clearly indicates that (5.8) is a stiff equation. One should note that 1 is the dominating
quantity. This will also be the case for more complicated geometries. This then shows the inherent
stiffness of the plunger motion equation.

6 Uncoupling the Flow Equations and the Plunger Velocity

From the preceding analysis it follows that an explicit method leads to numerical instabilities, for
not unduly small time steps. We therefore prefer to use an implicit method instead. However,
the right-hand side F(t)/m, of (4.1) depends on the solution of the Stokes equations. In order to
apply an implicit step to (4.1) at time t = t* we need to know F,(t*'1). In this case we would
compute

F (") + F

mp 6.1)

Vit = vy + A
Note that Fg(#1) resulting from the solution of the Stokes equations with V. Clearly, in
this way the Stokes equations and the motion of the plunger are coupled. In order to use the
implicit scheme (6.1), we could, for example, predict the velocity of the plunger using (4.10) and
then use it for the boundary conditions in the Stokes equations. After having solved the latter, let
us compute the value for F, (1) and perform (6.1). Unfortunately this does not work because
of the explicit prediction step, which sooner or later cause numerical instabilities.
Below we work out how to overcome the stiffness phenomenon for our problem. The crucial
role here is played by regarding the velocity of the plunger V) () uncoupled from the parameter
V), in the boundary conditions for the Stokes problem. We shall make use of the following lemma.

10



LEMMA 6.1 Let vy, p1 and vy, p; be the solutions of the Stokes equations (2.5), (2.6) and (2.7)
with corresponding plunger velocities V,, and V), respectively. Then kyvi + kava, po + ki(p1 —
po) + k2(p2 — po) is also a solution of these equations with V, = k1V,,, + k2 V.

Proof. From V - pgI = 0, it follows that

V - o(kivy + kava, po+ki(p1 — po) + ka(p2 — po)) =

(6.2)
k1v~U(V1,p1)+k2V-O‘(V2,p2) = 0.
It is simple to see that such a linear combination satisfies Stokes equation. Note that
AV (k1V1 + szz) =kV-vi+kV-v,=0. (6.3)

Likewise such a property can be shown for the boundary conditions. Considering the pressure
field relative to py, the boundary conditions (3.16), (3.17) are satisfied

o(kivi 4+ kava, po+ki(p1 — po) + ka(p2 — po))n =
(6.4)
kl(cr(vl,pl)n—i—pon) +k2(U(V2, p2)n—|—p0n) —pon = —po.n.
This proves the lemma. O

From Lemma 6.1 it follows that we may consider the velocity and pressure fields at some time
t as affine functions of V), so

v(t;V,) = V,v(t1),
(6.5)
p(t;Vy) = po+V,(p(t1) = po).

Here v(t; ), p(t; «) is the solution of the Stokes equations with the velocity of the plunger equal
to o = const. As a consequence we deduce from (4.8) that this then also holds for the glass force

F(£V,) = R(t) + V, (Fo(51) — Fo(1)), (6.6)

where Fy(t) is the force on the glass due to normal air pressure

Fo(t) = 27 / " PR (2)Ry (2) dz. ©6.7)

Z

Using (6.6) we can reformulate (4.9) as follows

dVvy(t) _ t)Fg(t?l)—Fo(t) +Fp+Fo(t)
dt P ny, m, 6.8)
V,(0) = Vi

Note that one should use V, = 1 for the boundary conditions (3.13), (3.14). By tracking the
free boundary and defining the Stokes problem, the glass force Fy(t;1) can be computed for the
changing domain Q). As a consequence it makes sense to consider the force as a function of the
plunger position, not the time. So we slightly change the notation

Fo:=F(z,Vp), V,:=V,(2). (6.9)

Equation (6.8) should be reformulated as follows

11



(z) ,
2 dz 4 m, ", (6.10)

Here we used

dvy(t)  dVy(z)
at dz
By solving these equations for a evolving glass domains, we can obtain a table with plunger
positions, and velocity and pressure fields computed for V,, = 1 in such domains. Hence, the
velocity of the plunger can be considered to be a function of the plunger position, but still being
unknown as a function of £.
If one applies the Euler explicit method to (6.10),

V,(2). (6.11)

2 2
1V —viEs F(251) - R(ZF) | F, + Fo(2)
2 i x =V m T,
; ; (6.12)
V;? = V.

it appears that this approach is identical to one in which the plunger velocity for the bound-
ary conditions at the next time-step were obtained straight from the previous velocity field and
pressure field

F,(t)+F

V,(t+ At) = V, (1) —i—At%. (6.13)
p

The boundary conditions (3.13), (3.14) for the next stationary Stokes problem should use V,(t +

At). We omit further discussion of (6.13).

L
0.1 0.2 03 0.4 0.5 0.6

(a) As a function of position (b) As a function of time

Figure 6.1: Velocity of the plunger obtained using implicit scheme.

Now consider the implicit Euler method instead

k+12 _ 17k?
1" =V
2 Zk-&-l _ Zk

” " mp 6.14)

Ve o= Vo

12



Although (6.14) is implicit, we just have a quadratic equation for VE*1, which can be solved
trivially. The result is in Figure 6.1a. We clearly have a stable calculation now. The velocity of
the plunger in Figure 6.1a is a function of z. In order to obtain the velocity as a function of ¢ the
following approximation can be used

2 = ARV, (),
(6.15)
il =t At

where t* = 0. The final graph is depicted in Figure 6.1b.
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Adaptive Numerical Methods for Sensitivity Analysis of
Differential-Algebraic Equations and Partial Differential

Equations™

Linda Petzold!  Yang Cao? Shengtai Li Radu Serban

Abstract

Sensitivity analysis generates essential information for design optimization, pa-
rameter estimation, optimal control, model reduction, process sensitivity and ex-
perimental design. Recent work on methods and software for sensitivity analysis
of DAE and PDE systems has demonstrated that forward sensitivities can be com-
puted reliably and efficiently. However, for problems which require the sensitivities
with respect to a large number of parameters, the forward sensitivity approach is
intractable and the adjoint (reverse) method is advantageous. Unfortunately, the
adjoint problem is quite a bit more complicated both to pose and to solve. Our goal
for both DAE and PDE systems has been the development of methods and software
in which generation and solution of the adjoint sensitivity system are transparent to
the user. This has been largely achieved for DAE systems. We propose a solution
to this problem for PDE systems solved with adaptive mesh refinement.

1 Introduction

In recent years, there has been a growing interest in sensitivity analysis for large-scale
systems governed by both differential algebraic equations (DAEs) and partial differential
equations (PDEs). The results of sensitivity analysis have wide-ranging applications in
science and engineering, including optimization, parameter estimation, model simplifica-
tion, data assimilation, optimal control, uncertainty analysis and experimental design.
This paper has two parts. In the first part, we will outline the basic problem of
sensitivity analysis for DAE systems and examine the recent results on numerical methods
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and software for DAE sensitivity analysis based on the forward and adjoint methods.
The second part of the paper will deal with sensitivity analysis for time-dependent PDE
systems solved by adaptive mesh refinement (AMR).

2 Sensitivity Analysis for DAE Systems

Recent work on methods and software for sensitivity analysis of DAE systems [12, 26, 23,
24, 27| has demonstrated that forward sensitivities can be computed reliably and efficiently
via automatic differentiation|[6] in combination with DAE solution techniques designed to
exploit the structure of the sensitivity system. The DASPK3.0[23, 24| software package
was developed for forward sensitivity analysis of DAE systems with index up to two|7, 3],
and has been used in sensitivity analysis and design optimization of several large-scale
engineering problems[19, 30]. DASPK3.0 is an extension of the DASPK software [8, 7]
developed by Brown, Hindmarsh and Petzold for the solution of large-scale DAE systems.
For a DAE depending on parameters,

F(z,z,t,p) = 0
@ { £(0) = zop),

these problems take the form: find dz/dp, at time T, for j = 1,...,n,. Their solution
requires the simultaneous solution of the original DAE system with the n, sensitivity
systems obtained by differentiating the original DAE with respect to each parameter in
turn. For large systems this may look like a lot of work but it can be done efficiently, if
n, is relatively small, by exploiting the fact that the sensitivity systems are linear and all
share the same Jacobian matrices with the original system.

2.1 The Adjoint DAE

Some problems require the sensitivities with respect to a large number of parameters. For
these problems, particularly if the number of state variables is also large, the forward sen-
sitivity approach is intractable. These problems can often be handled more efficiently by
the adjoint method [11]. In this approach, we are interested in calculating the sensitivity
of an objective function

©) Gle.p) = [ glat.p)d,

or alternatively the sensitivity of a function g(z, T, p) defined only at time T". The function
g must be smooth enough that g, and g, exist and are bounded. While forward sensi-
tivity analysis is best suited to the situation of finding the sensitivities of a potentially
large number of solution variables with respect to a small number of parameters, reverse
(adjoint) sensitivity analysis is best suited to the complementary situation of finding the
sensitivity of a scalar (or small-dimensional) function of the solution with respect to a
large number of parameters.



In [10] we derived the adjoint sensitivity system for DAEs of index up to two (Hessen-
berg) and investigated some of its fundamental properties. Here we summarize the main
results.

The adjoint system for the DAE

F(t,z,z,p) =0
with respect to the derived function G(z,p) (2) is given by
(3) (A" F;) = N Fy = —gs,

where * denotes the transpose operator and prime denotes the total derivative with respect
to .

The adjoint system is solved backwards in time. For index-0 and index-1 DAE systems,
the initial conditions for (3) are taken to be A\*Fj|,—r = 0, and the sensitivities of G(z, p)
with respect to the parameters p are given by

dG T . .
(4) = [ (g = N B dt + (V) e=o0)y.
D 0
For Hessenberg index-2 DAE systems, the initial conditions are more complicated, and
are described in detail along with an algorithm for their computation in [10].
For a scalar derived function g(z, T, p), the corresponding adjoint DAE system is given
by

(5) (NFL) — NFy = 0
2D

where A denotes 5. For index-0 and index-1 DAE systems, the initial conditions Az (T)
for (5) satisfy (ALF;)|i=r = [gz — A*Fy] |i=r. We note that the initial condition Ap(T) is
derived in such a way that the computation of A(¢) can be avoided. This is the case also
for index-2 DAE systems. The full algorithm for consistent initialization of the adjoint
DAE system is given in [10]. The sensitivities of g(z, T, p) with respect to the parameters

p are given for index-0 and index-1 DAE systems by

T
() Y — (= XEler = [ O45) + OF2)lca(ao)y
Note that the values of both A at ¢t = T and Ar at ¢t = 0 are required in (6). If F, # 0,
the transient value of A is also needed. For an index-2 system, if the index-2 constraints
depend on p explicitly, an additional term must be added to the sensitivity (6).

If the objective function is of the integral form G(z,p) (2), it can be computed easily
by adding a quadrature variable, which is equal to the value of the objective function, to
the original DAE. For example, if the number of variables in the original DAEs is IV, we
append a variable zy,; and equation

Ty = g(z,t,p).



Then G = zyy1(z,T,p). In this way, we can transform any objective function in the
integral form (2) into the scalar form g(z, 7T, p). The quadrature variables can be calcu-
lated very efficiently [23] by a staggered method in DASPK3.0; they do not enter into the
Jacobian matrix.

From [10] we know that for DAE systems of index up to two (Hessenberg), asymptotic
numerical stability in solving the forward problem is preserved by the backward Euler
method, but only (for fully-implicit DAE systems) if the discretization of the time deriva-
tive is performed ‘conservatively’, which corresponds to solving an augmented adjoint
DAE system,

>l

— Fr
—F}

A = 0,
A

>l

(7)

It was shown in [10] that the system (7) with respect to A preserves the stability of the
original system. Note that the augmented system (7) is of (one) higher index than the
original adjoint system (5). This is not a problem in the implementation since the newly
high-index variables do not enter into the error estimate and it can be shown that basic
DAE structures such as combinations of semi-explicit index-1 and Hessenberg index-2 are
preserved under the augmentation. Also, the linear algebra is accomplished in such a way
that the matrix needed is the transpose of that required for the original system. Thus
there are no additional conditioning problems for the linear algebra due to the use of the
augmented adjoint system.

2.2 DASPKADJOINT

We have written a new code called DASPKADJOINT which accomplishes the DAE so-
lution along with adjoint sensitivity analysis. The code is described in detail in [22],
along with some example problems. Much of the challenge in writing DASPKADJOINT
was concerned with handling the complexities of formulation and solution of the adjoint
sensitivity system while requiring as little additional information from the user as is math-
ematically necessary. Here we describe some of the details of the implementation.

In the adjoint system (5) and the sensitivity calculation (6), the derivatives F, F;
and F, may depend on the state variables x, which are the solutions of the original
DAEs. Ideally, the adjoint DAE (5) should be coupled with the original DAE and solved
together as we did in the forward sensitivity method. However, in general it is not feasible
to solve them together because the original DAE may be unstable when solved backward.
Alternatively, it would be extremely inefficient to solve the original DAE forward any time
we need the values of the state variables.

The implementation of the adjoint sensitivity method consists of three major steps.
First, we must solve the original ODE/DAE forward to a specific output time 7". Second,
at time 7', we compute the consistent initial conditions for the adjoint system. The
consistent initial conditions must satisfy the boundary conditions of (3). Finally, we solve
the adjoint system backward to the start point, and calculate the sensitivities.



With enough memory, we can store all of the necessary information about the state
variables at each time step during the forward integration and then use it to obtain the
values of the state variables by interpolation during the backward integration of the adjoint
DAEs. For example, we can store z and & at each time step during the forward integration
and reconstruct the solution at any time by cubic Hermite interpolation! during the
backward integration. The memory requirements for this approach are proportional to
the number of time steps and the dimension of the state variables x, and are unpredictable
because the number of time steps varies with different options and error tolerances of the
ODE/DAE solver.

To reduce the memory requirements and also make them predictable, we use a two-
level checkpointing technique. First we set up a checkpoint after every fixed number of
time steps during the forward integration of the original DAE. Then we recompute the
forward information between two consecutive checkpoints during the backward integration
by starting the forward integration from the checkpoint. This approach needs to store
only the forward information at the checkpoints and at a fixed number of times between
two checkpoints.

In the implementation we allocated a special buffer to communicate between the for-
ward and backward integration. The buffer is used for two purposes: to store the necessary
information to restart the forward integration at the checkpoints, and to store the state
variables and derivatives at each time step between two checkpoints for reconstruction of
the state variable solutions during the backward integration.

In order to obtain the fixed number of time steps between two consecutive check-
points, the second forward integration should make exactly the same adaptive decisions
as the first pass if it restarts from the checkpoint. Therefore, the information saved at
each checkpoint should be enough that the integration can repeat itself. In the case of
DASPK3.0, the necessary information includes the order and stepsize for the next time
step, the coefficients of the BDF formula, the history information array of the previous k
time steps, the Jacobian information at the current time, etc.. To avoid storing Jacobian
data (which is much larger than other information) in the buffer, we enforce a reevaluation
of the iteration matrix at each checkpoint during the first forward integration.

If the size of the buffer is specified, the maximum number of time steps allowed between
two consecutive checkpoints and the maximum number of checkpoints allowed in the buffer
can be easily determined. However, the total number of checkpoints is problem-dependent
and unpredictable. It is possible that the number of checkpoints is also too large for some
applications to be held in the buffer. We then write the data of the checkpoints from the
buffer to a disk file and reuse the buffer again. Whenever we need the information on the
disk file, we can access it from the disk. We assume that the disk is always large enough
to hold the required information.

Another important issue is how to formulate the adjoint DAE and the initial conditions
so that the user doesn’t have to learn all about the adjoint method and derive these
for themselves. The adjoint equations involve matrix-vector products from the left side

'We could of course consider basing the interpolant on the interpolating polynomial underlying the
BDF formula, but this is more complicated, requires more storage, and it not as smooth.



(vector-matrix products). Although a matrix-vector product F,v can be approximated
via a directional derivative finite difference method, it is difficult to evaluate the vector-
matrix product vF, directly via a finite difference method. The vector-matrix product
vF, can be written as a gradient of the function vF'(x) with respect to x. However, N
evaluations of vF'(x) are required to calculate the gradient by a finite-difference method if
we don’t assume any sparsity in the Jacobian. Therefore, automatic differentiation (AD)
is necessary to improve the computational efficiency. A forward mode AD tool cannot
compute the vector-matrix products without evaluation of the full Jacobian. It has been
shown [14] that an AD tool with reverse mode can evaluate the vector-Jacobian product
as efficiently as a forward mode AD tool can evaluate the Jacobian-vector product. In
our implementation with DASPK3.0, we use the AD tool TAMC [14] to calculate the
vector-matrix products. Initialization of the adjoint DAE is quite a bit more complicated
than in the ODE case. For details, see [9] and [10]. In general, one needs to be able to
provide some information about the structure of the problem (i.e. which are the index-1
and index-2 variables and constraints).

3 Sensitivity Analysis for Time-Dependent PDE Sys-
tems

Sensitivity methods for steady-state PDE problems have been studied by many authors
(see [1, 5, 15, 17, 18]). Here we outline some recent results on adjoint methods for general
transient PDE systems. Although many of the results from the steady-state system can be
readily extended to the time-dependent PDE system, the time-dependent system has some
unique features that must be treated differently. For example, apart from the boundary
conditions, we now have initial conditions that must be determined. Two important
classical fields that make extensive use of sensitivity analysis are inverse heat-conduction
problems [13] and shape design in aerodynamic optimization [29].
Given a parameter-dependent PDE system

(8) F(ta Uy Uty Ugy Uga, p) = 07

and a vector of objective functions G(z,u,p) that depend on u and p, the sensitivity
problem usually takes the form: find %, where p is a vector of parameters. By the chain

rule, the sensitivity % is given by

o G _oGon o
dp  Oudp Op’

If we treat (8) as a nonlinear system about u and p, say H(u,p) = F(t,u, us, Uy, Uge, P),
we have the following relationship
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Assuming that %—Z is boundedly invertible, the sensitivity % is given by
dG  0G (0H\'0H 0G
(10) — =——| = — + =
dp ou \ Ju Oop Op
da

There are two basic methods to calculate > in (10): forward and adjoint. The

-1
forward methods calculate g—; = (%—Z) %—;I first, which is the solution of the sensitivity
PDE for each uncertain parameter. The adjoint methods, however, compute g—i (%—Z !
first, which is the solution of the adjoint PDE. The sensitivity and adjoint PDEs will
be defined later. Although both methods yield the same analytical sensitivities, the
computational efficiency may be quite different, depending on the number of objective
functions (dimension of G) and the number of sensitivity parameters (dimension of p).
The forward method is attractive when there are relatively few parameters or a large
number of objective functions, while the adjoint method is more efficient for problems
involving a large number of sensitivity parameters and few objective functions. We have
studied the forward method in [25] and shown how it is possible to make use of the
methods and software for sensitivity analysis of DAEs in combination with an adaptive
mesh refinement algorithm for PDEs. In [21], we have studied extensively the adjoint
method for PDEs solved with adaptive mesh refinement. Those results are outlined in
what follows.

Two approaches can be taken for each method. In the first, called the discrete ap-
proach, we approximate the PDE by a discrete nonlinear system and then differentiate
the discrete system with respect to the parameters. The discrete approach is easy to im-
plement with the help of automatic differentiation tools [6, 14]. However, when the mesh
is solution or parameter dependent (e.g., for an adaptive mesh or moving boundary), or a
nonlinear discretization scheme (e.g., upwinding) is used, the discrete approach may not
be computationally effective.

It is well-known that the method of lines (MOL) can transform a PDE system into an
ODE or DAE system by spatial discretization. Thus the sensitivity calculation methods
in [10] can be used if the semi-discretized PDE is obtained. However, we have observed
that the adjoint of the discretization (AD) may not be consistent with a PDE, and the
adjoint variables are not smooth on an adaptive grid. Therefore, if the adaptive region is
changing with time (e.g. in adaptive mesh refinement (AMR) [4, 25]), the interpolation
for the adjoint variables between different grids will introduce large errors. The AD
method cannot be used in this case. On the other hand, one can show [21] that for linear
discretization methods applied on a fixed grid with appropriate treatment of the boundary
conditions, the sensitivities generated are accurate except in a small boundary layer.

In the second, called the continuous approach, we differentiate the PDE with respect
to the parameters first and then discretize the sensitivity or adjoint PDEs to compute the
approximate sensitivities. The system resulting from the continuous approach is usually
much simpler than that from the discrete approach, and is naturally consistent with the
adjoint PDE system. Therefore, the adaptive grid method and interpolation can be used



without difficulties. Derivation of the adjoint PDE could be handled by symbolic methods
such as MAPLE. However it is very difficult to formulate proper boundary conditions for
the adjoint of a general PDE system, and to the best of our knowledge an algorithm for
generating the boundary conditions does not exist for a general PDE system. Moreover,
the adjoint system may become inadmissible for some objective functionals (see [1, 2]),
where the boundary conditions (or initial conditions) for the adjoint PDE system cannot
be formulated properly. The discrete approach does not have such difficulties.

We propose an approach to combine the AD method and the discretization of the
adjoint (DA) method in an efficient manner so that it can be used with AMR. The new
approach (called the ADDA method) not only solves the problem for AD on the adaptive
grid, it also solves the inadmissibility problem for DA. Both the AD and DA methods are
used in this new approach but are applied in different regions.

We developed the ADDA method based on an observation that the discretization
from the AD method is consistent with the adjoint PDE (hence it can be replaced with
the discretization of the DA method) at the internal points if the mesh and the (linear)
discretization are uniform everywhere except at the boundaries. The basic idea of the
ADDA method is illustrated in Fig. 1.

DA

adaptive grid

fixed grid

Figure 1: Diagram of the ADDA method

The results of the ADDA method should be equal or close to the results of the AD
method on a nonadaptive fine grid. Given a reference nonadaptive fine grid, we first
split the whole domain into two zones: boundary buffer zone and internal zone (see

8



Fig. 1). The boundary buffer zone consists of the boundary points and points that use
the boundary points in their discretization. The remainder of the points belong to the
internal zone. Since the discretization of the AD method may not be consistent with
the adjoint PDE at or near the boundaries, the buffer zone is fixed and never adapted
during the entire time integration. In the internal zone, the discretization from the AD
method can be replaced with the discretization from the DA method if we assume that
the discretization from the AD method is consistent with the adjoint PDE. It turns out
[21] that this assumption is not always true for a general discretization and grid. However,
if the mesh and discretization of the forward problem are uniform in the internal zone,
the adjoint of the discretization is indeed consistent with the adjoint PDE.

After the discretization in the internal zone has been replaced by that from the DA
method, the mesh can be adapted to achieve efficiency without loss of the accuracy.
The adaptive mesh refinement in the internal zone is invisible to the AD method, which
expects that the discretizations for the adjoint system are generated by the AD method
on a nonadaptive fine grid. Instead the discretization is accomplished efficiently by the
DA method on an adaptive grid. The internal zone looks like a black box to the AD
method.

Since the sensitivity calculation is based on the AD method, the initial conditions for
the adjoint system must be generated by the AD method. However, the initial conditions
generated by the AD method may involve the grid spacing information, due to the ob-
jective functional evaluation [21]. A variable transformation [21] is used to eliminate the
grid spacing information related to the integration scheme in the objective function evalu-
ation. However, it cannot eliminate the grid spacing information related to the integrand
function.

Strictly speaking, the values of the adjoint variables are different on different grids.
That is why the sensitivity calculation by the AD method must be performed on a fixed
mesh. The initial given mesh, which is the last mesh generated at ¢ = T in the forward
adaptive method, may not be the same as the reference nonadaptive fine mesh we seek.
Therefore, we must calculate the initial conditions for the ADDA method on the reference
mesh first and then project them onto the initial given mesh by interpolation.

The overall algorithm of the ADDA method is as follows: First we obtain the initial
conditions for the adjoint system by the AD method on a virtual nonadaptive fine grid.
Then we transform and project them to the adaptive grid with a fixed boundary buffer
zone. We assume that the discretization has been chosen so that AD is consistent with
the adjoint PDE internally. Then the spatial discretization in the boundary buffer zone
is generated by the AD method via automatic differentiation, and the discretization in
the internal zone is defined by discretization of the adjoint PDE. Finally, an ODE or
DAE time solver is used to advance the solution to the next time step. After the adjoint
variables have been computed, the sensitivity evaluations of the AD method are used to
calculate the sensitivities.

Examples are presented in [21] which demonstrate the effectiveness of the ADDA
method.
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Abstract

This preprint deals with the numerical time integration of diffusion-reaction problems with highly
stiff reaction terms. An implicit-explicit (IMEX) extension of the explicit Runge-Kutta-Chebyshev
(RKC) scheme is proposed. With respect to stability, the explicit scheme can be positioned in between
common explicit and implicit Runge-Kutta schemes. RKC is explicit and thus avoids algebraic system
solutions. It does however possess extended real stability intervals with a length proportional to s,
where s is the number of stages. This implies that the scaled stability interval length, which takes
into account the work load per time step, increases linearly with s, rendering RKC an attractive,
user-friendly scheme for integrating large-scale semi-discrete parabolic problems. In case of severe
stiffness RKC will become inefficient since then a very large number of stages will be needed for
reasonable step sizes. By treating the reaction terms implicitly, in this preprint this restriction is
removed for diffusion-reaction problems for which severe stiffness emanates from the reaction terms
and the reaction Jacobian has a real spectrum.

1 Introduction

This preprint deals with the numerical time integration of parabolic partial differential equations, in
particular diffusion-reaction problems with highly stiff reaction terms. We adopt the method of lines
approach, thus assuming that the PDE problem including its boundary conditions has already been
spatially discretized to a semi-discrete problem on a chosen space grid. This semi-discrete problem, being
an initial value problem for a system of ordinary differential equations (ODEs), is denoted as

W (t) = Fp(t,w(t) + Fr(tw(®), t>0,  w(0)=1wp, (L1)

where Fp represents the semi-discrete diffusion operator and Fr contains the reaction terms. Typically,
the dimension of this system is huge, especially for multi-space dimensional PDEs (number of PDE
components times number of grid cells) and often this system is nonlinear and stiff. The stiffness rules
out easy-to-use standard explicit solvers and the huge dimension with the nonlinearity complicates the
use of implicit solvers.

In this preprint we propose an implicit-explicit (IMEX) extension of the explicit Runge-Kutta-
Chebyshev (RKC) scheme. This scheme has been designed by van der Houwen & Sommeijer [10] for
the numerical time integration of parabolic PDEs. With respect to stability, this scheme can be posi-
tioned in between common explicit and implicit schemes. RKC is an explicit Runge-Kutta scheme and
thus avoids algebraic system solutions. It does however possess ezxtended real stability intervals with a
length proportional to s2, where s is the number of stages. This quadratic dependence is derived from
the first kind Chebyshev polynomial. The quadratic dependence is very attractive, since it means that
the scaled stability interval length, which takes into account the work load per time step (the number of



stages), increases linearly with s. Therefore RKC is an attractive, user-friendly scheme for integrating
large-scale semi-discrete parabolic problems. However, in case of severe stiffness, RKC will of course be-
come inefficient since then a very large number of stages will be needed to achieve stability with reasonable
step sizes. In such situations the use of an implicit, unconditionally stable scheme is advocated.

The IMEX extension proposed in this prepint is meant for problems (1.1) with a severely stiff reaction
function Fg(t,w(t)) and a moderately stiff diffusion function Fp(¢,w(t)). This extension thus treats the
diffusion function Fp (¢, w(t)) still explicitly and the reaction function Fr(t, w(t)) implicitly. With a zero
reaction term the original RKC scheme is recovered so that the IMEX extension maintains the attrac-
tive feature of the explicit scheme that no algebraic system solutions are required, except those of small
dimension (number of PDE components) coming from the reaction function. These small sized algebraic
systems can be dealt with by the classic solution approach based on modified Newton iteration and stan-
dard LU-decomposition. Note that they are decoupled over the grid and hence the reaction computation
can be easily parallelized, as is the case for the explicit diffusion computation. Furthermore, the IMEX
extension maintains the recursive Chebyshev nature such that we have stability for the testmodel

w'(t) = Apw(t) + Agw(t),

for all real non-positive Ap and Ag, as long as 7Ap lies in the original real stability interval (7 is here
the step size). In this sense the IMEX scheme is unconditionally stable for the reaction part, assuming
real eigenvalues.

In Section 2 we review the explicit RKC scheme from [10]. The construction of the new IMEX scheme
is discussed in Section 3. This new scheme is numerically illustrated in Section 4 for a highly stiff,
nonlinear radiation-diffusion problem. We conclude with Section 5 which collects some final remarks and
conclusions.

2 The explicit RKC scheme

In this section we review the explicit RKC scheme from [10] in order to prepare the construction of the
IMEX scheme. We here closely follow Ch. V of [11] where also more details and references to earlier and
additional work and related methods can be found.

2.1 The first-order scheme

To avoid too many technicalities in the beginning, we will start with the most simple form (first-order
and undamped). Let T, be the first kind Chebyshev polynomial T(x) = cos (sarccos (z)) of degree s
with € [—1, 1] and consider the shifted Chebyshev polynomial

z
P,(2) = T, (1 + 8—2) for ze€[-2s%0].
This polynomial satisfies |Ps(z)| < 1 for z € [~2s2,0] and approximates e* up to order 22 for z — 0,

i.e., e = P(2) + O(z%). Consequently, any s-stage first-order consistent explicit Runge-Kutta scheme for
systems w’(t) = F(t,w(t)),

WO = Wn,
j—1

W; :wn-l-TZOéij(tn—‘erT,Wk), ji=1,...,s, (2.1)
k=0

Wpy1 = Wi,

giving the recursion wy,y+1 = Ps(z)w,,z = 7\, when applied to the stability test equation w'(t) =
Aw(t), A € C, has P; as stability function and [— 0, 0] as real stability interval with real stability boundary
(3 = 2s. This boundary is optimal, that is, for any consistent scheme (2.1) we have 3 < 2s2.



The quadratic dependence implies that the scaled boundary (/s which takes into account the number
of function evaluations per time step, linearly increases with s and hence for problems with large negative
eigenvalues (semi-discrete parabolic PDEs) it may pay to use s-stage schemes (2.1) having P; as stability
function with s large. Within class (2.1) one can conceive different schemes giving Py as stability function.
However, if s and S get large, internal stability (round-off accumulation over the stages within a single
step) must be taken into account in addition to the common step-by-step stability governed by Px.
Without internal stability the range of applicable values of s is too limited [9].

The first-order RKC scheme for nonlinear systems w’(t) = F(¢,w(t)) is internally stable and is con-
structed as follows. First, all functions P;j(z),0 < j < s, satisfying W; = P;(z)w, at the internal stages,
similar to wy,+1 = Ps(2)wy,, are supposed to be given by the shifted, first kind Chebyshev polynomial

i) = T;(1+ 5). (2.2)
Second, these functions are retrieved from the three-term Chebyshev recursion
To(x) =1, Ti(z)==x,
Ti(z) =2xT;_1(x) — Tj_2(x), ji=2,3,...,s,

where arguments may be complex-valued, giving

1
Po(Z)Zl, 131(21):14—8*2

2 .
Pj(z) =2P;_1(2) — Pj_2(2) + 2 P;_1(2)z, J=2,3,...,s.

Z,

Third, for systems w’(t) = F(t,w(t)), the occurrence of P;_;(z) is associated with a stage value W;_;
and the occurrence of Pj_1(z)z with 7F};(t, + ¢j—17,W;_1) (and other occurrences likewise). This gives
the 1-st order RKC integration formula

Wo = Wp,

T
Wy = Wo+ ?F(tn,Wo%

27 (2.3)

Wj = 2Wj_1*Wj_2+ F(tn+6j_1T,Wj_1), j=2,...,s,

52
Wn41 = WS .

From (2.2) follows Pj(z) = €% + O(z?) defining ¢; = j2/s°.

This scheme obviously belongs to class (2.1) and it can be applied for any (practical) value of s
without giving internal stability problems. We owe this to the three-term Chebyshev recursion [10, 18].
In actual application, first a step size 7 is selected on the basis of accuracy considerations followed by an
adjustment of the number of stages s to provide step-by-step stability. That means that for efficiency
the smallest s is chosen such that at each integration step the heuristic stability condition

Tp (F/(tmwn)) <p= 2s? (2.4)

is satisfied, where p denotes the spectral radius and F’ the Jacobian matrix which is assumed to have
a negative real spectrum (and normal and constant for a rigorous Lo-analysis of stability and conver-
gence [18]). Consequently, the RKC method is applied as an unconditionally stable scheme in the sense
that no a priori restriction is laid on the step size 7. Of course, if the problem is excessively stiff leading
to a huge spectral radius, the minimal value of s required to satisfy (2.4) may become too large for a
feasible computation with this (stabilized) explicit scheme.

Remark 2.1 The real stability interval contains interior points z € (—3,0) where |Ps(z)| = 1. Hence an

imaginary perturbation on z might yield instability. For this reason, the P; given by (2.2) are slightly

damped [8] resulting in

Tj(UJO —|—wlz) i — TS(WQ)
Tiwo) 7 Tiwn)’

Py(z) = (2.5)



where wg > 1 is a parameter and wy is chosen such that P/(0) = 1, implying first-order consistency. The
real stability interval is determined by the relation —wy < wp + w12z < wp, giving B = 2wp/wr. In the
interior of the stability interval P;(z) now alternates between Ts(wo) ™! and —Ts(wo)~!. A convenient
choice for wy is wp = 1 + €/s% with € a small positive number. Expanding at wo = 1 and using 77(1) =

5%, T/ (1) = +s%(s* — 1) then shows Ty(wo) ~ 1+ € and

2w T (wo) N

7= Two)

A suitable value for € is 0.05. For practical problems this gives sufficient damping (approximately
5%) and it gives only a minor decrease of the stability boundary to approximately 1.93s2. Figure 2.1
(borrowed from [11]) illustrates the stability region S = {z € C : |Ps(z)| < 1} for P5 with and without
damping. The effect of damping is that that at the interior of [, 0] the boundary of S has no points
on the real axis.

Finally, the damping leads to slightly different coefficients in (2.3); see Remark 2.3 and the general
RKC formula (2.9) wherein (2.3) is contained. &

10
Ps, undamped

-10
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10
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Figure 2.1: Stability region for the first-order shifted Chebyshev polynomial Ps.

2.2 The second-order scheme

In actual computation first-order consistency may be too low. Van der Houwen & Sommeijer [10] therefore
have also constructed a second-order RKC scheme with

2 1 1 1 3z
BS<2):3+352+(3‘352>T5(1+521) (26)

as stability function which has
2,2

as real stability boundary. This polynomial, due to [4], satisfies e* = B,(z) + O(23) and generates about
80% of the optimal stability interval for second-order polynomials, being 3 ~ 0.814s2. Within the interior
of the stability interval B,(z) alternates between ~ 1/3 and 1.



Remark 2.2 For stabilized schemes of order p greater than or equal to two, stability functions with
the largest possible real stability boundary are known to exist [15], but explicit analytical expressions
like (2.6) are not available. However, there do exist accurate approximations to the optimal boundaries
B = c,(s)s? for 2 < p < 11, see Section 2.5 of [1]. O

The damped form of the stage polynomials B;,j =0, ..., s, reads
Bj(z) = a; +b;Tj(wo +w12), a; =1—5b;T;(wo), (2.7)
where wg = 1+ ¢/s% as in (2.5), w1 = Th(wo) /T (wp), and
by = T/ (wo)/ (T)(w0))®,  j=2,....5. (2.8)
The parameters by and by are still free. Here we put by = b1 = b (for the IMEX extension another choice

is made). Using T}(1) = s, T/ (1) = $5%(s*> — 1) and T} (1) = £s? (s* — 1) (s? — 4), the boundary 3 of
the damped stability function B can now be seen to satisfy

(wo + DT (wo)

O T )

2 %(52 -1)(1- 1%6) .

Taking € = 2/13, we get approximately 5% damping in the interior of the stability interval and a reduction
in the stability boundary of about 2% compared to the undamped case. Figure 2.2 (borrowed from [11])
illustrates the stability region S of Bs with and without damping.

” HW
0 \W
-5

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0 2

0 \_\/\/

-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0 2

Figure 2.2: Stability region for the second-order shifted Chebyshev polynomials Bs.

The construction of the second-order integration formula for systems w’(t) = F(¢, w(t)) is a bit more
complicated then in the first-order case, but is basically identical:
Wo = wy y
Wi = Wo+mrtko,
y y (2.9)
Wi = (1= pj —vj)Wo+ Wi +v;Wj o + iymFj 1 + 37 F

Wn+1 = W57



where j = 2,...,s and F}, denotes F(t,, + c,7, Wy). Further,

~ 2b;wo —b;
H1 = b](,d]_ y M = bJ y Vi = —L ’
7—1

and ¢ = 0,¢1 = c2/T4(wo) = c2/(dwp),

T T (w 2 -1
s(wo) ]/( 0)%j (2<j<s—-1), ¢ =1.
T{ (wo) Ti(wo) s2—1

Cj:

Remark 2.3 By replacing wy by wq = Ts(wo) /T4 (wo) and (2.8) by

b = i=0,...,s, (2.11)

(2.9) becomes just the first-order consistent scheme based on the damped stage functions (2.5). We then
have

Ts(wo) Tj(wo) 52 .
0 ’ < T (wo) Tj(wo) 52 (I<js<s ), ¢

Remark 2.4 If the stability function of a Runge-Kutta scheme approximates the exponential e* with
order p < 2, the scheme also has order p < 2 for general problems w’(¢t) = F(¢,w(t)). This greatly
simplifies the construction of the RKC integration formulas. <&

Remark 2.5 A variable stepsize code based on the second-order scheme has been developed in [17].
1) This code also works with a variable amount of stages to minimize computational costs. For that
purpose it has been equipped with a spectral radius estimator. In Section 4 the explicit code RKC will
be numerically illustrated. &

Remark 2.6 Related stabilized explicit methods are the ROCK [3, 2] and DUMKA methods [12, 13].
These have close to optimal real stability boundaries and can possess a higher order (up to order 4).
However, the formulas are not known in an explicit analytical form and are therefore less amenable for
extension to an IMEX scheme. Numerical comparisons between the 2-nd order RKC code from [17] and
a 4-th order ROCK code?) can be found in [3, 11]. &

3 The implicit-explicit Runge-Kutta-Chebyshev scheme

In this section we will construct the IMEX-RKC scheme for the general nonlinear system (1.1).

3.1 The integration formula

For this system, the IMEX-Euler scheme that is obtained from modifying the first stage formula of (2.9)
reads
Wi =Wy + in7Fp(tn, Wo) + fuFr(tn + fu1, W1), p1 = biwr , (3.1)

where the reaction term is treated implicitly. All subsequent stages of the RKC method (2.9) are modified
in a similar manner such that the recursive nature derived from the first kind Chebyshev polynomial is
maintained.

Consider the scalar stability test equation

W' (t) = Apw(t) + Agw(t) (3.2)

See ftp://ftp.cwi.nl/pub/bsom/rkc or http://www.netlib.org/ode/ for the source code.
2) See http://www.unige.ch/math/folks/hairer/software.html for the source code.

1)



with Ap and Ag standing for eigenvalues of (frozen) Jacobians F,(t, w(t)) and Fp, (¢, w(t)), respectively.
Applied to this test equation, (3.1) yields

14+ biwiz
W1 = Ri(z2p,2r) Wo, Ri(zp,2p) = 2. (3.3)
1— blwlzR
As we will see, it is convenient to impose
1
by = — 3.4
1 wo ) ( )
so that 1 .
+ Stzp
Rl(ZD, ZR) = + . (35)
1-— ;;ZR

Observe that the choice (3.4) for by differs from the choice made in Section 2.2 beneath formula (2.8).
Here we exploit the freedom we have for b; (like before, by is still free too and is again set equal to bs).
This choice enables the

Ansatz 3.1 All stage functions R;(zp,zr),j =0,1,...,s, of the IMEX-RKC scheme are taken to be of
the form
wo + wi1zp

Rj(zp,zr) = a; + b;T; ( - i, > 4 =1-0;Tj(wo) (3.6)
wo
with b; copied from (2.7), so that for zp = 0 the R; reduce to the stage functions (2.7). Of importance

is that the argument of the Tj is identical over the stages. &

Thus the construction of the IMEX-RKC scheme is based on the rational function expression (3.6).

First we write N
—a; R; wo +w1zp
Ti(z) = —L + -, =272
]( ) bj bj 1-— %(1) ZR

where R; = R;(zp, zr) and apply the recursion T} (z) = 22 Tj_1(x) — Tj_2(x). Inserting x gives

w b;
Rj'(].*ﬂZR):CLj (1——12R)+2—]Rj_1~(wo+wlzp)—
wo wo bj,1
b. b w1 b; w1
29 4. g o (1= == - R 5. (1=-= .
b aj—1 (wo +wizp) + b a;j—2 ( o ZR) b o 2 ( m 2R)

From this relation we can now deduce the IMEX integration scheme for system (1.1) by identifying the
occurrence of R; with W; and Rjzr with TFr(t, +c;7, W;) and a; with a; Wy, etc. Using the coefficient
expressions (2.10) this gives

Wi —in7 Frj = (a; — pja;-1 — vja;-2) Wo + Wi +v;W; o+
[ TFD j—1 49 7Fpo — viinT Frj—2 — i (a; — vja; )7 Fro,
where Fr ; = Fr(t, + ¢;7,W;), etc. Next, using
aj = Hjaj-1 = Vjaj_2 =1 —v; — uj,

we find the aimed IMEX-RKC integration scheme

Wo = wn,
Wiy = Wo+pmtFpo+ futFr1,
Wi = (1L =vj = pj) Wo + i W1 +v;Wj o + [1;7Fp j1 + 37Fpo + (3.7)
W — (I —vj — p;) fu]T Fro — vjfuT Frj—2 + 7T Frj ,
Wpy1 = Wi,
where j =2,...,s.



Remark 3.2 If Fp is absent, the explicit scheme (2.9) is recovered. For the diffusion operator F)p the
IMEX scheme thus operates in the same way as the explicit scheme. The difference is that (3.7) is implicit
in the stiff reaction operator Fg, requiring at each stage the solution of a system of non-linear algebraic
equations

W; —[LlTFR(tn-l-CjT, W]) =V, (38)

with V; given and W; as unknown vector. Because F'r has no underlying spatial grid connectivity,
this system consists of a great number (the number of grid points) of decoupled small sized subsystems
with dimension the number of coupled PDEs to be solved. Hence the modified Newton method can be
used with a common LU-decomposition for the linear solves as is customary in the stiff ODE field. For
efficiency reasons it could be advantageous that the coefficient fi; is independent of j, since this could
enable the use of LU-decompositions identical over the stages. &

Remark 3.3 In many diffusion-reaction applications one is interested in transient behaviour and in
steady-state solutions w for autonomous problems

Fp(w) + Fp(w) =0.

Standard ODE integrators (Runge-Kutta and linear multistep methods) return steady states exactly.
This property is shared by all stages of the current IMEX-RKC scheme (3.7). It takes an elementary
calculation to prove this. Note that with operator splitting where the subsystems w’(t) = Fp(w(t)) and
w'(t) = Fr(w(t)) are integrated completely decoupled within time steps (time splitting), steady states
are not returned exactly. &

3.2 Stability properties

We consider (linear test model) stability for equation (3.2). The underlying assumption here, made for
the sake of analysis, is that Ap and Ag stand for eigenvalues of frozen Jacobians Ap = F},(¢,w(t)) and
Ap = Fp(t,w(t)), respectively, with Ap and Ar normal matrices which commute. They then have
a common set of orthonormal eigenvectors implying that stability results in the Lo sense [11] for the
constant coefficient linear system w'(t) = (Ap + Ar)w(t) can be retrieved from the scalar equation
w'(t) = (Ap + Ag)w(t). Additionally, we suppose that both Ap and Ag are real and non-positive and
note that for many practical cases this imposes no restriction.
Thus, we will require stability for all possibles values (zp, zg) with

zp € [-5,0] and 2zr <0

for the IMEX-RKC stability function

Ru(2p,25) = aq + b1, | 072120 ) (3.9)
1-— ?DZR

Because zp is non-positive, implying

wo +w12p

1 @1
wo

<|wo +wizpl,

it follows trivially that |Rs(zp,2r)| < 1 as long as zp € [—3,0]. Hence with respect to the reaction
part the IMEX-RKC scheme is unconditionally stable and the stability with respect to the diffusion part
remains unchanged.

For zp — —oo (infinite reaction stiffness) the argument of T approaches zero. Hence for the IMEX
scheme derived from the first-order formula having as = 0, it is advocated to choose s odd, giving
Rs(zp,—o0) = 0 for all zp. This gives optimal damping of stiff components from the reaction term.
Likewise, for the IMEX scheme derived from the second-order formula it is advocated to choose s odd,
giving R4(zp, —00) =~ 2/3, or s such that T5(0) = —1, giving Rs(zp, —00) ~ 1/3. For both cases this also
would lead to a strong damping of stiff components from the reaction term.



3.3 Consistency properties

To see the change in consistency properties incurred by the IMEX extension, let us examine how the new
stability functions Rs(zp,zr) do approximate the exponential e*, z = zp + zg, for z — 0. Note that for
first- and second-order Runge-Kutta methods the consistency properties of the stability function largely
dictate the consistency properties for nonlinear problems, see also Remark 2.4.

First consider the IMEX scheme derived from the first-order explicit RKC formula. For simplicity of
presentation we put wg = 1 (no damping). Then the argument x of T in (3.9) satisfies

=" 14z, F=—" (3.10)

with w; = 1/s%, so that (3.9) becomes

z
RS(ZD,ZR) =T (1 + 52> .
Assuming s sufficiently large and letting Z — 0, we can now use a known expansion of T [11] giving

1 1 ..
Ry(zp,2p) = 14+2+ -2+ —3 ...,

6 90
It follows that ) )
e* — Ry(2p, 2r) & <3 - S2ZZR> 22

Compared to the explicit case, the leading term of the local error has become slightly smaller and this
small difference vanishes with increasing number of stages.

Next consider the IMEX scheme derived from the second-order explicit RKC formula and assume
again wy = 1 (no damping). The argument 2 of T in (3.9) then satisfies (3.10) with w; = 3/(s% — 1) so

that we can write ) . ) ) 3
R = 24 e (A ym (e 0 5)
sbepozr) = 3455+ (37 30 <+52—1z>
With s sufficiently large and Z — 0 there holds [11]

1 1
) ~Nl454+ 2324 53 4.,
Rs(2p,2R) —|—z—|—22 —l—loz +oeey

giving

e — Rs(zp,2r) =~ —z2° — o

This result reveals a reduction of the order from two to one due to the IMEX extension. However, the
new leading order term 3zpz/(s? — 1) vanishes with increasing number of stages indicating that in actual
application the effect of the order reduction will remain small.

4 Numerical results

We will numerically compare the new IMEX scheme (3.7) derived from the second-order explicit RKC
scheme (2.9) with this explicit scheme. For that purpose the variable step size code RKC from [17]
implementing this explicit scheme is used (see Remark 2.5). The comparison is based on a radiation-
diffusion problem from [14]. The following description of this problem, the used spatial discretization,
and part of the numerical results (those for the explicit scheme for Zy = 1,5) were borrowed from Ch.V
of [11].



4.1 A radiation-diffusion problem

The problem consists of two strongly nonlinear diffusion equations with a highly stiff reaction term (an
idealization of non-equilibrium radiation diffusion in a material). The dependent variables are E and T,
representing, respectively, radiation energy and material temperature. These problems are for instance
found in laser fusion applications. The equations are defined on the unit square for ¢ > 0,

B, = V- (D\VE) + o(T* - E),
Ty = V- (DyVT) — o(T* - E),
with
_z _ L
T ' 30+ |VE|/E’
Here |VE)| is the Euclidean norm and Z = Z(x,y) represents the atomic mass number which may vary

in the spatial domain to reflect inhomogeneities in the material. The temperature diffusion coefficient
k = 0.005 and

o Dy = kT2,

. 1 1 1 1
Zo 1f|x—§|§6and|y—§|§g,

1 otherwise .

Z(xay) :{

The initial values are constant in space,
E(x,y,0) = 107°,  T(x,y,0) = E(x,y,0)"/* ~ 5621072,
and the boundary conditions are

1 1
ZEfﬁ—gEz:]. atx:O,

1 1
ZE—}-@EJC:O atx =1,
T, =0 at x =0,1,

together with homogeneous Neumann conditions for £ and T at y = 0, 1.

The solution consists of a steep (temperature) front moving to the right. For Zy > 1 the movement is
hampered at the interior region with larger atomic mass number (and corresponding smaller diffusion).
The radiation energy E is for the most part almost equal to T, except near the front where it is slightly
larger with a steeper profile. Figure 4.1 shows contour levels and cross sections of an accurate reference
solution of the radiation temperature E'/* and material temperature T' at time ¢t = 3 for Z, = 10. More
illustrations for different values of the temperature diffusion coefficient (k = 0,0.1) can be found in [14].

The spatial discretization has been performed on a uniform cell centered grid with grid size h by
means of second-order central conservative discretization. This gives a semi-discrete system w’(t) =
Fp(w(t)) + Fr(w(t)) of dimension 2/h?, for which the spectral radii of frozen Jacobians Fp,, F are
estimated as

pp = 8h™2,  pr=6000Z3, (4.1)

assuming 1 < Z(z,y) < Zy. Note that we have at each grid point the nonlinear reaction system
Z3T—3(T* - E) , —a
fR(EaT) - (_ZSTS(T4_E) ) fR(EvT) - a _ﬂ )

with 5

Z 3 3FE
= =20+ 5)
and eigenvalues 0 and —(a + 3). In the expression for a + 3 the term Z3/T3 will be the dominating
one. Since we a priori know that 1/7° < 5.6 103, we can estimate pg as 6000Z3. Thus in total we get
p = pp + pr which is to be maximized over the spatial region. With increasing atomic mass number
Zy, pr thus quickly becomes much larger than pp for realistic grid sizes h. This is the kind of situation

where the IMEX scheme will be significantly more efficient than its explicit counterpart.

(07
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Figure 4.1: Contour levels and cross sections of the radiation temperature E/* and material temperature
T at time t = 3 for Zy = 10. Contour levels: 0.1,0.2,...,1.2.

4.2 Test results for the explicit code RKC

The code RKC [17] works as most other variable step size ODE codes. A difference is that at each
time step it minimizes the number of stages s so as to satisfy the stability condition 7p < 3 ~ 0.65s2.
Variable stepsizes are based on a local error per step criterion (which implies that if all is going well, this
second-order code will reduce the numerical integration error by a factor of roughly 5 upon a tolerance
reduction factor of 10 [16]). The code uses a tentative initial step size 7o = 1/p that is on scale with the
dynamics at t = 0.

In Table 4.1 temporal Lo-errors are listed for ¢ = 3 with various tolerances on 50 x 50 and 100 x 100
grids for Zy = 1,5,10. These errors were obtained by comparison with an accurate reference solution.
Also given are estimated spatial Lo-errors (obtained by comparison on grids with twice as many grid
points in both spatial directions). From the tables we see that with a decreasing local error tolerance
Tol, the temporal errors quickly become insignificant in comparison to the spatial errors. Hence further
decreasing Tol makes no sense and for this problem the code thus should work reliably for crude tolerances.

RKC solves the problem in all test cases reliably. However, with respect to efficiency we find the
results satisfactory only for Zy = 1 where pp still dominates. For Zy > 1 the reaction problem becomes
increasingly stiff leading to very high stage numbers s and thus high costs. In this situation the IMEX
scheme is expected to do a much better job. Observe that the integration behaviour is more or less
independent of the increasing stiffness imposed by Zy. Also observe that on the finer grid more time steps
are used compared to the coarser grid. On the finer grid the front is better resolved, which presumably
also steepens up the temporal solution requiring more time steps. The relatively large number of step
rejections for the smallest Tol = 1072 is odd; as yet we have no explanation for it.
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Zy = h=1/50 errys=3.0 102 h=1/100 erry,=8510"73

Tol errat Costs erry Costs

1071 231072 2175 (36+2, 82) 741073 5207 (52+7, 122)
1072 3.61073 3020 (68+3, 101) 3.01073 6393 (10142, 78)
1073 1.31073 5779 (180+33, 49) 441074 12484 (266447, 54)
Zo=5 h=1/50 errg,="7.810"2 h=1/100 err2,s=2710"2
Tol erry ¢ Costs erra ¢ Costs

1071 231072 11598 (33+3,459)  9.1107% 15496 (52+7, 395)
1072 41107% 15678 (67+2,513)  3.6107% 18624 (99+2, 213)
103 151073 28980 (173+27, 249) 4.310~* 31868 (254+20, 142)

Zy=10 h=1/50 erry,=1.0 1071 h=1/100 errgs=3.0 10—2
Tol erra Costs erra ¢ Costs
101 221072 33258 (34+3, 1297) 9.11073 42805 (5346, 1052)

1072 4.21073 44303 (67+2, 1448) 1.8 1073 52842 (100+2, 601)
1073 1.5 1073 81259 (173+26, 702) 4.3 10~* 89640 (255+19, 402)

Table 4.1: Results for the explicit code RKC for the radiation-diffusion problem with Ls-errors and Costs;
erra is the temporal error and errg s is the spatial error. Costs is given as Ng (Ngce + Nyej, Smaz) With
N total number of function evaluations, N,.. number of accepted steps, N;.; number of rejected steps,
and $;,4, the maximal number of stages per time step.

4.3 Test results for the IMEX scheme

Table 4.2 gives results obtained with a preliminary test version of the IMEX extension of the code RKC.
The result are presented in the same way as in Table 4.1, except that the total number of function
evaluations Ny has been replaced by the total number of stages Ngiqge (Nstage = Nrp for the explicit
code). The gain due to the IMEX extension is very clear: to a great extent the workload is independent
of the stiffness imposed by Zj, which means high savings in numbers of stages for Zy = 5,10 compared
to the explicit case. Note also that for all nine test runs the number of accepted and rejected integration
steps is nearly the same as in the explicit case.

The (preliminary) IMEX code used the same step size and local error control as the explicit one and
thus differed only in the additional solution of the reaction systems (3.8). The additional solution costs
for these systems diminish of course the anticipated savings from the lesser amounts of stages. Thus the
efficiency of the solution process for systems (3.8) should be as high as possible. As noted in Remark 3.2,
it makes sense to use modified Newton iteration in the same way as in the stiff ODE field. The results
of Table 4.2 were indeed obtained with a standard modified Newton implementation that evaluates a
new Jacobian and performs a new LU-decomposition at each stage of the RKC scheme, and at each grid
point. Acceptance for the iterants was thus decided per grid point, allowing the number of iterations to
differ over the grid points.

As start vector the accepted iterant of the previous stage was used and the iteration process was
terminated as soon as the modified Newton correction was 1% smaller than Tol, or as soon as the
modified Newton residual was less than 10~ (both measured in the maximum norm). A seemingly
cheaper alternative, based on recomputing the Jacobian and LU-decomposition only once per integration
step at the beginning of the step, turned out to be slightly less efficient requiring more integration steps
and more iterations. This of course is problem dependent.

Table 4.3 contains CPU times in seconds for the runs with the test case Zy = 10 on the 100 x 100 grid
(measured on a SUN Workstation Ultra5). For this test case and on this grid, the IMEX code turned out
to be about 3.5 to 4 times faster than the explicit code, while it has spent about half of its total elapsed
CPU time on solving the reaction systems (3.8) which makes sense. The gain for the IMEX code would

12



Zop=1 h=1/50 erry,=3.0 102 h=1/100 erros=28.5 1073
Tol erry Costs erry Costs

107! 3.31072 1954 (34+3, 76) 1.1 1072 4708 (54+3, 115)
10—2 461073 2610 (68+2, 80) 3.110°3 6167 (10142, 75)
10—3 1.51073 5209 (182+36, 39) 4.5 1074 12306 (268+52, 52)

Zo=5 h=1/50 errg,=7810"2 h=1/100 erros=2.710"2
Tol erry t Costs erry ¢ Costs

107! 2.31072 1834 (33+2, 76) 9.4 1073 4835 (b4+4, 126)
1072 441073 2590 (67+2, 80) 2.21073 6144 (10042, 69)
1073 141073 4726 (173+24, 39) 4.9 1074 10754 (256425, 49)

Zy=10 h=1/50 erry,=1.0 10T h=1/100 erry,=3.0 1072
Tol erra Costs erra Costs

107! 221072 1816 (32+2, 76) 1.0 1072 4601 (54+2, 115)
102 451073 2589 (67+2, 80) 1.9 1073 6151 (10042, 69)
1073 1.4 1073 4774 (175+25, 39) 5.0 1074 10840 (258+26, 49)

Table 4.2: Results for the IMEX version of the code RKC for the radiation-diffusion problem with Lo-
errors and Costs; erry ; is the temporal error and erry s is the spatial error. Costs is given as Nyzqge (NVace+
Nrejy Smaz) With Ngzage total number of stages, Nqo. number of accepted steps, N,.; number of rejected
steps, and S;,q, the maximal number of stages per time step.

increase with the reaction stiffness and recall that its computational effort (the numbers of stages) is
largely determined by the stiffness coming from the diffusion term. For the current problem the 100 x 100
grid gives a spectral radius pp = 8.0 10%, see (4.1), which is considerable of course. On the 50 x 50 grid,
giving pp = 2.010%, the IMEX code was about 6.5 to 7 times faster.

Table 4.3 also gives the average and the maximum number of modified Newton iterations, counted
over all grid points, all stages and all steps. These numbers are low and in accordance with stiff ODE
practice.

|| Time RKC | Time IMEX || Iterations
Tol Total Total Systems Rest || Average # Maximum #
1071 || 2127 510 (4.2) 228 282 1.03 2
1072 || 2630 698 (3.8) 317 381 1.23 2
1073 || 4400 1227 (3.6) 562 665 1.36 3

Table 4.3: CPU times with bracketed numbers the speed up and numbers of modified Newton iterations
at the grid points for the runs with the test case Zy = 10 on the 100 x 100 grid.

5 Final remarks

The original second-order code RKC is fully explicit, stabilized, and requires little memory. This makes it
an attractive, user-friendly code for integrating large-scale semi-discrete parabolic problems. Its limitation
lies in the stiffness and hence for efficiency reasons RKC is not advocated for severely stiff semi-discrete
parabolic problems. By treating reaction terms implicitly and diffusion terms still explicitly (IMEX
approach), this limitation has been removed for severely stiff diffusion-reaction problems where severe
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stiffness emanates from reaction terms having a Jacobian matrix with a real spectrum. By the IMEX
approach the code remains user-friendly and memory usage is still low.

The results and conclusions reported in this preprint are based on ongoing research. The very good
comparative results for the radiation-diffusion problem are no doubt promising and justify further work
on the subject. In the near future we plan further development of the current preliminary IMEX code
and further testing including comparisons with the popular implicit BDF code VODPK [5, 6, 7] and the
linearly implicit Rosenbrock code ROWMAP [19] (both use iterative Krylov methods). Furthermore it
seems very worthwhile to develop an IMEX version of the RKC scheme that can also handle severely stiff
reaction terms having a Jacobian with a complex spectrum.

References

[1] A. Abdulle (2001), Chebyshev methods based on orthogonal polynomials. Thesis No. 3266, Dept.
Math., Univ. of Geneva.

[2] A. Abdulle, A.A. Medovikov (2001), Second order Chebyshev methods based on orthogonal polyno-
mials. Numer. Math. 90, pp. 1-18.

[3] A. Abdulle (2002), Fourth order Chebyshev methods with recurrence relation. SIAM J. Sci. Com-
put. 23, pp. 2042-2055.

[4] M. Bakker (1971), Analytical aspects of a minimaz problem (in Dutch). Technical Note TN 62,
Mathematical Centre, Amsterdam.

[5] P.N. Brown, A.C. Hindmarsh (1989), Reduced storage matriz methods in Stiff ODE Systems, J.
Appl. Math. Comput. 31, pp. 40-91.

[6] P.N. Brown, C.S. Woodward (2001), Preconditioning strategies for fully implicit radiation diffusion
with material-energy transfer, SIAM J. Sci. Comput. 23, pp. 499-516.

[7] G.D. Byrne (1992), Pragmatic experiments with Krylov methods in the stiff ODE setting, Computa-
tional Ordinary Differential Equations, J.R. Cash, I. Gladwell (eds.), Oxford Univ. Press, Oxford,
pp. 323-356.

[8] A. Guillou, B. Lago (1961), Domaine de stabilité associé auzx formules d’intégration numérique
d’équations différentielles, a pas séparés et a pas liés. Recherche de formules a grand rayon de
stabilité. Ter Congr. Assoc. Fran. Calcul, AFCAL, Grenoble, Sept. 1960, pp. 43-56.

[9] P.J. van der Houwen (1977), Construction of Integration Formulas for Initial Value Problems.
North-Holland, Amsterdam.

[10] P.J. van der Houwen, B.P. Sommeijer (1980), On the internal stability of explicit, m-stage Runge-
Kutta methods for large m-values. Z. Angew. Math. Mech. 60, pp. 479-485.

[11] W. Hundsdorfer, J.G. Verwer (2003), Numerical Solution of Time-Dependent Advection-Diffusion-
Reaction Equations, Springer Series in Computational Mathematics, Vol. 33, Springer, Berlin (to
appear in July).

[12] V.I. Lebedev (1994), How to solve stiff systems of differential equations by explicit methods. In:
Numerical Methods and Applications. Ed. G.I. Marchuk, CRC Press, pp. 45-80.

[13] V.I. Lebedev (2000), Ezplicit difference schemes for solving stiff problems with a complex or sepa-
rable spectrum. Comput. Math. and Math. Phys. 40, pp. 1801-1812.

[14] V.A. Mousseau, D.A. Knoll, W.J. Rider (2000), Physics-based preconditioning and the Newton-
Krylov method for non-equilibrium radiation diffusion. J. Comput. Phys. 160, pp. 743-765.

14



[15] W. Riha (1972), Optimal stability polynomials. Computing 9, pp. 37-43.

[16] L.F. Shampine (1994), Numerical Solution of Ordinary Differential Equations. Chapman & Hall,
New York.

[17] B.P. Sommeijer, L.F. Shampine, J.G. Verwer (1997), RKC: An explicit solver for parabolic PDEs.
J. Comput. Appl. Math. 88, pp. 315-326.

[18] J.G. Verwer, W.H. Hundsdorfer, B.P. Sommeijer (1990), Convergence properties of the Runge-
Kutta-Chebyshev method. Numer. Math. 57, pp. 157-178.

[19] R. Weiner, B.A. Schmitt, H. Podhaisky (1997), ROWMAP - a ROW code with Krylov techniques
for large stiff ODEs. Appl. Numer. Math. 25, pp. 303-319

15



NUMERICAL AND COMPUTATIONAL CHALLENGES IN
ENVIRONMENTAL MODELLING

Z. ZLATEV*

Abstract.

Large-scale mathematical models can successfully be used in different environmental studies.
These models are described by systems of partial differential equations. Splitting procedures fol-
lowed by discretization of the spatial derivatives lead to several large systems of ordinary differential
equations of order up to 80 millions. These systems have to be handled numerically at up to 250 000
time-steps. Furthermore, many scenarios are often to be run in order to study the dependence of the
model results on the variation of some key parameters (as, for example, the emissions). Such huge
computational tasks can successfully be treated only if (i) fast and sufficiently accurate numerical
methods are used and (ii) the models can efficiently be run on parallel computers.

The mathematical description of a large-scale air pollution model will be discussed in this paper.
The principles used in the selection of numerical methods and in the development of parallel codes
will be described. Numerical results, which illustrate the ability of running the fine resolution versions
of the model on Sun computers, will be given. Applications of the model in the solution of some
environmental tasks will be presented. The ideas are fairly general and can be used in the development
of some other kinds of environmental models as well as in modelling in some other fields of science
and engineering.

Key words. Air pollution modelling, Partial differential equations, Ordinary differential equa-
tions, Numerical methods, Cache utilization, Parallel computations, Applications

1. Why are large-scale mathematical models used?. The control of the
pollution levels in different highly polluted regions of Europe and North America (as
well as in other highly industrialized parts of the world) is an important task for the
modern society. Its relevance has been steadily increasing during the last two-three
decades. The need to establish reliable control strategies for the air pollution levels
will become even more important in the future. Large-scale air pollution models can
successfully be used to design reliable control strategies. Many different tasks have to
be solved before starting to run operationally an air pollution model. The following
tasks are most important:

e describe in an adequate way all important physical and chemical processes,

e apply fast and sufficiently accurate numerical methods in the different parts
of the model,

e ensure that the model runs efficiently on modern high-speed computers (and,
first and foremost, on different types of parallel computers),

e use high quality input data (both meteorological data and emission data) in
the runs,

o verify the model results by comparing them with reliable measurements taken
in different parts of the space domain of the model,

e carry out some sensitivity experiments to check the response of the model to
changes of different key parameters

and

¢ visualize and animate the output results to make them easily understandable
also for non-specialists.

The solution of the first three tasks will be the main topic of this paper (however,
several visualizations will be used to present results from some real-life runs in the
end of the paper). The air pollution model, which is actually used here, is the Danish

*National Environmental Research Institute, Frederiksborgvej 399, P. O. Box 358, DK-4000
Roskilde, Denmark (zz@dmu. dk).
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Eulerian Model (DEM); see [34], [36]. However, the principles are rather general,
which means that most of the results are also valid for other air pollution models.

1.1. Main physical and chemical processes. Five physical and chemical pro-
cesses have to be described by mathematical terms in the beginning of the development
of an air pollution model. These processes are:

e horizontal transport (advection),
e horizontal diffusion,
e chemical transformations in the atmosphere combined with emissions from
different sources,
e deposition of pollutants to the surface
and
o vertical exchange (containing both vertical transport and vertical diffusion).

It is important to describe in an adequate way all these processes. However,
this is an extremely difficult task; both because of the lack of knowledge for some
of the processes (this is mainly true for some chemical reactions and for some of the
mechanisms describing the vertical diffusion) and because a very rigorous description
of some of the processes will lead to huge computational tasks which may make
the treatment of the model practically impossible. The main principles used in the
mathematical description of the main physical and chemical processes as well as the
need to keep the balance between the rigorous description of the processes and the
necessity to be able to run the model on the available computers are discussed in [34].

1.2. Mathematical formulation of a large air pollution model. The de-
scription of the physical and chemical processes by mathematical terms leads to a
system of partial differential equations (PDEs) of the following type:

(1.1) des _ Olucs)  O(ves)  O(wes)
’ ot dx Ay 8z

_|_i [/’ai _|_i [/’ai _|_£ [/’ai
9r \" r dy Y dy 9z \"* 0z

+Es - (Kjls +"{25)Cs + Qs(claCZa .. 'acq)a s = 1a2a -4,

where (i) the concentrations of the chemical species are denoted by ¢;, (ii) w,v and
w are wind velocities, (iii) K, K, and K, are diffusion coefficients, (iv) the emission
sources are described by Fj, (v) k15 and ka5 are deposition coefficients and (vi) the
chemical reactions are denoted by Q;(c1,¢2,...,¢q). The CBM IV chemical scheme,
which has been proposed in [13], is actually used in the version of DEM (the Danish
Eulerian Model; [34], [36]) that will be considered in this paper. It should be men-
tioned here that the CBM IV scheme is also used in other well-known air pollution
models.

1.3. Space domain. The space domain of DEM is a 4800 km x 4800 km square,
which contains the whole of Europe together with parts of Africa, Asia, the Arctic
area and the Atlantic Ocean. Two discretizations of this domain, a coarse one and a
fine one, will be used in this paper. The space domain is divided into 96x96 small,
50 km x 50 km, squares when the coarse discretization is applied. The space domain
is divided into 480x480 small, 10 km x 10 km, squares when the fine discretization is
applied. Thus, one of the coarse grid-squares contains 25 small grid-squares.
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1.4. Initial and boundary conditions. If initial conditions are available (for
example from a previous run of the model), then these are read from the file where
they are stored. If initial conditions are not available, then a five day start-up period
is used to obtain initial conditions (i.e. the computations are started five days before
the desired starting date with some background concentrations and the concentrations
found at the end of the fifth day are actually used as starting concentrations).

The choice of lateral boundary conditions is in general very important. However,
if the space domain is very large, then the choice of lateral boundary conditions
becomes less important; which is stated on p. 2386 in [6]: "For large domains the
importance of the boundary conditions may decline”. The lateral boundary conditions
are represented in the Danish Eulerian Model with typical background concentrations
which are varied, both seasonally and diurnally. It i1s better to use values of the
concentrations at the lateral boundaries that are calculated by a hemispheric or global
model when such values are available.

For some chemical species, as for example ozone, it is necessary to introduce some
exchange with the free troposphere (on the top of the space domain).

The choice of initial and boundary conditions is discussed in [14], [34], [36], [37]
and [38].

1.5. Applying splitting procedures. It is difficult to treat the system of
PDE’s (1.1) directly. This is the reason for using different kinds of splitting. A split-
ting procedure, which is based on ideas proposed in [21] and [22], and which leads to
five sub-models, has been proposed in [34] and used after that in many studies in-
volving DEM (as, for example, in [36]). Each of the five sub-models obtained by this
splitting procedure is representing one of the major physical and chemical processes
discussed in §1.1; 1.e. the horizontal advection, the horizontal diffusion, the chemistry
(together with the emission terms), the deposition and the vertical exchange.

In the newest version of DEM, which is used here, the horizontal advection was
merged with the horizontal diffusion, while the chemical sub-model was combined
with the deposition sub-model. This means that the number of sub-models is reduced
from five to three:

19 gt B 3(wcg3)) o P 9cl?
(12) at 9z 9z \ " oz
1.3) e _ duel) o)
’ ot Oz dy
+ 2 [k 0" + 9 (k e
g \ """ o Oy ty Oy
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The first of these sub-models, (1.2), describes the vertical exchange. The second
sub-model, (1.3), describes the combined horizontal transport (the advection) and
the horizontal diffusion. The last sub-model, (1.4), describes the chemical reactions
together with emission sources and deposition terms.
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The main principles used to treat the sub-models at a given time-step are the
same as the principles discussed in [21], [22] and [34]; see also [39].

Splitting allows us to apply different numerical methods in the different sub-
models and, thus, to reduce considerably the computational work and to exploit better
the properties of each sub-model. These are the main advantages of using splitting.
Unfortunately, there are drawbacks also: the splitting procedure is introducing errors,
and 1t 1s difficult to control these errors. Some attempts to obtain some evaluation of
the splitting errors were recently carried out; see [19] and [9].

1.6. Space discretization. Assume that the space domain is discretized by us-
ing a grid with N; x Ny x N, grid-points, where N, N, and N, are the numbers
of the grid-points along the grid-lines parallel to the Oz, Oy and Oz axes. Assume
further that the number of chemical species involved in the model 1s ¢ = N;. Finally,
assume that the spatial derivatives in (1.2) are discretized by some numerical algo-
rithm. Then the system of PDE’s (1.2) will be transformed into a system of ODEs
(ordinary differential equations):

(1.5) = fO(t, gy,

In a similar way, the system of PDEs (1.3) can be transformed into the follow-
ing system of ODEs when the spatial derivatives in the right-hand-side of (1.3) are
discretized:

dg?

(1.6) == [P0,

There are in fact no spatial derivatives in the right-hand-side of (1.4), because
the non-linear functions (s can be represented as

q q q
(L7) Qs(er,eo,...,¢q) = —Zasici + ZZﬁsijcicj, s=1,2,...,q.
i=1

i=1j=1

where a,; and f,;; are coefficients describing the rates of the chemical reactions (for
the CBM IV schemes these coefficients are listed in [34]). By using this observation,
it is easy to represent (1.4) as a system of ODEs:

dg®
dt

(1.8) = Ot ¢4®),

The components of functions ¢()(t) € RNexNyxNoxNe i — 1 93 are the ap-

proximations of the concentrations (at time ¢) at all grid-squares and for all species.
The components of functions f()(¢,g) € RNe*NyxNoxNs i — 1 9 3 depend on the
numerical method used in the discretization of the spatial derivatives.

A simple linear finite element method is used to discretize the spatial derivatives
in (1.2) and (1.3). This method is described in [26] and [27]. Tts implementation in
DEM is discussed in [11].

The spatial derivatives can also be discretized by using other numerical methods:
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o Pseudospectral discretization (described in detail in [34]).

e Semi-Lagrangian discretization (can be used only to discretize the first-order
derivatives, i.e. the advection part should not be combined with the diffusion
part when this method is to be applied), see for example [20].

e Methods producing non-negative values of the concentrations. The method
proposed in [4] is often used in air pollution modelling. The method from
[17] is based on a solid theoretical foundation.

As mentioned above, there are no spatial derivatives in (1.4), which means that
the system of ODEs (1.8) is trivially obtained by (1.4).

Much more details about the methods, which can be used in the space discretiza-
tion, can be found in [34].

1.7. Time integration. It is necessary to couple the three ODE systems (1.5),
(1.6) and (1.8). The coupling procedure is connected with the time-integration of
these systems. Assume that the values of the concentrations (for all species and at all
grid-points) have been found for some ¢ = ¢,. According to the notation introduced
in the previous sub-section, these values can be considered as components of a vector-
function g(t,) € RNeXNyXNaxNe The next time-step, time-step n + 1 (at which the
concentrations are found at t,11 = t, + At, where At is some increment), can be
performed by integrating successively the three systems. The values of ¢(¢,) are used
as an initial condition in the solution of (1.5). The solution of (1.5) is used as an
initial condition of (1.6). Finally, the solution of (1.6) is used as an initial condition of
(1.8). The solution of the last system (1.8) is used as an approximation to g(ty41). In
this way, everything is prepared to start the calculations in the next time-step, step
n+ 2.

The first ODE system, (1.5), can be solved by using many classical time-integration
methods. The so-called #-method (see, for example, [18]) is currently used in DEM.
The choice of numerical method is not very critical in this part, because as it will be
shown Section 4, 1t 1s normally not very expensive.

Predictor-corrector (PC) methods with several different correctors are used in
the solution of the ODE system (1.6). The correctors are carefully chosen so that
the stability properties of the method are enhanced; see [33]. The reliability of the
algorithms used in the advection part was verified by using the well-known rotational
test proposed simultaneously in 1968 by [7] and [23]. If the code judges the time-
stepsize to be too large for the currently used PC method, then it switches to a more
stable (but also more expensive) PC scheme. On the other hand, if the code judges
that the stepsize is too small for the currently used PC method, then it switches to
more stable (and less expensive) PC scheme. In this way the code is trying both to
keep the same stepsize and to optimize the performance.

The solution of (1.8) is much more complicated, because this system is both
time-consuming and stiff. Very often the QSSA method is used in this part of the
model. The QSSA (quasi-steady-state approximation; see, for example, [15] or [16])
is simple and relatively stable but not very accurate (therefore it has to be run with
a small time-stepsize). The QSSA method can be viewed as an attempt to transform
dynamically, during the process of integration, the system of ODEs (1.8) into two
systems: a system of ODEs and a system of non-linear algebraic equations. These
two systems, which have to be treated simultaneously, can be written in the following
generic form:
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In this way we arrive at a system of differential-algebraic equations (DAEs). There
are special methods for treating such systems as, for example, the code DASSL (see
[5]). Problem-solving environments (such as MATLAB or Simulink) can be used in
the preparation stage (where a small chemical systems at one grid-point only is used
in the tests). More details about the use of such problem solving environments can
be found in [28]. A method based on the solution of DAE for air pollution models
was recently proposed in [10].

The classical numerical methods for stiff ODE systems (such as the Backward
Euler Method, the Trapezoidal Rule and Runge-Kutta algorithms) lead to the solution
of non-linear systems of algebraic equations and, therefore, they are more expensive;
[18]. On the other hand, these methods can be incorporated with an error control and
perhaps with larger time-steps. The extrapolation methods, [8], are also promising.
It is easy to calculate an error estimation and to carry out the integration with large
time-steps when these algorithms are used. However, 1t is difficult to implement such
methods in an efficient way when all three systems, (1.5), (1.6) and (1.8), are to be
treated successively.

Partitioning can also be used ([1]). Some convergence problems related to the
implementation of partitioning are studied in [35].

The experiments with different integration methods for the chemical sub-model
are continuing. The QSSA with some enhancements based on ideas from [29] and [30]
will be used here. The method is described in [1]. There are still very open questions
related to the choice of method for the chemical part. The choice of the improved
QSSA method was made in order to get well-balanced parallel tasks.

2. Need for high performance computing in the treatment of large air
pollution models. The computers are becoming more and more powerful. Many
tasks, which several years ago had to be handled on powerful supercomputers, can
be handled at present on PCs or work-stations. However, there are still many tasks
that can only be run on parallel computers. This is especially true for the large
air pollution models. The size of the computational tasks in some versions of DEM
is given in the following two paragraphs in order demonstrate the fact that high
performance computing is needed when large air pollution models are to be treated.

2.1. Size of the computational tasks when 2-D versions are used. Only
the two systems of ODEs (1.6) and (1.8) have to be treated in this case. Assume first
that the coarse 96 x 96 grid is used. Then the number of equations in each of the two
systems of ODEs (1.6) and (1.8) is equal to the product of the grid points (9216) and
the number of chemical species (35), i.e. 322560 equations have to be treated at each
time-step when any of the systems (1.6) and (1.8) is handled. The time-stepsize used
in the transport sub-model (1.6) is 900 s. This stepsize is too big for the chemical
sub-model; the time-stepsize used in the latter model 18 150 s. A typical run of this
model covers a period of one year (in fact, as mentioned above, very often a period of
extra five days is needed to start up the models. This means that 35520 time-steps
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are needed in the transport sub-model, while six times more time-steps, 213120 time-
steps, are needed in the chemical part. If the number of scenarios is not large, then
this version of the model can be run on PCs and work-stations. If the number of
scenarios is large or if runs over many years have to be performed (which is the case
when effects of future climate changes on the air pollution studies is studied), then
high performance computations are preferable (this may be the only way to complete
the study when either the number of scenarios is very large or the time period is very
long).

Assume now that the medium 288 x 288 grid is used. Since the number of chemical
species remains unchanged (35), the number of equations in each of the systems (1.6)
and (1.8) is increased by a factor of 9 (compared with the previous case). This means
that 2903040 equations are to be treated at each time step when any of the systems
(1.6) and (1.8) is handled. The time-stepsize remains 150 s when the chemical part is
treated. The time-stepsize has to be reduced from 900 s to 300 s in the transport part.
This means that a typical run (one year + 5 days to start up the model) will require
106760 time-steps when (1.6) is treated and 213120 time-steps are needed when (1.8)
is handled. Consider the ratio of the computational work when the medium grid is
used and the computational work when the coarse grid is used. For the transport
sub-model this ratio is 18, while the ratio is 9 for the chemical-sub-model.

Finally, assume that the fine 480 x 480 grid is used. Using similar arguments
as in the previous paragraph, it is easy to show that the number of equations in
each of the systems (1.6) and (1.8) is increased by a factor of 25 (compared with the
96x96 grid). This means that 8064000 equations are to be treated at each time step
when any of the systems (1.6) and (1.8) is handled. The time-stepsize remains 150 s
when the chemical part is treated. The time-stepsize has to be reduced from 900 s
to 150 s in the transport part. This means that a typical run (one year + 5 days to
start up the model) will require 213520 time-steps for each of the systems (1.6) and
(1.8). Consider the ratio of the computational work when the fine grid is used and
the computational work when the coarse grid is used. For the transport sub-model
this ratio is 150, while the ratio is 25 for the chemical-sub-model. Tt is clear that this
version of the model must be treated on powerful parallel architectures.

2.2. Size of the computational tasks when 3-D versions are used. All
three sub-models, (1.5), (1.6) and (1.7), have to be treated in this case. Assume that
the number of layers in the vertical direction is n (n = 10 is used in this paper). Under
this assumption the computational work when both (1.6) and (1.8) is handled by the
3-D versions (either on a coarse grid or on a fine grid) is n times bigger than the
computational work for the corresponding 2-D version. The work needed to handle
(1.5) is extra, but this part of the total computational work is much smaller than the
parts needed to treat (1.6) and (1.8).

The above analysis of the amount of the computational work shows that it 1s
much more preferable to run the 3-D version on high-speed parallel computers when
the coarse grid is used. It will, furthermore, be shown that the runs are very heavy
when the 3-D version is to be run on a fine grid. In fact, more powerful parallel
computers than the computers available at present are needed if meaningful studies
with the 3-D version of DEM discretized on a fine grid are to be carried out.

2.3. Exploiting the cache memory of the computer. In the modern com-
puters the time needed for performing arithmetic operations is reduced dramatically
(compared with computers which were available 10-15 years ago). However, the re-
ductions of both the time needed to bring the numbers which are participating in the
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arithmetic operations from the memory to the place in the computer where the arith-
metic operation is to be actually performed and the time needed to store the results
back in the memory are much smaller. This is why most of the nowadays computers
have different caches. It is much more efficient to use data which is in cache than to
make references to the memory. Unfortunately, it is very difficult for the user (if at all
possible) to control directly the utilization of the cache. Nevertheless, there are some
common rules by the use of which the performance can be improved considerably.
The rules discussed in [24] and [25] will be outlined below. These rules have been
used in runs on several other computers in [24] and [25]. Tt will be shown in Section
5 that these rules are performing rather well also when Sun parallel computers are
used.

Consider the 2-D versions of DEM. Assume that the concentrations are stored in
an array CONS(Ny x Ny, N,). Each column of this array is representing the con-
centrations of a given chemical species at all grid-points, while each row is containing
the concentrations of all chemical species at a given grid-point. There are seven other
arrays of the same dimension.

There are no big problems when the transport sub-model is run (because the
computations are carried out by columns). However, even here cache problems may
appear, because the arrays are very long. This will be further discussed in Section 5.

Great problems appear in the chemical part, because when the concentration
of some species in a given row is modified, some other species in the same row are
participating in the computations, which becomes clear from the pseudo Fortran code
given below (with M = Ny x Ny and NSPECIES = N, ).

DO J=1,NSPECIES
DO I=1,M
Perform the chemical reactions involving
species J in grid-point 1
END DO
END DO

This code is perfect for some vector machines. However, if cache memory 1s avail-
able, then the computations, as mentioned above, can be rather slow, because in step
I,71=1,2,...M, of the inner loop CONS(I,.J) is updated, but the new value of the
chemical species J depends on some of the other species K, K =1,2,...,J—-1,J+
1,...,NSPECIES. Thus, when we are performing the I’th step of the second loop,
we have to refer to some addresses in row I of array CONS(M, NSPECIES). The
same is true for the seven other arrays of the same dimension. It is intuitively clear
that it 1s worthwhile to divide these arrays into chunks and to carry out the computa-
tions by chunks. Assume that we want to use NCHUN K S chunks. If M is a multiple
of NCHUNKS, then the size of every chunks is NSIZE = M/NCHUNKS, and

the code given above can be modified in the following way.

DO ICHUNK=1,NCHUNKS
Copy chunk ICHUNK from some of the eight
large arrays into small two-dimensional
arrays with leading dimension NSIZE
DO J=1,NSPECIES
DO I=1,NSIZE
Perform the chemical reactions involving
species J for grid-point 1
END DO
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END DO

Copy some of the small two-dimensional
arrays with leading dimension NSIZE
into chunk ICHUNK of the corresponding
large arrays

END DO

Both the operations that are performed in the beginning and in the end of the
first loop in the second code are extra. The extra work needed to perform these
operations is fully compensated by savings during the inner double loop, which is
very time-consuming.

A straight-forward procedure will be to copy the current chunks of all eight arrays
in the corresponding small arrays. However, this is not necessary, because some of
the arrays are only used as helping arrays in the chemical module. In fact, copies
from five arrays are needed in the beginning of the first loop. This means that there
is no need to declare the remaining three arrays as large arrays; these arrays can be
declared as arrays with dimensions (NSIZFE, NSPCIES), which leads to a reduction
of the storage needed. The reduction is very considerable for the fine 480 x 480 grid.

The situation in the end of the first loop is similar; i1t is necessary to copy back
to the appropriate sections of the large arrays only the contents of three small arrays.
The number of copies made at the end of the first loop has been reduced from five
to three because some information (as, for example, the emissions) is needed in the
chemical module (and has to be copied from the large arrays to the small ones), but
it is not modified in the chemical module (and, thus, there is no need to copy it back
to the large arrays in the end of the first loop).

When the 3-D versions are used, the array CONS(N, x Ny, N;) must be replaced
by CONS(N, x Ny, N, N,). However, the device described above can be applied,
because the computations for each layer can be carried out independently from the
computations for the other layers when (1.6) and (1.8) are treated.

It will be shown in Section 4 that the use of chunks leads to considerable savings
in computing time in the chemical sub-model.

3. Achieving parallelism. It was explained in the previous section that the
discretization of an air pollution model is as a rule resulting in huge computational
tasks. This is especially true in the case where the model is discretized on a fine grid.
Therefore it 1s important to prepare parallel codes which run efficiently on modern
parallel computers. The preparation of such a code will be discussed in this section.

3.1. Basic principles used in the preparation of the parallel versions.
The preparation of a parallel code is by no means an easy task. Moreover, it may
happen that when the code is ready the computing centre exchanges the computer
which has been used in the preparation of the code with another (hopefully, more
powerful) computer. This is why it is desirable to use only standard tools in the
preparation of the code. This will facilitate the transition of the code from one
computer to another when this becomes necessary. Only standard OpenMP ([31])
and MPT ([12]) tools are used in the parallel versions of DEM.

3.2. Development of OpenMP versions of DEM. The programming for
shared memory machines is relatively easy. It is necessary to identify the parallel
tasks and to insert in the code appropriate OpenMP directives (which on ordinary
sequential machines will be viewed as comments). The parallel tasks in the three
sub-models are discussed below.
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e Parallel tasks in the transport sub-model. This sub-model is mathe-
matically described (after the discretization) by (1.6). It is easy to see that
the system of ODEs (1.6) is consisting of ¢ x N, independent systems of
ODEs, where ¢ is the number of chemical species and N, is the number of
grid-points in the vertical direction. This means that there are ¢ x N, paral-
lel tasks. Each parallel task is a system of NV, x N, ODEs. In the chemical
scheme adopted in DEM there are 35 chemical species, but three of them are
linear combinations of other chemical species. N, is equal to 1 in the 2-D case
and to 10 in the 3-D case. Therefore, the actual number of parallel tasks is 32
in the 2-D case and 320 in the 3-D case. The tasks are large and the loading
balance in the transport sub-model is perfect. The use of this technique 1s,
thus, very efficient when the number of processors used is a divisor of 32 in
the 2-D case and 320 in the 3-D case. Some problems may arise in the 2-D
case. If more than 32 processors are available, then it will be necessary to
search for parallel tasks on a lower level of the computational process when
the 2-D versions are used.

¢ Parallel tasks in the chemical sub-model. This sub-model is mathe-
matically described (after the discretization) by (1.8). Tt is easy to see that
the system of ODEs (1.8) is consisting of N, X Ny x N, independent systems
of ODEs, where N, N, and N, are the numbers of grid-points along the
coordinate axes. The number of parallel tasks is very large (2304000 when
the 480 x 480 x 10 grid is used) and the loading balance is perfect. However,
the parallel tasks are very small (each parallel task is a system of ¢ ODEs).
Therefore, it is necessary to group them in clusters. Moreover, some arrays
are handled by rows, which may lead to a large number of cache misses, es-
pecially for the fine grid versions. Therefore, chunks are to be used in this
part (see the end of the previous version).

¢ Parallel tasks in the vertical exchange sub-model. This sub-model is
mathematically described (after the discretization) by (1.5). It is easy to see
that the system of ODEs (1.5) is consisting of N, x N, x N, independent
systems of ODEs. N, and N, are the numbers of grid-points along the co-
ordinate axes O, and Oy. N, = ¢ is the number of chemical species. The
number of parallel tasks is very large (8064000 when the 480 x 480 x 10 grid is
used with 35 chemical species) and the loading balance is perfect. However,
the parallel tasks are again small (each parallel task is a system of N, ODEs.
Therefore, also in this sub-model it is necessary to group the parallel tasks
in an appropriate way. It should also be emphasized that a very long array
(its leading dimension being N, x N, x N;) has to handled by rows. The
vertical exchange is not very expensive computationally. Nevertheless, it is
desirable to use chunks in the efforts to avoid a large number of cache misses
(this is especially true for the fine resolution versions). No chunks are used
at present, but there are plans to introduce chunks in the near future.

It is seen from the above discussion that it is very easy to organize the compu-
tational process for parallel runs when OpenMP tools are used. Moreover, it is clear
that the parallel computations depend on the splitting procedure, but not on the
numerical methods that have been selected.

3.3. Development of MPI versions of DEM. The approach used when MPI
tools are to be implemented is based in dividing the space domain of the model into
p sub-domains, where p is the number of processors which are to be used in the run.
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Two specific modules are needed in the MPT versions: (i) a pre-processing module
and (ii) a post-processing module.

e The pre-processing module. The input data is divided into p portions
corresponding to the p sub-domains obtained in the division of the space
domain. In this way, each processor will work during the whole computational
process with its own set of input data.

e The post-processing module. Each processor prepares its own set of out-
put data. During the post-processing the p sets of output data corresponding
to the p sub-domains are collected and common output files are prepared for
future use.

¢ Benefits of using the two modules. Excessive communications during the
computational process are avoided when the two modules are used. It should
be stressed, however, that not all communications during the computational
process are avoided. Some communications along the inner boundaries of
the sub-domains are still needed. However, these communications are to be
carried only once per step and only a few data are to be communicated. Thus,
the actual communications that are to be carried out during the computations
are rather cheap when the pre-processing and the post-processing modules are
proper implemented.

It is important to emphasize here that the introduction of p sub-domains leads to
a reduction of the main arrays by a factor of p. Consider as an illustrations the major
arrays used in the chemical sub-model. The dimensions of these arrays are reduced
from (Ny x Ny, Ni) to (Ny x Ny /p, Ni). It is clear that this is equivalent to the use
of p chunks; see §2.3. Chunks of length N, x N, /p are still very large. Therefore,
the second algorithm given in §2.3 has also to be used (in each sub-domain) when the
MPI versions are used. However, the reduction of the arrays leads to a reductions of
the copies that are to be made in the beginning and in the end of the second algorithm
in §2.3. Thus, the reduction of the arrays leads to a better utilization of the cache
memory.

The automatic reduction of the sizes of the involved arrays, and the resulting
from this reduction better utilization of the cache memory, make the MPI versions
attractive also when shared memory machines are available. It will be shown in the
next section that on Sun computers the MPI versions of DEM are often performing
better than the corresponding OpenMP versions.

4. Moving from different versions to a common model. Only a two years
ago several different options of DEM were available. Six versions were mainly used
in the runs (three 2-D versions discretized on the 96 x 96, 288 x 288 and 480 x 480
grids respectively together with the corresponding three 3-D versions). Recently, these
versions were combined in a common model. A special input file, ”save_inform” 1s
used to decide how to run the common model. Eight parameters are to be initialized
in ”save_inform” before the start of the run. These parameters are:

N X - the number of grid-points along the Ox axis.

NY - the number of grid-points along the Oy axis.

NZ - the number of grid-points along the Oz axis.

NSPECIES - the number of chemical species involved in the model.
NREFINED - allows us to use refined emissions when available.
NSIZE - the size of the chunks to be used in the chemical parts.
NY EAR - the number of chunks to be used in the chemical parts.
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The computers available at the Sun grid.

Z. ZLATEV

TABLE 5.1

Computer | Type Power RAM | Processors
Bohr Sun Fire 6800 | UltraSparc-I1IT 750 MHrz 48 GB 24
Erlang Sun Fire 6800 | UltraSparc-I1T 750 MHrz 48 GB 24
Hald Sun Fire 12k | UltraSparc-1IT 750 MHrz 144 GB 48
Euler Sun Fire 6800 | UltraSparc-I1IT 750 MHrz 24 GB 24
Hilbert Sun Fire 6800 | UltraSparc-I1IT 750 MHrz 36 GB 24
Newton Sun Fire 15k | UltraSparc-IIlcu 900 MHrz | 404 GB 72

e PATH - the working path where the data attached to the different processors
will be stored.

There are several restrictions for the parameters, which can be used at present.
The restrictions are listed below:

1. The allowed values for NX and NY are 96, 288 and 480. Furthermore, N X
must be equal to NY.

2. The allowed values for N7 are 1 (corresponds to the 2-D versions) or 10 (i.e.
only 10 layers are allowed for the 3-D versions).

3. Only one value, 35, 1s allowed at present for NSPECIES.

4. Refined emissions are available only for the 288 x 288 case and will used when
NREFINED =1. f NREFINED = 0, then the emissions for the 96 x 96
grid will be used (simple interpolation will be used when any of the other two
grids, the 96 x 96 grid or the 480 x 480 grid, is specified).

5. NSIZE must be a divisor of NX x NY.

Many of these restrictions will be removed (or, at least, relaxed) in the near
future. It will, for example, be allowed to

e specify a rectangular space domain,

e use more than 10 layers

and

e apply chemical schemes with more than 35 species.

The common model, which can be run as described in this section, will be called

UNI-DEM.

5. Numerical results. Some results will be presented in this sections to demon-
strate (i) the performance of different versions of UNI-DEM and (ii) the ability of the
code to carry out parallel computations in an efficient way. Some information about
the computer grid used will be presented before the start of the discussion of the
numerical results.

5.1. Description of the grid of Sun computers. Sun computers located
at the Danish Centre for Scientific Computing (the Danish Technical University in
Lyngby) were used in the runs. The computers and the their characteristics are shown
in Table 4.1. All these computers were connected with a 1Gbit/s Switch.

The computers are united in a grid (consisting of 216 processors) so that a job
sent without a special demand will be assigned on the computer on which there
are sufficiently many free processors. The different computers have processors of
different power (therefore, it is in principle possible to use the grid as a heterogeneous
architecture, but this option is not available yet).

We have been allowed to use no more than 16 processors, and in the runs in
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TABLE 5.2

Computing times (measured in seconds) obtained in the advection part when siz options of UNI-DEM
are run on 8 processors

NX xNY [ 2D (NZ=1) | 3D (NZ = 10)
96 450 6240
288 17493 173685
480 110390 986672

TABLE 5.3

Computing times (measured in seconds) obtained in the chemistry part when siz options of UNI-
DEM are run on 8 processors

NX xNY [ 2D (NZ=1) | 3D (NZ = 10)
96 2645 21545
288 35433 268721
480 150068 1055289

this section we used only "newton” (i.e. we had always a requirement specifying the
particular computer on which the job must be run)

More details about the high speed computers that are available at the Technical
University of Denmark can be found in [32].

5.2. Running the MPI options of UNI-DEM. Six MPI options of UNI-
DEM have been tested: (i) the 2-D options obtained by using NX = NY = 96,
NX = NY =288 and NX = NY = 480 and (ii) the corresponding 3-D versions.
NSIZFE = 48 was used in all runs. The year was 1997. Refined emissions were used
when NX = NY = 288, while the emissions given on the coarse grid were used in
the other case (using interpolation when NX = NY = 480).

The most time consuming parts of the model are the advection part (combined
with the diffusion part) and the chemical part (combined with the emissions and the
deposition part). Therefore, we shall compare the advection times, the chemistry
times and the total times for the six options discussed in this sub-section.

The results shown in Table 5.2 - Table 5.4 allow us to draw the following conclu-
sions:

e The horizontal-advection diffusion part and the chemical part are indeed the
most time-consuming parts of the computational process.

e It is possible to run the refined options (even the refined 3-D options) on the
computers available at present. However, such runs are very time consuming.
Therefore, it is still not possible to use these options in comprehensive studies
(where the time-intervals are very long and, moreover, many scenarios are to
be run).

5.3. Scalability of the code. It is interesting to see whether increasing of the
number of processors used by a factor of k£ will lead to an reduction of the computing
time by a factor approximately equal to k. We selected the most time-consuming
option (the option discretized on a 480 x 480 x 10 grid) and run it on 32 processors.
The results were compared, see Table 5.5, with the results obtained when 8 processors
were used (i.e. we have k = 4).

It is clearly seen (from Table 5.5) that the speed ups are rather close to linear.

The conclusion is that more processors and more powerful processors might resolve
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TABLE 5.4
Total computing times (measured in seconds) obtained when siz options of UNI-DEM are run on 8
processors

NX xNY [ 2D (NZ=1) | 3D (NZ = 10)

96 5060 33491

288 70407 549801

480 355387 2559173
TABLE 5.5

Comparison of the computing times obtained on 8 processors and 32 processors with UNI-DEM
discretized on a 480 X 480 x 10 grid. The speed-ups obtained in the transition from &8 processors to
82 processors are given in brackets.

Process 8 processors | 32 processors
Hor. adv. + diff. 986672 | 308035 (3.20)
Chem. + dep. 1055289 | 268978 (3.92)
Total 2559173 | 744077 (3.44)

many of the problems mentioned in the previous sub-section. Furthermore, the results
in Table 5.5 indicate that some improvements in the advection part are desirable.

6. Some practical applications of DEM. Some results obtained by running
DEM with meteorological and emission data for 1997 will be presented in this section.
These results will demonstrate the usefulness of using fine resolution version of DEM.

The comparison of the concentration levels that are calculated by the model with
the input levels of the emissions used is important. For species like SO2, NO; and
N Hjz the calculated by the model pollution levels should reflect the pattern of the
emissions used.

We choose to make some comparisons for NO» concentrations in an area contain-
ing Denmark. The pattern of the corresponding N O, emissions is seen in Fig. 5.1. It
is seen that the largest emissions are in the regions of the three largest Danish cities
(Copenhagen, Arhus and Odense). This is not a surprise, because the traffic in cities
is one of the major sources for the NO, emissions.

The calculated by the coarse resolution version of the model pattern for the NO,
concentrations is shown in Fig. 5.2. It is immediately seen that concentrations are
smoothed very much when the coarse grid is used (and the pattern calculated by the
model is not very similar to the input pattern of the related emissions.

The use of the fine resolution version of DEM calculates a pattern of the NO,
concentrations which is clearly closer to the pattern of the NO, emissions. This can
be seen by comparing the highest concentration levels in Fig. 5.3 with with the highest
emission levels in Fig. 5.1.

The distribution of the NO; concentrations in the whole model space domain are
shown in Fig. 5.4. (note that the scale used in Fig. 5.4 is different from the scale
used in Fig. 5.2 and Fig. 5.3). Tt is seen that Denmark is located between highly
polluted regions in Central and Western Europe and regions in Scandinavia, which
are not very polluted.
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Fig. 5.1. Danish NO, emissions in 1997
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It should be mentioned here that the results in Fig. 5.2 and Fig. 5.3 are obtained
by zooming in Fig. 5.4 to the region containing Denmark (and, as already mentioned, by
changing the scale). Zooming might be used to get more details for the distribution of the
NO; concentrations (or the concentrations of any other of the studied by the model chemical
species) in any sub-domain of the space domain of DEM.

The results presented in Fig. 5.3 indicate that the fine resolution version is producing
results which are qualitatively better than the results produced by the coarse resolution
version (the areas with large emission sources, the the area around Copenhagen and the
area around Arhus-Odense can easily be seen in this plot). Quantitative validation of the
models results can be obtained by comparing concentrations calculated by the model with
measurements. Such comparisons were carried out in [2], [3], [14], [40] and [41] for the coarse
resolution version. It is still very hard to carry out such extensive studies by using the fine
resolution versions, but the results presented in this paper indicate that this will become
possible in the near future.
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Denmark. The members of the staff of DCSC helped us to resolve some difficult problems
related to the efficient exploitation of the grid of Sun computers.

REFERENCES

[1] V. ALEXANDROV, A. SAMEH, Y. SIDDIQUE AND Z. ZLATEV, Numerical integration of chemical
ODE problems arising in air pollution models, Environmental Modelling and Assessment,
Vol. 2 (1997), 365-377.

[2] C. AMBELAS SKJ®TH, A. BASTRUP-BIRK, J. BRANDT AND Z. ZLATEV, Studying variations of
pollution levels in a given region of Europe during a long time-period, Systems Analysis
Modelling Simulation, Vol. 37 (2000), 297-311.

[3] A.BasTrRUP-BIRK, J. BRANDT, I. URIA AND Z. ZLATEV, Studying cumulative ozone exposures
in Europe during a seven-year period, Journal of Geophysical Research, Vol. 102 (1997),
23917-23935.

[4] A. BoTT, A positive definite advection scheme obtained by non-linear renormalization of the
advective fluzes, Monthly Weather Review, Vol. 117 (1989), 1006-1015.

[5] K. BRENAN, S. CAMPBELL AND L. PETZOLD, Numerical solution of initial value problems in
differential-algebraic equations, SIAM, Philadelphia, 1996.

[6] R. A. BRoST, The sensitivity to input parameters of atmospheric concentrations simulated by
a regional chemical model, Journal of Geophysical Research, Vol. 93 (1988), 2371-2387.

[7] W.P. CROWLEY, Numerical advection ewperiments, Monthly Weather Review, Vol. 96 (1968),
1-11.

[8] P. DEUFLHARD, (1985). Recent progress in extrapolation methods for ordinary differential
equations. STAM Review, Vol. 27 (1985), 505-535.

[9] 1. DiMov, 1. FARAGO, A. HAvASI AND Z. ZLATEV, L- Commutativity of the operators in splitting
methods for air pollution models, Annales Univ. Sci. Budapest, Vol. 44, (2001), 129-150.

[10] R. DyouaD AND B. SPORTISSE, Solving reduced chemical models in air pollution modelling,
Applied Numerical Mathematics, Vol. 40 (2003), 49-61.

[11] K. GEORGIEV AND Z. ZLATEV, Parallel Sparse Matriz Algorithms for Air Pollution Models,
Parallel and Distributed Computing Practices, Vol. 2 (1999), 429-442.

[12] W. Groprp, E. Lusk AND A. SKJELLUM, Using MPI: Portable programming with the message
passing interface, MIT Press, Cambridge, Massachusetts (1994).

[13] M. W. GERy, G. Z. WHITTEN, J. P. KiLLus aNnD M. C. DoDGE, A photochemical kinetics
mechanism for urban and regional computer modeling, Journal of Geophysical Research,
Vol. 94 (1989)7 12925-12956.

[14] A. Havast aND Z. ZLATEV, Trends of Hungarian air pollution levels on a long time-scale,
Atmospheric Environment, Vol 36 (2002), 4145-4156.

[15] E. HESsTVEDT, @. Hov AND I. A. ISAKSEN, Quasi-steady-state approzimations in air pollution
modelling: comparison of two numerical schemes for oxidant prediction, International
Journal of Chemical Kinetics, Vol. 10 (1978), 971-994.



(16]

[17]
[15]
[19]
[20]
[21]

(22]

(23]
(24]
(25]
26]

(27]

(28]
(29]

(30]

(33]
(34]
35]

[36]

(37]
(38]
(39]

40]

[41]

Numerical and Computational Challenges in Environmental Modelling 17

@. Hov, Z. ZLaTEV, R. BERKOWICZ, A. ELIASSEN AND L. P. PRAHM, Comparison of nu-
merical techniques for use in air pollution models with non-linear chemical reactions,
Atmospheric Environment, Vol. 23 (1988), 967-983.

W. HUNSDORFER, B. KOREN, M. vaN LoON AND J. G. VERWER, A positive finite difference
advection scheme, J. Comput. Phys., Vol. 117 (1995), 35-46.

J. D. LAMBERT, Numerical methods for ordinary differential equations. Wiley, New York
(1991).

D. LANCER AND J. G. VERWER, Analysis of operators splitting for advection-diffusion-reaction
problems in air pollution modelling, J. Comput.Appl. Math., Vol. 111 (1999), 201-216.

M. vaAN LooN, Testing interpolation and filtering techniques in connection with a semi-
Lagrangian method, Atmospheric Environment, Vol. 27A (1993), 2351-2364.

G. I. MARCHUK, Mathematical modeling for the problem of the environment, Studies in Math-
ematics and Applications, No. 16, North-Holland, Amsterdam (1985).

G. J. McRAE, W. R. GooDIN AND J. H. SEINFELD, Numerical solution of the atmospheric
diffusion equations for chemically reacting flows, Journal of Computational Physics, Vol.
45 (1984), 1-42.

C. R. MOLENKAMPF, Accuracy of finite-difference methods applied to the advection equation,
Journal of Applied Meteorology, Vol. 7 (1968), 160-167.

W. OWCZARZ AND Z. ZLATEV, Running a large air pollution model on an IBM SMP computer,
International Journal of Computer Research, Vol. 10, No. 4 (2001), 321-330.

W. OWCZARZ AND Z. ZLATEV, Parallel matriz computations in air pollution modelling, Par-
allel Computing, Vol. 28 (2002), 355-368.

D. W. PEPPER AND A. J. BAKER, A simple one-dimensional finite element algorithm with
multidimensional capabilities, Numerical Heath Transfer, Vol. 3 (1979), 81-95.

D. W. PEPPER, C. D. KERN AND P. E. LoNG, JR., Modelling the dispersion of atmospheric
pollution using cubic splines and chapeau functions, Atmospheric Environment, Vol. 13
(1979), 223-237.

L. F. SHAMPINE, M. W. REICHELT AND J. A. KIERZENKA, Solving Index-1 DAFEs in MATLAB
and Simulink. SIAM Rev., Vol. 41 (1999), 538-552.

J. G. VERWER AND M. VAN LOON, An evaluation of explicit pseudo-steady state approzimation
for stiff ODE systems from chemical kinetics, J. Comp. Phys., Vol. 113 (1996), 347-352.

J. G. VERWER AND D. SIMPSON, Ezplicit methods for stiff ODE’s from atmospheric chemistry,
Appl. Numer. Math., Vol. 18 (1995), 413-430.

WEB-siTE FOorR OPEN MP ToOLS, http://www.openmp.org, 1999.

WEB-SITE OF THE DANISH CENTRE FOR SCIENTIFIC COMPUTING AT THE TECHNICAL UNIVER-
SITY OF DENMARK, Sun High Performance Computing Systems, http://www.hpc.dtu.dk,
2002.

Z. ZLATEV, Application of predictor-corrector schemes with several correctors in solving air
pollution problems, BIT, Vol. 24 (1984), 700-715.

Z. ZLATEV, Computer treatment of large air pollution models, Kluwer Academic Publishers,
Dordrecht-Boston-London (1995).

Z. ZLATEV, Partitioning ODFE systems with an application to air pollution models, Computers
and Mathematics with Applications, Vol. 42 (2001), 817-832.

Z. ZLATEV, Massive data set issues in air pollution modelling, In: Handbook on Massive
Data Sets (J. Abello, P. M. Pardalos and M. G. C. Resende, eds.), pp. 1169-1220, Kluwer
Academic Publishers, Dordrecht-Boston-London (2002).

Z. ZLATEV, J. CHRISTENSEN AND A. ELIASSEN, Studying high ozone concentrations by using
the Danish Eulerian Model, Atmospheric Environment, Vol. 27A (1993), 845-865.

Z. ZLATEV, J. CHRISTENSEN AND @. Hov, An Eulerian air pollution model for Furope with
nonlinear chemistry, Journal of Atmospheric Chemistry, Vol. 15 (1992), 1-37.

Z. ZuaTEV, [. DiMOv AND K. GEORGIEV, Studying long-range transport of air pollutants,
Computational Science and Engineering, Vol. 1, No. 3 (1994), 45-52.

Z. ZuATEV, 1. DiMov, Tz. OSTROMSKY, GG. GEERNAERT, I. TZvETANOV AND A. BASTRUP-
BiIrk, Calculating losses of crops in Denmark caused by high ozone levels, Environmental
Modelling and Assessment, Vol. 6 (2001), 35-55.

Z. ZLATEV, J. FENGER AND L. MORTENSEN, Relationships between emission sources and

excess ozone concentrations, Computers and Mathematics with Applications, Vol. 32,
No. 11 (1996), 101-123.



Modeling drug release from collagen matrices undergoing
enzymatic degradation

M. Bause!, W. Friess?, P. Knabner!, I. Metzmacher? and F. Radu'-2,
! Institute of Applied Mathematics I, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
2 Department of Pharmacy, Pharmaceutical Technology and Biopharmacy, University of Munich, 81377 Munich, Germany

Abstract Dense collagen matrices for prolonged release of higher molecular weight drugs such
as proteins or polysaccharides offer an alternative to implants based on synthetic polymers [1]. The
hydrophilic matrix takes up large quantities of aqueous liquid upon contact with physiological fluids and
swells. In order to reduce water uptake and to prolong the release, collagen matrices are chemically or
physically crosslinked. A mathematical model was previously developed and tested for description of
water penetration, swelling and drug release by assuming Fickian diffusion [2]. However, drug release
from collagen matrices is not only governed by diffusion, but also by enzymatic degradation of the
protein matrix. Consequently, a mathematical model to describe drug release from collagen matrices
undergoing enzymatic degradation was established. For a numerical simulation the resulting equations
were discretized, in space, by the mixed Raviart—Thomas finite element method of lowest order and, in
time, by the backward Euler scheme. The mixed finite element method locally preserves mass which is
an appreciable advantage of the approach. Two and three dimensional simulations were performed. The
numerical results are in good agreement with the experimental measurements.

1 Introduction

Dense collagen matrices for prolonged release of higher molecular weight drugs such as proteins or polysac-
charides offer an alternative to implants based on synthetic polymers [6]. The hydrophilic matrix takes
up large quantities of aqueous liquid upon contact with physiological fluids and swells. In order to reduce
water uptake and to prolong the release, collagen matrices are chemically or physically crosslinked. A
mathematical model was previously developed and tested for description of water penetration, swelling
and drug release by assuming Fickian diffusion [8]. However, drug release from collagen matrices is not
only governed by diffusion, but also by enzymatic degradation of the protein matrix. Consequently, a
mathematical model to describe drug release from collagen matrices must incorporate also the effect of
the enzymatic degradation. A complete model was established, implemented and validated.

The outline of the rest of the paper is as follows. In the next section a mathematical model describ-
ing drug release from collagen matrices is presented. In Section 3 the model equations are discretized and
a fully discrete numerical scheme based on a backward Euler discretization in time and a hybrid mixed
finite element approximation in space is proposed. To confirm our theoretical approach, in Section 4
numerical results computed with realistic, experimentally determinated model parameters are presented
and discussed. The last section contains some concluding remarks.

2 Mathematical Model

The hydrolytic degradation of a solid polymer matrix can occur by two extreme mechanisms. In the first
one, refered to as heterogeneous, degradation is confined to the surface of the device and the undegraded
carrier retains its chemical integrity during the process. In the other, called homogeneous, hydrolysis
involves random cleavage at a uniform rate throughout the bulk of the matrix. While the molecular



weight of the polymer steadily decreases, the carrier can remain essentially intact until the polymer has
undergone signifiant degradation, and reaches a critical molecular weight at which solubilization starts.
Up to 90% of the matrix can degrade without signifiant mass loss (cf. [11]).

Here we assume homogeneous degradation. We also assume that part of the enzyme is adsorbed to
the collagen fibers becoming immobile. Consequently, we have to consider free enzyme (E) and adsorbed
(or immobilized) enzyme (E;). The degradation reaction is catalyzed only from E;. The product of the
reaction, the hydrolized collagen, is not able to diffuse in the matrix until the concentration of collagen is
less than 10 % (because of the still very large molecular weight). Thus, the processes to be mathematically
described are:

o diffusion of the enzyme in the matrix,
o adsorption of the enzyme from the fluid to the collagen fibers,
e enzymatic degradation of the polymer,

e drug release.

To start with, let  (the polymer matrix) be a bounded domain in R¢,d = 1,2 or 3 with sufficiently
smooth boundary I' := 9. Let J = (0, T] be some finite interval with final time 7. The diffusion of the
enzyme in the matrix, considered to be Fickian, is described by

0.Cg —V - (Dg(Cx)VCg)+0:Cg, = 0 inJxQ, (1)
Ce = C% onJxT 2)

with Cg, Cg, denoting the concentrations, expressed in mol per volume, of the free and immobilized
enzyme, respectively. In (2), C§ is the enzyme concentration in the ambient medium. In (1), the term
0:Cg, models a delay in the diffusion process due to sorption. The initial concentration of the enzyme in
the matrix is zero, and at the boundary Cg = C§*? is prescribed. For the diffusion coefficient (Dg) of the

enzyme in the matrix we assume a Fujita like dependence (free volume theory, cf. [7]) on the concentration

of the collagen (Ck), i.e. Dg = D% exp (ﬂ C?‘C_OCK), with D}, denoting the diffusion coefficient of the
K

enzyme in the undegraded matrix and § a dimensionless parameter.

The sorption itself is considered to be either an equilibrium process or a kinetic one, depending
on its time scale compared to the diffusion process. In our case, the sorption is described as a kinetic
reaction by

0:CE; — kp(#(CE) — Cr;) =0, (3)

where ¢ denotes a sorption isotherm and &, a rate parameter. The sorption isotherm can admit one of
the forms given in Table 1. The type of the sorption and the corresponding dimensionless parameters
must be determined experimentally (cf. Section 4).

Having described the transport of the collagenase, including the absorption effects, we now proceed
by modeling the enzymatic degradation of the polymer matrix. A direct consequence of the assumption of
homogeneous degradation is that the degradation of the polymeric substrate by the environmental fluid
is independent of the active agent. The general behaviour of an enzymatically catalyzed degradation
process can be summarized by the equations

Enzyme + Substrate -+ Enzyme-Substrate Complex

and
Enzyme-Substrate Complex —+ Enzyme + Product .

In our case, collagen represents the substrate whereas the hydrolized collagen is the product. An
analysis of these equations indicates that the reaction rate depends on a number of factors. First of



Linear Brin(c) = Kgc
Freundlich or(c) = K4c*
. ch

Langmuir or(c) = e

1+ d

M (JI%S%rp
Freundlich-Langmuir | ¢rr(c) = %d
1 (s4
* MazxSorp

Table 1: Sorption isotherms.

all, if the concentration of substrate increases, we would expect that the reaction rate also increases.
However, because the reaction also depends on the amount of enzyme present, it can only increase until
all of the available enzyme is fully employed. This behaviour is called saturation kinetics, due to the fact
that as substrate concentrations become large, all of the enzyme is fully utilized (saturated) and reaction
rates can no longer increase (cf. [5], p. 90). Such behaviour can mathematically be expressed by the
Michaelis—Menten kinetic, which reads as

Ck

0Cx = _Mmawm

CEi ’ (4)
where K s, the Michaelis—Menten constant, is the collagen concentration at that the reaction rate is
supposed to be half of the maximum rate (tmaz)-

To model drug release, we assume (as also done, for instance, in [11]) that the initial load of active
agent is composed of two pools: a pool of mobile active agent which is free to diffuse upon hydration
of the matrix by the environmental fluid, and some part which is immobilized by the polymer and can
diffuse only after the degradation of the matrix. The immobilization of the active agent is due to physical
entrapment.

The release of the active agent is then governed by a diffusion equation with a source term due
to liberation of the immobilized active agent by matrix degradation. Thus, writing a mass balance, we
obtain that

0:Ca — V- (Da(Cr)VC4) = —-0:(Ca,), (5)

where C4,C 4, denote the concentrations of free and immobilized drug, respectively. The active agent
incorporated in the polymer matrix is released by a diffusive mechanism, under the influence of a concen-
tration gradient. Due to the degradation process occuring concurrently, the matrix phase through which
the diffusion takes place changes continuously as a function of the extend of hydrolysis of the polymer.
Therefore, the diffusion coefficient of the active agent within the matrix can not be considered as constant
but rather as a function of the fluid and (or) collagen concentration. Again, according to the free volume
theory (cf. [7]), a possible form for the diffusion coefficient is given by

0 _
D4 = D%exp (aCKC400K> , (6)
K

with DY denoting the diffusion coefficient of the drug in the undegraded matrix, C% the initial concen-
tration of collagen and o a dimensionless constant (cf. also [10]).

The diffusion is entangled because of the physical entrapment. In the equation this effect is
described by the source term 8;C 4,. To close the model, we still need a relation between the concentration
of the immobilized and free active agent. In [11], it is simply assumed that C4, = 0C4, with o being
a dimensionless constant, denoting the immobilizing capacity of the polymer, equal to the number of
hindering crosslinks or entanglements per mole of (fully swollen) substrate. Instead, we assume a more



general functional dependence Ca, = f(Ca), where the precise form of f has to be determined by
experimental studies. We remark that the particular choice f(z) = oz leads us to the model presented
in [11]. The initial concentration of the free to diffuse active agent can be determined experimentally by
measuring the quantity of drug which would remain in the matrix if no degradation occurs (no enzyme
available). Dirichlet or Neumann boundary conditions complete the model.

3 Discretization

In this section we shall present a fully discrete numerical scheme approximating the system of partial and
ordinary differential equations presented above. The backward Euler scheme is used for the temporal
discretization and, in order to ensure local mass conservation, the mixed finite element method is applied
for the spatial discretization. More precisely, Raviart—Thomas elements of lowest order are used for the
approximation of the fluxes and piecewise constants for the concentrations. The equations (1), (3) and
(4) are fully coupled and, therefore, solved simultaneously by a damped version of Newton’s method.
The linear systems of the Newton iteration are solved by a multigrid algorithm. Having determined the
concentration of the collagen at time point ¢,, we can then solve the drug release equation (5) and proceed
to the next time step (cf. Fig. 1).

Ck
enzyme . polymer
transport sorption degradation
drug
release
solver

coupled solver (Newton)

Figure 1: Schematic of the algorithm.

To explain the numerical algorithm, we rewrite the equations (1) and (5) as a first order system of
equations by introducing the fluxes qg and qa of the free enzyme and drug, respectively, as unknowns.
Thus we have

0.Ce+V-qg +6:Cg, = 0, (7)
ae = -Dg(Ck)VCg, (8)

0iCa+V-aa = -0(Ca,), 9

aa = —-Ds(Ck)VCy. (10)

In the following we need some more notation. Let tg = 0 < #; < ... < ty = T be a partition of J
with time step size At. L2() denotes the space of square integrable functions on © and H(div;{) the
space of d-dimensional vector functions having all the components and the divergence in L2(). Let T
be a decomposition of the domain  C R? into, depending on the dimension d, intervals, triangles or
tetrahedrons. We denote by S;, the set of faces of 7;,. We compute approximations in the mixed finite



element spaces Wy, x V, C L2(Q) x H(div; ) where

Wy = {pe€ L?*)| pis constant on each element T € T3},
(11)
Vh

{a€ H(div;Q) | q(x)jp =a+bx forall T € Tp,a € R%,b e R}.

Hence, W}, denotes the space of piecewise constant functions, while V}, is the lowest order Raviart—Thomas
(RT,) space (cf. [4]). Consequently, for the concentrations of enzyme, free and immobilized, collagen and
drug we consider determining approximations Cgr,Cg, 7, CxT and C a7 being constant on each element
T of the triangulation. This means we have one degree of freedom per concentration and per element.
For the given decomposition (triangulation) of the matrix we then relax the continuity constraint on the
normal components of the fluxes over interelement faces which is implied by q € H(div; ) to requiring
only q € H(div;T) for all T € T;. The continuity of the normal fluxes is now enforced by an additional
variational equation involving Lagrange multipliers (Agg, Aas) being defined on the faces and piecewise
constant there, i.e., (Ags,Aas) € Ay := {A € L?(8) | \s = constant VS € Sp}. This approach
can be regarded as a hybridization of the problem; cf. [4] for details. After an elimination of internal
degrees of freedom, also known as static condensation, the Lagrange multipliers become the unknowns of
a global nonlinear system of equations which is solved by Newton’s method and a multigrid algorithm as
mentioned above. The Lagrange multipliers can further be considered as the degrees of freedom of higher
order discretizations of the concentrations (cf. [4] for details) or as approximations of the concentrations
on the element faces. This observation can then be exploited to calculate, without any significant extra
computational effort, a reliable a posteriori error indicator; cf. [2].

More precisely, the algorithm works in the following way. We represent the unknowns in terms
of basis functions of the respective finite element spaces; cf. [2] for details. The expansion coefficient
of the discrete enzyme flux at time ¢, with respect to the element 7' and its face S is denoted by
dE Ts: similarly for the other variables. Then the nonlinear algebraic problem to be solved at time ¢,
for the transport of enzyme and polymer degradation reads as: Given Cpr',Cp.z,Cir, A\kg . Find
Cgr: Cg, 7, Ckr,qg,1s, \Eg Such that there holds:

At n— n—
Cegr+Cg,r + Vo Z dg1s = Cor' + CEI-’I% VT €T, (12)
SCcT
Chir—Chr = Athy(¢(Chr) — Chir) VT EeTh,  (13)
n n— Ck n
CKT — CKTl = _At,umaw ﬁcEiT VT € 777, ) (14:)
> Bassahrs = Dr(Cir)(Cpr—Ags) VITeTw, SCT, (15)
S'CT
qE,TS — _qE,T'S VS S Sh ) CZ-'7 TI D S . (16)

Here, V1 denotes the volume of the element T' and Brgg: the entries in the stiffness matrix of the RTj
functions. First, the flux variables are now eliminated locally and the nonlinear fully coupled equations
(12)—(14) are solved by a damped Newton procedure for the (piecewise constant) concentrations. In the
next step the global system corresponding to equation (16) is solved for the Lagrange multipliers, again,
by a Newton method. Then we solve (12)—(14) again using the just computed values for A\%¢, and so on.
The iteration is stopped when a given tolerance is reached.

As explained before, having calculated the collagen concentration at time point ¢,,, we can proceed
with solving the equation of drug release. Similarly to the enzyme, the discrete problem now reads as:
Given Cl47", Oy, \i5". Find Crp, 9} 1s: Mig such that there holds:

n n— At n n n—
Chr ~Chz' + 37 > dhas = ~f(Cir) +1(Ci7) VT €T,
SCcT



> Brssdirs = Da(Cir)(Chr— Xis) VTET, SCT,
sS'cT
dars = —9ATs v8eS, T,T'D S.

The algorithm was implemented in the software toolbox ug (version 3.8, cf. [1]) and the computations
were performed on a Sun Blade 1000 workstation.

4 Results and Discussion

In this section we shall present a real case study. First, we derive the model parameters by using
experimental data. Then the results of a two-dimensional numerical simulation are shown.

Measurements of the diffusion coefficients D%, and DY were performed with fluorescence correlation
spectroscopy with dense collagen matrices, a method established in the group of Prof. Radler (Department
of Physics, LMU Munich); cf. [3] for details. We found D% = 1.76 - 10~3 cm?/h, DY =2.1-1073 cm?/h
and 8 = 2.0. To determine the sorption isotherm ¢ and the sorption proportionality constant &,, samples
with different initial concentrations of enzyme were prepared. The concentrations of the free and adsorbed
enzyme were measured after three hours and in the equilibrium state; cf. Figure 2. The sorption isotherm
was fixed by fitting the data from the equilibrium state with the prescribed forms of the isotherm (cf. Table
1). The best fit was obtained for a Freundlich isotherm (cf. also [9]), ¢(z) = a - 2°, with a = 4.75 and
b = 0.45. The values after three hours and the resulting isotherm were then used to determine also the
sorption proportionality constant &k, = 0.021/h. Since b < 1 here, a regularization was necessary for the
numerical simulation. In our computations, the isotherm was replaced by the more regular function

p _{ a-€-zfe forz<e

a-zb otherwise

with ¢ being a regularization parameter, chosen as 0.0001 in this study.
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Figure 2: Adsorbtion of enzyme. Results after 3 hours (left) and 24 hours (right).

To get the Michaelis—Menten constant, typical Michaelis—Menten and Lineweaver—Burk diagrams
were used; cf. [3]. We obtained K = 3.915 mg/cm® and a maximum rate i, = 1.218 mgh/cm3.
Further parameters used in the numerical simulation are the following: dimension of the polymer matrix:
4.5 cm x 0.5 cm; initial concentration of collagen and drug in the matrix: C% = 227.0 mg/cm?® and
C% = 2.55 mg/cm?, respectively; enzyme concentration at the boundary: C&?! = 0.0067 mg/cm?.
Finally, the dependence between the concentration of the free and immobilized active agent was supposed
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Figure 3: Concentration of collagen after three, five and ten days.
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Figure 4: Concentration of the active agent after three, five and ten days.

to be linear (f(z) = oz). We found ¢ = 0.69 by measuring, after some time long enough such that no
release occurs anymore, the concentration of the drug in a collagen matrix which contains no enzyme
such that no degradation arises.

The numerically computed concentrations of the degrading collagen after three, five and ten days
are shown in Figure 3 and of the active agent in Figure 4. To validate the numerical results, additional
independent experiments were done. We observed a good agreement between simulation and physical
experiment.

5 Conclusions

A mathematical model for describing drug release from insoluble collagen matrices undergoing enzymatyic
degradation was established, implemented and validated. Two dimensional simulations were performed.
The numerical results nicely coincide with experimental data.
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THE IMPACT OF INTRAPARTICLE CONVECTION ON THE
MULTIPLICITY BEHAVIOUR OF LARGE-PORE CATALYST PARTICLES
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Department of Chemical Engineering — University of Coimbra, P6lo 11, 3030-290 Coimbra, PORTUGAL

Abstract

This paper analyses the impact of intraparticle convection on the steady-state multiplicity of isothermal large-
pore catalyst particles with external mass and heat resistances, where a first order irreversible exothermal
reaction is carried out. The coexistence of internal convection and diffusion results in a maximum of five steady-
state solutions against the maximum of three obtained for diffusion only. The emergence of a second hysteresis
loop due to convection increases the number of different possible types of bifurcation diagrams. The individual
effects of diffusion and convection on the overall behaviour of the catalyst particle were determined.

Keywords: intraparticle convection, large-pore catalysts, steady-state multiplicity, bifurcation diagram

1. Introduction

The occurrence of multiple steady states in isothermal catalyst pellets due to the interactions between mass and
thermal resistances in the fluid-solid interface and internal concentration gradients is a well-known feature of
catalytic processes. If large-pore pellets are used instead of conventional porous catalysts, the additional mass
transport by convection inside the particles must be accounted for besides diffusion, leading to changes in the
internal concentration profiles (Rodrigues and Quinta-Ferreira, 1988) and consequently to a different pellet
behaviour in what concerns steady-state multiplicity. This work deals with the study of the multiplicity features
of an isothermal catalyst particle with simultaneous mass transport by diffusion and convection and a first order
irreversible exothermal reaction (o-xylene oxidation to phthalic anhydride).

The mathematical technique developed by Balakotaiah and Luss (1982) for the global analysis of multiplicity
features of lumped-parameter systems is used. When applied to the problem under study, this methodology
allows the prediction of the maximal number of steady-state solutions for the particle temperature and the
different types of bifurcation diagrams representing the particle temperature as a function of an operating
variable such as concentration or temperature on the bulk phase.

2. Evaluation of the bifurcation sets and corresponding bifurcation diagrams
The dimensionless model equations describing the referred phenomena in a catalyst slab include the mass
balance to the reactant inside the catalyst and the mass and thermal balances in the solid-fluid interface:

2
f f;’ - 2 ﬂ 4f%f q,expg 9(1/q.- 1)g=0; r, =0and r, =1:f_ =f, (1)
ﬂr,: ity

(1_ fs) =h Dafs Qs expé' g(]'/qs - 1)@ (2)
(qs- qb):hbDafsqsexpé' g(]'/qs-l)g (3)

where subscripts p and srefer to particle and surface conditions, respectively. The model parameters are listed in
Table 1. The numerical values indicated were obtained in previous studies as a function of the system properties
evaluated at a reference temperature T,=625 K, for R,=0.0013 m (Quinta-Ferreira, Costa and Rodrigues, 1996).

Table 1 — Dimensionless system parameters.

Name Definition Value Name Definition Value
ﬁl:’m()egrius g= E/RTO 21.8 Lr:f;:pbgrticle mass Peclet | — v, Rp/De 0,10,25,50
Darmkhaler Da=Kk(T,)R,/k, 87 10° | dlbaictemperatre = (. DH)k, C,/hT,  0-3
Thidemoduus  f =R_\/k(T,)/D,  0.76 f;’;’g;f;’;r'gﬁ bulk q, =T,/T, 0.8-124

" Author to whom correspondence should be addressed.




Among these well-known parameters, the intraparticle mass Peclet number (1) is the one accounting for the
convective flow inside the particles; it represents the competition between the interna transport rates by
convection and diffusion. When the convective flow is negligible in relation to diffusion, | is set to zero and
diffusion is the sole mechanism of transport accounted for, as it is commonly assumed in the classic
mathematical treatment of porous particles.

The mass balance to the catalyst particle subjected to the corresponding boundary conditions (eq. (1)), has
analytical solution, which allows an explicit expression for the catalyst effectiveness factor:

Ya,-Ya,

h@.f.l)= cotha, - cotha, @
where
a,,(0. 1) =1 /22 )1 /a+1* expg oY/, - 1 )

By combining the mass and energy balances in the solid/fluid interface, a single algebraic equation is obtained,
as a function of the dimensionless pellet temperature, gs, and the vector p, containing the six model parameters

(Oh, b, Da, g f,1):
_ bDah(q..! . f)q,expg g(l/as - 1) _
1+Dah(q,,! ,f)a.expg 91/, - 1)
where h is given by eq.(4). The dimensionless solid temperature g, isbounded by g,and q, +b.

In the forthcoming analysis, four of the six model parameters - Da, g, f, | - are fixed (see valuesin Table 1) in
order to reduce the problem dimension. The solution of the resulting equation F(gs,qn,b)=0 is a three-dimensional
surface called the steady-state manifold, while the simultaneous solution of F(gs,0p,b)=0 and F(ds,d,,b)/7qs=0
defines the singular set. When this set is projected in the gs direction, by eliminating gs from these last two
equations, a two-dimensional bifurcation set is obtained in the g,-b plane. These graphs demarcate the regions of
b (linearly dependent on reactant bulk concentration) and g, (linearly dependent on bulk temperature), for which
adifferent number of steady-state solutions of equation (6) exist. Figures 1 show the bifurcation sets obtained for
different values of | : 0, 10, 25 and 50, where the number of steady-state solutions (1, 3 or 5) isindicated.

3

Fds,p) =ds- Oy (6)
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Figure 1 — Bifurcation sets for different values of | (Da=0.0087, g=21.8, f =0.76).




For | =0, the pellet temperature exhibits at most 3 solutions (Fig. 1 (a)) and the lines shown in the graph are the
locus of extinction and ignition points. However, when intraparticle convection is taken into consideration (I >0),
the shape of the bifurcation set changes significantly and a maximum of 5 multiple solutions can be achieved
(Figs. 1 (b), (c) and (d)), as aresult of the joint effect of diffusion and convection.

The curves showing the dependence of the state variable gs on a bifurcation variable, b or g, are nominated
bifurcation diagrams. Each bifurcation set can be divided in a number of regions where the bifurcation diagrams
have different shapes. In this paper the bifurcation diagrams qs vs q, are analysed. In such case, the shape of
these bifurcation diagrams can change if an ignition or extinction point exists at any boundary of g, or either if b
crosses one of the following varieties:

a) the hysteresis variety, which isthe locus of al feasible values of b that satisfy the equations

2
b) = TIF(s, G, b) _ T7F(G, G, D) _

F S 1 7
(G fa. o’ “
b) the double limit variety, which is the locus of al feasible values of b that satisfy the equations
ﬂF il |b ﬂF S22 lb
F(Gas G D) = F(dig, G ) = T D) - T2 ® D) g g g, ®)

fg, fias

Figure 2 (a) shows again the bifurcation set obtained for | =0 and the corresponding qualitative features of the g
Vs q, bifurcation diagrams that can be found in each one of the intervals of b: 0£b<0.85, 0.85<b<1.5 and
1.5<b£3 — Figs. 2 (b), (c) and (d), respectively. The transition from region | to Il occurs because b crosses a
hysteresis variety, which appearsin the bifurcation set as a cusp point, marked with a C, for which b=0.85, while
the change from region 1l to 1l is due to the existence of an extinction point at the lower boundary of g, (g,=0.8,
b=1.5). Figure 2 (b) shows a bifurcation diagram characteristic of the uniqueness region |, where g5 is a single
value function of qy. In region Il two limit points (extinction and ignition) arise and a hysteresis loop emerges as
shown in bifurcation diagram of Fig. 2 (c), where the 1-3-1 multiplicity pattern is represented by a S-shaped
curve. Extinction and ignition points are indicated by arrows pointing down and up, respectively, and a dashed
line is used to represent the unstable steady-state solution. In region Ill, the extinction point is below the lower
boundary specified for q,, therefore the corresponding bifurcation diagrams show just the ignition point, as
depicted in Figure 2 (d).
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Figure 2 — Bifurcation set and bifurcation diagrams obtained for | =0 (Da=0.0087, g=21.8, f =0.76).
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For | >0, the bifurcation set is more complex and some more intricate bifurcation diagrams can be obtained, as
illustrated in Figures 3, for | =50. The bifurcation set (Fig. 3 (a)), is now divided in nine subintervals of b
numbered from | to 1X, where the bifurcation diagrams gs vs ¢, have different shapes, exemplified in the nine
small graphs of Figs. 3 (b) -3 (i).
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Figure 3 — Bifurcation set and bifurcation diagrams obtained for | =50 (Da=0.0087, g=21.8, f =0.76).

The transitions between regions I-11 and 11-11I occur when b crosses the two hysteresis varieties corresponding to
the two cusp points C1 and C2 indicated on the bifurcation set, respectively. The bifurcation diagrams typical of
regions | and Il, shown in Figs. 3 (b) and (c), are similar to those found for | =0; however, in region 11l a second
hysteresis |oop emerges due to convection, generating a 1-3-1-3-1 multiplicity pattern — Fig. 3 (d). The following
transitions between regions IlI-1V, IV-V and V-VI happen when b traverses double-limit points DL1, DL2 and
DL3, respectively. This type of variety results from the intersection of two branches of the bifurcation set (see
Fig. 3 (a), with different values of g at each branch. When b crosses a double-limit variety, the number of limit
points (extinction and ignition points) in the bifurcation diagrams does not change, but the relative position of
two limit points changes, as it can be observed by comparing the different 1-3-5-3-1 multiplicity patterns of Figs.
3 (e), (f) and (g). In these cases the two even solutions for g, represented by dashed lines are unstable. The
remaining transitions between regions VI-VII, VII-VIII and VIII-IX arise from the intersection of the two
extinction branches and one ignition branch of the bifurcation set with the lower boundary of the bifurcation
variable g, leading to the type of bifurcation diagrams shown in Figs. 3 (h), (i) and (j). The bifurcation diagram
of Fig. 3 (j) isqualitatively similar to the one depicted in Fig 2 (d) obtained for | =0.



3. Theindividual effect of diffusion and convection on particle multiplicity

In order to get a better understanding of the relative contribution of diffusion and convection to the global
behaviour of the catalyst particle, the individual effect of each one of these mechanisms of mass transport
(coupled with chemical reaction) was eval uated.

3.1 The influence of diffusion

In conventional porous catalysts pellets, the mass transport rate by convection is usually negligible when
compared to diffusion. Asreferred before, for an isothermal particle this situation is mathematically described by
the mass balance of eqg. (1), taking | =0. The corresponding effectiveness factor is given by egs. (4) and (5) with
| =0, or alternatively by:

tanh{f expg 9(1/qs - 1)[9} ©

fexpg (/g - 1)y

Combining again equations (2) and (3) a unique equation F(gs, p%)=0 is obtained, with the same expression of
equation (6), but with h(gsf) given by eg. (9) and p®=(g,b,Da,gf). In the following analysis, the singular set
was calculated by solving equations F(gs,p®)=0 and F(qs,p®)/fa<=0 for fixed values of Da, gand f . The resulting
bifurcation sets are shown in Figure 4 for different values of f: f =0, 0.08, 0.24, 0.76 and 2.42 correspondingly to

DJ/D(T,)= ¥, 100, 10, 1 and 0.1. For f =0, the solution was obtained by solving the system of equations with
h(gsf)=1.

h(a..f) =

3

R
Figure 4 — Bifurcation sets for different values of f (Da=0.0087, g=21.8).

For each f, three steady-state solutions exist inside the regions bounded by the extinction and ignition lines,
while a unique solution exists in the complementary space. The multiplicity region moves in the b-q, plane as f
changes, in such a way that for increasing values of f both extinction and ignition branches appear at higher
values of b and qp,.

3.2 The influence of convection
If alarge-pore catalyst particle is considered with such a porous structure that transport rate by convection is far
greater than diffusion, very large values of | are obtained. A rearrangement of equation (1) gives:

11, 1 . e = NN
2—|7'W'ZD%qus@(p@'g(]/qs'l)H_o’ r,=0and r, =1:f, =f, (10)
fir, p

where Da, is a new dimensionless parameter, the particle Damkhdler number, expressing the competition
between reaction rate and transport rate by intraparticle convection:
f2 _k(T)R
Da =—= 0 p
% I %
To study the multiplicity features of this catalyst, a very small effective diffusivity of D=2.79" 10™° m%s (10*
times smaller than De(T,)) was fixed, in order to assure mass transport by diffusion negligible when compared to

(11)

o



convection. Some bifurcation sets are going to be obtained for several values of Da,, calculated for different
values imposed to the intraparticle fluid velocity v,. With fixed values for v, and D, | can be calculated (see
Table 1) and thus it is no longer an independent parameter. A unique equation F(gs, p9)=0 is then obtained by
eliminating f; from equations (4) and (5), being the parameter vector p°=(q,,b,Da,gDa,) and h(gs,Da,) calculated
by egs. (4)-(5) with 2 replaced by the product Da," | . The singular set was evaluated by solving equations
F(0s,p°)=0 and TF(qs,p°)/Mlas=0 for fixed values of Da,: Da,=0, 0.0012, 0.0117, 0.0234, 0.0584 correspondingly
tovy=¥, 1, 0.1046, 0.0523, 0.0209 and the resulting bifurcation sets are shown in Figure 5.

3

q,
Figure 5 — Bifurcation sets for different values of Da, (Da=0.0087, g=21.8, D=2.79" 107 m?/s).

The bifurcation sets obtained for the different values of Da, are similar to the ones of Figure 4, with three steady-
state solutions inside the regions bounded by the extinction and ignition branches and a unique solution outside.
For increasing values of Day, the multiplicity region decreases mainly due to the displacement of the extinction
branch towards higher values of b.

3. The combined effect of diffusion and convection on particle multiplicity

The relative influence of diffusion and convection on the overall behaviour of the particle when both mass
transfer mechanisms coexist can be assessed by comparing the results of the complete model, that includes
convection and diffusion, (dc model) to those of the models that consider convection and diffusion separately (c
and d models, respectively). To perform such comparisons, the parameters of the different models must be
matched, such that | of the dc complete model is the result of f and Da, used in d and ¢ models:

_ f*(d)
| (do)=——=—

(dc) Da, (c) (12)
In Figure 6, the bifurcation sets obtained for the complete model and the curves resulting from the isolated effect
of each one of the transport mechanisms are plotted together. In each graph, the value of | used in the dc model
and the values of f and Da, used in d and ¢ models setisfy eq. (12). The sets of parameters used are indicated in
Figs. 6 (a), (b) and (c). The number of steady-state solutions (1, 3 or 5) in the different regions of the graphs was
not indicated in order to avoid the graphs overload, but it is easily identifiable from the previous bifurcation sets.
The influence of each transport mechanism on the overall behaviour of the catalyst particle is obvious: while the
extinction branch of the complete model is mainly governed by diffusion, the location of the ignition branch is
highly influenced by intraparticle convection. When the relative importance of convection over diffusion
increases, the shape of the multiplicity region of the dc model becomes more identified with the one obtained for
convection only, as shown in Fig. 6 (c) for | =50. The regions of five steady-states appear for those operating
conditions (b, q,) for which diffusion and convection have approximately the same relative importance.
Finally, the discussion of the individual effect of diffusion and convection on the overall behaviour of the
particle is complemented with the analysis of the different types of bifurcation diagrams gs vs q, corresponding
to Figure 6 (c). For | =50, the dc model predicts nine different types of these bifurcation diagrams shown in
Figures 3 (b)-(i). In Figures 7, these are compared with the bifurcation diagrams obtained through d and c
models.



3
b b
2 2
r Da,=0.0584 1 .- Da=0.0234 ~
— - £=0.7643 — — £=0.7643
— 1=10 (@) — =25 (b)
o \ \ \ \ !
08 0.9 1.0 1.0 11 12
Ay

— — £=0.7643
— =50

o | | | |
0.9

9
Figure 6 — Bifurcation sets obtained for dc model (I =10,25,50), d model (f =0.7643) and ¢ model
(Da,=0.0584,0.0234,0.0117); (Da=0.0087, g=21.8).

s
Region | Region Il Region 1l
== = =
Yo
q, .
Region IV Region V Region VI
> ~  — S~ —
~ ) ) D
9y
s ) .
Region VIl Region VI Region IX
=2 = > ~
9y

Figure 7 — Bifurcation diagrams obtained for dc mode! (I =50), d model (f =0.7643) and ¢ model (Da,=0.0117);
(Da=0.0087, g=21.8).



Some general comments can be done based on Figures 7. In the lower temperature branches, the particle operates
in chemical regime, with chemical reaction controlling the overall process rate and therefore in each graph the
three curves remain coincident for lower values of gs. On the other hand, in the higher temperature branch, the
particle operates in difusional regime and consequently the predictions of dc model follow the evolution of d
model. When multiplicity occurs, the first hysteresis loop is clearly due to convection, as shown by the
overlapping of the curves from dc and ¢ models, while the appearance of a second hysteresisloop in region IV is
caused by diffusion.

4. Summary and Conclusions

This study showed interesting multiplicity features produced by the coexistence of internal diffusion and
convection on an isothermal large-pore catalyst particle with external resistances. By using the technique
developed by Balakotaiah and Luss (1982), a maximum of five steady-state solutions was calculated for the
particle temperature. Moreover, nine different types bifurcation diagrams representing the dependence of particle
temperature on the dimensionless bulk temperature were determined, some of them showing two hysteresis
loops. The separate effects of diffusion and convection on the pellet multiplicity were evaluated and related to
the overall catalyst performance when the two mechanisms act simultaneously.

Notation

C — reactant concentration, mol/m® g- Arrhenius number, dimensionless

D, - reactant effective diffusivity, m%/s h- effectiveness factor, dimensionless

Da- Damkhdler number, dimensionless | - intraparticle mass Peclet number, dimensionless
E —activation energy, Jmol _ q - dimensionless temperature, T/T,

f — dimensionless reactant concentration, C/C, DH — heat of reaction, Jmol

h —film heat transfer coefficient, ¥m? s
k— rqte constant, 1/s N , Superscripts:
ki — film mass transfer coeff|g|ent, mol/m*s ¢ — convection
R — perfect gas constant, J m*/mol K d - diffusion
R, - half-thickness of the slab, m
T —temperature, K

. ) . . Subscripts:
V, - intraparticle fluid velocity, m/s

b — bulk phase conditions

' . ) i ) s— pellet surface conditions
b - adiabatic temperature rise, dimensionless o0 — reference conditions

f - Thiele modulus, dimensionless
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ABSTRACT

The dissolution of a slightly soluble sphere buried in a packed bed of sand, through
which water flows is considered in the present work with due consideration given to the
processes of transverse and longitudinal dispersion. Numerical solution of the equations was
undertaken to obtain point values of the Sherwood number, as a function of the Peclet and
Schmidt numbers over a wide range of values of the relevant parameters. A correlation is
proposed that describes accurately the dependence found numerically between these
dimensionless parameters.

INTRODUCTION

In several situations of practical interest a large solid mass interacts with the liquid
flowing around it through the interstices of a packed bed of inerts. Examples are the leaching
of buried rocks and the contamination of underground waters by compacted buried waste. The
dissolution of a slightly soluble sphere buried in a packed bed of sand, through which water
flows, is a useful model for such processes, and it is considered in the present work.

In a recent study on transverse dispersion in liquids, Delgado and Guedes de Carvalho
[1] showed that there is a significant dependence between the transverse dispersion coefficient

(D) and the Schmidt number (Sc), for Sc <550. Since the rate of mass transfer around a
buried sphere, exposed to a flowing fluid, is strongly determined by Dy [2], it may be
expected that mass transfer from a buried sphere will show a significant dependence on Sc.

THEORY

In terms of analysis, we consider the situation of a slightly soluble sphere of diameter
d, buried in a bed of inert particles of diameter d (with d << d,), packed uniformly (void
fraction ¢€) around the sphere. The packed bed is assumed to be “infinite” in extent and a
uniform interstitial velocity of liquid, u,, is imposed, at a large distance from the sphere.

) Corresponding author.



Darcy’s law, u = —K grad p, is assumed to hold, and if it is coupled with the continuity

relation for an incompressible fluid, diva =0, Laplace’s equation V2¢ =0 is obtained for
the flow potential, ¢ = K p, around the sphere.

In terms of spherical coordinates (r, 6), the potential and stream functions are,
respectively [2],

¢=—u{1+%[§j }rcos@ (D
yx:%{l—@j :lrzsinzg )

and the velocity components are

ur:a—¢:—u0 cosﬁ{l—(ﬁj } 3)
or r

190 . 1(RY
uaz;£=u0s1n9{l+§(7j } “4)

The analysis of mass transfer is based on a steady state material balance on the solute
crossing the borders of an elementary volume, limited by the constant potential surfaces ¢

and ¢ + d¢, and the stream surfaces y and ¥ + dy . The resulting equation is [2],

de_a(p ), 2 [, e
a¢‘a¢[DL a¢]+aw(DT“’ 81//] ®

The boundary conditions, to be observed in the numerical integration of Eq. (1), are: (i)
the solute concentration is equal to the background concentration, ¢, far away from the

sphere; (ii) the solute concentration is equal to the equilibrium saturation concentration,
¢ =c*, on the surface of the sphere and (ii7i) the concentration field is symmetric about the
flow axis.

In order to integrate Eq. (5), with the auxiliary Eqs. (1) and (2), it is convenient to
define the dimensionless variables:

c—c¢C
" (©)
U= u (ur +M92)1/2 (7)
ug ug
R=— ®)
4
Y= u*’; (10)

Equation (5) may be re-arranged to
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and the appropriate boundary conditions are

D> —0, Y20 C—>0 (12)
D —> 4o, ¥ 20 C—-0 (13)
-1£0<1 C=1 (14a)
Y=0 oC
@ >1 =g =0 (14b)
Y — +oo, all @ C—>0 (15)
Discretisation

Equation (11) was solved numerically using a finite-difference method similar to that
adopted in [2]. A second-order central differencing scheme (CDS), in a general non-uniform
grid, was adopted for the discretisation of the diffusive terms that appear on the right hand
side of Eq. (11) [3]. The convection term, that appears on the left hand side of Eq. (11), was
discretised with the SMART high-resolution scheme [4], which preserves boundedness even
for convective dominated flows.

The discretised equation resulting from the finite-difference approximation of Eq. (11)

reads:
( 4 DLJ Cin,;—Ci; _( 4 DL] Ci,i—Ciy;
Civira,; —Cioiayg _ 3Pe' D'y ) in i1/2

®,,-®, |\3Pe'D' O, -,
q)i+1/2 _(Di—l/z - ®i+1/2 _q)i—l/z (16)
3 R%sin’0 Dy Cim—=Ci; (3 R%in’0 Dy C;=Cia
[16 Pe’ D'm]jH/Z j+1_\P./‘ [16 Pe’ Dvml—l/z \P./‘ _‘Pj—l
‘Ilj+1/2 _\Pj—1/2

where the values of the @ and ‘¥ coefficients are easily computed using their definitions
(Egs. (9) and (10)). Please note that these coefficients only have to be computed once, since
they are dependent on a priori known quantities, and are not influenced by the unknown
concentration field.

0 Tij+1
i\ 7% ¥
%L i1pj | i1
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Figure 1 - Sketch of computational grid.



The C,,,,, and C_,,, ; values are conveniently interpolated from the known grid node

values (represented as circles in Figure 1) using the SMART high-resolution scheme to ensure
numerical stability and good precision:

Ci+l/2,j =C ;T Cz+1/2 j (Ci+l,j - Ci—l,j) (17)
The limiter function C,+1 1».; used in this work is expressed as [4]:
C .—C._ . C,—C;
3L if —L——lc {o,l[
Ci+l j _C'—I JJ Cz+1 J Cz Lj 6
3,36,-C, _C,-C., [15
8'ac, —C . o, e
- i+1 i-1,j i+1 i—1
Ciarns = co ¢ e s (18)
1 if —& ¢ }—,1}
Ct+1 JJ Cz—l,j 6
C .—C_ . C . —-C
b ishj Y Y M = Y ¢ [0,1]
Ci+1,j _Ci—l,j C1+I JJ Ci 1,j
or, in compact form:
~ C . —C, C . —C_ . C..—-C._ .
Coyjp,y =max| —I——1 min| 31— 22 SuTiny (19)
Ci+l,j _Ci—l,j Ci+l,j _Ci—l,j 8 4 Cz+| j C—l,;
Similarly, for the left face relative to node (i, j), one obtains:
CI—1/2,j =C., ;T C -1/2,j (C -C_ ) (20)

with

A C.,—Co.y, C., -G C.,—C
Ci_l/z,j:max{—(';'” =L min(3—"l” c = % i—c“ c = 1}] (21)

ij o “i-2,j ij
Substitution of Egs. (17) and (20) into Eq. (16) leads to the final form of the discretised
equation, which can be casted in compact form as:

C,=(FC,,+GC_;+HC,, ,+I1C, )/ E (22)

The resulting system of equations (22) was solved iteratively using the successive over-
relaxation (SOR) method [3], and the implementation of the boundary conditions was done in
the same way as described in our previous work [2].

It should be noted that we always started our calculations with a zero concentration field
on a coarse grid. A converged solution could be obtained very quickly (O(10 s) in a desktop
PC with a 1.4GHz AMD® processor) and then we proceeded to a finer grid (doubling the
number of grid points in each direction). Instead of restarting the calculations with a zero
concentration field in this new finer grid, we simply interpolated the solution obtained in the
coarse-level grid, leading to a significant decrease in the time of CPU required to attain
convergence. This fully automated procedure was repeated until the finest mesh calculations
were performed. The use of Richardson’s extrapolation to the limit allowed us to obtain very
accurate solutions (with errors in the computed Sh” value below 0.1%). A more elaborate
multigrid technique could have been implemented to further increase the convergence rate,
but we found that this simple technique was sufficient to obtain mesh-independent solutions
in affordable CPU times.

+J C.

i,j+1



RESULTS

The converged solution calculated yields values of C, ;, from which the overall mass-

transfer rate from the sphere, n, could be calculated and expressed by means of an average
Sherwood number,

Sh':%:[n/(ﬂdlz)(c*—co)] d,/D},. (23)

The value of n was evaluated by numerically integrating the diffusive/dispersive flux of
solute perpendicular to the sphere along its surface,

n= —EZ DR sin(0,) % u,sin(0;) (g_:j] 21 R? |:COS(91»_1 ) ; c05(0;.4 ):| 24)

il
which in dimensionless discretised form reads:

S_h' — _E & 02 a_C cos(0,_;)—cos(0,,,)
- g Z(D'm lfm (ei)[a\},jm [ 2 } (25)

Values of D; for liquid flow have been reported recently in [1], in what seems to be the

only available study on the influence of Sc on D;. Their data showed the dependence of D,
on the Schmidt number for the range Sc <550, and an empirical correlation was found to
describe the measured data of D for Sc <550:

’ 4.8
Dy _1+Pep _( Sc j P’ 483-13log10(50) (26)

D, 12 1500 P
For Sc > 550 the transverse dispersion coefficient is found to be independent of the Schmidt
number, and is given by:
DT PC; -3 71.268
—L =1+—"-81x10 Pe| (27)
D’ 12

As for D, , it is fortunate that its value is not needed with accuracy, since for Pe; >1,
the boundary layer for mass transfer around the sphere is thin, provided that the approximate
condition d,/d >10 is observed. Indeed, for Pe' (: Pe;dl/d ) >10, the boundary layer is thin

and the term with D;, in Eq. (11), may be neglected; numerical computations were
undertaken in the present work that confirm the insensitivity of Sh” to D, , for Pe’>10.

For different values of Sc, Eq. (5) was solved numerically, with the point values of D
given by the corresponding fitted curve (Egs. (26) or (27)). From the numerical simulations,
plots of Sh'/& vs. Pe’ were prepared, for given values of d/d,, in a similar fashion to what

was done in [2]; in the present case, a set of plots had to be made for each value of Sc. The
results of the numerical computations are shown as points in Figure 2, and an expression was
sought to describe the functional dependence observed, with good accuracy. The following
equation is proposed for Sc < 550:

, 1/2 , 438 4.83-1.3logo(Sc) V2

Pe 210
Sh _ 4+f(Pe’)2/3+iPe' 1+—p—[ Se j [iPe;j (28)
E 5 T 9 1500 3




For Sc>550, the value of Sh' is independent of Sc, since D; /Dy, is independent of Sc.
Substituting Sc =550 in Eq. (28) leads to

Sh’ 4 4 7 Pe 2
> = {4+—(Pe')2/3 +—Pe'} 1+—"~1.16x1072 Pe/) "> (29)
£ 5 V4 9

and this may be expected to predict mass transfer coefficients for Sc > 550. In the plots shown
in Figure 2, the solid lines represent Egs. (28) or (29) and it may be seen that they describe the
results of the numerical computations with good accuracy.
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Figure 2 - Dependence of Sh'/e on Pe’ for different values of d/d, at (a)Sc=52; (b)
Sc=142; (c) Sc =288; (d) Sc =550.

It is worth emphasizing some important features of Eqs. (28) and (29). First of all, the
fact that the first term on the right hand side of both equations gives the dimensionless mass

transfer coefficient for low Pe;3 , when both longitudinal and transverse dispersion are due to
molecular diffusion alone (D; = Dy = D',). This result was obtained in [2], where that fact

was emphasized by writing (for Pe;, <0.1)

’ ’ 1/2
Sh” _ Shiy :[4+i(pe')2/3 +iPe'} (30)
& & 5 T

The second term (with square brackets) on the right hand side of Egs. (28) and (29) is
therefore an “enhancement factor” due to convective dispersion. It will be noticed that this



enhancement factor is independent of Sc, for high values of this parameter, and dependent on
Sc for Sc <£550. This is because mass transfer rates around the sphere depend strongly on
Dy, and the value of Dy /D, is independent of Sc only for Sc>550, as shown recently by
Delgado and Guedes de Carvalho (2001) in a detailed study on dispersion in liquids.

The approximate conditions of validity of Eqs. (28) and (29) are: Re, <25, d,/d >10

and Pe', <1300, which are observed in a number of situations of practical interest. The
limitation on Re, ensures that Darcy’s law is observed with good approximation, d, /d >10

is an approximate condition establishing that the active particles are large compared to the
inerts, and the limitation on Pe', is related to the dispersion data available used to obtain Egs.

(26) and (27).

CONCLUSION

The present work shows that a theory for mass transfer between a sphere buried in a
packed bed of inerts and the fluid flowing past it, may be derived from first principles, that is
valid for any value of Sc. The numerical solution of the partial differential equation
representing this theory gives the “exact” values of Sh’/&, which are well represented by
Egs. (28) and (29).

NOTATION

Solute concentration

Bulk concentration of solute

Saturation concentration of solute

Dimensionless solute concentration (as defined in Eq. 6)
Diameter of inert particles

Diameter of active sphere

Longitudinal dispersion coefficient

8~

Effective molecular diffusion coefficient
Transverse (radial) dispersion coefficient

Permeability in Darcy's law

Average mass transfer coefficient

Mass transfer rate

Pressure

Radius of the sphere

Dimensionless spherical radial co-ordinate (=7/R)

Spherical radial coordinate (distance to the centre of the soluble sphere)
Dimensionless interstitial velocity (=u/u,)

Absolute value of interstitial velocity

Interstitial velocity (vector)
Absolute value of interstitial velocity far from the active sphere

=R QYRR I TR OO ARQNS S
—

<
S

u,,u, Components of fluid interstitial velocity

Greek letters
£ Bed voidage



[} Dimensionless potential function (as defined in Eq. 9)

1) Potential function (defined in Eq. 1)

U Dynamic viscosity

o Spherical angular coordinate

P Density

T Tortuosity

w Cylindrical radial coordinate (distance to the axis)

g Dimensionless stream function (as defined in Eq. 10)

4 Stream function (defined in Eq. 2)

Dimensionless groups

Pe’ Peclet number based on diameter of active sphere (= u,d, / D;)
Pe, Peclet number based on diameter of inert particles (= u,d / D;,)
Re, Reynolds number based on diameter of inert particles (= pud / 1)
Sc Schmidt number (= u/ pD,,)

Sh’ Sherwood number (= kd, / D;,)
Sh’ Sherwood number when Dy = D; = D;, (i.e.Pe},<0.1)

md
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Abstract

A coupled model of concentration polarization and membrane transport is used to study the
crossflow ultrafiltration of PEG-3400 solutions. For the intramembrane transport, the model
incorporates the binary friction model (BFM) derived by Kerkhof [4] and that is a modification of the
Maxwell-Stefan-Lightfoot equation. Good agreement between model predictions and experimental
data (apparent rejections and pressure drops as function of the flux) has been obtained. A value of 0.49
for the equilibrium partition coefficient K, the only adjustable parameter, was found. The model
predictions also enabled us to study the effects of circulation velocity and partition coefficient on the
apparent rejection and to get an insight into the concentration profiles in the polarization layer and in
the membrane.

Keywords: Apparent rejection; Adaptive method; Maxwell-Stefan; Transport; Ultrafiltration.

Introduction

Modeling of mass transport phenomena present in the separation of solutes using inert membranes
is important for the design and/or optimization of these new separation processes. In recent years,
there has been an increased awareness on these type of processes since they can be an alternative to
the conventional separations processes like distillation, centrifugation and others. They also find
applications in a variety of fields, being the most prominent the food and bioprocess areas.

A number of mathematical models and algorithms for their solution have been explored for the
description of the transport of components through membranes. Some of them are special cases of the
generalized Maxwell-Stefan equations [1-2] and can be derived from either statistical-mechanics or
thermodynamics of irreversible processes [3]. In fact, the approach based on the Maxwell-Stefan
theory for the transport in both the polarization layer and the membrane give a rigorous description of
the problem and the thermodynamics effects involving more than one species can be well predicted.
However, this kind of mathematical formulation results, for the binary case, in two partial differential
equations (PDE’s) defined in two different spatial regions, corresponding to the boundary layer and
the membrane and the use of commercial packages such the PDECOL and PDASAC to achieve a
transient solution is difficult, since they were developed to solve straightforward PDE’s. In most of
the studies the steady-state behavior is considered, where the problem is described by a set of ODE’s
and the solution is obtained by employing numerical methods based on finite differences. With this
approach the coupled equations are solved via an iterative procedure and in many situations, problems
of convergence and stability of the numerical method occur.

This work focuses on the ultrafiltration of PEG solutions. For the intramembrane transport the
binary friction model derived by Kerkhof [4 -5] was used. That is a modification of the Maxwell-
Stefan-Lightfoot equation, and includes both interspecies (diffusive) and species-wall forces. The
numerical scheme used for solution of the equations is based on the application of an adaptive method
with grid refinement developed by Brito and Portugal [6].

! Author to whom the correspondence should be addressed



Mathematical Model

The modeling of the transport of solutes through membranes involves a couple solution of two
transport models. The first model describes the transport phenomena in the concentration polarization
layer on the feed side adjacent to the membrane, while the second model deals with the intramembrane
(inside membrane pores) transport.

The governing equations for the unsteady-state transport of species through the membrane can be
described by the continuity equations. For the polarization layer (see Figure 1), we have,

? =— M (1)

t 0z

where the flux per unit area of the membrane is written as (N)=- ([D] +[DJ)% +U, C, inwhich the

Fickian molecular and turbulent diffusion matrixes are given by [D] = [B]'[Z;] and [D] =D [1],
respectively; for the membrane, the equations are written as
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where N, isthe flux per square meter of membrane area.
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The intramembrane transport can be subdivided into intermolecular fricction between different
components, and the effective friction of each component with the wall. The detailed momentum
balance for each component, and the averaging over the pore cross section, results in the binary
friction model (BFM) that is an extension of the Lighfoot model [3],
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where the last term of right side of the eq. (3) enables us to quantify the friction between the
components and the membrane. This term includes the fractional viscosity coefficients k; that can be
evaluated from the bulk mixture viscosity data.

Finally, considering the binary case that involves the transport of a single solute, we obtain for the
boundary layer,
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withN=-(D + Dt)% +U, ¢ and D = D1,G..



For the intramembrane transport, we have,
e oc’_ 10N,
ot T 0z

From eg. (3), by converting the chemical potential gradientsin concentration gradients and developing
the equation in terms of molar fluxes, N, is given by,
C.oc F 1 ¢ V V.
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with boundary conditions,

z=-0: C=GCp

z = 0 (interface polarization layer/membrane): ¢’ = K ¢ and N =N,
z =L, (interface membrane/permeate): N = u, ¢, (cp = ¢’/K)

and initial conditions,

t=0:c=cpforz=-0yyand c=c’ =0 for z > -Uy.

For turbulent conditions the diffusion mechanism in the polarization layer should incorporate an
additional transport contribution by the turbulent eddies. The usual procedure for prediction of Dyis to
proceed through the calculation of kinematics viscosity, U;. Defining the turbulent Schmidt number as
Sc = u; /D, and considering that for most practical design purposes Sc value is taken equal to 1, i.e.,
D:= u:. If the turbulent viscosity is taken to vary according to Vieth correlation,
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The reduced distance from the membrane wall is expressed as y’ = ——————— in which the
fanning friction factor, is evaluated using the Blasius equation, f = (0.3164/4) Re®?. According to
Kerkhof [4], a region limited by y* < 5 was considered as having the sufficient distance for the
development of the composition profiles within of the boundary layer of thickness d.

The coupled model of concentration polarization and membrane transport presented provides a
consistent procedure for predicting the concentration and molar flux profiles throughout the system,
the permeate concentration ¢, and the apparent rejection of the solute, given by,

Rapn=1 % (7
app = c,
For the total pressure gradient over the membrane APy =APfio,+0A[], in which A[] is the osmotic

pressure difference that depend on the concentrations on both membrane sides and of the osmotic
reflection coefficient 0, the following expression was used for APy, evaluation,

TIRT L

AP, = Z k. N, v dz (8)

The relationship between the pressure differences AP and the flux Uv for experiments with pure water
enables the determination of the membrane resistance R,



R, = AP
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where R, = =T . Hence, the ratio £/1 can be evaluated from the R,, value and the

geometrical properties of the membrane.
Numerical Procedure

The adaptive mesh algorithm was developed for one-dimensional evolutive systems of Algebraic-
Differential Equations that can be resumed by the following general model:

F(ZI'L—I’ZZ ’yzz): 0
Gu)=0
subjected to the boundary conditions: QQL ,t): yL (t)and y(zR,t): yR (t) and the initial condition:

y(z,O) = yo(z); z1 |_zL 2R | The agorithm can be structured in two main stages: estimation of the
discretization error and identification of the adaptive sub-domains; and solution of the sub-problems
generated in the first stage, by the introduction of an adaptive grid technique.

Stage | - Discretization

The error estimation is based on the comparison of the solution obtained by solving the original
problem on two different grids: afine and a coarse grid (Grids of level 2 and 1, respectively). Initialy,
the fine grid is constructed by the bissection of each interval of the coarse one. The nodes in level 1
grid, that do not satisfy the error criterion, are grouped together with the level 2 nodes placed between
them, to define the sub-domains over which the adaptive sub-problems are generated and then solved.

Stage Il - Adaptive Integration of the Sub-problem

The sub-problems are generated with increasing refinement level, by the repetition of the procedure
described in Stage I, until every node in every grid verifies the tolerance condition associated with the
error estimated by:

EU;‘,k+1:Wh;‘,k+1_W2h§',k+1; j=1---,NP,_q, i=1---,NPDE

In this case, EU ; r+1 represents the approximation to the spatial error, in a node j of a grid of

refinement level n; Wh;.' r+1and WZh;., r+1 e the approximations to the component i of the

solution, obtained through integration between the times ¢, and #,.,, on the finer (level n) and the
coarser (level n-1) grids, respectively; NP, isthe number of nodesin the grid of level n-1; and NPDE
isthe number of partia differential equations of the problem.

The sub-domains of level n+1 are obtained by joining all nodes n-1 that satisfy the condition:

i
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In each refinement procedure, the profiles of the solution are computed by interpolation of the profiles
of level 2, at al the intermediary positions.

The algorithm is coupled with a strategy for the treatment of boundary conditions in the refinement
sub-problems that smply defines fixed Dirichlet conditions on each internal bound. The position of
each bound, for the refinement level n+1 (for n = 2, ... , Nyux.;, where Ny is the maximum
refinement level) are coincident with the positions of the first nodes of level n-1 that verify the



specified tolerance. The constant value of the boundary conditions is given by the solution obtained in
the integration over the level n-1 grid. This kind of procedure is very simple and prevents
discontinuities on the overall profiles but tends to introduce significant errors in the solution, in very
specific cases.

The model is divided in the overall length in relation to the concentration (normalized by the bulk
conditions). The fluxes are later calculated using the concentration profiles. The spatial coordinate (-d

+d
<z<L,)isasonormalized using the overall length: z* = z . Therefore, in the bulk position: z =

-d, z* = 0, and for the permeate position: z = L,,, z* = 1. The differential equations that describe the
time evolution of the concentrations are spatially discretized by finite differences approximations
(either on the polarization layer as on the membrane sides) and solved simultaneoudly. Initially we
assume a zero concentration profile on the whole domain (with the obvious exception of the bulk
border). The bulk border istreated as a fixed Dirichlet condition with C = C,. Theinner border (which
represents the transition between the polarization layer and the membrane) and the permeate border
are treated with the introduction of two nodes (very close to one another) that represent the inner and

. . . d
outer conditions related to the membrane. For the inner border (positioned at z = 0; z,* = m)

the solution on both nodes is calculated by the solution of two algebraic equations: the equality of the
fluxes on both positions and the equilibrium condition. The strategy used for the treatment of the
permeate border (positioned at z = L,; z* = 1) is similar and it is based on the solution of two
algebraic equation aso: the equality of fluxes, which has to satisfy the border condition: N = " C,;
and the equilibrium condition.

Results and discussion
Comparison of model predictions with experimental data

In order to validate the model, we used data from ultrafiltration experiments of PEG-3400
performed by Box, [7] in a crossflow ultrafiltration module containing a tubular polysulfone
membrane of 1 meter length, with two separated permeate sections. Samples for analysis were
obtained from the second section of the tube, where the entrance effects are absent. The operating
conditions of the system under study are givenin Table 1.

Regarding the physical properties of the solution, we used ng, =0.1(n;,,)P, +0.0033(r]impp)2and

Nint = 6.04x10°M,>* with M (number-averaged molecular Mass) = 3158, for the calculation of the
PEG3400 viscosity. From the viscosity data, the fractiona viscosity coefficients k; e k, were
estimated according to the following relationships: k; = Kx(1+N/@1), where k, may be related directly
to the pure solvent (water), n,=ct RT k. For the determination of the molecular Fickian diffusion
coefficient in aqueous PEG-3400 solutions, the following relation was taken into account: D = (5w, +
1.37)10° m*s™,

Table 1-Conditions used in the ssmulation of ultrafiltration of PEG3-400 solutions

Membrane characteristics

Solution properties

L,=5.10" m
R,=1.6210%. Uv+5.39x10”m™*

r,=9.00.10° m?

Mwco=50 kDa
€=0.50

c,=2.78'10° kmol/m?®
M=3600

V, =2.83 m¥kmol

V, =0.018 m¥kmol
Nw =8.010" Pas
T=298K

Flow conditions
u; = 1.08; 1.57 m/s
d=86.10°m




The comparison of experimental apparent rejections of PEG-3400 with the values predicted by the
model are presented in Fig. 1. As can be seen, the model is able to describe well the experimental
results for K = 0.49. In Fig.2, it is also visible a good agreement between the pressure drop calculated
for o= 0 and the ones measured.
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Figure 1 — Apparent rejection of PEG-3400 Figure 2 — Pressure drop vs membrane flux.
as function of the flux at two different The predictions are the solid lines whereas
circulation velocities. The predictions are the experimental data are presented by the
the solid lines whereas the experimental symbols.

data are presented by the symbols.

Effect of circulation velocity u,

The apparent rejection is affected by the circulation velocity along membrane tube as shows the
Fig. 1. It can be observed that increasing u, results in a increase of the apparent rejection. Since the
turbulent contribution for the mass transport in the polarization layer increases at high circulation
velocities, the amount of solute accumulated on the surface membrane is expected to decrease. This
will correspond to a lower value of the membrane surface concentration and thus less solute will be
transported through the membrane and hence, the rejection will increase.

Effect of equilibrium partition coefficient K

Concentrations in the membrane pore are related to the interfacial bulk concentrations through the
partition coefficients. Once the interfacial region is very small and therefore the differences in the
chemical potential are negligible, to assume interfacia equilibrium conditions (K; = ¢;’/c;) is a valid
approximation. The Kj value is determined by geometrical factors and by specific interactions of
solute and pore wall. For spherical solutes in cylindrical pores and according to the exclusion theory,
K; only depends on the ratio of the molecular radius and the pore radius: K; = (1 — )\i)z. Thus, for a
given solute, the decrease of the partition coefficient is consistent with the use of membranes that
exhibit lower pore radius and thereby, the solute concentration in the pores will tend to increase.
Consequently, high values of solute rejection will be obtained as is depicted in Fig. 3.

Concentration Profiles

For a flux of 10° m/s and at circulation velocity of 1.04 m/s, the evolution of PEG-3400
concentration along the spatial coordinate for various time values are shown in Figures 4a and 4b. The
conditions used in this simulation corresponds to the ultrafiltration experiment of PEG-3400 reported
by Kerkhof [4]. In Fig. 4a, the behavior of the solute transport in the polarization layer can be observed
together with the propagation of the bulk concentration towards the membrane driven by the




contribution of the convective and diffusive fluxes. At higher times the concentration near the
membrane increases surface due to the exclusion of the solute by the membrane, therefore originating
a back diffusion is generated influencing strongly the evolution of concentration inside the membrane.
This phenomenaisillustrated in Fig. 4b.
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Figure 3 — Effect of equilibrium partition coefficient on the apparent rejection of PEG-3400
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Figure 4a — Concentration profiles of PEG-3400 as  Figure 4b — Concentration profiles of PEG —3400 as
a function of time in the polarization layer. function of time in the membrane.

Conclusions

A coupled model of concentration polarization and membrane transport described by the binary
friction model (BFM) is used to study the crossflow ultrafiltration of PEG-3400 solutions.

A numerical procedure based on the adaptive method with grid refinement, in which the model
differential equations are spatially discretized by finite differences and solved simultaneously, was
able to give the solution of the system without much computational power and yield a rigorous
solution of the problem. It has been shown that the solution predicts quite well the apparent rejection
of PEG-3400 and the pressure drop as a function of the flux. The model is capable of predicting the
influence of fundamental physico-chemical parameters and operating conditions on the apparent
rejection of the solute. In fact, the influence of some of these parameters namely, the circulation
velocity and the equilibrium partition coefficient was shown in this study. The predictions of the
model also provides a good insight regarding the concentration and flux profiles in the polarization
layer and in the membrane.

The numerical description of the ultrafiltration model used is versatile and allows in the future to
extend this study to the multicomponent transport.



Nomenclature

c: molar concentration (kmol.m®) Greek letters Subscripts

Bo: permeability parameter (m?) d: thickness of polarization layer (m) b: bulk

D: Fick diffusion coefficient (m*.s™) £:porosity m: membrane
D1t Maxwell-Stefan diffusion coeficient ¢: volume fraction p: permeate
(m*.s%) G.: thermodynamic factor pol: polarization
Dy: turbulent diffusion coefficient (m*.s") . tortuosity t: total

k: fractiona viscosity coefficient w: water.
K: equilibrium partition coefficient

L. membrane thickness (m)

M: molecular mass (kg .kmol™)

N: flux with respect to stationary
coordinate (kmol.m?.s™)

P: pressure (Pa)

I, pore radius (m)

R: gas congtant (J.kmol™*.K™)

x: mole fraction

t: time (s)

T: temperature (K)

u: circulation velocity (m.s?)

u,: average permeate flux (m.s™)

n:viscosity (Pa.s)

p: chemical potential (J.kmol™)
p: mass concentration (kg.m)
w,: weight fraction (kg.kg-1)

V : specific molar volume (m®.kmol™)
Z: spatia coordinate (m)

(): vector

[ ]: square matrix
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Abstract: In the last decade hybrid modelling in the sense of knowledge has gained an increasing interest as a
technique for identification of biochemical processes. This new approach is based on a combination of partia
(traditional) first principles models with data-driven models (such as ANN). There are two main schemes of such
amodular integration — competitive and complementary.

The aim of this paper is to report our experience applying both hybrid modelling approaches to relevant case
studies: the competitive modular principle applied to a Sacharomyces cerevisae yeast (a biological process) and
the complementary modular principle to a fed-batch evaporative sugar crystallization (a chemical process). Due
to their specific nonlinear nature we were challenged to model the process kinetics sufficiently well by first
principles models only.

1. Introduction

Modelling through knowledge integration ams at exploring all available sources of a priori
knowledge/information about the process that should be optimally combined and incorporated in the process
model. There are different modelling techniques based on the nature of the information available. Most
generally, the models can be classified as first principles (or deterministic) models, fuzzy (based on heuristic
knowledge) models, statistical models and more recently, black-box (usually ANN) models.

The modular principle in knowledge integration consists of division of the process in several modules according
to the kind of knowledge available in the different process parts. There are two main modular architectures —
complementary and competitive. In the competitive structure different modules concur for the right to represent
the same part of the process (parameters, outputs, etc.). In the complementary structure different kinds of
knowledge complement themselves. Usually, for the known physical constraints (e.g. mass and energy balances)
the most reliable models are still the first principles models while for the less known parts the data driven
modelling is more efficient.

Two benchmark problems are considered in this paper: for the first case study, Sacharomyces cerevisae yeast,
the competitive modular principle of modelling is adopted; for the fed-batch evaporative sugar crystallization the
complementary modular principle of modelling isimplemented.

2. Competitive modular modelling

The application of Artificial Neural Networks (ANNSs) for modelling the reaction kinetics in biological systems
has been exemplified in many works (e.g. Schubert et al. (1994), Montague and Morris (1994)). Conventional
BP networks and RBF networks are the most employed architectures. One important issue related to the nature
of the cell system is the fact that cells may process substrates through different metabolic pathways. This is the
case of diauxic growth on two carbon sources. Or the case of aerobic/anaerobic growth depending on the
presence or absence of dissolved oxygen in the medium. For example, S cerevisae can grow through three
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different metabolic pathways for exploiting energy and basic material sources and is able to switch between a
respiratory metabolic state and a reductive metabolic state (Sonnleitner and Kappéli (1986)).

BPs and RBFs networks have some limitations for approximating discontinuous input-output systems. BPs tends
to exhibit erratic behaviour around discontinuities (Haykin, 1994). RBFs are voted for local mappings and suffer
from generalisation problems especially for resolution of fine details. There are strong reasons to believe that
modular networks architectures may be advantageous for modelling reaction kinetics in biological systems. A
modular network architecture consists of two or more (small) network modules mediated by a so-called gating
network which decides how to combine their outputs to form the final output of the system. The learning of such
networks is based on the principle of divide-and-conquer, i.e., the network modules compete to learn the training
patterns. This type of architecture performs task decomposition in the sense that it learns to partition a task into
two or more functionally independent tasks and allocates distinct networks to learn each task (Jacobs et al.
(1991). Microorganisms reaction kinetics are ruled by a rather complex network of metabolic reactions that can
be viewed as being composed by a set of interconnected modules representing different pathways. glycolysis,
TCA cycle, etc. Hence a modular network structure is hypotheticaly highly compatible with the interna
structure of the system ‘cell reaction kinetics'. A second relevant point in favour of modular networks is that
they fit better discontinuous input-output systems (Haykin, 1994). These features indicate that this type of
networks could be advantageous to model the reaction kinetics.

Three types of networks are compared: the ME, BP and RBF networks. The S. cerevisae yeast serves as an
example to illustrate the application of the networks. The main objective of this study is to verify if modular
network architectures, which are supposed to be able to perform task decomposition, are able to discriminate
between reaction pathways in complex biological reaction schemes.

2.1 Methods

The Mixture of Experts (ME) network developed by Jacobs and Jordan (1991) was adopted in this work. The
ME architecture consists of a set of k expert networks and one gating network (Fig. 1). The task of each expert i
isto approximate a function f; : X -y over aregion of the input space. The task of the gating network isto assign
an expert network to each input vector x. The final output y isalinear combination of the expert networks.

1 1 / .

Expert Expert . Expert
network 1 network 2 network k
Y1 Y2 Yk

f Gating

o i 9% : network
/ Ok .
y

k
2 )— y=2vgo
i=1
Fig. 1. Block diagram of a‘mixture of experts network;
the outputs of the expert networks are mediated by a gating network.

The interesting property of this network is that it is able to learn to partition a task into two or more functionally
independent tasks and to allocate distinct networks to learn each task. The training of the ME network may be
performed using a maximum likelihood parameter estimator. For the class of nonlinear regression problems
(which is our case) the objective isto map a set of training patterns {x,d} .

The goal of the learning algorithm is to model the probability distribution of {x,d}. The output vector of each
expert can be interpreted as a parameter of a conditional target distribution. In the case of a Gaussian
distribution, the probability of a desired target d of dimension g, given the input x of dimension p and given the
expertiis
Pd[x,i) = / eXp(-—IId yi %) D
(2m)2



The expert outputs y; corresponds in this case to the conditional mean of the desired response d given the input
vector x and that the ith expert network is used, y; = E[P(d|x,i)]. The outputs of the gating networks g, are

interpreted as the conditional probability P(ix) of picking the expert i given de input x. The probability of the
desired target giventheinput x is thus

P(d|x) = ZP(u|x)P(d|xo Zgl 7
i AL (2m)2

—ep(-Z1ld-y ) @

The learning agorithm for this architecture, and in the light of the probabilistic interpretation made so far, can be
viewed as a maximum likelihood parameter estimation problem. The criterion for estimating the synaptic
weights w; of each expert i and of the synaptic weights a in the gating network is to maximise the density
function of Eqg. (2). Usually the natural logarithm of P(d[x) is preferable to use (notice that P(d[x) is a monotonic
increasing function of its arguments). Over a set of p training patterns and after some manipulation the maximum
likelihood function [(x,w,a) is

I(x,w,a) = Zang(xt,a)exp( —||d =Y (W) %) 3)
t=1 i=1

being W=[w1,W,,....w,]" and a=[ay,a,,...,a]" the vector of weights of the expert networks and gating network

respectively. The expert modules may be linear, y; = w;x, or nonlinear functions, for instance, a smal BP

network. The gating network outputs have a probabilistic interpretation and must obey to two constrains: al g

must be positive and they must sum to one for each x. The gating network may be defined by a set of k ‘ softmax’

processing units (Jacobs and Jordan (1991)):

K
g =exp(u;)/ ) exp(u;),i =1,k @)
j=1
being u; a linear combination of input vector x and connection weights a, u; = ax. The softmax functions
provide normally a‘soft’ partition of the input space.
The learning algorithm must update the synaptic weights w; of all expert networks and weights g in the gating
network in order to maximise function (3). Jacobs and Jordan (1991) applied gradient ascent weights updating
algorithm where the weights w; and g are updated simultaneously. Jordan and Jacobs (1994) applied the
Expectation Maximisation (EM) algorithm for training the network, which proved to converge much faster then
the gradient ascent algorithm.

2.2 Resultsand discussion
Case Study 1: Model of the Specific Growth Rate by Blackman

In this simple example the objective is to approximate the Blackman model for the specific growth rate (1) as a
function of substrate concentration (S):

e
S S=<K
H(S) =1 Ky M ©)
K S>Ky

being £/ and Ky, two kinetic parameters. Eq. (5) has a discontinuity for S=Ky;; the objective of this study is to
assess the behaviour of the networks when dealing with such discontinuous models. Eq. (5) was used to generate
data, with Kyy=0.2 g/L and £/=0.17 h*, and for glucose concentrations ranging between (0 ,1) [g/l] with intervals
of 0.002 g/l.

A ME network with 2 linear experts and a softmax gating network was trained on this data with the gradient
ascent method. The total number of parameters was 8, which is the minimum number possible. The training
agorithm converged very easily and rapidly, yielding a final mean square error of 9.7x10®. The results are
shown in Fig. 2. The ME network was able to partition the input space at the discontinuity, as expected, and each
of the experts were assigned to one or the other partition. One can notice a small curvature around the
discontinuity because the ‘ softmax’ functions produce a soft partition of the input space. A BP network with one



hidden layer, sigmoid activation functions and with 7 and 10 parameters produced a mean square error of
5.5x107 and 5.7x10°® respectively. The performance of the BP net with the same number of parameters is quite
similar to that of the ME network. The RBF network with 8 and 31 parameters produced an error of 3.6x10° and

3.1x10"" respectively. For describing this fine detail around the discontinuity, the RBF net requires much more
parameters than the other two networks.
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1] 0.2 0.4 0.6 038 1 4] 02 0.4 0.6 08 1
glucose (g/1) glucose (g/1)

Fig. 2. Approximation results of the ME network to the Blackman model. (a) specific growth rate,
(b) gating network outputs g, (-, solid line) and g, (--, dash line).

Case Study 2: S. cerevisae cultivation process

The S cerevisae cells can metabolise glucose via two pathways under aerobic conditions: oxidative and/or
reductively, with ethanol being the end product of the reductive pathway. The cells are able to use ethanol as a
second substrate (the phenomenon of diauxic growth), but ethanol can be metabolised oxidative only. The 3
metabolic pathways may be stated by the following macroscopic reactions:

S+NH3+ 0O, = X + CO, + Hy0 (o) (R1) - oxidative glucose uptake
S+ NH; - X + E+ CO, + H,0 (L) (R2) - reductive glucose uptake
E+NHz;+ O, - X + CO, + HyO () (R3) - oxidative ethanol uptake

where Sis glucose, X is hiomass and E is ethanol. s, s and e are three specific growth rates associated with
each pathway. Sonnleitner and Kappeli (1986) proposed a kinetic model, assuming this reaction mechanism,
based on the bottleneck concept. The key concept in the bottleneck model is that there is a maximum rate for
oxidative glucose and ethanol uptakes, which are governed by the yeast’” maximum respiratory capacity. The
cells cannot grow simultaneously though pathways 2 and 3. Growth switches between pathways 2 and 3
depending on the available respiratory capacity (which depends on the concentration of dissolved oxygen) and
on the actual glucose uptake rate (which is dependent on the glucose concentration in the medium). The total
growth rate is the sum of three growth rates related to 3 pathways. The main goal in this case study is to model
the specific growth rate and to verify if the ME network is able to detect the switch between pathway 2 and 3.
Three batches were simulated with constant feed rates of 0.05, 0.5 and 2.5 I/h. Data of total growth rate as a
function of glucose concentration and ethanol concentration (we assumed that oxygen was never a limiting
substrate) was collected with sampling intervals of 0.1 h. The total number of points used for training was 78.
This data was used to train and compare the 3 networks. The results obtained with the ME network with 3 linear
experts (9 parameters) are plotted in Fig. 3. The gating network employed was a gaussian network and the
training algorithm was the EM algorithm. The mean square error obtained was 1.6x10”°. The interesting point to
be noticed in this example is that the ME was able to discriminate between the 3 possible combinations of
reactions. A BP network with 9 parameters produced a mean-square error of the same order of magnitude
(1.38x10°), indicating that there is no apparent advantage of using a ME network in this example. The results
produced by a RBF network with 9 parameters are worst as it was in the previous case study. The mean square
error obtained was 1.7x107,
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Fig. 3. Results for one batch. (a) specific growth rate estimates with a ME with 3 experts (9 parameters):
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3. Complementary modular modelling
3.1 Sugar crystallization

In sugar production the purpose is to grow sucrose crystals with a required standard of quality, essentially
measured by the purity, by the shape and by the crystal size distribution (CSD). The crystallization process
occurs through mechanisms of nucleation, growth and agglomeration, which are known to be affected by severa
operating conditions. Agglomeration, in particular, is an undesired phenomenon, to a large extent not yet
understood, which has significant effect in the CSD, i.e. in the final product quality. The search for efficient
process model is thus linked both to the scientific interest of understanding fundamental mechanisms of the
crystallization and to the relevant practical interest of daily production requirements, i.e. mainly optimisation and
control purposes.

The difficulty in crystallization modelling is essentially on the accurate description of the CSD and their related
guantities — mass averaged crystal size (MA) and coefficient of variation (CV). The experience with models
neglecting agglomeration and/or nucleation mechanisms shows that the CSD predictions do not correspond to
the experimentally obtained AM and CV at the end of the process run. Therefore, accurate modelling can only be
achieved by incorporating agglomeration and nucleation mechanisms.

3.2 Partial mechanistic model

The mechanistic model considered below is investigated by several authors (Feyo de Azevedo et al. 1993,1994)
and proved to give arelevant interpretation to the physical nature of the process considered.

Mass balance. The mass of water (M,,), impurities (M, ), dissolved sucrose (M) and crystals (M.) are
included in the following set of conservation mass balance equations
dMm dM, _

dtw = Ffpf(l_ Bf)+prw_‘Jvap' Ffprf(l_ Purf) ! (61)
dm dam

dt = Ffpf Bf Purf - ‘]cris ! dtc = ‘]cns (62)
Energy balance. The second part of the model is the energy balance

dar,

dtm = a‘Jcris + bFf + C‘Jvap + d (7)

where a, b, ¢, d incorporate the enthalpy terms and specific heat capacities derived as functions of physical and
thermodynamic properties. Details with respect to the evaporation rate ( Jvap) and the thermal conditions can be

found elsewhere (Georgieva et al, 2003a, 2003b).



Population balance (in volume coordinates). The kinetics mechanisms of nucleation, crystal growth and particle
agglomeration are defined by the population balance. There are different mathematical representations of it
depending on the crystallisation phenomena taken into account. Most of the crystalliser models reported in the
literature neglect the agglomeration effect. For the process in hand this assumption appears to be irrelevant since
agglomeration is registered in the process run. The population balance is expressed by the leading moments of
CSD in volume coordinates since agglomeration must obey mass conservation low,

dmy 1, - dm _=
— Y =B-= , — =G ,
dt 2 P dt T
(8.1
d — d —
SE=Gmpnt,  Sh=3Gm +Bmm,. (82)
The main process nonlinearities are included in the crystallisation rate
dm
J. . =p—. 9
cris pc dt ( )

The kinetic parameters considered are the nucleation rate (B), the agglomeration kernel () and the linear growth
rate (G) from which the volume growth rate can be determined

G,= 3|<’{iJ G (10)
m,

3.3 Complementary hybrid structure

The complementary structure is a combination between an ANN and first principle equations in a serial hybrid
structure, where the known physical constrains (the mass, energy and population balances) are modelled by their
analytical expressions (egs. 6-10) and the kinetic parameters are approximated by an ANN, (see Fig.4). The
process variables S (supersaturation), Purg, (purity of the solution) T,,, (temperature) and v, (volume fraction of
crystals) are known to determine the process kinetics (resp. the kinetic parameters) therefore they are considered
as network inputs. Direct measurements are available only for T, the other variables are computed through
software sensors (Feyo de Azevedo et a., 1993). Each kinetic parameter can be approximated either by training
of individual neural networks or all of them simultaneously as outputs of one common ANN. The latter structure
was preferred in this study as less computationally involved.

S
g™ W 'BNN Populai J
Pur B, pul ation process
=l ] balance s M&b;nd ENErY | outputs and states
T, . (nucleation, growth, — ance >
U Process inputs agglomeration) eguations

Fig. 4 Complementary hybrid (analytical and data-driven) modular structure

The supervised mode of network training requires target values for the kinetic parameters. As measurements of
these process variables are not available the sensitivity approach of hybrid network training is performed
(Psichogios and Ungar, 1992). The network outputs are propagated through a partial mechanistic model, to get
an output for which measurements or reliable estimations are available (see Fig.5). Note that the partial
mechanistic model involved in the hybrid network training is viewed as a fixed parameterised part of the

network. In the particular case the mass of crystals (M hyb) is considered as the hybrid network output, which is

c

) for the same variable. The residual between them is termed

compared with software sensor estimations (M %

as the observation error (ey,s-M e M fbs ). The (training) error signal for updating the network weights is set



as the observation error multiplied by the partial derivatives of the hybrid model output with respect to the
network outputs (see Georgieva et a, 2003b for more details)

PIVLE PIVLE PV T
& :eobs|: ¢ /oG ¢ 43 ¢ B - (11)

S
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Pur,  signal Signal | i '
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T normaliz denorma _p| mechanistic | M ;> , m,™ = ¢
— i ation lization model >
v,
hyb .
—— T oM 3 190G Signal
¢y aM ™ /9B normaliz
Sensitivity oM M 1B ation
equations >

Fig.5 Hybrid ANN training procedure (sensitivity approach)

The main drawback of the hybrid modelling structure is that it suffers of arelatively long computational time, as
for every training step a solution of the set of ordinary differential equations is required: the partial mechanistic
model to get the mass of crystals and the sensitivity equations to get the partial derivative in eq. (11). In Fig. 6
the main CSD parameters, namely AM and CV, at the end of 10 batches are compared with corresponding
experimental data obtained by off-line laboratory (sieve) analysis of mass-size distribution. The hybrid model
predictions closely match the real data, which serves as a test for evaluating the model reliability. The model is
now investigated as being an essentia part of nonlinear model based predictive control algorithm.
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Fig. 6 Fina CSD (CV and AM) — experimental data and hybrid model predictions



4, Conclusions

The present work illustrated the application of two modelling alternatives. competitive and complementary
architectures.

The competitive approach was formulated in the framework of modular networks for modelling reaction kinetics
in biological processes. The study was restricted to the very simple ME architecture, with linear expert modules.
The main results showed that the ME was able to perform task decomposition, in the sense that it could
decompose the input space in three partitions that in reality correspond to 3 different growth pathways. In terms
of modelling errors, it was shown that the ME did not represent an advantage in relation to the BP network, at
least for the 2 simple case studies presented. Additional studies with more complex multidimensional problems,
with the ASM2 wastewater treatment model (Gujer et a., 1995), are in progress. Nonlinear expert networks were
tested. The results obtained so far show that the expert networks are able to discriminate and to develop expertise
in describing all metabolic pathways involved.

The complementary modular principle applied to sugar crystallization modelling consists of a serial combination
of a partial mechanistic model reflecting the mass, energy and population balances and the poorly known kinetic
parameters (nucleation rate, growth rate, agglomeration kernel), are replaced by a feedforward ANN. This
knowledge-based hybrid model demonstrates good agreement with the experimental data available.

A reliable description of the kinetic parameters is of special importance not only for the academic understanding
of the crystallisation phenomena but also for the purposes of optimising the manipulated input time profiles, with
the objective to obtain sugar crystals with desired quality characteristics.

Modelling based on the competitive or complementary modular principles of integrating the process knowledge
offers a reasonable compromise between the extensive efforts to get a fully parameterised structure, as are the
mechanistic models and the poor generalisation of the complete data-based modelling approaches.

References

1. Feyo de Azevedo, S., Chordo, J., Gongalves, M.J., & Bento, L. (1993). On-line Monitoring of White Sugar
Crystallization through Software Sensors - Part . Int. Sugar JNL., 95, 483-488.

2. Feyo de Azevedo, S, Choréo, J., Goncalves, M.J., & Bento, L. (1994). On-line Monitoring of White Sugar
Crystallization through Software Sensors - Part I1. Int. Sugar JNL., 96, 18-26.

3. Georgieva P., Feyo de Azevedo, M. J. Goncalves, P. Ho (2003a). Modelling of sugar crystallization through
knowledge integration. Eng. Life Sci., WILEY-VCH 3 (3) 146-153.

4. Georgieva P., M. J. Meireles, S. Feyo de Azevedo (2003b). Knowledge-based hybrid modelling of fed-batch
sugar crystalization when accounting for nucleation, growth and agglomeration phenomena. Chemical
Engineering Science (in press).

5. Gujer,W., Henze, M., Mino, T., Matsuo, T., Wentzel, M. C., and Marais, G. V. R. (1995). The activated
sludge model N° 2: biological phosphorus removal. Water Sci. and Technol., London, England, 31(2),1-12.

6. Haykin S. (1994), Neural Networks: A comprehensive foundation, Prentice Hall, UK.

7. Jacobs R.A., M.l. Jordan, and A.G. Barto, (1991). Task decomposition through competition in a modular
connectionist architecture: The what and where vision tasks. Cognitive Science 15, 219-250.

8. Jacobs, R.A., Jordan, M.l. (1991). A competitive modular connectionist architecture, Advances in Neura
Information Processing Systems 3, R.P. Lippman, JE. Moody and D.J. Touretzky Eds, pp. 767-773. San
Mateo, CA Morgan Kaufmann.

9. Jordan, M.I. and Jacobs, R.A., (1994). Hierarchical mixtures of experts and the EM algorithm, Neural
computation, 6, pp. 181-214.

10. Montague, G., Morris, J., (1994). Neural network contribution in biotechnology, Trends Biotechnol., 12, pp.
312-324.

11. Psichogios D.C., L. H. Ungar (1992). A hybrid neural network - first principles approach to process
modelling, AIChE J., 38(10) 1499-1511.

12. Schubert, J., Simutis, R., Doors, M., Havlik, I. and Lubbert, A., (1994). Hybrid Modelling of Y east
Production Processes, Chem. Eng. Technol., 17, pp. 10-20.

13. Sonnleitner, B. and K&ppdli, O., (1986). Growth of Saccharomyces cerevisiae is controlled by its Limited
Respiratory Capacity: Formulation and Verification of a Hypothesis, Biotech. Bioeng., 28, pp. 927-937.



DEAD CORE IN POROUS CATALYSTS: MODELLING AND SIMULATION OF A
CASE PROBLEM USING MATHEMATICA

Miguel Angelo Granato*, Luiz Carlos de Queiroz
m_granato@uol.com.br, queiroz@dequi.faenquil .br
* corresponding author

Chemica Engineering Department )
FACULDADE DE ENGENHARIA QUIMICA DE LORENA — FAENQUIL
L orena— S&o Paulo — Brazil

Abstract

In this work, an approach of the concept of dead core in a porous catalytic particle is made, and a
mathematical model for analysis of the dead core for a single, irreversible and isothermal steady state chemical
reaction is presented. The main factors that influence the existence of the dead core are defined, the distribution
of reactant concentration and the position of dead core for zeroth and first order reactions, in catalysts with
classical geometry of an infinite slab are calculated. The software Mathematica, which generates the solution of
the differential equations, implements the calculation and the corresponding graphs that confirm the required
conditions to the existence of the dead core. The results agreed with those published in the literature.

Notation

u = dimensionless concentration

X = dimensionless coordinate

f =Thiele modulus

a = magnitude of dead core (0 <a< 1)

a = geometric factor (a = 1, dab; a = 2, cylinder; a = 3, sphere)
n = reaction order

I ntroduction

For some cases in heterogeneous catalysis, the catalyst has the shape of a porous grain and reactant diffusion
into the grain occurs.

If the reaction rate is low, when compared with the diffusion rate, the size of the grain does not represent any
problem for the concentration in inner points be almost the same from those at the surface.

Otherwise, if reaction occurs much faster than diffusion, equilibrium can be reached even before that all
reactants have spread inside the whole catalyst particle. In this case, a region within the catalyst particle will
appear, where reaction will never take place. Thisregionis called Dead Core.

Depending on the dimensions of the grain, the catalyst is not entirely active, and then the reaction yield is
low.

Mathematical Model of Dead Core
A mathematical model of the reaction-diffusion phenomenon for analysis of the dead core in porous catalysts
for asingle, irreversible and isothermal steady state chemical reaction, was developed. For an isothermal particle
of any geometry, diffusion and a chemical reaction of nth order are described by an ordinary second order
differential equation, [1] and [2]:
a d&g1dud
xla 9 &a 17+ -
dX 8 dX g
Assuming the existence of the dead core, the problem can be posed in the form of Equation (1), with the
following boundary conditions:

£2yN 1)

X=1 b u=1l 2
x=a p M_ 3)
dXx
and the condition:
X=z=a b u=0 (4)



where “a” represents the dead core position, withO <a< 1.

Case 1: Sab, Zeroth Order Reaction:

The resulting equation for a zeroth order reaction is an ordinary second order linear differential equation as
follows:

j:‘; =2, )
The analytical solution of (2) is:
u(x):1-§+f za-fzaX+§X2. (6)
The position of the dead core will be given when u(a)=0
1-f2 +f2a-f2a2+f2a2:0, @

if f > \/E , then the dead cores exists and its position is:

a=1- (8
f
The concentration profileis
i0
Lo, 2
u(x) = if2é 2U . 9)
[eX -1+ =
I 26 fa
Case 2: Jab, First Order Reaction
Applyinga =1 and n = 1 to equation (1) gives:
2
d
=t 2. (10)
dX
Which has the solution:
ef-fx (e2fa+e2fx)
U(X)=—— (1
e +e
Dead core position will be given when u(a) = 0
Sech (f -fa)=0. (12

However, on determination of the dead core position, u(@) ® Ofora® +¥ and, asO<a< 1, thereisno
occurrence of dead corein this case.

Mathematica Solution
The following procedure models the dead core, [3].

Case 1 Solution:

1. Clear dl previousinputs and assign the corresponding values for geometric factor and reaction order:
Infll= Clear [x, a, @, n];

n2l= @ = 1;
InfE= n = 0;
2. Defineafunction for equation (1):



4= eqn = x"% 8, (x*" 8,u[x]1) - ¢ (u[xD"

Outfal= -#* +u” [x]
3. Solveequation (1) with the assigned boundary conditions:
Infal= DSolve[{egn :- 0, u[l] = 1, u'[a] == 0}, u[x], x]

1 3 T £ R
Outfsl= {{u[x]—}g (z-¢*+zapt-zaxetext oD}
4.  Simplify solution:
In[fl= Apart[%, x = a]
_ 1 i PR
Outlfl= {{u[a]—>5 (z-ptezapi-aty j}}
5. Solvefor“a”:

In[7]:= Sulve[% (2-¢"+2a¢" -a"¢") -0, a]

outi7l= {{a- '"’E ik 1 fas ﬁ¢+¢}}

6. SelectrootO<ac<l1:

4Z
In[g]:= Apart[$]
outlEl= 1 g

7. Simplify concentration expression assigning the value of “a”, for which the concentration is zero:

2

In[21]= FullSimplify[u[x] -» ; (2-¢"+2a¢°-2ax¢’+x ¢°),a-1- TZ]

Qutf21l= u[x] —3% (2 (-1+x) (242 + (-1 +x) ¢))

One observes that concentration is a function of position “X” and of Thiele Modulus “f”. Three-
dimensional graphs of the function u = u (X, f) will be generated, as shown in Figures 1 and 2.

In[1 0]:= PlutSD[; (2+ -1+ 0 (242 + (-1+300)), {x, 0, 1}, {p, 0, 5},
PlotRange - {{0, 1}, {0, 5}, {0, 1}}, AxesLahel - {*x", “¢", "u[x]"},

PlotPoints — 20, FaceGrids — {{0, 0, 1}, {0, 0, -1}}, AspectRatio - 1]

out[i 0]z = Surfacebraphics -
Figure 1 — Sample 3D Graph: concentration vs. Thiele modulus vs. position.

Figure 2 shows the option Vi ewPoi nt which allows a different graph perspective. Pl ot Range zoomsin
the image for a better definition of a particular region.



In[11] = Show([%, PlotRange — {{0, 1}, {0, 5}, {0, 1}},
ViewPoint -» {-2, -.9, 0}, AspectRatio - 1.2]

ulx] 0.5p

Zut[11]= = SurfaceGraphics -
Figure2—Zoom in for detailed view.

The following procedure generates the graph that shows the positions of dead core and reactant concentration
profiles for several values of Thiele modulus:

. 1 "‘\1"_2
In[22]:= :_;.rm.;;.=Tahm[[E (2+¢-14me(2v2 + <1410 0))). [0, 0, 32, . }
In[z3l= pPl=Plot[growp[[2]], {x, 0, 1}, PlotRange — {0, 1},

fxesLabel — {"x", "u[x]"}, PlotStyle — RGEColor[1, 0, 0]]:
In[24]= P2=TPlot[group[[3]], {x, 0, 1}, PlotRange — {0, 1},
hxesLabel — {"x", "u[x]"}, Plot5tyle — RGBColor[1, 0, 1]1]1;
In[258]= p3=Plot[group[[1]], £x, .3, 1}, PlotRange — {0, 1},
hxesLabel — {"x", "u[x]" }, PlotStyle - RBColoxr[0, 0, 1]1]1;
In[26]:= pd = Plot [group[[5]1]- {x, .5, 1}, PlotRange — {0, 1},
fxesLabel — {"x", "u[x]" }, PlotStyle - RGBColor[0, O, 0]];
In(z7]}= p%=Plot[growmp[[6]]. {x, .6, 1}, PlotRange — {0, 1},
hxesLabel — {"x", "u[x]" }, PlotStyle — REBColor[1, 1, 1]1]1:
In[28])= B6 = Plot [growp[[711, {x, .7, 1}, PlotRange — {0, 1},
hxesLabel — {"x", "u[x]"}, PlotStyle - RBColor[0, 1, 1]];
In[29]2= Show[pl, p2, p3, pd, p3, pél
Az
5 i P
m f= oz
[ | ¢|: SE
Z
IR
Wz
= & —
= 2
h= 2 i

Qut[29]= = Graphics =
Figure 3 —Positions of dead core for several values of f .



The purple linein Figure 3 represents avalue of f = \/5 . For such a value, the concentration is zero exactly

at the catalytic particle center (a = 0). As the Thiele modulus increases, one can see that the dead core occurs at
positions closer from the surfaceand a® 1 for f ® ¥. Then, the dead core tends to occupy the whole particle
whenf ® ¥.

Case 2 Solution:
An analog procedure for solving Case 2 equation was adopted and it is shown below:
1. Clear dl previousinputs and assign the corresponding values for geometric factor and reaction order:

In[1]= Clear [x, a, a, n]
In[@= wa=1;

In3= mn=1;
2. Defineafunction for equation (1):
4= egn=x""8, (x" " u'[x]) -¢ u[x]”

Outfdl= -¢° ulx] +u[x]
3. Solveequation (1) with the boundary conditions:
In[a= DSolve[fegqn-- 0, u[1]--1, u'[a] -- 0}, u[x], x]

EEltl—xlﬂl (Eiiltl_'_ei xlﬂlj

OUt[S]: {{u[:(] - Eid 4y plag

4. Attempt to solvefor “a":
N A

In[E]= Solve[ T
+

=0, x=a

Solve: ifun : Inverse functions are being used by Solve, so some solutions may not be found.

outlel= {{a- %}}
Asseen in the previous analytical solution, there is no dead core.

5. Simplify the solution of Equation (1):
cl!CD-mII (eza-n+ E2xlll}
@204 g2ald

Out[fl=  Cosh[(a-=x) ¢] Jech[d-ap]

In[7]= FullSimplify[

In[a]= Apart [Cosh[{a- x} ¢] Sech[¢-ad], x=a]

Out[f]=  Sechlp-ad]

The following three-dimensional graphs have been generated, plotting concentration versus Thiele Modulus
versus position.



In[8=" s1-Plot3D[%, {a, 0, 1}, {¢, 0, 10},
msLahEl — {II xll N n 'I'II . Ilu[x] n }.r
FaceGrids — {{0, 0, 1}, {0, 0, -1}}]

Dut[4)= = ZurfacebGraphics -
Figure 4 — Sample 3D graph for first order reaction in slab geometry.

In[10]:= Show[%, YiewPoint —» {-2, 2, 0}]
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Qut[10]= = SurfaceGraphics -
Figure 5 — Different view of concentration profiles vs. Thiele Modulus vs. position.

To generate plots of reactant concentration profiles for several values of f, a similar procedure to the Case 1
was adopted.
In[11]= wroup = Table[{Sech[¢-aal), {&, 0, 10, 1}] :
I[12= pl=Plot[grow([[2]1], {a, 0, 1}, PlotRange - {0, 1},
fxesLabel — {"x", "u[x]"}, PlotStyle — {Hue[0.5]}];
n[13]= p2=Plot[growp([[3]1], {a, 0, 1}, FlotRange - {0, 1},
TaesLabel — {"x", "u[x]" }, PlotStyle — {Hue[2]}];
n[14]= p3=Plot[growp[[4]1]. {a, 0, 1}, PlotRange — {0, 1},
fxesLabel — {"x", "u[x]"}, PlotStyle — {Hue[.4]}];
In[15]= p4 = Plot[growp[[51], {a, 0, 1}, PlotRange — {0, 1},
hxesLabel — {"x*, "u[x]" }, Plot5tyle — RGEBColoxr [0, 0, 0]]:
n[16]= p%=Plot[grow[[6]1], {a, O, 1}, PlotRange - {0, 1},
RxesLabel = {"x", "u[x]"}, PlotStyle = {Hue[.7]}];



n[17]= p6 = Plot[group[[T]1], {a, 0, 1}, PlotRange — {0, 1},
fxesLabel — {"x", "u[x]"}, PlotStyle — {Hue[1, .5, .5]1}]:
In[18= 7 =PFlot[growp[[8]], {a, 0, 1}, PlotRange — {0, 1},
TxesLabel — {"x", "u[x]"}, PlotStyle - {Hue[1.2, . &, .8]1}]1:
In[19]:= p8% = Plot [group[[?]1], {a, 0, 1}, PlotRange — {0, 1},
RotesLabel — {"x", "u[x]" }, PlotStyle — {Hue[2.5, .2, .8]}];
In[20]:= B9 = Plot [growp[[10]], {a, 0, 1}, PlotRange - {0, 1},
hxesLabel — {"x", "u[x]"}, PlotStyle —» {Hue[1.5, .6, .6]}]:

In[21]:= P10 = Plot [group[[11]1], {a, 0, 1}, PlotRange - {0, 1},
RoesLabel - {"x", "u[x]"}, PlotStyle — {Hue[5.5, .2, .2]}]:

n[22}=. Show[pl, p2, p3, p4, p5, pé, p?, pE, pI9, plo]
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Ct[22]:= = Graphics -
Figure 6 — Reactant concentration profiles for afirst order reaction in a slab.

The plots show that reactant concentration never reaches zero when the reaction order is 1 for aslab and there
is no occurrence of dead core in this case, that agrees with results from [4]. This is confirmed by viewing a
zoomed-in section of the previous graph.

In[23]= Show[%, PlotRange — {{.05, .2}, {0, .5}}, AxesOrigin —{0.05, 0}]
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Figure 7 — Zoomed-in concentration profiles.

Conclusions

The analytical solutions and the results generated by Mathematica agree with those published in the literature.
The use of Mathematica as a computationa tool to solve the proposed problem provides an application of the
softwarein catalysis.
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Abstract

The baker’s yeast used in the bread making and beer industries as a microorganism, has an important
industrial role. A system of differential-algebraic equations is used to predict the behavior of the
concentration of the state variables over a 20 hours time period, in a well-mixed reactor. Kinetic and
yield coefficients parameters in the model, usually obtained from the literature, can be considered
unknown or be estimated by fitting the model to the experimental data through an optimization
procedure. A multiple nonlinear regression can be performed by simultaneously fitting all the
differential equations to the experimental data collected for the state variables. This technique will
enable us to obtain the value of the parameters of the model, which minimize the overall sum of the
squared residuals. In order to reduce the dimension of the optimization procedure, only the most
significant model parameters were used. A runs statistical test on the deviations between the
experimental and predicted values of the state values to ensure random distribution was also performed
to accompany the regression analysis.
1. Introduction
The baker’s yeast, essentially, composed by living cells of Saccharomyces cerevisiae, used in the
bread making and beer industries as a microorganism, has an important industrial role. Baker’s yeast
production is a fed-batch fermentation that uses as substrate feed (carbon) a glucose solution. The
simulation procedure represents then a necessary tool to understand clearly the baker’s yeast
fermentation process. A mathematical model was developed [1] in order to predict the behavior of the
concentration of the state variables over a 20 hours time period, in a well-mixed reactor. Considering
the kinetics and the gas transfer rates relations, which define algebraic equations, as well as the
volume rate equation during the fed-batch process, we end up with a system of differential-algebraic
equations [2]. Kinetic [3] and yield coefficients [4] parameters in the model can be obtained from the
literature. However, these parameters can be considered unknown and can be estimated fitting the
model to the experimental data through an optimization procedure.
Experiments for this fermentation process were carried out in a fed-batch fermentation and data, for all
dependent variables, were collected. A multiple nonlinear regression can be performed by
simultaneously fitting all differential equations to the data. This technique will enable us to obtain the

value of the parameters of the model, which minimize the overall sum of the squared residuals. In



order to reduce the dimension of the optimization procedure, a heuristic sensitivity analysis was
performed to identify the most significant model parameters, i.e., the parameters that give the most
significant differences between experimental and simulated data [5]. The maximum uptake rate for
glucose and oxygen and the yield coefficients were seen to be the most significant model parameters.
For the nonlinear regression analysis, a Marquardt algorithm [6] for multiresponse data, which uses an
interpolation technique to combine the Gauss-Newton and Steepest Descent methods, was coded in
Matlab. For the solution of the differential system of equations, a stiff Matlab solver was integrated in
the developed code.

A runs statistical test on the deviations between the experimental and predicted values of the state
values to ensure random distribution was also performed to accompany the regression analysis.

The paper is organized as follows. Section 2 gives a brief description of the baker’s yeast fermentation
process and presents the model equations. Section 3 presents a multiple nonlinear regression analysis
and Section 4 a randomness test of the regression results. Finally, some conclusions are shown in

Section 5.

2. Baker’s yeast fermentation — equations model

In the baker’s yeast fermentation process three metabolic pathways can be distinguish: (1) respirative
growth on glucose, (2) fermentative growth on glucose and (3) respirative growth on ethanol.
Respirative pathways occur in presence of oxygen and the fermentative one in its absence (with
production of ethanol) [1]. The metabolic pathways of fermentative growth on glucose and oxidative
growth on ethanol are competitive. This competition is governed by the respiratory capacity of the
cells. If the instantaneous oxygen uptake capacity exceeds the oxygen need for total respiratory
glucose uptake, then, all sugar uptakes follow the respiratory pathway (1) with the remaining oxygen
being spent on ethanol respiratory uptake (3). Otherwise, if the instantaneous oxygen uptake capacity
is not enough, part of glucose uptake follows the respiratory pathway (1) while the remaining follows
the fermentative pathway (2).

The mechanistic model for the fed-batch fermentation is obtained from mass balances for all the

components [1]. It is assumed that the yield coefficients, (Y)?,S, Yo Y Yor, Y2, Yo,
Yo Yier Y ;,EC), are constant and the dynamics of the gas phase can be neglected. The kinetics

equations for baker’s yeast growth, ( ,uSO, Hg, ,ug ) , are considered as Monod equations [2]. Then the

set of differential-algebraic equations is:



ax
- mass balance for the biomass, —= (,uso +uy +uy - D)X @M

dt
ds HS M
- mass balance for the sugar, — = X+ (S - S)D 2)
dt Y X/ Xx/S
where S; is the substrate concentration in the feed,
r o
- mass balance for the ethanol, 9 = # - % X -DE 3)
dt xe Yxe
0 0
- mass balance for the oxygen, 40 =|- 'UTS - % X —DO+OTR @)
dt Yy 10 Yy 10
o r o
- mass balance for the carbon dioxide, ac = ﬂos + ’Lfs + X oEE X -DC-CTR &)
d Y. Xx/C X/C Y, Xx/c
. . . av
- accumulation of the working volume during the fed-batch process, E =DV (6)
where D is dilution rate (ratio feed rate/volume) defined by D = F/V .
The gas transfer rates are given by
OTR=K%4a(0" -0), CTR=K d(C-C") (7-8)

where K:a are overall mass transfer coefficients for oxygen and carbon dioxide and O* and C* are

the corresponding equilibrium concentrations.

The kinetics equations for the respirative regime are:
0 ) r 0 . (0 ,0
s =Yy5q95, Hs=0, U Zml”(ﬂE,,ﬂEz) (%a-11a)
or, for the respiro-fermentative regime:

q r r q
.Usq =YXQ/S'709 Hs =YX/S'(qS _70]; /Ug =0. (9b-11b)

Equations (12-15) must be added to the kinetics equations, (9a-11a) or (9b-11b), for the estimation of

the specific growth rate on ethanol, defined as:

0] max E K
= i 12
e = He E+K, S+K, (12
v
8 =09 (g0 —agy) (13)
YX/E



S
S+Kg

(14)

ds =qgm

15)

90 =40 m

where u;" is the maximal specific growth rate, K; is the inhibition parameter, K is the saturation
parameter, a is the stoichiometric coefficient of the oxygen in the respiratory pathway of glucose,

g5 is the maximal specific glucose uptake rate, K5 and K, are saturation parameters and g, is the
maximal specific oxygen uptake rate. The kinetic coefficients (q;n‘“, ", up s K, K, K, Ko)

were considered as constants. The set of differential-algebraic equations, (1-8, 12-15, 9a-11a) or (1-8,

12-15, 9b-11b), defines the model for the baker’s yeast fermentation process.

3. Multiple nonlinear regression analysis
The most significant parameters must be computed by fitting the baker’s yeast model to experimental

data. Experiments for this fermentation process were carried out in a fed-batch fermentation and data

for all the state variables (X , S, E, O, C ) and the overall mass balance (V), defining the six

dependent variables, were collected.

A multiple nonlinear regression is then performed by simultaneously fitting all six equations (1-6) to
the data in order to obtain values for the parameters of the model. To reduce the size of the differential
system to be solved all the algebraic equations (7-15) were replaced in the dynamic model (1-6). From
now on and for simplicity, we consider the dynamic model (1-6) written in the form

av, _
Ez"fj(t’y’p)’ _]=1, ceey 6 (16)

where ¢ is the independent variable, Y :(X , S, E, O, C, V)T is the vector of the dependent

mq

T
variables and p = (q;n‘“, a5, Yo s Yie Yip Y5 /0) is the vector containing the parameters to

be estimated. A heuristic sensitivity analysis [5] identified these six parameters as the most important,
from the sixteen previously defined, reducing the dimension of the optimization procedure. We denote
the i™ element of the vector p by p; and the /" element of vector ¥ by Y;. Given initial conditions and
estimated values for the parameters, the differential equations (16) can be numerically integrated to
give

Y, =F,(t,p), j=1, .., 6. (17)

J J



In a multiple regression method we minimize the overall sum of squared residuals given by
6 6 T
T e e
0=l =3 (¥ -¥,) (v -7)) a®

where 7; is the residual vector of ¥; and Y, is the vector of m experimental observations of the

dependent variable Y;. For a nonlinear model, the Gauss-Newton iterative method computes a
sequence of estimates to the vector p,,, = P,..... + AP, Where Ap is the solution to the system
: T : T
_ e
20, 8p=200) (YY) (20)
Jj= Jj=

and J; is the Jacobian matrix of the partial derivatives of ¥; with respect to p, evaluated at all m points

where experimental data are available,

oY, oY,
b
J,=| : o 2D
oY, ,, oY, ,
op, s

This process is iteratively repeated until Ap becomes small.
It is possible that, for some iterations, the matrices J} J, are not positive definite so that the

correction vector Ap, given by (20), is not downhill for @ at peyyen. A Marquardt algorithm, which

uses an interpolation technique to combine the Gauss-Newton and steepest descent methods, is used

instead, where the coefficient matrix in (20) is substituted by

ZG:(JT J. +/11) for some 4 >0. (22)

Jj=1
Further, to improve efficiency, J f J,; is scaled so that its diagonal elements become equal to unity,
which is equivalent to solving the following set of equations for Ap :
6
> (1] 1,+4D, )Ap = ZJT( Y,), 4>0, (23)
Jj=1
where D; is a diagonal matrix containing the diagonal elements of J I J; [6]. When the model consists

of algebraic equations, the elements of each J; are easily obtained by differentiating the model.



However, the baker’s yeast model consists of differential equations, and its elements must be obtained
through the variational equations

oY, ay.\ of(t 7,
d (oY) _ o (dr)_o( p),j=1, 6 i=1, ..., 6. 24)
dt\ dp, ) Op,\ dt op;

This set of ordinary differential equations can be then integrated simultaneously with the model

equations (16) to give ¥}, j=1, ..., 6, and a—j ,j=1,...,6,i=1, ..., 6, which are required to construct
Di
the vectors and matrices in (23).

The final results, for a @ <1.5, are shown in Table 1.

Table 1. Comparison between multiple nonlinear regression analysis final results and literature.

qs (h_l) 4o (h_l) Y)?/s Yes Yee Y)?/o
Model 5.3 0.203 0.45 0.09 1.48 1.71
Literature [3, 4] 35 0.256 0.49 0.05 0.10 1.20

4. Randomness statistical test
A test will be performed to investigate the goodness of fit of the model. In a least squares regression,

the assumption is made that the model being fitted is the correct one and that the observations deviate

from the model in a random fashion. The residuals, 7;, between the experimental values Yje and the

computed values Y; can be either positive or negative. However, if they are random, the sign of the
residuals should change in a random fashion. The randomness of the distribution of the residuals (or
lack of it) can be visually detected by plotting the residuals versus the independent variable ¢. Figure 1
illustrates the residuals for the six dependent variables. This randomness can also be measured and

tested by the runs statistical test [7]. This test is based upon the number of runs, R, which represents

the number of series of identical signs in the residuals sequence. If the number of positive signs is p,
and the number of negative signs is 7, then the null hypothesis, H ,, that the model is the correct one

and that the residuals are randomly distributed should not be rejected, if the sample R value falls
between the lower and the upper critical values taken from [7], at a 0.05 level of significance. Table 2
contains the sample values of R for each variable. Comparing these sample values with the critical

values, the conclusions are as shown in the last row of Table 2.
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Figure 1. Residuals versus ¢, for the dependent variables.

Table 2. Sample values of R and conclusions (* no critical values for these cases).

Runs test for variable 1 2 3 4 5 6
Ds 4 10 7 11 1 1

ng 8 2 5 11 11

Sample value of R 4 4 4 3 2 2
Hj not rejected yes * yes * * *

5. Conclusions

predictions values.

The method used in this paper enables us to fit a baker’s yeast model, consisting of multiple dependent
variables, to multi-response experimental data in order to obtain the best values for the most

significant parameters, which minimize the overall sum of squared residuals between the data and the

Two of the significant parameters obtained through the multiple nonlinear regression analysis, gg"

and Yy, , comparative to the literature values are very different. However, they allow obtaining good




The statistical analysis of the regression results show that the model seems to represent adequately the
data and the residuals are randomly distributed for two of the variables being fitted, the biomass and
ethanol. For the sugar, nevertheless no critical value for this case, the model follows the experimental
trend. The model seems to give a low prediction of oxygen and a high prediction of the carbon dioxide

for all values of #, and no significant differences in the volume profile.
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Abstract

In this work a strategy is described for designing chemical processes with improved economic and
environmental performance, using computer modeling and simulation. This strategy is applied during
process development stages of process synthesis and conceptual design, where the flowsheet of a
chemical process is developed and evaluated. The severa steps of this strategy include process
synthesis, modelling and simulation, preliminary assessment, generation of alternative design options,
detailed assessment, feasibility analysis and finally screening of alternatives to arrive to the best
design option. This strategy takes into account the process flowshest, the open and fugitive emissions
and the potentia environmental impacts (PEI’'s) of a chemica process. It places a high emphasis on
pollution prevention and waste minimisation, focusing on those chemica components and process
streams that have the largest contribution to the PEI’s and the largest economic potential, revealing
where attention should be focused when designing a chemical process.

I ntroduction

The chemical industry provides a vast array of products and materials that are essential for modern
societies. However gaseous, liquid and solid wastes are inevitably generated during the manufacture of
any product. In the past three decades industry have been in the position of responding to legidation
imposed as a consequence of a perceived environmental crisis. The mode of operation was essentialy
unplanned and always reactive rather than proactive. There has been little operational guidance about
how to do better.

Apart from creating potential environmental problems, wastes represent |osses from the production
process of valuable raw materials and energy, requiring significant investment in pollution control
practices. The waste generated by chemical industries is often associated to inefficient processes. Thus
reducing waste by improving efficiency will maximise profits, while reducing the environmental
impacts. To address this challenge, rather than using the traditional end-of-pipe approaches chemica
engineers need to assess, improve and integrate the environmental performance of processes with the
objective of avoiding waste generation.

During process synthesis and conceptual design important decisions are made that will determine
the economic viability, safety and environmental impact of the final design. In these preliminary
stages of process development an optimised structure of a chemical process is determined and a
number of suitable process aternatives or possible structures are identified and then evaluated to get
the best solution.

While detailed environmental impact assessments have been performed for decades, their
implementation has generally been restricted to evaluations of fina designs. A better approach would
be to evaluate environmental performance in the design development process. At the earliest stages of
process design, only the most elementary data on raw materias, products and by-products may be
available resulting in alarge number of design aternatives that need to be considered. Although there
are trade-offs between different environmental impacts decisions must be made. Supporting these



decisions require environmental assessment tools that chemical engineers will need to master.
Environmental assessment tools are required not only to quickly assess the potential environmental
impacts and toxicity potential of products and processes but aso to identify key compounds of
concern or emission points in a chemical process. For example, the waste reduction agorithm (WAR)
from U.S. EPA (Young et al., 2000) is an environmental assessment tool, which can be used to
evaluate the potential environmental impacts of aternative design options.

The origind version of the WAR agorithm, developed by Hilaly and Sikdar (1994), introduced the
concept of a pollution balance, which was strictly mass based. Cabezas et al. (1999) introduced the
generalised WAR agorithm with a PEI balance, which assigned environmental impact vaues to
different pollutants, as an improvement upon the origina WAR agorithm. Y oung and Cabezas (1999)
extended the PEI balance to include the consumption of energy by the process into the environmental
evauation.

Chemical engineering practice has traditionally relied on experience-based and heuristic or rule-of-
thumb type methods to evaluate some feasible process design (Douglas 1988). Mathematical
algorithms are used to find the optimal solution from these manualy determined feasible process
design options. The fault in this process is that it is virtualy impossible to manualy define al of the
feasible process system options comprising more than a few operating units (Bumble 2000). Chemical
process simulation techniques have emerged as tools for providing process design and developing
clean technology for pollution prevention and waste minimisation. Most state of the art process
simulators are powerful tools for the analysis of pollution prevention alternatives in a wide range of
industrial processes.

Steady dtate process simulators make it possible to run the plant as a model on a computer and test
out operation scenarios (e.g. higher flowrates, different feedstocks, modified operating conditions,
etc.) before they are tried on the actua plant. Examples of commercialy available process smulators
that can be used to model chemical processes are ASPEN PLUS™ by Aspen Technology Inc.,
CHEMCAD™ by ChemStations, Inc., HYSYS™ by Hyprotech Ltd. and PRO/II* by Simulation
Sciences Inc., etc. With the ever-increasing capabilities in computer power and accurate models for
describing process units, process smulators make it possible to do rigorous analyses and exploring
different design aternatives. In addition to the classical experimenta approaches (e.g. bench scale,
mini-plant, pilot plant, market development plant), the use of modelling and smulation tools is
becoming increasing popular and powerful.

In thiswork a strategy is described for designing chemical processes with improved economic and
environmental performance, using computer modelling and smulation. This strategy alows the
identification and evaluation of different process design aternatives, resulting on the creation of more
energy-efficient, mass-efficient and environmental benign industrial processes. This strategy has been
tested through example processes, which results can be viewed in Smith et al. (2001a, 2001b) and
Mata et al. (2001, 2003). By applying this strategy one can easily and quickly evaluate and identify
chemica process design options with superior economic and environmental performance. Also it
incorporates the assessment of the potential environmental impacts of a chemica process, which are
usualy ignored in traditional process design, where attention is only paid to bring the process into
compliance with discharge standards. This strategy allows the identification of the tradeoffs between
process economics and potential environmenta impacts, revealing where attention should be focused
when designing a chemical process.

Strategy for Chemical Process Design

This strategy consists in the selection and design of cost-effective aternatives for chemical processes
with significant environmental and economic improvements. Figure 1 shows the several steps included
in the strategy for designing chemical processes with good economic and environmental performance,
using computer modeling and smulation. The severa steps of this strategy include process synthesis,
modelling and simulation, preliminary assessment, generation of alternative design options, detailed
assessment, feasibility analysis and finally screening of alternatives to arrive to the best design option.
After basic research and development, process synthesis is the earliest stage in the developing



process of a chemical process design. Then it proceeds to conceptua design, preliminary design,
detailed design and finaly to construction and start up. The strategy described in Figure 1 is applied
during the earliest stages, i.e. process synthesis and conceptua design. In these stages a conceptual
flowsheet of the chemical processis developed and eval uated.

Process synthesis:

« basic R&D and data collection (e.g. kinetics,
thermodynamics)

« definition of the process flowsheet

[ M odelling and simulation of the chemical process ]

E (Preliminary assessment and gener ation of alternative \
: design options:
: « objectives definition
i « establishment of priorities
« identification of potential obstacles
« define, prioritise and select pollution prevention options
(e.g. recycling awaste stream to extinction, changing operating
\ conditions of temperature and pressure, heat and mass integration) /

Detailed assessment and feasibility analysis:

« technical

« environmental (identify and characterise waste, identify sources
of waste, evaluation of the potential environmental impacts)

« economic (economic potential, capital and operating costs)

v

[ Screen alternatives: )

« acquire data
« analyse results

v

Best design option(s)

Figure 1. Strategy for designing chemical processes with good economic and environmental performance,
using computer modeling and simulation

Process Synthesis. Normally starting with a market need or a business opportunity basic research
and development is performed and an input-output diagram may be sketched out. This overal
transformation of raw materials into desired products is then divided into severa processing steps that
provide intermediate transformations (e.g. reaction, separation, mixing, heating and cooling). One can
break down the process into its basic functional elements such as the reaction and separation sections.
Then identify recycle streams and unit operations to reach desired temperature and pressure
conditions. These basic elements lead to a generic process block flow diagram. After preliminary
equipment specifications the process flow diagram is made.

The process of selection and evaluation of the individual transformation steps and their
interconnections to form a complete structure that achieves the required overal transformation is
usualy called process synthesis. The outcome of process synthesis is normally expressed in terms of
process flowsheets. A “flowsheet” is the diagrammatic representation of the process steps and their
interconnections, i.e. it is composed by pieces of equipment (e.g. reactors, heat exchangers,
compressors and digtillation columns) interconnected by streams.



Generaly process synthesis starts at the reactor, if one is required, since it is the place where raw
materias are converted into the desired products. Following the reactor and according to the normal
sequence in the process flowsheet, the separation and recycle systems are designed. Then follows the
design of the process heating and cooling duties, which are dictated by the reactor, separation and
recycle systems together. Finaly those heating and cooling duties, which cannot be satisfied by heat
recover dictate the need for external utilities (steam, cooling water, fudl, etc.). This hierarchy can be
represented symbolically by the layers of the “onion diagram” as described by Smith (1995). The
“onion diagram” diagram emphasises the sequentia or hierarchical nature of process design. When a
process do not require a reactor (e.g. in some refinery processes) the design starts with the separation
system and moves outward to the heat exchanger network and utilities.

Modelling and Simulation of Chemical Processes. After the structure of the process is
determined models are needed as partial substitutes for their prototypes to assist in designing,
understanding and predicting the behaviour of the prototype. They must represent significant
characteristics of their prototype. Simulation is the use of the model to predict plant’s performance and
its economics.

The flowsheet generated can be further refined using process smulators. They use more rigorous
models of process units, impossible to be performed without a computer. They aso provide a way to
integrate all the relevant aspects in the process synthesis, therefore reducing the development and
implementation time.

Preliminary Assessment and Generation of Alternative Design Options. When the design is
specified, methods for generating alternatives are used. Pollution prevention and waste minimisation
options must be analysed in this step. Pollution prevention consists of eliminating or minimising waste
generation at source, i.e. reducing waste or pollutants before they are created, prior to recycling,
treatment or disposa. Pollution prevention via source reduction of a chemical process involves
replacing or modifying conventional chemical production processes. There are some basic strategies
for reducing process wastes at their source. The flowrate of a purge stream can be reduced by
decreasing the purge fraction, by using a higher purity feedstock, or by adding a separation device to
the purge or recycle stream that will remove the inert impurity. Reaction by-product production can be
reduced by using a different reaction path, by improving catalyst selectivity, or by recycling by-
product back to the reactor so that they accumulate to equilibrium levels. Waste minimisation via
alternative reactor operating conditions and parameters are other possible examples.

Waste minimisation can be achieved through for example, changes in design and operating
conditions that ater the flowrate and composition of pollutant-laden streams, by promoting
subgtitution, recycling and reuse, by applying strategies to minimise, moderate and smplify or by
addressing the fundamental chemistry of processes. Other measures such as process modifications
(temperature, pressure changes, etc.), unit replacement, feedstock substitution and reactor separation
network design can be manipulated to achieve cost-effective waste minimisation.

In process synthesis there are a very large number of ways that one might consider to accomplish
the same godl, i.e., there are a very large number of possible alternative processes for converting raw
materials into the desired products (Douglas 1988). The analysis of the dternatives usudly starts with
basic engineering analysis such as mass and energy balances. Predictions are made of the expected
performance of the system. Inputs and outputs of the process, flow rates, compositions, pressure,
temperature and physical properties of materia streams, energy consumption and sizing of the
equipment units are listed and analysed.

Chemical process smulators simplify the process of evaluating the different design aternatives
without the need of making to much process assumptions and considering the entire process structure.
A process simulator has the capability to input and modify the configuration of the process flowsheet
and to perform design calculations considering the complete process flowsheet, before they are tried
on the actua plant. Thisway it is possible to model and predict the behaviou of the process flowsheet
and to study different operation scenarios (e.g. higher flowrates, different feedstocks, modified
operating conditions, various levels of energy integration, etc.) in combination with evauations of the
process economics and potential environmental impacts.



Detailed Assessment and Feasibility Analysis If a process design appears to be profitable, more
rigorous design calculations can be used to develop a fina design for the best dternative or the best
few aternatives. Usually more rigorous design and costing procedures are used for the most expensive
equipment items. However to improve the accuracy of the approximate-material and energy-balance
caculations, it is aso important to add detail in terms of small and inexpensive equipment items that
are necessary for the process operations but do not have a major impact on the total plant cost (e.g.,
pumps, flash drums, etc.) (Douglas 1988).

A feadbility analysis is then performed. As the mechanical and instrumentation details are
considered and the piping and instrumentation diagram is created, estimations of equipment size and
costing and the economic and environmental merits of the process are analysed. For example, the
economic performance can be readily quantified, by estimating capital investment and operating costs
usng smple correlations that approximate the actual costs (Biegler et al. 1997, Peters and
Timmerhaus 1991). Other criteria such as safety, environmental constraints, flexibility, easy control
and operation are not readily quantifiable and yet often requires the judgement of the designer (Smith
1995). Properly done, it requires a balance of reliability, safety and economics, while having an
acceptable impact on the environment and society. The initia choice of the process is not expected to
be optimal. However it is usually possible to improve the process by a different choice of process
flows and conditions, e.g., by parameter optimisation.

Open and fugitive emissions of chemicals escape to the atmosphere posing a large risk to public,
employee and environmental health. While open emissions are usualy controlled or remediated,
fugitive emissions are still escaping from processes and are becoming a relatively large source of
environmental impacts. Emissions from equipment leaks occur in the form of gases or liquids that
escape to the atmosphere through many types of connection points (e.g. flanges, fittings, etc.) or
through the moving parts of valves, pumps, compressors, pressure relief devices and certain types of
process equipment. Valves are usualy the single largest source of fugitive emissions (Goyal 1999).
Point sources of fugitive emissions, such as a single piece of equipment are usualy small. However,
cumulative emissions throughout a plant can be very large, based on the large number of equipment
pieces that can leak such as valves, pumps, flanges, compressors, etc.

In order to determine fugitive emissions losses, the U.S. EPA conducted emission test programs in
petroleum refineries, which resulted in a set of average emission factors for process equipment (U.S.
EPA, 1980, 1996). These average factors are listed in AP-42 (1995) and total losses are estimated by
combining the losses for al the pieces of equipment based on their average factors. The Protocol for
Equipment Leak Emission Estimates (U. S. EPA, 1995) describes the testing procedures, such as
screening or bagging (or both) involved in the development of emission factors. According to Sydney
(1989) there are severa variables that can affect the emission factors such as the fluid phase, pressure,
temperature, unit type, equipment size, type of vave, flange, compressor, pump, etc. The use of
emission factor methods is based on the assumption that the leak frequency and the equipment
emission rates are similar to those of the average process in EPA’s studies (Schaich, 1991). Therefore,
these methods are most valid for estimating emissions from a process or population of equipment and
for alarge period of time.

For the environmental analysis, environmental assessment tools can be used such as the waste
reduction agorithm (WAR) (Young et al., 2000). WAR has made available a method to smply
evaluate processes with a library of approximately 1600 chemicals. The WAR algorithm applies a
balance equation around a process to evaluate the potential environmenta impacts. It considers eight
impact categories including human toxicity potentia by ingestion (HTPI), human toxicity potentia by
exposure (HTPE) through derma and inhalation routes, aquatic toxicity potential (ATP), terrestrial
toxicity potential (TTP), photo-oxidation chemical (smog) potentia (POCP), acidification potential
(AP), ozone depletion potential (ODP), and globa warming potential (GWP). Potential environmental
impact scores are avalable in the WAR database for chemicals based on a representative
measurement. For a more complete description of the WAR agorithm see Cabezas et al. (1999) and
Young et al. (2000).

Screen Alternatives. Finaly after detailed assessment and feasibility analysis, data is acquired and
results are analysed to arrive to the best design option or the best few options.



Conclusions

The described strategy aims to link traditional process design with environmenta assessment, i.e. to
evauate the potential environmental impacts of a chemical process into the environment, while
recognising the diversity of value judgements regarding the environmenta issues. This strategy
focuses attention on those chemical components and process streams that have the largest contribution
to the potentia environmental impacts and the largest economic potential. It takes into account the
process's fugitive emissions and their potential environmental impacts when designing a chemica
process, which is normally ignored in traditional process design.

With this strategy one can easily incorporate environmental assessment in chemical process design,
while devising aternative designs with superior environmental and economic performance. Since the
environmental protection is an important aspect of the performance of chemica processes, this
strategy has many advantages for the modern industry. It makes possible for a company to anticipate
compliance with environmental regulations, representing a new procedure and tool capable of
exploring different alternative designs and of identifying design features leading to potentia
environmental problems and process costs. It can be applied to the design of new processes or to the
retrofit existing ones. It alows that process design aternatives with superior environmental and
economic performance are identified, which is often associated with materials and energy efficiency.
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Abstract
This paper addresses the main phases and challenges met during the global simulation and optimization
of a continuous process for the production of aniline. A fixed process topology is considered, based on the
process implemented by Quimigal S.A., using the liquid phase hydrogenation of nitrobenzene. Simulation and
optimization studies addressed separately the reaction and purification stages of the process. This illustrates the
application of a systematic mathematical approach for the simulation and optimization of a chemical process,
using detailed mechanistic models of the units.

1 Introduction

The process under analysis, for production of aniline by liquid phase hydrogenation of nitrobenzene, can be divided
in two major stages: reaction and purification. The reaction occurs in slurry (three phase) reactors, while the
purification stage consists in a complex configuration of liquid-liquid separators and distillation columns.

Different steps were involved in the construction of process models for the individual units, and for simula-
tion/optimization studies. These included the selection and validation of property and parameter estimation meth-
ods, the choice of the degree of model complexity for the individual units, and the numerical methods for their
solution. In both cases, the overall strategy was to start with the simplest approaches available, adding complexity
only when required for reliability and accuracy of the results (Levenspiel, 2002).

2 Knowing the process

Industrial data was extensively gathered during the initial phase of this work, by collecting samples and monitoring
flows of all process streams. A data reconciliation methodology was defined, to produce a consistent stationary
view of the process. These values were later used as an essential simulation target and as a base case for process
benchmarking. The reconciliation of process values was accomplished in 2 steps, due to the diversity of the data
available, and the uncertainties present. In the first part, the overall mass flowrates were reconciliated using a
simple least squares formulation, assuming the remaining variables fixed. This was done in GAMS language, by
solving a quadratic problem of the form:

nc
121? ; €hp.iDi + €Br

ne ns

s.t. EE:QULjf% ZZEEZTUkaﬁ;—-EBpJ ieC
j=1 k=1 (1)

ne

ns
j{:l% ZZZE:fﬁ;—-GBT
j=1 k=1

FLJ E;}% Eglahu7 j € 1275



In these equationgs; are the flowrates to be determinegare errors associated with each balance equatiorpand

are the weights attributed to each of these error terms. This formulation was applied to simultaneously to all process
units, with additional linear mass balance equations to express the relations between the different process streams.
This step was followed by simultaneous reconciliation of flowrates and composition, using a NLP formulation, and
the previous determined values of the flowrates as reference values. The mathematical formulation of this second
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: 2 2
mnin E ’YF,upF,u + E E pw,i,uryw,i,u
o -
u 1 u

FC wC,
ne ns
C pC _ C pC
s.t. E w; By = E w; e Fy
j=1 k=1

D FT =) FE @
j=1 k=1

c _
wi;u = Wi,u + Vw,i,u

F2, < F$ <FS,

C C C
< wi,u S w;

yu,l = 7,U,U

The GAMS language was used to solve this nonlinear problem involving around 900 variables and 740 equations.
During this preliminary phase, laboratory experiments were also performed, to characterize the complexity of the
equilibria phenomena that need to be considered in the separation phase, including the identification of azeotropic
mixtures and the selection and validation of equilibria estimation methods (UNIFAC for V/L, and NRTL for L/L
equilibria).

w

3 Simulation of the reaction phase

Distinct physical and chemical processes are known to occur inside the multiphase reactors used, including gas-
liquid and liquid-solid mass transfer, diffusion, adsorption and reaction on the catalyst, as well as desorption of
the products. These reactions are often described through elaborate schemes, with several intermediate chemical
species and alternative pathways to the desired products and byproducts. This can lead to systems with com-
plex behavior, where certain sets of variables exert a major influence on overall system performance. Given the
complexity of the phenomena that occur in the three-phase hydrogenation reactors, and the limited amount of
measurements available relative to these systems, two detailed mechanistic models were built for them, combined
published kinetic information (Turek et al., 1986) with mass transfer models for this type of systems (Chaudhari
and Ramachandran, 1980). The following main hypothesis were used in the development of these models:

o Perfectly agitated liquid phase, with catalyst particles and hydrogen bubbles uniformly dispersed in the
reacting mixture.

o Efficient removal of the reaction heat, allowing a constant liquid phase temperature.

e Constant volume of the reactant mixture.

e Monodisperse catalyst particles (of identical diameter), with active centers uniformly distributed and equally

accessible throughout the solid volume.

Both models were implemented computationally, using Mahematica language (Wolfram, 1999). The first
model neglects intraparticle diffusion processes. A simplified description of the catalyst particles is used, in a
pseudo-homogeneous approach, by considering the temperature and concentrations constant in the solid phase.



In the second case the concentration and temperature profiles within the particles are explicitly considered. The
balance to a reactant (e.g. hydrogen) in the solid phase is expressed by an equation of the form
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with similar partial balances considered for the remaining components and conservation of energy in the solid
phase, originating a system of algebraic-differential equations.

The system of differential equations of the second model was solved using finite differences, with centered for-
mulas, resulting in a classical scheme with convergence of second order relatively to the spacement in the space
grid. Since both models were written in tMathematica language, a generic discretization package was written,
using the symbolic manipulation capabilities of this system, including the automatic treatment of the boundary
conditions and their singularities.

The algebraic equations corresponding to both models were also solvedNathematica system. While the
simplest model (composed of 11 variables and 11 algebraic equations) was easily solved, the more complex one
exhibited serious convergence problems during the solution of the discretized model, using variations of Newton’s
method. This was due to the presence of very steep intraparticular profiles that caused convergence to solutions
of the system without physical meaning (e.g., hegative concentrations), if the initial guess was not extremely (i.e.,
pathologically) close to the final solution, even after proper scaling of the variables and equations.

Since traditional methods for the solution of systems of algebraic equations did not seem to provide efficient
solutions for this problem, an alternative strategy was implemented by directly imposing known solution bounds
during the determination of the search direction of a Newton-type method. This is done through the solution of a
linear program of the form
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instead of solving the linear systedf(z,)Ax, = —f(x,). The former approach reduces to the solution of

the linear system when an entirely feasible solution can be found. Bullard and Biegler (1991) propose a similar
approach for the simulation of constrained systems. However, in their approach infeasible intermediate iterates can
be generated, if associated with a sufficient decrease of the merit function used. In the case of (4), by guaranteeing
that the iterate candidates always remain inside the feasible region, and considering explicitly its bounds, model
failures can be avoided, and less effort can be required during the step search phase.

Simulation results exhibit good agreement between the models, and also with available industrial data. Figure 1
illustrates some of the results obtained. As can be concluded by observation of Figure 1(a), reaction takes place
in a thin layer close to the particle surface, with a thickness of only 5-7% of the particle radius, resulting in
an effectiveness factor aD—*. This is mainly due to the depletion of the reagent MNB in the catalyst particles,
caused by an extremely high mass transfer resistance for this component in the solid-liquid film. As a consequence,
the concentration and temperature profiles within the pellets are nearly flat, after the external layer, and this allows
good agreement between the results obtained with both models (Neves et al., 2002).

4 Reaction phase — optimization studies

Optimization of the reactors units can be easily performed by a sensitivity analysis of the simulation results rel-
atively to each of the main process variables and design parameters available. In the present configuration, the
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Figure 1: (a) intra-particular profile of MNB concentration, (b) dependence of the residual concentration of ni-
trobenzene with particle diameter. ).

most important optimization variable was found to be the diameter of the catalyst particles. Figure 1(b) illustrates
the variation in the concentration of mono-nitrobenzene in the liquid phase with the catalyst dimensions. As can
be observed, a decrease in the particle diameter fromm230 5 um allows an 80% reduction in the residual
concentration of MNB in the effluent, without further process changes.

The models were also used to diagnose the variability of the operating data from identical industrial reactors,
where significant differences in the catalyst consumption and effluent concentration of MNB were observed in
practice (Neves et al., 2002). The analysis of the catalyst present in the reactors with better performance showed
that a significant portion of the catalyst in use (approximately 2/3) had diameters of the ordey.of,JaRhough

the fresh catalyst that is added to the reactors has a mean diameteof.20hese values are in agreement

with Turek et al. (1986), where significant degradation of the catalyst was reported to occur in a similar (although
laboratory) reactor, due to the effects of intense agitation. The analysis of the specific area (BET) and porous
volume indicated that the catalyst in use had suffered a significant decrease in its values relative to the fresh
catalyst, without noticeable loss of activity. These results, together with the model predictions, suggest that since
the reaction occurs essentially at the solid surface, the mechanical degradation of the catalyst actually improves
the reactor performance. Simultaneously, in the industrial reactors where higher catalyst consumptions and higher
MNB effluent concentrations were observed, the analysis showed a closer proximity between the properties of
the used and fresh catalysts. Their lower performance is therefore attributed mostly to problems in the separation
system, unable to adequately retain the catalyst particles of smaller dimensions that lead to greater conversion.

5 Simulation of the purification phase

The models developed for the various separation units are composed of systems of algebraic nonlinear equa-
tions, describing the various equilibrium stages that are assumed to occur in this phase of the process. These are
large-scale and highly nonlinear, mostly due to the nonideal models necessary to accurately describe the relations
between the compositions of the various phases, and physical variables such as pressure and temperature. Instead
of relying on purely algebraic handling, these models are usually more conveniently solved by a combination of
shortcut and self initialized equation-tearing methods (Seader and Henley, 1998).

Various equation-tearing methods can be used with these models — plate-to-plate, matricial or relaxation. The
(matricial) rigorous iterative method of Wang-Henke was chosen to refine the results provided by the short-cut
method of Fenske-Underwood-Gilliand-Kirkbridge. In fact, the simplicity of implementation of the Wang-Henke
method, together with good convergence properties, was decisive to exclude the relaxation (time consuming) and
plate-to-plate (difficult to converge). With the examples tested, the Wang-Henke method produced accurate esti-
mates of the separation profiles (validated by the split fractions obtained in the reconciliation data exercise) and,
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Figure 3: (a) Liquid (...) and apor ( __ ) phase flowrates and (b) temperature profile for one the distillation
columns.

in 4 units, was able to converge reasonably fast to the solution. On other hand, for 2 of the 6 distillation columns
involved in this process, the Wang-Henke method presented severe difficulties in handling wide boiling mixtures
— the method failed, because negative values of compositions and flowrates were calculated at a given iteration,
causing the “blow up” of terms in some of the equations. This was a characteristic reported by Friday and Smith
(1964), who suggested some empirical modifications to the base algorithm, whenever in presence of such cases.

To improve the convergence properties of Wang-Henke method’s for wide boiling mixtiyfés ¢ 50°C), a

strategy based on dumping of the loop variables was implemented. This consisted, essentially, in constraining the
admissible changes on the valuedfandT’;, between two consecutive iterations, by a factor of, e.g., 10% of the

full correction. It has also been observed that, in some cases, perturbing the initial valuedsef tuefficients

in the first iteration was also beneficial. The solutions obtained by the Wang-Henke method were compared with
the solution of these same models in the commercial simulator ASPEN PLUS 11.1. Figures 2 and 3 show these
profiles for one of the distillation columns simulated.

The next step consisted in trying to converge, simultaneously, all of the separation units, taking in consideration the
connections between them. The presence of several recycle streams increased the difficulty of this task. According
to Barton (2000), a sequential-modular approach corresponds usually to the best choice. For convergence of
outer loops (resulted from the tearing of recycle streams), Newton, Quasi-Newton, successive substitutions and
Weigstein methods, among others, are valid options. The solution adopted is represented schematically in Figure 4.
It implements a successive substitutions strategy, performed in 2 steps. During the first step, the rigorous models
concerning each unit are solved by the most appropriated scheme. This requires the estimation of all of the
unknown input streams for each unit, in the first iteration. For distillation columns the Wang-Henke method is
used, as discussed, and for the liquid-liquid separators, a classic Newton method is able to converge easily.
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Figure 4: Schematic representation of the strategy for overall simulation of the purification stage.

The second step involves the solution of a linear system of equations corresponding to the partial mass balances
around each unit, using the split fractions obtained in the first step. The solution of these equations provides updated
values for the flowrates and compositions of the input streams, and a new loop takes place until the differences
between the updated values of two consecutive iterations satisfy a pre-specified tolerance. The great advantage of
this strategy consists in the easy implementation and the reduced calculation effort at each iteration. Although no
guarantees can be made in general, the speed of convergence observed with the present case was very reasonable:
only 5-6 iterations were needed to achieve the solution of this flowsheet.

When the flowsheet was solved, the results obtained for the composition and flowrates of every stream were
compared with the results obtained during the data reconciliation exercise. If some deviations were observed, the
specifications of the problem were adjusted, and the flowsheet solved again until the simulation of the purification
stage matched the industrial reality.

6 Purification phase — optimization studies

Once the performance of the purification phase was considered to be conveniently reproduced in the simulation,
the next step consisted in finding optimization opportunities. Distillation columns are in general responsible by
the consumption of a great share of the energy resources available on most processes. For equipment with fixed
physical specifications it is possible to adapt operational features like the localization of the feed plate and reflux
ratio in order to order to decrease the consumption of utilities for a given separation. For this purpose, the strategy
shown in Figure 5 was developed.

The sequential-modular strategy is not suitable to solve optimization problems, and therefore an equation-oriented
(EO) strategy had to be employed for this purpose. However, trying to solve direcBfid (Mass-Equilibrium-
Summation-Heat) for a distillation column is not a easy task. The simultaneous solution of this highly nonlinear
set of equations requires extremely good initial values, bounds and scaling factors, to avoid the failure of exist-
ing implementations of optimization algorithms (e.g., SQP or GRG). For this reason, extreme care was taken in
building a suitable initialization phase.

Another key to the successful application of an optimization algorithm to this problem is the introduction of ad-
ditional slack variables in the MESH equations. These usually allow a faster solution start, avoiding problems
caused by infeasibilities during the early solution stages. After the first feasible point is determined, maintaining
bounds for the maximum magnitude of these variables corresponds to the definition of a trust region, that con-
straints the maximum amount of deviation from a feasible physical configuration at any point during the iteration.
This procedure is also generally beneficial to converge rate of these problems, given its highly nonlinear nature.

With the capability of solving a column model with fixedT', N F and RR, by a EO strategy, the next step was

to define how to optimize the consumption of utilities in a given column. This corresponds to the minimization
of reflux ratio RR), subject to additional operational constraints, such as the the degree of separation of some
components, internal flows, etc. Typical results for the process considered indicate that savings of 10 000 euro/year
per column are possible, through the solution of these optimization problems.
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Figure 5: Schematic representation of the strategy for individual optimization of the distillation columns.

The GAMS environment was used to solve these optimization problems. Among the solversGet&RT3
presented usually the best performance, converging fast and without difficulties to the optimal sMUNQ@S ex-

hibited some difficulties if few iterations of the Wang-Henke method were performed in the pre-processing phase.
This means that the initial point required by this solver needs to be better than the one req@@N®YT3. The
weakest performance belongedSWOPT, a SQP implementation, where much slower convergence was always
observed. However, the systematic interpretation of these results is still currently being considered.

7 Future work

An additional aspect of optimization of these separation systems, not considered in the present work, is the optimal
design problem. Here, more degrees of freedom are available, and different strategies to deal with discrete variables
(such as the total number of equilibrium stages, or the location of the feed streams) are available. This problem has
been addressed over the past decade as a mixed integer nonlinear programming (MINLP) problem (Barttfeld et al.,
2003). But tools for solving MINLPs are not widespread, especially in connection with detailed simulation models.
The other alternative, presently available, is the introduction of a differentiable distribution function (DDF) (Lang
and Biegler, 2002). In this formulation, all streams around a column, except the top and bottom products, are
directed to all of the column trays using the DDF. However, due to their nature, these functions can introduce
numerical ill-condition in the problem to be solved. Developments of this technique are needed to allow a wider
applicability of optimization to solution problems of this type.
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MICRO-SCALE ANALYSIS OF CRYSTAL DISSOLUTION AND PRECIPITATION
IN POROUS MEDIA

I. S. POP AND C. J. VAN DUIJN

ABSTRACT. A micro—scale model for precipitation and dissolution processes in porous media is discussed.
Weak solutions are shown to exist in case of general domains. Next we consider the case of thin strips,
where we look for dissolution and precipitation fronts. These are located at a free boundary, which is
continuous and monotone. Letting the ratio between the thickness and the length of the strip go to 0 we
end up with the upscaled transport—reaction model proposed in [9]. This paper summarizes the results
obtained in [3].

1. INTRODUCTION

Mathematical models for reactive flow in porous media are of great importance for understanding soil
chemistry processes. In general such models are coupled systems of partial and ordinary differential
equations, involving different kinds of nonlinearities describing reaction, adsorption, precipitation or
dissolution rates.

A significant amount of mathematical literature is devoted to the macroscopic (core—scale) models. In
this sense we mention [1], [2], [4], [5], or [10] for questions concerning existence and uniqueness of a
solution and of travelling waves.

Upscaled models can be derived form microscopic ones by homogenization techniques. An extended
overview in this sense can be found in [6]. To make the upscaling procedure mathematically rigorous,
not only the upscaled model, but also the microscopic one has to be analyzed. In this respect, rigorous
homogenization results are obtained in [7] (for linear reaction rates and isotherms, see also [11]) and
extended to certain types of nonlinearities in [8].

In this paper we consider the microscopic (pore) scale situation, which is strongly related to the upscaled
model introduced in [9]. Two ions are dissolved into a fluid occupying the void space of a porous medium.
The ions can precipitate in form of a crystalline solid, which is attached to surface of the porous matrix
(the grains). The reversed process is also possible. Here we make a simplifying assumption: the flow
geometry, as well as the fluid density and viscosity are not affected by the chemical processes.

Modelling aspects are detailed in [3]. Here we restrict ourselves in studying the resulting dimensionless
problem. Let © C R? (d > 1) be a bounded, simply connected domain in R? (the pore space). Its
boundary 0f2 is assumed Lipschitz and consisting of three disjoint parts: an internal (grain) boundary
I'c and an external boundary where Dirichlet (I'p) or Neumann (I'y) conditions are prescribed. Both
I'¢ and I'p U 'y have positive measure. Further, 77 denotes the outer normal to 9Q and T" > 0 is a
maximal value of time. With X7 := (0,7) x X, the model under consideration reads:

Ion transport (in the pore space):

Ou+V - (qu—DVu) = 0, in QT
—Dv-Vu = endw, on I’g,
(1.1) u = up, on 'L
vV-Vu = 0, on 'L,
u = uy, in Q, fort =0,

Department of Mathematics and Computing Science, Eindhoven University of Technology, P.O. Box 513, 5600 MB
Eindhoven, The Netherlands (email: {C.J.v.Duijn, I.Pop}@tue.nl).
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FiGURE 1. Flow domain with grains.

Precipitation/dissolution (on the grains):

ov = k(r(u,c)—w), onlF,
(1.2) w € H(v), on '},
v o= vy, on I'g, for t =0.

Here ¢ denotes the fluid velocity, which is obtained by solving a Stokes system in the pore space. We
assume no flow at the grain surface. ¢ stands for the electric charge inside the fluid, which, assuming both
solutes have the same diffusion coefficient D, is a conserved quantity. It can be seen as the solution of a
convection—diffusion problem (like (1.171)), with no—flow conditions on grains. By u and v we denote the
cation concentration (relative to the water volume), respectively the precipitate concentration (relative
to the grain surface). The third unknown w is introduced for describing a multi-valued nature of the
dissolution rate in (1.22), where H stands for the Heaviside graph.

The model studied in [3] is completed by equations for the flow and the charge. Here we restrict ourselves
to the description of the chemical processes, which is the challenging part of the model. Specifically, we
investigate (1.1)—(1.2), a parabolic advection—diffusion problem that is coupled to an ordinary differential
equation on a lower dimensional manifold (the grain surface). Moreover, the dissolution rate in (1.22)
is multi-valued. Following [9], the anion concentration is eliminated from the model, since it can be
obtained straightforwardly if the cation concentration and the total charge are known.

For the precipitation rate r(u,¢) in (1.2) we assume:

(A)) (i) 7 : R? — [0,00), r > 0 and locally Lipschitz in R?;
(i) r(u,c) =0 for all u <0;

(iii) for each ¢ € R there exists a unique u. = u.(c) > 0, with u.(c) = 0 for ¢ < 0 and u, is
strictly increasing for ¢ > 0, such that

r(u, c) = 0, for  u < uy,
*7 | strictly increasing for u > u. with r(co,¢) = oo;

(iv) for each u > 0, r(u,c) strictly decreases with respect to ¢ whenever r > 0.

With [z]; denoting the positive cut of z, a typical example is

(13) r(uy ) = K (ful )" ([m“‘ L)

n

for some K > 0, where m and n are natural numbers (the valences of the two ions). Thus u.(c) = [i]rj
(see also Figure 2).

Boundary and initial data are assumed essentially bounded and non-negative. Boundary data are traces
of H'functions.
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FIGURE 2. Typical examples for u, (left) and r (right).

The parameter € in (1.12) expresses the ratio of two length scales: the characteristic pore scale length
and the problem related scale. When upscaling to a macroscopic model one takes € \, 0. However, this
limit case is considered here only for thin strips.

The results given below are obtained in two cases. For general general domains we prove existence of a
weak solution. If the flow domain is a two—dimensional strip, a dissolution front occurs after a waiting
time, and its location is a free boundary. Letting € - the ratio between the width and the length of the
strip - go to 0, we end up with the upscaled model proposed in [9] (see also [2]), for which we also obtain
uniqueness.

2. GENERAL DOMAINS

Below we use function spaces and notions that are commonly encountered in books for functional analysis
and partial differential equations (see, e. g., [12]). The main difficulty in the analysis is due to the multi-
valued function describing the precipitation and dissolution. With

U:={u€eup+ LQ(O,T;H&FD(Q))/&U € L%0,T; H1(2))},
V:={ve H (0,T;L*(g))},
we look for weak solutions of (1.1)—(1.2), which are defined as below.

Definition 2.1. Find (u,v,w) € U x V x L>(T'%) such that (u(0),v(0)) = (ur,vr), and

(2'1) (8tu7 L)O)QT + D(VU, VQP)QT - ((j’u, V@)QT = _En(atva @)ng
(2.2) (atU,G)Fg - k(r(u,c) - wvo)Fga
w € H(v),

hold for all (¢,6) € L?(0,T; H&ID(Q)) x L2(T'L).
By definition w is between 0 and 1. Here v and v stand for concentrations, so we expect similar properties.

Lemma 2.1. If (u,v,w) is a weak solution of (1.1)-(1.2), then u, v and w are positive and bounded.
Specifically, two constants M, and M, depending on the boundary and initial data can be found such that

(2.3) 0<u<M,, and 0<v< M,,
almost everywhere. Here M, may also depend on T and on the precipitation rate r.

Remark 2.1. Assuming I'p of 0—measure we obtain the following mass balance

/Qu(t,x)dx +5n/rc v(t, s)ds = /Qu[(:c)d:c +en /FG vr(s)ds.
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2.1. Existence of a solution. Above we have stated the definition of a weak solution, and seen that
such solutions are essentially bounded. Nevertheless, it is not clear yet that such solutions exist. To
prove this we use a regularization argument.

With § > 0 being an arbitrary small parameter, we consider the following regularization of the Heaviside
graph:

0, if v <0,
(2.4) Hs(v):=< wv/d, ifve/(0,0),
1, if v > 4.

Now a regular perturbation of (2.1)—(2.2) can be defined.
Definition 2.2. Find (u,v) € U x V such that (u(0),v(0)) = (ur,vr) and the following hold
(2.5) (Oru, p)ar + D(Vu, Ve)ar — (qu, Ve)or = —en(d, )z,

(2.6) (atvvo)Fg = k(r(u,c) — H(;(”U),Q)FE,
for all (¢,0) € L*(0,T; Hyp,, (Q)) x L*(TE).

To show existence and uniqueness of a solution for the problem above we proceed by iteration. To this
end we consider the following closed and convex sets

Kv = {u€up+ LQ(O,T;H&FD(Q))/ 0<u<M,a. e in QT},

(2.7) ]
Ky = {veV/0<v<M,a.e inT'L}.

Given an u € Ky, equation (2.6) has a Lipschitz—continuous right hand side. For the initial data vy, it
has a unique solution v € V, which is also bounded by 0 and M,. Analogous, given v € Ky, equation
(2.5) with initial data u; has a unique solution u € U, which is uniformly bounded by 0 and M,,.

Thus for any v € Ky we have constructed a unique element 7u € Ky. In other words, we have defined
an operator

(28) T ]CU — ICU.

A solution of (2.5)—(2.6) is a fixed point of 7. If a fixed point exists and it also belongs to H *(0,T; H~1(2)),
it also solves (2.5)—(2.6).

In proving existence of such a fixed point we make use of a—priori estimates that are uniform w. r. t. 4.
Once these are obtained we can show that, for small times, 7 is a contraction in Ky with the usual norm
associated to L%(0, T’ H&AFD (©)). This upper time limit does not depend on the data, so the fixed point
can be extended for all t € (0,T). This is summarized by

Theorem 2.2. For any 0 > 0, the regularized problem stated in Definition 2.2 has a solution (us,vs),
which is a fized point of T. A constant C > 0 not depending on § exists s. t. for any t € (0,T] we have

o us®I3 + Vsl + 19sl 2 rrsay < C
2.9

lvs()lIEg + 10wsllEr < C/e.

Remark 2.2. In a porous medium, I'; denotes the total surface of the porous skeleton, while meas(§2) the
total void volume. Since we have interpreted € as the ratio between the pore scale and the characteristic
length, a natural assumption is that

emeas(Tg) = meas(Q).

When upscaling to a macroscopic model, the total internal surface goes to infinity as € \, 0. The
assumption above allows us to control this growth and is usually made in homogenization of periodic
structures (see, e. g., [6]). In this setting, the a—priori estimates are independent not only on § but also
on ¢, offering us a useful result for the homogenization procedure.
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F1GURE 3. Particular domain: strip.

Theorem 2.2 provides a sequence {(us, vs, ws :== Hs(vs))}s>0 C U x Vx L>®(T'E), and the corresponding
a-priori estimates. Then, by compactness arguments, a solution of the original problem exists.

Theorem 2.3. The problem stated in Definition 2.1 has a solution (u,v,w). This solution is uniformly
bounded (as shown in (2.3)) and satisfies the a—priori estimates in (2.9).

3. FLOW IN A STRIP

In this section we investigate the formation of dissolution and precipitation fronts. These fronts are
located at a free boundary separating regions of I' ¢ where no crystals are present (v = 0) from those
including some precipitate (v > 0). To this aim we restrict ourselves to a particular geometry in two
spatial dimensions, Q = (0, L) x (0, H/2), with L > 0 possibly much larger than H > 0. We assume
symmetry at z = 0, and take I'¢ = (0,L) x {H/2}, I'p = {{0} x (0,H/2)} U {{L} x (0,H/2)}, and
'y = (0, L) x {0} (see also Figure 3). In agreement with previous interpretations we have ¢ = H/L.

In this case the flow has a parabolic profile and can be written explicitly,
(3.1) q(z,z) = (q(2),0), with q(z) :CQ(H2/47'Z2)7

where Cy is a given maximal velocity. Following [9] and [2], we assume here a homogeneous total charge
c. This situation occurs if the charge is constant (¢o € R) both initially and at I'p, and this value is
compatible with the boundary data for the solute. Then the charge remains constant everywhere. By
(A,), a unique pair of positive reals (u.,u*) exists such that

(3.2) 7(Us,c0) =0 and r(u®,co) = 1.
Since now the charge is assumed constant, in this section we skip the second argument of r.

We first look for dissolution fronts on I'. In doing so we assume that initially crystals are present
everywhere on ', and the system is in equilibrium. This situation is perturbed by injecting fluid
containing less solute, but having the same charge cg. Specifically we take

(3.3) vi(xz) =ve >0, ur(x,z) =up(t,L,z) =u”*, up(t,0,z) = ux,
for all z € (0,L), z € (0,H/2), and t > 0.
Under the assumptions above some additional properties of u and v can be given.

Lemma 3.1. If initial and boundary data are taken as mentioned in (3.3), then both u and v are
decreasing in time and increasing in the r—direction. Moreover, v € C(Ig), while u(t) s continuous up
to the boundary of Q0 for almost every t > 0.

As follows from above, a dissolution front moves in the flow direction and separates regions on I' ¢ where
all the crystals have been dissolved from those where precipitate is still present. Denoting by s(t) the
position of the dissolution front at time ¢ > 0, we expect that v(t,z) = 0 for all z < s(t), while v(¢,x) > 0
for all > s(t). This situation is displayed intuitively in Figure 4, showing the evolution in time for both
the precipitate and the free boundary.

The free boundary is defined rigorously in
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FIGURE 4. Evolution of the precipitate v and of the free boundary s.

Definition 3.1. For any ¢ we define s : [0,7] — [0, L] as
(3.4) s(t) =sup{z € [0,L] /[y v(t,y)dy=0}.

Remark 3.1. Due to the regularity of v, s is well defined for all ¢. Moreover, because v is positive, we get
v(t,x) =0 for a. e. x < s(t).

Viewing s as the position of the dissolution front is justified by the following theorem, which also shows
that a waiting time ¢* has to pass until the dissolution front starts to move.

Theorem 3.2. For the free boundary s we have
(1) v(t,x) =0, wt,z) =r(u(t,z, H/2),co) for a. e. x < s(t);
(i) wo(t,x) >0, w(t,x) =1 for a. e. x> s(t);
(#91) s(t) =0 for all t < t*, where
Vo .
k(r(w) —r(u.))’

(iv) s is continuous and strictly increasing for t > t*.

=

Remark 3.2. Theorem 3.2 holds for the initial and boundary data given in (3.3). The results can be
extended to more general data, assuming these are compatible and satisfy

(3.5) vr(z) >0, ur(z,z) <u*, ux <up(t,0,2) <up(t,L,z) <u*,

for all x € (0,L), z € (0, H/2), and ¢t > 0. In such situations precipitation cannot occur even locally, or
for a short time, since v is decreasing in time. In particular, assuming that v; is “hat—shaped”, while
u fulfills (3.3), then two dissolution fronts will appear and move toward each other until crystals are
completely dissolved. The support of v is shrinking in time.

Remark 3.3. Similar results can be obtained for precipitation fronts. Specifically, if the initial and
boundary data are such that

”UI(ZL') = 07 U](.T,Z) = uD(t7LaZ) =u= U*; uD(t7072) =u> U*a

then a precipitation front will move in the flow direction. It separates regions on I' ¢ where precipitate is
present from those not containing crystals.

3.1. Thin strips. Now we turn our attention to thin strips. The small parameter ¢ = H/L plays an
essential role, thus below all quantities depending on it are indexed. We maintain the setting above, and
study the limit as € N\, 0.

As before, the flow takes place only in the x—direction, while the velocity ¢¢ is z—dependent,

(3.6) ¢ (z,2) = (¢°(2),0), with ¢°(2) =C, <1 — %) ,
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Cation at t=3

FIGURE 5. Cation at t = 3.

where Cy = 3Q and Q = 1 fOE ¢°(z)dz is the averaged velocity.

All the properties shown in Sections 2 and 3 are valid here too. For any € > 0, the problem posed
in Definition 2.1 (for the domain ., and the corresponding boundaries) has a solution (u®,v®, w®) €
U xV x LOO(FSE). Further, u* and v® are uniformly bounded, continuous, decreasing in time and
increasing in x, and we can define a continuous and strictly increasing free boundary s. as in (3.4). With

(3.7) Us(t,x) := %/OE u®(t,x, &) dE, VE(t,x) == v (¢, z), We(t,x) == w(t, x),

and letting e \, 0, we expect that (U¢, V¢, W*¢) approaches the solution of the one-dimensional upscaled
model proposed in [9] and [2]:

o (U+nV)+Q9,U = DO%U,
(3.8) oV = k(r{U)-W),
W e H(V),
in QT = (0,T) x (0, L), satisfying
59) { U(t,0) = us, U(t,L)=u*, t € (0,77,
U,z) =u*, V(0,z)=uv(x), xz € (0,L).

As before, e—independent a—priori estimates for (U¢, V¢, W¢) and compactness arguments give
Theorem 3.3. The upscaled model has a unique solution (U, V, W), which is the limit of {(U*,V,W¢)}c50.

Remark 3.4. The uniqueness result is a consequence of Gronwall’s lemma. This also implies weak con-
vergence for the entire sequence {(U¢, Ve, W¢)}.50, and not only for a subsequence.

Remark 3.5. For each ¢ > 0 a free boundary s exists in the sense of Definition 3.1. Similarly, a free
boundary S can be defined for the upscaled model, featuring the same properties as s¢. As ¢ \, 0 we
also obtain that s¢(t) — S(t) for all ¢.

4. NUMERICAL EXAMPLE

Here we present some numerical results obtained for the particular geometry considered in Section 3. We
take Q. = (0,1) x (0,¢), where e = 1/50. The initial and external boundary conditions are as given as
in (3.3), with vg = 1.0, ux = 0.1 and v* = 1.0. We also take D = k = 1.0, while ¢ is given in (3.6) with
@ = 9.0. The precipitation rate r (in 1.3) is obtained for m = n =1, K = 10/9 and ¢o = 0.1, namely
(s c0) = K[ul  [u— coly.

Computations are done by finite differences with explicit time stepping. The results are obtained for a
constant time step 7 = 0.0001 and a uniform grid of mesh—size h = 0.05.

Figure 5 shows the cation at t = 3. Here the strip width is enlarged 5 times, and the picture is flipped
over the symmetry axis. Flow takes place from left to right.
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FIGURE 6. Evolution of the free boundary.

Numerical results for the precipitate at different moments are presented in the left picture of Figure 6.
The horizontal axis stands for the grain boundary, and the dissolution front moves from left to right.
The picture on the right displays the evolution of the free boundary. Time is represented on the vertical
axis, while the free boundary location can be measured on the horizontal axis. In our computation, up
to £* = 1.1424 crystal is present everywhere on the grain. According to Theorem 3.2, the waiting time
here should be t* = 1/0.9 = 1.11.... After a short time the dissolution front moves to the right with
a constant velocity, which we estimate numerically to a = 4.202. This is a reasonable approximation of
the travelling wave velocity determined in Proposition 1.2 of [2], a = Q (u“*;“* = 4.263.... Refining

*—ux )+vo
both the time step and the spatial mesh gives a better approximations for the waiting time and the front

speed, therefore we conclude that numerical results are in good agreement with the theoretical ones.
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SEQUENTIAL METHOD FOR KINETIC MODELSDISCRIMINATION

Paula Portugal, Hélio Jorge, Rosa M. Quinta-Ferreira
Chemical Engineering Department, Pdlo |1, 3030-290 Coimbra, PORTUGAL

On the Chemicd Reaction Engineering area is mandatory to access to vauable kinetic
expressions for modelling and simulation of reactional systems. Bos et al.! published a survey
indicating the need for improved methods to determine reaction kinetics. Based on the work presented
by Donati et al. *** that uses a sequential method for kinetic models discrimination, it was made an
effort to develop a toolkit for optimal kinetic model development. The economic advantage of the
present work arises from the fact that it would result in time saving and effectiveness in
experimentation, parameters estimation, and searching for the optimum model from the usually wide
range of theoretical models proposed for areactiona system.

Since kinetic models are usually non-linear in parameters, we used commercial routines for
non-linear regression: NL2SOL and GREG. Statistical criteria were also used to reject models that fit
worse experimental results such as F Hypothesis Test and Model Probability Estimation, with Bayes
Theorem. Commonly just one model must be selected (the optimum one) so, discrimination process is
iterative and after a statistical discrimination step it continues by designing a new set of experiments
providing data for a new discrimination cycle. The used Maximum Divergence Criteria™™™®, maximises
the mean difference between different model previsions.

The developed computational code (in MATHLAB) was tested for two examples referred by
Donati et al.!, where a simulator model was pre-defined and algorithm robustness was measured by
the convergence for the defined model, which happened for all studied cases. In despite of
encouraging results, additiona efforts have to be made in order to meet our goal, namely seek for best
non-linear fit codes, and other examples (even more complex) for testing the developed code.

Keywords: Kinetic models, sequential methods, Parameters estimation, Design of
Experiments, Models Discrimination

1. Seguential Methods

Engineering problems involve frequently
process models construction. Since models are
built by consdering the contribution of
different  competitive  physique-chemical
phenomena, they can be presented
theoretically with many different
configurations. The problem is, then, centred
in finding out the best modd. It must be, by
one hand, the one which fits closdy the
experimental results and, by the other hand, the
one which contains physicaly acceptable
values for parameters. Such as pre-exponential
factor and activation energy in kinetical
models. The quality of the accepted (chosen)
kinetic model influences greatly the globa
process model behaviour, that's why Bos et
al.™ published a survey indicating the need for
improved methods to determine reaction

kinetics in industrial processes. For this

purpose, dtatistical discrimination methods

have dready been used, namely, by Donati et
al. *3% These are usualy called Sequential

Methods, because they involve three basic

sequential steps:

1. Parameters Estimation for all theoretical
candidate models, using optimisation
methods for available experimental data
fit. Usually the Method of Least Squares.

2. Models quality comparative statistical
analysis (with experimenta data), using
statistical known parameters and tests.
This step ends by worse models rgjection.

3. Design of experiments, providing better
experimental data for a new caculation
cycle.

After step 3, starts a new calculation cycle in

step 1 (see figure 1). The iterations continue



till the convergence point, where just one
model is left. At the beginning of the
discrimination process, if there is available any
information that one group of models can be
better than the others, there is no need of
considering the last ones as candidates for the
sequential methods discrimination.

Parameters
estimation

Design of
experiments

Statistical
Analysis

Models Discrimination

Figure 1 — Sequential Methods for Models
Discrimination

1.1 Parameters Estimation

The common method for parameters
edimation from experimental data fit is the
Method of Least Squares (MLYS):

nﬂgn s=aly-9) @
- i=1
with 9, =f(X;,b)

f can be ether linear or non-linear. In kinetic
models, f is usualy non-linear, because it often
appears, for ingtance, exponentia terms in
denominator (ex. Hougen- Watson Models).
The MLS gives good results when the error of
the measured vaue(y), E, has a norma
distribution - E~ N(0,s2). To assure this
error behaviour, the experimental conditions
must be well controlled and al the used
apparatus should be in perfect calibrated
conditions.

" e Gowda® made a previous
comparative study of two different routines for
non-linear fit: GREG and NL2SOL. They
concluded that these routines are generally not
appropriated for the required purpose. GREG
does not produce well fitted results, and his
poorly results became even worse as the
number of estimated parameters rise (>4). On
the other side, despite better fitting results of

i=1,2, ..n

NL2SOL, it demands the consderation of
parameters constraints in the optimisation
problem formulation, such as, fixed partia
orders for kinetic Hougen-Watson modéels.
According to the authors this probably is due
to the huge different size between the partia
orders and the other parameters, such as, pre-
exponentid factors and activation energy.
Since we used MATHLAB to construct our
computational code, the results for data fit here
presented were obtained with the non-linear
regresson toolbox from MATHLAB, which
uses the GaussNewton Method for
optimisation of the ML S objective Function.

1.2 Satistical Analysis

The datistical parameters considered for
comparison between candidate models were
the Mean Relative Error, E;:

E,(%)==8 E, 100=1§ u‘ 100 (@
i=1 n x| Y

that should be as less as possible, and the

Determination Index®, R?:

é (9. - 7)2 é (yi - 9i )2
RZ — i:]l :1_ i=1 - (3)
é. (yi - 7)2 é. yi2

1 i=
where 0<R’<1, and it is the ratio between the
model  previsons variability and the
experimental data variability. Models that have
R? closer to 1 have better chances of being
considered good models. It is a general rule
that an acceptable model should not have a R
value less than 0,99. It is important remember
that if amodd is statistically considered as not
good, we should simply accept it as not good,
or eventualy change it and test it again. For
the contrary, if it is statistically considered as a
good model, that does not prove that it is
correct, just that there is no statistical evidence,
with the available data, that allow us to reject
it.
Two datistical criteria were used to
discriminate models:
- F Hypothesis Test (F Test of Variances)™®
- Modd Probability Estimation (Bayes
Theorem)!>®

121F test



F test considers two basic hypothesis:

- HO: The mode fits well the experimental
results

- HL: The modd does not fit well the
experimenta results.

If Pr(FEF,)=a the modd is accepted,

where F is a datistica function with

F. .. distribution, calculated by:

é Yiz 3 é (Yi - ?’i)2
F:i: np (4)
Sg é (yi"yi)z
n- np

and a is the dgnificant level, usudly it
assumes the values 0,10, 0,05 or 0,01. F, isthe

cumulative distribution  F 22004 1 -, - In

other words: if B Fy, Hy is accepted, if not, H;
is accepted. Donati and Ferraris™** used F
test, but they refer that some researchers use y
coefficients in order to get better confidence in
the method for linear models discrimination. In

this case the acceptance rule is F 3y F,.
Donati and Ferraris suggest, also, an empirical
vaue of 4 for the y parameter, but for non-
linear fit the F test is less adjustable, so the
same authors suggest a value of 10 for these
cases.

1.2.2 Models Praobability

The mode probability is the probability of
being the best mode among the other
candidates. This parameter is actualised from
one caculation cycle to another. It can be seen
as a model behaviour indicator as actuaised
experimental data is provided from iteration to
iteration. If there is no information that can
make us think that one modd is better than the
others, the initial model probability is the same
for al of them. Anyway it should be true that:

m
[o]

8 Pr(m.o)=1 ©)
i=1

Where m is the number of candidate models.

In the n" iteration the actualised i model

probability is calculated by using the Bayes

Theorem with normalised values to respect the

congraint in eg. 5:

Pr(M,0)L(My,)
& o, L

i=1

Pr(m,,)= (6)

Yo)

where L(M,]y, ) is the likelihood function,
which is.

_ 1 é 1 o5 21\;' (7)
L(Mily")_.\/2p(sé+slz)expg 2(Sé +Si2)( n yi.n) H

1.2 Design of Experiments

If the design of experiments is made to
improve confidence in parameters estimation
we say tha the sequentidl method s
constructed for optimal estimation. In the
present work the godl is to find out a method
for optima model discrimination, that is why
we do not use a traditional design of
experiments, but rather the Maximum
Divergence Criteria®®. This method selects
the best experimental conditions that maximise
the difference between the mean previsions of
al candidate models. The new set of

experimental conditions, X, , is then given
ml m

by:meax 8 4 (5-9,f (8)
£n i=1 j=i+1

In the present work a direct search method was
used to find out the optimum. A discrete grid
of feasible operating conditions is predefined
and the maximum objective function
(Divergence) value is ingpected by comparison
of a set of two values at a time. Note that we
could aso made a continuous search by using
any optimisation method for multivariable
functions in a predefined range of
experimental feasible values.

2. Developed Codefor Models
Discrimination

As it was dready said the programming
language used was MATHLAB. Figure 2 is a
program flowsheet that shows the needed data,
and the information flow. The program was
tested without experimental real data. In fact
we choose one of the candidate models to
smulate experimental results for al the cycles.
These data was generated by random
extraction from a norma populaion with a




pre-defined variance (caled experimental it greatly depends on the initia estimated
variance). values, s0 the program was improved to
After some attempts to achieve convergence in overcome this problem by changing the initial

the data fit optimisation process, we noted that

estimated value.

DATA

Data for experimental simulation:
b , smulator model, sg

Datafor statistical analysis:
Pr(Mi’o), a ey

Experimental initial data:
Xj, Y, X boundaries

Models:

models, b o’ parameters boundaries

v v

Feasible X values
definition

v

Feasibleg0 values definition

v

— |

PARAMETERS ESTIMATION

Change initial estimated values

NON-LINEAR REGRESSION ?
| convergence not achieved
_> MODELS
STATISTICAL ANALYSIS DISCRIMINATION

v

N

Y
END

_» DESIGN OF A NEW EXPERIMENT

k=k+1 ¢

EXPERIMENT SIMULATION

Figure 2 — Program Flowsheet for Models Discrimination.

3. Reallts

Two examples refered by Donai and
Ferraris”” were used to test the program, but
just one is here presented.

The four models candidates to describe the
kinetic behaviour of a reaction A ® B are:

é @ b,
Mode 1: y© = expé bix expg—lziu
é X, &)

Model 2: Y@ = !
1+ b21 X e(p(' bzz/xz)
1
Mode 3: Y& =
[1+ 2b31 X e>(p(' bsz/xz )]}/2
Mode 4: Yy = !

[1+ 3b 41 Xl @(p(' b42/x2 )]%



Where y is the concentration of A, x; the
reaction time, X, the temperature and b;; e b;»
the model i parameters.
Nine tests were made to study different effects
in the calculated results.

Test 1 - Mode 2 was chosen as smulator with
bll =50 and b12 = 3500 and Sg = 0,05 The X1
and x, boundaries are:
0Ex,£150  450£ x,£600

The F test significance level (a) was 0,05 and
the first starting four experiences were planed
by Donati and Ferraris® with a two level
factoria design of experiments (table 1):

Table 1 — Simulated experimenta data
for thefirst test 1 iteration.

Bxp X1 X2 Y
1 25,0 575,0 0,4854
2 25,0 475,0 0,7231
3 125,0 575,0 0,1059
4 125,0 475,0 0,3523

The initial model probabilities were assumed
to be the same for al of them, which means

Pr(M, ,) = Um=0.25.
Just 5 iterations were sufficient to conclude

about best model 2 behaviour, as can be seen
in table 2 and figure 3. In fact they can be

ordered from the best to the worse as 2 3®
1® 4. TheF test may be awrong indicator for
models discrimination because F, decreases as
interations progress, which means that F test
becomes less demanding in modd selection.
For instance, it is easier to reach 10xF, in the
5" iteration than in the £ one, which means
that as iterations progress al the models can
easer satisfy the F test and be considered good
models.

Tests 2 and 3- As in test 1, modd 2 was
chosen as simulator with the same initia
conditions. The objective was to study the
influence of the program random error effect
generator in the model discrimination. The
obtained results indicated that this factor has a
neglected effect in the models selection. Just as
in test 1 the model 2 continues to be the best
one and model 3 is the closest one. It was aso
observed that there was no significant effect in
the new planed experiments, which leads us to
conclude that the Maximum Divergence
Criteria is an applicable method for design of
experiments.

Tests 4, 5and 6 - Model 3 was chosen as
simulator for the same conditions of tests 1 to
3. The results presented in the figures 4 to 6
and tables 3 to 5, are apparently discordant

Table 2 — Results from the Test 1 (model 2 as simulator)

M odel M odel
1 2 3 4 1 2 3 4
R E
1 0983 099 0982 0,958 239 1122 315 46,2
c 2 0975 099 0977 0,944 30,6 97 333 50,7
g 3 0,000 0997 0983 0,957 100,0 83 298 46,7
T 4 0980 0998 0989 0,973 29,7 76 256 41,1
5 0978 0,997 0983 0,960 339 108 34,7 54,2
F Fo 10 Ry
1 59,3 2734 531 229 19,00 190,0
s 2 588  416.0 635 255 9,55 955
g 3 00 7006 1160 449 6,94 69,4
g 4 1224 10071 2335 891 5,78 57,8
5 1308 9547 1785 719 5,14 514

Underlined values —fitted valueswhere F 3 10 F
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Figure 3 —Modéls probabilities for test 1.

between the statistical parameters (R? E (%)
Ftesty and the model probabilities, and adso
discordant about the best model dection. In
test 4, model 4 was elected the best one (figure
4), in test 5 it was chosen mode 2 (figure 5)
and in test 6 the model 3 (figure 6). This may
be due to smilar 2, 3 and 4 models behaviour
when modd 3 is sdected to be the smulator.

Table 3 — Results from the 3 last iterations for test 4

(model 3 as simulator).

| Model1l Model2 Model3 Mode 4
R2
8 0 0,9821 0,9950 0,9947
9 0 0,9832 0,9952 0,9952
10 0 0,9847 0,9953 0,9953
E(%)
100 15,319 7,397 7,311
9 100 14,274 7,218 6,886
10 100 13,225 8,072 6,782
— F
8 0 246,9 893,6 845,0
9 0 291,8 1026,1 1028,8
10 0 354,7 1159,5 1154,3

Table 4 — Results from the 3 last iterations for test 5

(model 3 as simulator).

i Model 1 Model2 Model3 Modd 4
RZ
8 0 0,9920 0,9934 0,9890
9 0 0,9927 0,9930 0,9879
10 0 0,9935 0,9937 0,9888
E(%)
100 12,872 13,806 17,047
9 100 12,260 13,365 17,059
10 100 11,408 12,550 16,365
F
8 0 557,6 677,9 406,1
9 0 679,1 708,1 409,5
10 0 841,4 862,5 483,6

Table 5 — Results from the 3 last iterations for test 6

(model 3 as simulator).
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Alternated elections between these 3 models
probably occur because the smulated error
variance is, in this case (Smilar modes
behaviour), large enough that, with some
smulated experiments the model 2 dightly
“benefits’, and with other simulated
experiments the model 4 or 3 dightly
“benefits’. The previous presented explanation
is even more plausble as we observe the
results from tests 7, 8 and 9, where
experimental error variance was reduced.

Tests 7, 8and 9—As for tests 4 to 6, modd 3
was chosen as simulator, but the variance of
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Figure 6 — Models probabilities for test 9

i Model1 Model2 Model3 Mode 4
R2
8 0 0,9882 0,9976 0,9956
9 0 0,9881 0,9977 0,9959
10 0 0,9887 0,9977 0,9962
E(%)
8 100 14,018 6,340 7,165
9 100 13,174 6,236 6,674
10 100 12,285 6,138 6,272
F
8 0 375,5 1863,9 1007,7
9 0 416,1 2127,0 1220,2
10 0 482,3 2374,5 1448,0

simulated experimental errors was changed to
half of his value (sg = 0,025). Figure 7 and the
correspondent table 6 are the results of test 9,
here presented as an example from the set 7 to
9 tests, because for the others tests we obtained
similar results. The model 3 is in this case
clearly better than the others comparatively to
the smulated cases (test 4 to 6) where the
variance was 0,05. It proves that the
experimental error variance has a determinant
effect in models salection.

Table 6 — Results from the 3 last iterations for test 9

(mode 3 as simulator).

i Model 1 Model2 Model3 Modd 4
R2
6 0 0,9816 0,9968 0,9961
7 0 0,9832 0,9972 0,9964
8 0 0,9851 0,9975 0,9967
E(%)
6 100 17,831 7,574 6,618
7 100 16,380 6,861 6,237
8 100 14,972 6,310 5,912
F
6 0 186,72 1083,96 884,35
7 0 234,22 1420,14  1107,92
8 0 297,07 1802,13  1344,44




4.Conclusons

The present work shows that it is possible to
construct a sequential method for kinetic
models discrimination. The starting steps for
the toolkit development are here presented.
Improvements pass for search for better non-
linear fit routines. It is important to keep in
mind that may be necessary a set of different
fit routines to satisfy particular kinetic models
demands. As it was said before, a Satisticaly
acceptable model does not make it good for
process smulation, because it can contain
physicaly impossible parameters values. So it
is important to introduce other discriminating
criteria, or optimisation problem congtraints, or
even more sophisticated design of experiments
in order to assure that the chosen mode is
realy the right acceptable one to incorporate
the global reactor modd. Asfina statement it
should be remembered that it was here proven
that experimental errors (even simulated) play
an important role in the discrimination process.
So it isimportant, as expected, that researchers
provide validated experimenta data for
optima model discrimination.

Nomenclatur e

X Array of independent variables of &
- mode!

Likelihood function of model i after the
L(Mi|y“) y,observation

Residual value of a model estimated y
vaue
2 Variance

nw o

Mean relative error

F function = Variancesratio

(_lﬂm

Jacobian matrix with dimension (n-1)" n,

=model differential equations in order

to parametersin the n-1 experiments

Jn Jacobian matrix with dimension I n, in
the point X |

m Number of candidate models to be
discriminated

MLS Least Squares Method

n Number of experiments (system

observations)
Ny Number of model parameters

Pr(|\/|i) Model i probability
R2 Determination |ndex
y Dependent variable of a model
Greek
a Significant level of F statistical test
b Array of model parameters
s EZ Experimental error variance
Si2 Variance of the mean estimated values
by model i
S e2 Residual values variance
s.2 Model fit variance
m
y Safety  coefficient  for  non-linear

application of F test
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Abstract

The simulation of the fate of contaminants in the subsurface is a demanding task concerning
modelling and accurate numerical solution of the problems. Reliability and correctness of
modelling results are particularly important when site remediation strategies like natural
attenuation are being considered.

We present a flexible, modular simulation tool that owns a robust and efficient math-
ematical, algorithmic kernel. The model components include the Richards equation for
(un-)saturated fluid flow and the advection-diffusion-reaction-equations for transport of mul-
tiple species with (nonlinear) terms for sorption processes, biodegradation, and chemical reac-
tion kinetics. Advanced numerical methods like a hybrid mixed finite element discretization
guarantee local conservation of mass and asymptotic exact approximations of the solution.
The systems of equations are treated with Newton’s method, and coupled systems are solved
implicitely fully coupled. We present an example of a biodegradation problem that encour-
ages the use of complex transport models.

1 Introduction

Numerical models have proven their value along with laboratory and field experiments in pro-
cessing the available site information and predicting the the migration and extent of contaminant
plumes in many case studies. They support the decision for or against a certain remediation
strategy not only by attempting a prognosis, but also by identifying and accessing the interplay
of the complex processes and evaluating hypothetical worst case scenarios or action variants.
Therefore it is essential to have a comprehensive flexible software tool at hand that relies on a
robust and accurate mathematical kernel.

The processes that determine the fate of organic contaminants are highly complex, nonlinear and
case specific. Thus we need a modular conceptual basis to facilitate the combination of existing
and incorporation of new model components. It is beyond the scope of this paper to depict every
process that has been integrated in the mathematical model with its defining equations in detail.
We will restrict ourselves to a presentation of the general framework, designate the advanced
mathematical solution strategies and exemplify a problem of interest for site remediation studies.
The tool named RICHY [1] currently solves the sets of partial differential equations corresponding
to the following problem classes:



e Heat conduction,
e variably saturated flow,

e solute transport with (non-)linear equilibrium and (multiple site) kinetic sorption including
carrier facilitation (see [2] for an application),

e biodegradation with multiplicative Monod kinetics, inhibition and dynamic biomass,
e reactive multicomponent transport with geochemical kinetics,

e surfactant transport interacting with fluid dynamics, and

e multiphase flow.

These modules may be combined to perform complex simulations and take the interactions of
different processes into consideration. This means not only the unidirectional combination of
e.g. water flow and solute transport, where the first problem may be solved without knowing
the solution of the second one (but not vice versa). In particular, this includes the simultaneous
solution of mutually coupled problems in every time step without splitting the equation sys-
tems. An example is coupled fluid flow and surfactant transport, where the effects on hydraulic
conductivity (clogging) and surface tension alter the fluid flow (see [3]).

RICHY is implemented in the language C, making use of OpenGL and Tcl/TK, and is thus
portable to Unix, Linux and Windows-platforms.

2 Some Model Equations

2.1 Fluid Flow

The description of the flow regime in the saturated and the vadose zone is based on the conser-
vation of mass and Darcy’s law. We establish the well known Richards equation for fluid flow
in its pressure formulation:

0O(p)+V-7=0 7= —Skr(p)v(p+pQZ) (1)

Here ¢ denotes the time, © the volumetric water content, p is the pressure head, ¢ the Darcy
flux, k is the intrinsic permeability of the porous medium, p the viscosity, &k, is the relative
hydraulic conductivity, p the density of the fluid, g the acceleration due to gravity and z is the
elevation head.

This model is augmented with two coefficient functions: As indicated, the water content © is a
function of the pressure head p — the water retention curve — and the relative hydraulic conduc-
tivity k. depends as well on p in a nonlinear form. For these functional relationships different
parametrizations exist in the literature, and can be incorporated in the model. We added e.g.
the van Genuchten - Mualem model, but also a form-free ansatz based on spline interpolation
that may be the result of an inverse modelling procedure for parameter identification, for which
also efficient tools are integrated into RICHY [4]. The coupled simulation of flow and carrier
facilitated transport in the vadose zone has been demonstrated in [2].



2.2 Mass Transport — General Formulation

A general model for the transport of solutes dissolved in groundwater that includes advection,
dispersion, diffusion and general reaction terms reads [5]:

R
8,(0c;) = V - (DVe; — ge;) = Z vi;R;. (2)

¢; denotes the solute concentration of species X; (i € {1,...,Ng}, with the total number of
species Ng), D is the diffusion-dispersion tensor (which we assume to be the same for all mobile
species), Ng is the total number of reactions, v;; a stoichiometric coefficient, and R; the reaction
rate expression of the j-th general reaction. These reaction terms may account for sorption
phenomena, decay or other biogeochemical reactions and potentially depend on other parameters
or concentrations: R; = Rj(c1,...,cng, 2, t,T,...).

For immobile species the transport terms are omitted and we have

pbat C, Z Vz] (3)

We do not consider effects of the species concentrations on the water flow here. The reac-
tion terms may couple the transport equations of the species to each other and require their
simultaneous solution.

2.3 Biodegradation

Biodegradation models exist on different levels of complexity. Besides decay of Oth order with
R; = —const we may think of elementary, irreversible first-order decay, resulting in linear

. kn— .
reaction networks X7 LN X5 g X, with terms
R; = Rj(ci—1,¢i) = ki—1ci—1 — ki (4)

in the equation for substance X;. A more complex but also widely used model to quantify
biodegradation rates in the subsurface is the so-called multiplicative Monod-model [6], derived
from enzyme kinetics. As biodegradation of organic contaminants is often a redox process,
catalyzed by microorganisms, we have to take into account the availability and dynamics of
electron acceptors (such as oxygen or nitrate) and electron donors (an organic substrate), and
the biomass, which we assume to be immobile.

A general Monod model combines growth terms of the type % + > (K; denotes the Monod half
saturation concentration) with inhibition terms h(c;). Widdowson et al. [7] proposed e.g.

K1,

i (5)

h(ei) = K+
i ]

with an inhibition concentration K7,. Thus a substance may exclusively enhance or inhibit the
degradation reaction, or even both in different concentration ranges. Thus the reaction rate
for such a general microbial reaction r € {1,..., Ng} with arbitrary electron donors, acceptors,
inhibitors, and biomass (concentration cx, ) reads



R, = Ry(c1,...,cNg,Cx,) (6)

= —pmavcx, ] (ﬁ) | | L

iel.Cc{1,...,.Ns} jeJ.C{1,..,.Ns}

The index set I, contains the indices of the species that are transformed (and thus necessary)
in that reaction, the set J, consists of the species, that inhibit the degradation reaction. pmax,
is the maximum specific growth rate of the biomass in this reaction.
These biodegradation processes occur in both vadose and saturated zone, thus a coupling to
the Richards equation is important. Current work deals with the application of this model to
quantify the potential of contaminated sites for natural attenuation.

2.4 Geochemical Reaction Kinetics

To account for additional geochemical reactions, we incorporate the following general rate ex-
pression of the rth elementary kinetic reaction, which can be formulated with the help of rate
constants for forward and backward reaction ky and k; under the common assumption of mass
action kinetics [5]:

Ro= [k ] - ] |- (7)
i J

Index i refers to the reactants (educts), Index j to the product species, which have stoichiometric
coefficients v, < 0. The implemented prototype of such a general multicomponent model may
account for an arbitrary number of such kinetic reactions with several species, which may also
take part at the same time in arbitrary biogeochemical degradation reactions of the type (6).
Formulation (7) results in the law of mass action (describing thermodynamic equilibrium) for
R = 0. Note that rate constants may vary by several orders of magnitude.

3 Discretization Techniques and Numerical Methods

Advanced mathematical strategies are essential to guarantuee the efficiency and accuray of the
calculations. Many conventional methods lead to qualitatively wrong results in demanding
situations because of numerical diffusion, splitting errors or other deficiencies of the algorithms.
Bause and Knabner [8], e.g., show in the case of a biodegradation problem, that improvements in
accuracy by a higher order finite element scheme and adaptive time stepping lead to substantially
different predictions of the contaminant migration.

The presented model equations are discretized by the fully implicit backward Euler method in
time and by finite elements in space. To cope with stiff reaction problems, a two-step method in
time, namely the backward differential formula of second order (BDF-2) has been incorporated.
The Richards equation and the coupled water/surfactant problem are discretized by hybrid
mixed finite element methods to ensure the local conservation of mass and the continuity of
the flux (also for heterogeneous media), a crucial quality for subsequent transport processes
depending on that fluid low. The standard conforming finite element method with mass lumping



is used for the discretization of the other transport modules in 1D, in 2D/3D we also rely on
the hybrid mixed FEM.

A damped version of Newton’s Method (Armijo’s rule) solves the local and the global nonlinear
equations that result from discretizing the partial differential equations. When two-step methods
in time are used, the convergence of the Newton iteration is improved by an initial iterate that
is generated by interpolation of previous time steps. The global system of linear equations is
solved by a direct sparse matrix solver in 1D, and the multigrid method in 2D/3D. Based on
the equivalence of nonconforming and mixed finite elements the multigrid method is in this
case built from grid transfer operators, derived for the Crouzeix-Raviart element [9]. The linear
problem on the base level of the grid hierarchy is solved by LU decomposition. On fine grid
levels smoothers like Gauss-Seidel or ILU are used.

Coupled multicomponent problems (2) and (3) are solved implicitely fully coupled. This means
that in the Jacobian, all terms OR;/0c; are calculated. This strategy is more memory demanding
than a decoupling of the entries in the Jacobian by neglecting off-diagonal terms, since on each
element we store a (Ng X Ng)-submatrix. On the other hand, convergence of the Newton
iteration is improved by a better approximation of the problem (compare [10]).

RicHY supports adaptive strategies to control the sizes of time steps and grid spacing. These
techniques ensure the efficient utilization of the available resources of a computer, that otherwise
would be restrictive for complex multicomponent scenarios. Using error indicators for the finite
element discretization of the model equations, the grid representing the underlying domain of
the simulation may automatically be refined and coarsened, corresponding to the form of the
solution. Additional indicators for the error of the time discretization allow for an adaptive time
stepsize control. This automative adaption of discretization parameters is currently implemented
for (un-)saturated fluid flow [11] and will be applied also to the remaining model components.

4 Numerical Example

The study of the fate of organic contaminants in the subsurface involves a variety of complex
processes. In practice the models of these complex processes are often facilitated. This may
be appropriate in some specific situations, but is often not justified and mostly due to limited
availability of field data. However we want to show an example of reactive solute transport,
where the facilitations entail misleading interpretations of the contaminant migration. Thus we
want to emphasize the importance of complex models for complex processes.

Firstly we present a comparison of the popular approach of first-order decay to Monod kinetics to
account for biodegradation processes. The degradation of benzene depends on the availability of
electron acceptors like oxygen and the activity of biomass. Only under certain quasi-stationary
conditions and in specific concentration ranges, first-order models are an appropriate simplifi-
cation of the Monod model [12]. Unfortunately the first order model is widely misapplied and
accepted also where it may not be tolerable [12, 13]. The parameters we use are based on ex-
perimental findings of Schirmer et al. (see [14] for the reaction parameters). They are derived
from the same laboratory experiments, and give reasonable results for those batch experiments.
We simulate the continuous infiltration of benzene in the centre of the top of our domain (see
Fig. 1). Oxygen is available in the whole domain (10 m x 10 m) at the beginning of the
simulation and also infiltrates from the top. To make the effect of active versus inactive biomass
more evident, we allowed biomass not to grow until a depth of 1 m. At ¢ = 50 d all three models
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Figure 1: Simulation of benzene degradation with Monod kinetics (top), first order decay with
k = 0.06 1/d (middle), and first order decay with £ = 0.006 1/d (bottom) for ¢ = 10 d (left
column), ¢t = 20 d (middle column) and ¢ = 50 d (right column). Note the different ranges.

have reached a quasi-stationary state, which would be the basis for a long-term prediction.

We see (left column in Fig. 1) that in the beginning at ¢ = 10 d, the three models differ not
substantially. Monod model and k£ = 0.006 1/d give very similar results. However, as biomass
activity will now increase, also the degradation will increase — a fact that is reflected only by
the Monod model. We see that at ¢ = 50 d the benzene propagation is limited to the upper
layers, before in a sharp reactive zone at 1 m the main part of the degradation occurs. In the
stationary state (right column) about 0.3 mg/1 will still infiltrate in the deepest layer. The first
order model (k = 0.006 1/d) however predicts, that the contaminant reaches the deepest layer
in high concentrations almost without substantial degradation (0.85 mg/1) in the long term. A
contrary evolution shows the first order model with £ = 0.06 1/d. This model will predict an
almost complete degradation in the deepest layer.

This example shows that the application of an inadequate model may lead to a fatal misinterpre-
tation of the risk potential of a contaminated site, because the conditions to apply a first order
model are not met here during the first, decisive period of the simulation. Here we meet highly
dynamic, non stationary conditions with biomass growth, and donor and acceptor variations.



Note that a realistic field study will even show more heterogeneities, e. g. in the material prop-
erties or boundary conditions, so that the discrepancies should even increase.

5 Conclusions and Future Work

We presented a simulation tool capable of treating complex flow and transport scenarios, in
particular applications where steady state assumptions and other simplifications are not appro-
priate. This is the case, e.g., for highly mobile components in the subsurface where variations of
the fluid flow have an immediate impact on travel times and transport behaviour of the contami-
nants, or for highly nonlinear reactive processes. The application of the model allows us to study
complex transport phenomena for a better understanding of the interactions of the underlying
processes that have been identified in experimental studies. In current site remediation studies
the tool is applied for estimating the potential of natural attenuation at several sites. While we
want to encourage the development and application of complex models, computer resources are
still a limitation for 3D case studies. Therefore reduction strategies of coupled multicomponent
systems are a vital field of current research. Future work includes the extension of the model
to geochemical equilibrium reactions and the transfer of the adaptive time step and grid size
routines to the transport problems.
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Abstract

This work considers the solution of various fundamental models for simultaneous mass transfer and
chemical reaction in heterogeneous fluid media. Several operational regimes are possible for these
systems, depending on their relative Hatta numbers. When mass transfer phenomena assume a similar
importance to chemical reaction, the predictions from these models can differ significantly. However,
this type of regime corresponds to the conditions of specific industrial interest for some heterogeneous
reactions. An accurate solution of the combined mass transfer and reaction models is therefore
important to understand the behaviour of these processes.

The nitration of liquid benzene with nitric acid, using sulphuric acid as a catalyst, is used to illustrate
the application of these models.

1. Introduction

Fluid phase heterogeneous reactions play an important role in the chemical industry. In these systems
the chemical compounds are located in distinct physical phases and mass transfer occurs between them
by diffusion and/or convection, simultaneously with chemical reaction. A modelling approach often
used reduces the complexity of these problems by identifying the rate determining steps and using the
corresponding asymptotic solutions (Doraiswamy and Sharma, 1984). However, in some cases, the
different phenomena that take place cannot be considered independently and an accurate description of
the system behaviour requires more complex mathematical models and sophisticated numerical
solution techniques.

An example of complex interaction between reaction and mass transfer occurs in the nitration of liquid
benzene with nitric acid, where sulphuric acid is used as a catalyst. The reaction takes place in the
aqueous phase and involves the mass transfer of the organic compounds into and from the reacting
phase. In the more interesting conditions for industrial operation, reaction and mass transfer assume
similar importance. This leads to complex dependence of conversion and amount of secondary
products formed on the input flow rates, ratio of organic/aqueous reactants, temperature and degree of
mixing in the reactors. In this work a continuous stirred pilot plant reactor was used to conduct
benzene nitrations under industrial operating conditions and the experimental data will be used to
validate the mathematical models developed.



2. Modelling the benzene nitration process

This liquid-liquid reaction involves an organic phase dispersed in an aqueous one. The organic
reactant, benzene (B), is transferred into the aqueous phase where it reacts with the nitronium ion,
formed from the nitric acid (N), in the presence of sulphuric acid (S) acting as catalyst (Hughes, et al.,
1950 and Olabh, et al., 1989). The product, mononitrobenzene (MNB), is then transferred to the organic
phase. The strength of the sulphuric acid used is extremely important to define the operating mode.
This may range from a purely kinetic regime, limited by the reaction rate, to a fast reaction regime,
controlled by the mass transfer between the two liquid phases (Cox and Strachan, 1972).

The modelling procedure for the process involves the simultanecous mass transfer and chemical
reaction steps which depend on important parameters related to the assumed mechanisms.

2.1 — Mass transfer with chemical reaction

Several studies involving gas-liquid and liquid-liquid reactions accompanied by chemical reactions
have been undertaken and important contributions are reported in Danckwerts (1970), Doraiswamy
and Sharma (1984) and Westertertp, et al. (1990).

To quantify the reaction regime the Hatta number (Ha) or reaction-diffusion modulus is used. For a
first or pseudo-first order reaction Ha can be calculated by (Westertertp, et al., 1990)

JkD

ky

Ha =

; (1)

where k is the first or pseudo-first order reaction rate constant, D is the diffusion coefficient of the
specie and k; is the mass transfer coefficient. When Ha is less than 0.3, the process is controlled by the
reaction rate, corresponding to the kinetic regime. If Ha is greater than 2, the reaction is very fast,
occurring predominantly near the liquid-liquid interface, and the diffusion resistances to mass transfer
dominate the global process rate. In the intermediate regime both phenomena prevail and it is not
possible to dissociate their influences. In order to characterise the regime in the reactor the Hatta
number is one of the first parameters to be calculated. Parameters like rate constant and diffusion and
mass transfer coefficients can be difficult to obtain, especially when the heterogeneous reactions are
catalysed, as is the case of the aromatic nitrations. Therefore, there is a degree of uncertainty
associated to the value of the Hatta number. The studies reported in literature consider well defined
regimes: the slow, the fast or instantaneous, and avoid the intermediate regime since it is difficult to
work in a region where mass transfer and chemical reaction compete (Zaldivar, et al., 1995 and 1996,
Roizard and Wild, 2002).

The diffusion coefficient of aromatic compounds in mixed acid can be obtained by equations 2 and 3
according to Perkins and Geankoplis (1969) and Cox and Strachan (1972) and modified latter by
Chapman and Strachan (1976),
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where x and M are the mole fraction and the molecular weight, respectively.

The mass transfer coefficient in the continuous phase can be obtained by expression 4 suggested by
Calderbank and Moo-Young (1961) and used in recent works on liquid dispersions (van-Woezik and
Westerterp, 2000):

oo

Here P is the power dissipated by the agitator

P:Popmixture n3D5 (5)

1

and P, is the power number, which for a two paddle impeller stirrer and the range of Reynolds number
used in this work has the value of 0,63 (Azbel and Cheremisinoff, 1983).

3. Experimental results

Several experiments were conducted in the pilot plant described by Quadros and Baptista (2003), and
their main operating conditions are summarised in Table 1. These experiments were conducted under
realistic industrial operating conditions, with a Hatta number ranging from 0.4 to 1.5, which
corresponds to the intermediate (competing) regime. The corresponding output concentrations were
measured. These results are presented in Figure 1.
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Figure 1 — MNB production as a function of the reaction temperature for runs 1, 3, 4, 5 and 6.

It is desired to correlate these process data, in order to assess the relative importance of the steps
involved, and to develop a mechanistic model that can be used to diagnose and optimise the
corresponding industrial process. This requires the use of kinetic data for this particular reaction
(Quadros et al., 2003), combined with a model to describe the mass transfer step.



Table 1 — Operation conditions used in the experimental runs.

Run Fg/Fy Tixed acid T Nitration Stirring speed € Qaq/Qorg % HNO;

(°C) (°C) (rpm) (wiw)
1 0,96 99,7 94,6 -121,7 398 - 895 0,132 -0,169 8,43 5,64
2 0,98 89,5 85,7 -113,2 395 - 911 0,130 - 0,169 8,38 5,61
3 1,07 102,6 96,2 - 135,3 394 - 1700 0,130-0,170 8,11 4,99
4 1,07 88,9 85,2-121,2 396 - 1342 0,142 -0,172 8,09 5,10
5 1,09 81,3 99,1-114,3 858 - 1381 0,156 - 0,171 8,09 4,97
6 1,10 84,8 81,1-1114 398 - 885 0,131 -0,175 7,86 5,29
7 1,15 90,2 86,2-117,2 394 - 870 0,132-0,180 7,75 5,06

4. Mechanistic models for mass transfer

Among the mechanistic models available to model mass transfer, the film model is probably the
simplest one. It considers a stagnant film near the interface between the two phases where the
resistance to mass transfer is concentrated, and assumes a steady state transfer process. In contrast, the
penetration models of Higbie and Danckwerts make use of non-stationary conditions to describe the
diffusional transport process, requiring more complex solution methods.

Each of these three approaches is considered to be a one parameter model, since it depends on a
fundamental parameter. They originate the same asymptotic solutions when the reaction rate is fast
and the rate determining step is the mass transfer mechanism or, at the other extreme, when mass
transfer is fast and the reaction rate is slow. However, when intermediate conditions are used and
neither mass transfer nor chemical reaction prevails, the solutions can differ significantly according to
the model used (Westerterp et al., 1990).

4.1 — The film model

The usual approach to model heterogeneous reactions uses the film model to quantify the phenomena
involved in these reactions. Despite being known as the simplest representation of a very complex
phenomenon, recent papers report that its use can lead to reasonable predictions of the corresponding
mass transfer rates (Zaldivar, et al, 1995 and 1996, Roizard and Wild, 2002 and D’Angelo, et al.,
2003). This model considers the mass transfer process as stationary and divides the fluid where the
reaction occurs into two different zones: a stagnant film of thickness & (the fundamental parameter)
and a well mixed bulk. Figure 2 represents a simplified scheme of the pilot reactor using the film
model, and Figure 3 illustrates the expected concentration profiles across the two phases and interface.
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Figure 2 — Schematic representation of the film  Figure 3— Representation of concentration profiles
model in the pilot reactor. across the two phases and interface.



As the mass transfer is assumed to proceed via a stationary process the film model leads to a set of
algebraic equations that describe the simultaneous mass transfer and reaction steps.

Considering the basic assumptions of the film model, it is possible to express the mass transfer and the
chemical reaction at stationary state:

d*c
D, "8 ke, =0 (6)
X
Boundary Conditions: Cz = Cg jiim (0) for x=0
Cp = Cg, puik for xX=0

Additionally, the film thickness o can be defined by the ratio between the diffusion and the mass
transfer coefficients. The solution of this differential equation for a pseudo-first order reaction leads to

C
Cs =— ! sinh| Ha — x /i +— 2% ginh| x /i for0<x<o (7)
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The molar flux of benzene across the interface between the organic phase and the aqueous film can be
obtained by differentiation of this equation at x = 0. Applying the same strategy for x = ¢ gives the
molar flux from the stagnant film to the bulk phase.

A mass balance to the organic phase can be written as:

CB bulk Ha
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The mass balance to the bulk of the aqueous phase results is in this case:
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4.2 — The penetration model — Higbie and Danckwerts models

The penetration models consider that the interface is covered by small stagnant fluid elements that
remain there for a specific contact time and are replaced by new fluid elements when they move into
the well-mixed bulk. In these models the mass transfer process is assumed as non stationary and, like
the film model, they require the use of one fundamental parameter. In the Higbie model this is the
specific contact time 6 of the fluid element with the interface, which is assumed to be constant for all
stagnant fluid elements. The Danckwerts model uses as main parameter the probability (s) of
replacement of a element of fluid at the interface. At any time, each element, independently of its age,
has this probability of being removed from the interface. Both models assume that the mass transfer
into or from the stagnant elements takes place by diffusion (Westerterp, et al., 1990) and the combined
reaction mass transfer model includes partial and ordinary differential equations, even for steady-state
processes.



Figure 4 presents a schematic representation of the concentration profiles in the stagnant elements as a
function of contact time with the interface.
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Figure 4 — Concentration profiles in the stagnant element as function of contact time — penetration
model.

The Higbie penetration model assumes that after a contact time 0, the liquid element at the interface
mixes with the bulk, producing a homogeneous aqueous phase concentration, before being replaced by
a new fresh element from the bulk. The following equations describe the mass balances to the organic
phase and to the interface and bulk of the aqueous phase:

Mass balance to the benzene in the organic phase:

dCsp
dt

4 =0,C5 —03C55 —JgaV (10)

Mass balance to the benzene in the liquid element at the interface, for 0 <t <0:

6CB elem 82C:B elem
— =D 5 —kC 11
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Initial Conditions: Cg. elem (0,x) = Cyp

Boundary Conditions: Cj ,,,, (£,0) = c?

CB, elem (t’ 5) = CB, bulk
Mass balance to the benzene in the bulk of the aqueous phase for the time 0 <t < 6:

dCB, bulk

dt
Initial Conditions: Cp.pu (0) = Cyp

= _kCB, bulk (12)

At the time t = 0, the liquid element mixes with the bulk, and an average concentration of aqueous
phase is attained instantly. The corresponding average concentration can be calculated by:

5
.[0 (CB, elem (‘9: x)— Cyp (9))fX-aV +Cp, puik (e)gbulk V' =CypéogV (13)



Results

Figure 5 compares the experimental values for the output MNB concentration with the corresponding
predictions, using the film model for the mass transfer with simultaneous chemical reaction. As can be
observed, good agreement is obtained between these sets of values, with estimation errors smaller than
15%. This can be considered to be very satisfactory, given the number of estimated parameter
involved (mass transfer and diffusion coefficients, rate constants, solubilities, power input and
effective interfacial area, among others). Work in progress to compare these experimental results with
the predictions of the penetration models, for the same system.
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Figure 5 — Experimental versus predicted values of MNB concentrations in the organic phase outlet.

Conclusions

The operating conditions of industrial interest for some heterogeneous reaction systems correspond
often to the intermediate regime between kinetic and mass transfer controlling steps. The simulation of
these units requires an accurate solution of process models combining mass transfer and kinetic
information. Although producing identical asymptotic solutions, the choice of the mass transfer model
for this intermediate region can have a significant influence in the prediction capabilities of the
combined models.
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ABSTRACT

In this work the formulation of the Moving Finite Elements Method (MFEM) proposed
by Sereno was expanded for two phase systems, with only one space dimension, between
fixed boundaries and with an internal moving interface, constituted by a system of parabolic
Partial Differential Equations (PDE’s) subject to linear boundary conditions in the external
and fixed boundaries of the system and assuming non linear conditions exists at the interface.
Our computer code in FORTRAN language resulting from numerical algorithm
implementation was tested in the simulations of heterogeneous solid-fluid reaction and of a
system of solid — fluid phase changes.

1. INTRODUTION

The classical example of a problem with moving boundaries, often called Stefan
problem, is the fusion of a solid or the freezing of a liquid. Problems of this type appear in
many areas, [4,5]. The numerical simulation of mathematical models of dynamic two-phase
systems described by PDE’s is a difficult problem particularly when a moving interface is
involved and/or the solution develops steep moving fronts. Many suggestions have been made
on how to overcome the difficulties to numerically solve this type of problems, [4,5,7]. A
possible approach is the MFEM, proposed by the group of K. Miller of the University of
Berkeley, [8,10]. Our aim in this work is to apply the formulation of MFEM proposed by
Sereno [12] to the simulation of dynamic two-phase systems with moving boundaries.

In the development of the numerical algorithm Sereno [12,14] uses the MFEM with the
following characteristics: i) the grid of finite elements associated to each one of the dependent
variables is independent from the others ones; ii) each dependent variable is approximated by
a Lagrange interpolating polynomial of any degree in each one of the finite elements; iii) the
position of interior nodes in each finite element are optimized as in the orthogonal collocation
method; iv) the numerical approximation of each one of the dependent variables is smoothed
in a neighborhood of the separation nodes through cubic Hermite polynomials.



The implicit time-dependent ODE system resulting from the spatial discretization of the
mathematical model is solved by the LSODI package developed at the Lawrence Livermore
National Laboratory [6].

2. METHOD DEVELOPMENT

Let us consider the general mathematical model of two-phase system [4] with only one
space dimension, between fixed boundaries and with an internal moving interface, constituted
by a system of parabolic PDE’s whose m-th equation is
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the initial condition y,, (x,O) =qm (x) The space variable satisfy
as<x< X ()if m<n and X,()<x<bif ny<m<n, )

and X (t) is interface position at the instant . The equation (1) is subject to linear boundary

condition in the external and fixed boundary. Assuming non linear condition exists at the
interface, the movement is defined by

a, _ B oo 2
a g o ©

This class of systems of PDE’s is an extension of those considered by Sereno [12, 14] where
all differential equations have the same fixed spatial domain.

The MFEM is a discretization process in two stages: first spatial discretization using
finite elements, in which we focus our attention, and secondly the time integration of the
resulting ODE’s system.
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2.1 SPATIAL DISCRETIZATION

The grid connected to the m-th PDE is obtained by partitioning the spatial domain of
¥, in N,, +1 finite elements by N,, —1 interior separation nodes,

Pm : Xm,l(t)<Xm,2(t)<"' <Xm,Nm (t)<Xm,Nm+l(t)’ 13 0. 4)

One of the nodes X, 1 (t), XN, +1 (t) is independent of time variable and the other is defined

by the interface position along time. In the j-th finite element of grid P,

Iy ={xT A :Xm)j(t)stXm)jﬂ(t)} 130, (5)



we approximate y,, by a p, ; —1 polynomia obtained by Lagrange interpolation through
Pm,; interpolation points whose relative positions are optimized as in the orthogonal
collocation method, [12,13]. Localy, in [
Yo, f (x,t) as

we define the polynomia approximation

m,j1

Y, (e 6)= Z 6, ®) (6)

where |, ’ (x) is the i-th Lagrange basis function, ,fi’j(t)=Ym,j( Ry il )and R. m; 1sthe i-th
interpolatlon point. The first and second spatial derivatives of Y, ; (x,t) are also polynomias

and can be defined using the same interpolation points.
Globally the approximation Y,, to y,, inthe spatial domain is the continuous piecewise

polynomial function defined by
ﬁm
V()= S V€t JF i () @
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where X, :{5m,1:5m,2,---,5m,]\7 } is the ordered set of al nodes, spatial nodes and interior

interpolation points, associated to P, Y,, (&, )=Y;, ; (), for i and j such that &, = R}, ;
and F , ; isthe k-th globa interpolation basisfunctlon defined as

This approximation (7), at each instant, depends on the nodal amplitudes Y,f,, ; and on the
nodal position X

m,j+1ls

Yl ] =12,,Nm and lzl’pm,] -

m]’

8
Xm,]'i'l’ ] =12,...,Nm -1 ( )

where 7; iszero if j =N, and is one otherwise. Therefore, the interface position X is not
included in list of effective dependence parameters of the method.

2.2 ODE SYSTEM

To determine the semi-discrete variables Y,f,, ;and X, .1 we must integrate, in time,

the system of ODE’s generated by minimization of the following objective function

[
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with respect to time derivatives of nodal amplitudes and nodes positions, where R, is the
PDE residua associated with the m-th equation

———f %”~’OY% E”~6Y (10)
dx 2

and S,, . are the internodal viscosity and spring penalty functions, respectively, as

Em,j m.j
defined in [10]. Observe that we introduce Miller’s penalty functions into the minimization
process to avoid the singularities associated with the method, due to parallelism and element
folding. The penalty functions depend on of positive constants supplied by the user for each
element of each grid and we use the previous work of Sereno [12] to choose these constants.

2.3 INTEGRALS CALCULATION

To get the explicit form of general equations of method is necessary, first, define the
partial derivatives of Y, in order to time variable and in order to effective parameters listed in
(8) and, secondly, calculate the integrals that results from minimization of F , in which we
focus our attention. One problem to solve is that to define the approximations of spatial
derivatives of Y,, (a continuous piecewise polynomial). For this aim we used a smoothing

process based on cubic Hermite polynomials in a neighbourhood of the separation nodes

0 d, 40
Vo, (X 01)= 3 Xy =y SYE g+ 0 =Ny oL (D)

where G; >0. By this process, all the integrals are well defined as a limit when G; - 0

replacing in integrate function of those Y,, by the smooth numerical approximation Y,,
defined as

0N v

(12)
mj+1

where H ; is the cubic Hermite polynomial satisfying
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We divide the common spatial domain in a unique fine partition constituted by all
separation nodes of the first »; grids and after repeat the process for the last ones. After that
we use numerical Radau or Lobatto quadratures to compute the integrals of the smooth
approximation.

To solve the implicit time-dependent ODE system resulting from the spatial
discretization by finite elements of the mathematical model, we use the package LSODI



developed at the Lawrence Livermore National Laboratory [6] and al routines JACOBI,
DFOPR, RADAU and INTRP from [15].

3. NUMERICAL EXAMPLES

We present two numerical examplesto demonstrate the working and performance of our
MFEM. All the numerical results presented are obtained on a Power Mac 8600 at 200 MHz.

The minimum permissible cell width is 10™°. The ODE solver tolerances, for nodal

amplitudes and for nodal position are TOL,=10"2 and TOL,=10"°, respectively. We use
Lobatto quadrature with 3 interior quadrature points to compute the integrals appearing in
each one of the equations of the ODE systems.

3.1 HETEROGENEOUS SOLID-FLUID REACTION

The computer code resulting from numerical algorithm implementation was tested
initialy in the simulation of heterogeneous solid-fluid reaction

C(S) +tJA () - reaction products. (14

In this model reactant A diffuses through the porous layer of reaction products, reacts at
interface of the solid unreacted core C, producing porous reaction products. Assuming that the
reaction is isothermal and instantaneous, which implies a zero concentration of reactant A in
the solid-reaction products interface, and a plan geometry system where phase | is constituted
by products of reaction and phase Il by solid C, the shrinking core model is described in
dimensionless form by
2
nglgli 0<x<X,(@) g30 (15)
09 g ox*

with boundary conditions

0—C=Bim(C—1), x=0, g30
Ox

(16)
C=0 x=X/(g) g0

and initia conditions C(x0)=0 0<x<X,(g) and X,(0)=X,,. The solid-reaction
products interface movement is defined by

dX oC
f=-— x=X,g) g3 0. 17
e (@) ¢ (17)
When Bi,, - « and X o — 0, (15)-(17) tends to the model described in [5] which have
analytic solution
_,_eafl) o _|g
Clx,g)=1-—L p=|ZLx, (18)
( ) erf( s) 4q



where erf ()= (2/ \/E)J':e_fzdg‘ and 1, which is related with interface position at instant

g by n=n,b x=X,(g), is the solution of 1= (\/E/g)nse(”s)z erf(n,). We compute the
analytic solution and determine the new interface position at each instant for which we obtain
numerical results using Lobatto quadrature with a multiple of 10 interior quadrature points to
estimate the integral appearing in erf function and the Newton-Raphson method to solved the
last equation, with relative errors bound by 1078,

We computed the solution for ¢ =2 and Bi,, =1000, with 4 finite elements and a

<

polynomial approximation of degree 5 in each element, on a time interval from g =0 to
G =q,, such that X, (qM) is closeness but lower than 1. Nodes are initially concentrated
near the left fixed boundary of the system. Figure 1 presents the concentration profiles in
phase | for various values of g, figure 2 shows the evolution of interface and figure 3 presents

the trgjectories of separation nodes. It was observed that the numerical solution is in
agreement with the analytical solution of the model.
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Figure 1. Concentration profilesin phase | for various values of g
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Figure 2: Evolution of interface Figure 3: Tragectories of separation nodes




3.2S0LID — FLUID PHASE CHANGES

The second problem that we studied is a model of a system of solid — fluid phase
changes, described in [4]. Initially the system is at fusion temperature having heat flow in two
phases and we change the temperature of environment adjacent to fluid and to solid phases to
values great and lower than fusion temperature, respectively. Assuming that system has plan
geometry, the phase | is constituted by fluid and phase Il is the solid phase, the equations that
defined this model are, in dimensionless form,

%—(571:%, 0<z<z/(g), aalilz =Z—ia;ZU22, z@)sz<1 (19
where interface movement is defined by
with boundary conditions
%:Bihl(Ul—Ul,,), z=0eq30
Uy=U,=0, z=2,(q) e q?0 (20)
%:_BihZ(UZ ~Uyp) z=1eq®0

and initial conditions U;(z,0)=U,(z,0)=0 and z,(0)=2" 10™. We used the following

1
values of model parameters. a; =142 1073, a, =115854" 1072, g=125433 (O C) ,

k =4.01085, Bi; = Bi, =1000 and U, =-U,, =10°C .
The numerical solution was computed using 4 finite elements in each system of finite
elements and a polynomia approximation of degree 5 in each element, on a time interval

from g =0 to g =g, such that |dzs/dq| is minimum. Nodes are initially concentrated near
the fixed boundaries of the systems.
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Figure 4. Temperature profilesin both phases for different values of g




Figure 4 presents the temperature profiles in booth phases for different values of g,
figure 5 shows the evolution of interface and figure 6 presents the traectories of separation
nodes and the interface.
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Fig 5: Evolution of interface Fig. 6: Trajectories of separation nodes and interface

5. CONCLUSIONS

In this work the formulation of the MFEM proposed by Sereno was expanded for two
phase systems, considering the interface just one more moving node. The computer code
resulting from numerical algorithm implementation was tested in the simulations of two phase
systems It was observed that the MFEM has capacity to produce quite good solutions. In
particular, the results obtained in the instantaneous reaction are in agreement with the
analytical solution of the present model.
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Abstract

This work describes the development of mechanistic models for the suspension polymerization of vinyl chlo-
ride (VCM), and their subsequent use for optimization and control of an industrial batch reactor. The methodology
used for dynamic optimization of this system uses a feasible path approach with roots on nonlinear Model Predic-
tive Control (MPC) theory. The approach is sufficiently flexible to accommodate general objectives and common
constraints. This allows a tighter integration between the control and optimization layers, while making these
problems addressable by software packages that start to be commercially available. The results obtained with
both models clearly illustrate the advantages and possible improvements in the operation of a typical discontinu-
OUS pProcesses.

1 Introduction

Pressure to reduce costs and improve competitiveness in the process industries has led to renewed interest in the
development of rigorous process models. These models are frequently based on first principles, and include a
detailed description of the various physico-chemical phenomena that take place in the system. When coupled
with modern solution and optimization algorithms they constitute valuable tools to diagnose abnormal behavior,
improve product quality, and minimize the environmental impact while simultaneously improving the productivity
and safety aspects.

Within the chemical industries, polymerization systems, often operated in discontinuous (batch) mode, present
interesting challenges in their control and online optimization, due to their non-stationary nature and highly non-
linear behavior. In many cases, these operations are still carried according to recipes based on heuristics and past
experience. The use of detailed mechanistic models, experimentally validated, to understand and systematically
optimize these processes can therefore have a clear and significant impact in their operation.

This work describes the development of mechanistic models for the suspension polymerization of vinyl chloride
(VCM), and their subsequent use for optimization and control of an industrial batch reactor. This is an heteroge-
neous system, involving four distinct phases (monomer, polymer, aqueous and gas phases). Based on the kinetic
information of Xie et al. (1991a) and Kiparissides et al. (1997), two mechanistic models were built, allowing a
comparison of the optimization results and their sensitivity to be established. The methodology used for dynamic
optimization of this system uses a feasible path (sequential) approach with roots on nonlinear Model Predictive
Control (MPC) theory; the algorithms described can be applied edfffieor on-line. This provides a well inte-

grated methodology for optimal supervision of batch polymerization processes.



2 Problem Formulation and Solution Strategy

A dynamic optimization strategy is used to solve problems formulated in a general manner as

min (¢, u(t),x(t)) = G(z(tr)) +/ ' F(z(t),u(t), t)dr

u(t)GHik to
st. &= fp(z,u,d;0)

Y = gp(x;0) 6y

U < u < Uy

T Sx <@y

N=SYSYu
wheref, andg, are usually assumed differentiable and continuous, except perhaps at a finite number of switching
points. The state variables are denotedtby R", v € R™ are the input variables ande R"- is the output

vector.GG andF' are assumed to be general twice differentiable nonlinear functions. This formulation is sufficiently
flexible to accommodate different objectives and constraints of various nature such as:

e Direct minimization of the operation time:
U(e) = {f. (2)

e Treatment of soft constraints, especially related to final product properties, that can be formulated as

V(o) = (yr — ysp)TQ(yF — Ysp)s 3)

whereys, represents the desired final valugs,is the value of a set of output variables at the end of the
run, and@ is a weighting matrix. Polymers with improved final properties can also be sought, by direct
minimization or imposing restrictions on the variance of the chain length distribution,

v = [ 106 ar

wherer is the chain length and(r) is the polymer weight fraction with chain length

e Objectives related to tracking an arbitrary trajectory, for a set of properties expressed in terms of the input,
state and output variables, similarly to the nonlinear MPC strategy (Oliveira and Biegler, 1995),

trtton
W(e) = / (0= ep) T Qy () — tp) + (1t — 117) T Qu () (1t — ) dr. ()

123
e Optimal initial conditions for the operation (e.g., amounts and composition of initiators) can be determined.

As mentioned, a feasible path approach is used to solve the dynamic optimization problem (1). The problem is first
discretized using stepwise constant input profiles. To simplify the notation, augmented écférandY are
defined, containing all values of the corresponding variables inside an operating horizon. An exact linearization of
the model around a nominal trajectory can be written as

" Y _
YV + — AU =Y + S,,AU,
U |y_p
wheresS,,, represents theynamic matrix of the model, containing the first order information for the system relative
to the input variables. This matrix can be efficiently computed from the original differential model through the use
of appropriate sensitivity equations.



When the objective has the form of (4) or (3) the algorithms described in Oliveira and Biegler (1995); Santos et
al. (1995) can be directly used. However, some modifications are required in this formulation to treat minimum-
time problems. In these problems, the final time is usually defined by a certain output variable, which reaches a
predefined valugy at the end of the operation. We assume that this happens durinthtdescretization interval,
fromt, tot,.1, inside a larger horizon defined as a maximum bountlzorGiven the previous assumptions about
the model, it is possible to write- as an implicit function of the initial condition and input variables during this
interval

tp = h(xn, uy,). (5)

The first order information fotr can then be obtained by writing a Taylor series in this interval:

otp
oz,

(@ — T + Otr

T=T 8“" u=7u

tp =tp + Uy — TUy).

The derivativesgtTF‘ ~and g’% _are, in some cases, difficult to obtain directly, by integration of the sensitiv-

ity coefficients, sincgé:(%) is usualﬁlzﬁot available in explicit form. However, since these coefficients are only needed
in the last time interval, they can also be approximated by finite differences, without a great penalty. Applying the
previous concepts, the linearizationtgf with respect to the input variables can be written as

tp =tr+ STAU.
This allows formulation of the optimization problem as the successive quadratic programming (SQP) iteration of
minJ = tp + §AU + AUTHAU

st. U < AU < Uyq
led S SmAU S Yud
Sm,,,JAU = AyF,
whereAyr = ysp — y(tr), and H represents an approximation of the Hessian of the Lagrangian of (1). This
formulation is closely similar to the one used in the nonlinear Newton control law, making the algorithms developed

for its solution applicable for minimum-time problems as well. A more complete description of the solution
strategy can be found in Silva and Oliveira (2002).

3 Suspension Polymerization of vinyl chloride

The suspension polymerization of VCM is a heterogeneous reaction involving four phases: polymer rich phase,

monomer rich phase, aqueous and gas phase. Here, the kinetic information provided by Xie et al. (1991a,b)
and Kiparissides et al. (1997) was used to build two detailed mechanistic process models, in order to compare the
optimization results and their sensitivities. These kinetic models contain all of the important elementary reactions

for two-phase polymerization, namely:

e The distribution of monomer by the different phases, as a function of the conversion and the reactor operation
conditions.

e The conversion and reaction rate.
e The pressure inside the reactor.

e The characteristics of the polymer formed

IXie’s model gives the accumulated molecular weight averages, and the molecular weight distribution. Kiparissides’s model predicts the
molecular weight averages, the short and long-chain branching, and the number of terminal double bounds.



1 200
0.8 ’ 1751
' B 150 !
0.6 < 125 ‘\ My
x = 100 L ] My o
0.4 H i
el :
0.2 o . - - - -—==
25 M
% 100 200 300 400 500 0 0.2 0.4 0.6 0.8
t (min) X
(a) (b)

Figure 1: (a) Conversion profile for isothermal operation and (b) conversion dependence of number and weight
average molecular weight(- -— Kiparissides’s modek- Xie's model).

Predictions from the two models are compared in Figure 1, using a constant polymerization temperatu@ of 55
with an equimolar mixture of initiators (A and B). As can be observed, the conversion profiles remain close until

a conversion of 7% is reached. Their divergence after this point can be attributed to the fact that in Kiparissides'’s
model the initiation efficiency after the critical conversion is not diffusionally controlled as in Xie’s model. In Xie’s
model the values of the propagation and termination rates at high conversion are lower than the corresponding rates
in Kiparissides’'s model. The profiles of the average molecular weights given by both models can also be observed
in Figure 1(b) . For similar operating conditions, the models predict polymers with slightly different properties at
the end of the operation. This can be due to the value of the kinetic parameters used in each model, especially the
chain transfer to monomer that controls the molecular weight of the polymer.

4 Optimization Results

The main decision variables available for optimization of this system are the reaction temperature and the initiator
quantities. These variables can be changed in small steps during the operation and, in the case of the initiator, the
amounts of each species to be added at the beginning of the operation can also be independently specified. By
optimizing directly the reaction temperature, our results are relevant to polymerization reactors of different sizes.
Therefore, this framework can also be helpful in identifying physical limitations of existing process equipment and

to confirm retrofit decisions.

In the following two cases, optimal profiles are calculated to originate a polymer with desired properties (polidis-
persivity and molecular weight averagesnimimum time. The desired values for these properties were taken as
identical to the polymer obtained using constant temperature profiles of Figure 1. In the last case, an optimal pro-
file is calculated to manufacture products wiithproved final properties, not possible when constant temperature
profiles are used.

Casel - Operation with optimal temperature profile

Figure 2 shows the optimal temperature profile that minimizes the batch time, subject to upper and lower bounds
of 5°C relatively to the nominal temperature. Xie's model shows smaller deviations relatively to the nominal tra-
jectory, due to higher sensitivity to this variable. Figure 3 compares the conversion and molecular weights obtained
with Xie’s model, in the optimal and base cases. As can be observed, the molecular weights are essentially identi-
cal (due to imposed constraints), although the final conversion is obtained much faster. In fact, in the suspension
polymerization of VCM and in the absence of limitations in the cooling capacity, the cycle time can be reduced
between 9% and 23%, compared with traditional isothermal operation.

The on-line implementation of the temperature profile obtained in the Kiparissides’s model is considered, using a
nonlinear MPC controller based on a formulation similar to the previous optimization strategy. This is illustrated
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Figure 3: Comparison between the optimal and base profiles using Xie's model: (a) Average molecular weights
and (b) conversion profiles(- base case; optimal).

in Figure 4 and these results are also compared to a linear controller P, representative of the current industrial
practice. For the predictive controller the tuning parameters used@ere I, Q, = 1031, with a sampling

time of 200 seconds. The discrete Pl controller used a sampling tim@@secondsk. = 20 andr; = 1500
seconds. As can be observed, the MPC controller is able of better tracking the optimal trajectory, while exhibiting
smaller amplitude changes in the input profiles.

Casell - Operation with optimal initiator concentrations

In this section, the impact of changes in the initiator concentrations during isothermal operation is studied, consid-
ering both their addition at the beginning or in a continuous manner during the entire operation.

Casella- Operation with optimal initiator amounts added at the beginning of the oper a-
tion

In this case, the initiator amounts to be added at the beginning of the operation are optimized. The results obtained
in this situation are described in Table 1. As can be observed, both models predict a similar composition of this
mixture, slightly different from the nominal case (50/50%). The optimal total amount is also slightly higher than
the nominal case; if the increased amount of initiator to be used is considered problematic in terms of residuals
trapped inside the polymer particles at the end of the operation, it can also be limited by including a corresponding
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Figure 4: (a) Normalized inlet temperature jacket profile for (b) the optimal profile of the reactor temperature (
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Table 1: Optimization of the initial quantities of the initiators.
Isothermal case Xie's model Kiparissides’s model

Total amount (mol) 18,0 194 22,1
Initiator A (%) 50 53 53
Initiator B (%) 50 47 47
Reduction in the cycle time (%) - 7,2 14,4

hard constraint in formulation (1). The cycle time reduction obtained with Kiparissides’s model is higher, because
the initiation efficiency is not considered to be diffusionally controlled for higher conversions, as in Xie's model.

Casellb - Operation with optimal initiator amounts added during the oper ation

Figure 5 shows the optimal profiles of initiator amounts to be added during the operation, in order to minimize the
operation time. This feed is considered an equimolar mixture of initiators A and B. Due to operation constraints,
bounds of @°!/min and Bnol/min were imposed.

As can be observed, the profiles are quite different. In Kiparissides’s model the initiator is mainly added in the
first stage of reaction, and then the quantity added begins to decrease. In Xie's model, the initiator should be
added almost entirely enduring the last stage of operation. The optimal amount of initiators added during the
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Figure 5: Optimal feed rate of initiators policy-(- -— Kiparissides’s modek- Xie's model).



Table 2: Total and residual amounts of the initiators used in Xie’s model.

Isothermal case Casella Casellb

Total amount added at the beginning (mol) 18,0 19,4 18,0
Total amount added during the operation (mol) - - 36,3
Total residual amount (mol) 8,0 9,8 44,1
Reduction in the cycle time (%) - 7,2 18,7

Table 3: Total and residual amounts of the initiators used in Kiparissides’s model.

Isothermal case Casella Casellb

Total amount added at the beginning (mol) 18,0 22,1 18,0
Total amount added during the operation (mol) - - 5,2
Total residual amount (mol) 7,4 10,1 11,0
Reduction in the cycle time (%) - 14,4 14,5

operation is much higher in case of Xie’s model. Xie's model predicts a total reduction of cycle time of 18,7 %. In
Kiparissides’s model, the reduction is smaller (14,5%) and similar to the one obtained in the case lla.

Comparison of casesllaand IIb

The constraints imposed on the polymer require that the final products in both of these cases have similar properties,
in terms of their polidispersivity and molecular weight averages. However the total amounts of initiators used (and
residual) can be different; these are described in Tables 2 and 3. These tables show that the residual amounts of
initiator increase with the amount of initiator added during the operation. Kiparissides’s model predicts that the
addition of initiators at the beginning or during the operation has a similar similar effect, in terms of reduction in the
operation time possible. Their addition at the beginning leads to smaller residual amounts and its implementation
can be considered more practical. In contrast with these findings, Xie’s model predicts that higher reductions in the
cycle time are possible when the initiators are added continuously during the operation, at the cost of an increased
residual amount of initiators in the final product.

Caselll - Manufacturing of innovative products

In this section we consider the application of the previous optimization strategy to manufacture innovative products,
with improved final properties. An optimal temperature profile is calculated in order to originate a polymer with
desired molecular weight distribution, e.g. with a smaller polidispersivity (narrower molecular weight distribution).
A temperature constraint 60°C < T' < 62°C is enforced. Figure 6(b) shows the optimal profile obtained. As
can be observed from Figure 6(a) the distribution obtained closely matches the desired one.

5 Conclusions

The kinetic information, available in the literature, for the suspension polymerization of vinyl chloride was in-

corporated in two detailed mechanistic models. Their prediction was used for optimization and control of an
industrial batch reactor. Optimal trajectories for this process, leading to products with specific properties in min-
imum time was considered. The capability of manufacturing innovative products with innovative products with
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Figure 6: (a) Final PVC polymer molecular weight distribution and (b) the normalized optimal profile of the
temperature polymerization pbtained;— desired).

improved properties was also considered. The results obtained with a batch suspension polymerization system
clearly illustrates the advantage and possible improvements in the operation of typical discontinuous processes.
This framework can also be helpful in identifying physical limitations of existing process equipment and to con-
firm retrofit decisions.

An important additional advantage of the application of this strategy to the study of polymerization systems,
when combined with experimental tests, is that it can provide an efficient screening methodology for alternative
model structures. In the present case, two mechanistic model structures that produce essentially similar results
for isothermal polymerization (Figure 1a) show very different sensitivities to the main operating variables such as
reaction temperature and amount of initiators used.
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Abstract

A Disjunctive Program (DP) is a mathematical program whose feasible region is the con-
vex hull of the union of convex sets. The objective function is also convex. Disjunctive Pro-
gramming models are very frequent as a modeling framework for setup costs or constraints,
and models with constraints that are better expressed as disjunctions. Some Process Sinthe-
sis Design models arising from Chemical Engineering are mixed integer convex programming
models which are particular instances of a Disjunctive Program. In this talk we will address
questions that are raised when conceptualizing a Branch-and-cut algorithm for mixed-integer
convex programming.

1 Introduction

The process synthesis network problem problem in Chemical Engineering is the problem of
simultaneously determining the optimal structure and operating parameters for a chemical
synthesis problem. This problem can be modeled as a mixed 0-1 convex program where the
continuous variables represent process parameters such as flowrates and the 0-1 variables
represent the potential existence of a process unit. The nonlinear elements come from the
intrinsic nonlinear input-output performance equations of some process units, see [3] where
this model is proposed and [8, 4] for related models.

Other models of Network Design in communication and transportation networks are
discrete by nature. The 0-1 variables represent the potential existence of multiplexers, con-
centrators, or interface message processors in computer communication networks, junctions
in pipeline networks, interchanges in highway networks, and so on. Discrete variables may
also represent the discrete quantity of physical arc units of certain characteristics between
two junctions of the network. In a simple model, described in [5], the nonlinear element
comes from modelling delay at some link (i, j) as proportional to the fraction of the rate of
messages crossing the link (7, j) to the available capacity of the same link.

We propose a cutting-plane algorithm for solving the following mathematical program
that we will refer to as a mixed zero-one convex program,

min  f(z)
st. G(z) <0 (1)
x; € {0,1},i: 1;---ap7



where f:R" — R is a closed convex function and G:R" — R™ is a vector function of
closed convex functions. The variables x;, for ¢ = 1,...,p, are zero-one constrained and the
variables z;, for i = p+1,...,n, are simply nonnegative. We will further assume that both
f and G are continuous in an open set containing the continuous relaxation, i.e., when {0, 1}
is replaced by [0, 1].

Our work extends to the nonlinear setting the lift-and-project approach of Balas, Ceria
and Cornuéjols [1, 2], which is seen as one of the most important practical contributions
to the solution of mixed zero-one linear programs by general-purpose cutting-plane based
algorithms since the work of Gomory in the sixties. As proposed by Stubbs and Mehrotra
[7], we solve the cut generation problem in its dual form. Some of the distinctive features of
our algorithm are the following: our algorithm guarantees the existence of a cut whenever
an optimal solution was not yet found; we solve the cut generation problem using standard
nonlinear programming algorithms; and, we fully extend the lifting procedure to the nonlinear
setting.

The article is structured in the following way. In Section 2 we describe the basic cutting-
plane algorithm specialized to solve Program (1). In Section 3 we explain how the cut
generation problem can be solved in a smaller-dimension space, taking advantage of the fact
that some variables are already integral. In the talk, the algorithm will be illustrated on a
small example. A practical implementation of this method is part of an ongoing research
project.

2 The basic cutting plane algorithm
Our approach requires that we use the following equivalent formulation of program (1),

min x4

s.t. f(fE) < Tpi
Glz) < 0 (2)
T; € {O,l},i: 1,...,p.

Since f is convex then this formulation is still a mixed zero-one convex program. Moreover,
the feasible region K can be replaced by P = conv (K) without loss of generality, where we
note that P is closed. As a matter of notation, we will still use the same f(x) and G(z)
eventhough we are refering to these functions as functions of the first n components of the
vector z that now lies in R" ™.

A specialization of the basic cutting-plane algorithm is presented in Figure 1. The algo-
rithm requires performing three basic steps in each iteration. In the first step, the relazation
step, we seek an optimal solution Z of the following convex program

min  Tp41

st. x€P, (3)
whose feasible region P is defined by
5 _ nt1, f(x) Sangr, a'z <bii=1,...,m,
"= {“R G <0, meli=1,..p [ @)

where m; is the number of cuts generated so far. In the second step, the optimality check
step, we try to reduce as much as possible the number of fractional components of T while
keeping the same value of the component Z,1;. In the third step, the separation step, we



use the last index j tried in the second step to define the following disjunctive programming
relaxation P; of P,

Pj=conv ((PNn{z:iz; =0}) U (PN{a:iz; =1})). (5)

The following proposition shows that a nonoptimal z ¢ Pj, from where we are able to
guarantee the existence of a separating hyperplane.

Proposition 1 In each iteration of the algorithm BCP{MINLP, Step 2 is performed at most
p times. Moreover, if j is the last index tried in Step 2 then either Z is optimal or T & P;.

Proof: We recall that in Step 2 of the algorithm BCP4MINLP, the integer-constrained
variables are sequentially fixed at one of their bounds, zero or one, until an index j is found

such that )
min T,
Z_r{l(i)n1 st. z€P, > Tptl, (6)

’ Tpr =Tpr, Tj= 7
where I’ identifies the variables that are fixed in the process. Since F’ can have at most p
elements then Step 2 is performed at most p times until either (6) holds or all the integer
constrained variables are fixed in which case we would have found an optimal solution.

Now, we prove the second part of this proposition. Let j be the last index tried in
Step 2 so that (6) holds. Assume, by contradiction, that Z € Pj. Then, the point & can be
represented by one of the following three possible ways:

a. T =206z+(1—0)y, where § € (0,1), z € PN{x:z; =0} and y € PN {a:2; = 1};

b. Z =z +dy, where z € PN {z:z; = 0} and dy is a direction of the set P N {z:2; = 1}
if this set is nonempty or the zero vector otherwise.

c. Z=dz+y, where y € PN {z:2; = 1} and dz is a direction of the set P N {z:2; = 0}

if this set is nonempty or the zero vector otherwise.

If  can be decomposed as in a. then, since T € {0,1}, for every k € F’, we must have
2k = Yr = Ty, for every k € F’. Thus,

T € conv ((Pﬂ {:17:1’1:*/ =ZTp,Tj; = O}) @] (pﬂ {$:$F1 =Tp,xTj; = 1}))

which contradicts (6). If Z can be decomposed as in b. then, since dy; = 0, for every
i€ {1,...,p}, zx = Ty, for every k € F' U{j}. Thus, z € PN {z:2p = Zps,x; = 0} which
contradicts (6) once again. If Z can be decomposed as in c. an analogous argument as in b.
applies. O

3 The cut generation problem

We explain how the cut generation solution procedure should be implemented to take advan-
tage of the fact that many variables have been fixed during the second step of the algorithm
BCP4MINLP. Our cut generation problem uses the following duality result

sup aZ — 0 B inf |z —Z|
s.t. (o,B) € polar (Pj), = st ze€bPj, (7)
lorl, <1 TP = Tp.



Data:

Step 1:

Step 2:

Step 3:

Initialization: Set k = 0 and define P° as

Iteration-k:

Step 2.1: Find an optimal solution & of

Step 2.2: I 41 = T4 then let £ = & and restart Step 2;

Functions f and G. The scalars n and p.

0— i1, f(2) < @nga,
P _{xER ' G(IL')SO, xie[()?l]vi:la"'vpv ’

(Relaxation) Let Z be the optimal solution of
min  Tpy1
st. xe Pk

(Optimality check) Define F' = {j € {1,...,p}:0 < Z; <1} and
F' ={1,...,p} \ F. If F is empty then stop: T is an optimal solution
and Z,1 is the optimal value. Otherwise, let j € F.

min  Tp41 min  Tpy1
. st. ze Pk st. xe€ Pk
min _ _
xF/:]jF/ I‘F/:{I,'F/
:Ej = 0 SL‘j = 1

Otherwise set 2* = Z and continue to Step 3.

(Separation) Let j be the last index tried in Step 2. Find a
separating hyperplane “a**1z < b, ;” between Pf and z*.
Define Pkt = pkn {:c: abftly < bk+1} and set k :=k + 1.

Figure 1: The
(BCP4MINLP)

basic cutting-plane algorithm for mixed zero-one convex programming



Let us assume without loss of generality that the relaxation P is defined by
P={zeR" G()<0, 2>0, z;<1l,i=1,...p}. (8)

and P; is defined by (5). Let F be an index set that may or may not be related to the Step 2 of
the cutting-plane algorithm, and F’ = {1,...,n}\F beits complement. If & = (Zp,Zp/) € P;
is a known optimal primal solution in (7) then the subgradient £ = ({r,&p) of the function

f(l‘):{ H$F—jFH ifep =Z2p, (9)

400 otherwise,

at the point & that satisfies é (x — &) > 0, for every z € P;, defines an optimal dual solution
(&, B) € polar (P).

However, the main purpose of (7) is to define the cut generation problem using a smaller
number of variables. This means that after solving the primal problem

min H.’I?F—.fFH ~ (10)
st. xp € {a:F: (xp,Zpr) € Pj}

we have at hand an optimal primal solution #x and a subgradient £z of the function I-—zF|
at Zp, such that fp(xp —Zp) >0, for every xp € {xF: (xp,Zp) € Pj}. Thus, a natural
question is whether we can extend é F so that f = (é P, é r) is a subgradient of the function f
defined by (9) at # = (Zp,Zp) that satisfies £(z — #) > 0, for every z € Pj. Another natural
question is whether we can apply a similar mechanism even when Zy is not optimal.

Our answers to these questions require that Zgs = 0. This can be done without loss of
generality because when Ty, for some k € F’, is nonzero then as long as it coincides with one
of its bounds on Program (2) a variable transformation allows for the requirement to hold.
In this setting, z is feasible for Program (10) if and only if 2z belongs to

conv ({zp:(zp,0) € P,x; =0} U{ap: (zp,0) € P,a; =1}). (11)

Note that the two individual sets that define this convex hull are the feasible regions in
(6) and consequently at the end of Step 2 we already know whether those sets are empty
or nonempty. This feature is important because it determines which is the best solution
procedure to use on Program (10). If both sets are nonempty then the program can be
handled using the solution procedures described on Sections 5.4 and 5.5 of [6]. If one of
them is empty then Program (10) is a standard convex program, and may therefore be
solved by a standard nonlinear programming algorithm. If the two sets are empty then there

is no feasible solution x to Program (2) such that zp+ = Zp/. In this case the following
inequality
Z T + Z (1—ap) >1,
kEF":3,=0 kEF :z),=1

separates Z from the convex hull of the feasible region of Program (2).

Now, we explain how the lifting procedure works under two distinct situations, depending
on the fact that one or none of the sets in (11) is empty. We start by assuming that none of
them is empty. Let & be a feasible solution for Program (10) and é r be a subgradient of

the function || - —Zp| at Zp such that for a given scalar § satisfying £épZp < 3 the following
holds R
min Epzp
Z_ril(i)nl st. (2p,0)€P, | =0. (12)
Zj =1



We remark that #7 need not be optimal for Program (10), though if it were optimal then
the existence of a subgradient and a scalar satisfying (12) would be guaranteed. Under a
constraint qualification, the optimal solution 2% of each one of the problems in (12) also
solves a linear program defined by a suitable matrix A® € dG(2%,0) so that

min ész
: G(25,0) + Al(zp — 25,0) <0
b) b ) > 1
iri%fll s.t. zi > 0,k € F, zj =1, = (13)

zkgl,kGFﬂ{l,’p}a

The feasible region of each one of these linear programs defines an outer-approximation of
each one of the sets in (11). Our lifting procedure applies to these linear programs, so that by
the outer-approximation argument it also applies to our original nonlinear sets. Proposition 2
below describes the lifting mechanism in generic terms.

Proposition 2 Let F' be an index set and F' ={1,...,n}\ F. For a given arbitrary vector
ap, let Zp be an optimal solution of the following linear program:

min QfFZF
s.t. AFZF S b, (14)
lrp < zr <up,

where lp and up are the, possibly infinite, lower and upper bounds, Ap € R™ ! and
b € R™. Then, for any extended matriv A = [Ap, Ap:] € R™*" there is a closed-form
extended vector a = (ap, ap:) such that the vector Z = (2r,0) is an optimal solution of the
following linear program:

min oz

s.t. Az <b,
lF S ZF S ur, (15)
ZR! 2 0

Proof: Let v < 0 be the optimal dual multipliers associated with the matrix constraints in

Program (14) and define
Q. = max <0, Z f)lalk> 5
=1

for every k € F’'. Now, consider Program (15) and use the same dual variables to price the
new primal variables zy, for every k € F’. Since the reduced costs are pr = oy, *2211 Drage >
0, for every k € F’, we conclude that 2 = (2p,0) is optimal for Program (15). O

This proposition shows by construction how to define extended vectors él = (é F,f},)
such that 2t = (2%,,0), for i = 0,1 are still optimal in the following linear programs

min ézz
. G(ZH) + Az — 2% <0,
min .
i=0,1 | s.t. z >0, zj =1,
2k < 17k€Fm{177p}7

>3 (16)

whose feasible regions are larger than the set Pn {z:x; = i}, respectively. Since zp» > 0,
for every z € Pj, then

£= (fngggg(f%/))

6



is a subgradient of f at & such that éx > 3, for every x € Pj. Moreover, since égﬁ < (3 then
we have found a separating hyperplane.

Now, we assume that one of the sets in (11) is empty. Thus, Program (10) is solved as
a standard convex program because its feasible region is defined by the nonempty set only.
However, the fact that one of the sets in (11) is empty does not imply that the same has
to occur in (5), when the variables xp are no longer fixed. Proposition 3 below describes
in generic terms how to define the extended vector é’ = (ép, é},/) so that ézz > 0, for every
z € PU{x:x; =i}, when the set PN {z:zp =0,2; =i} is empty.

Proposition 3 Let F be an index set and F' = {1,...,n}\ F. For a given arbitrary vector
ap, let Zp be the optimal value of the following linear program:

min apzp
st. Apzp <b+ 1?6, (17)
lrp <z2p <up,

where lp and up are the, possibly infinite, lower and upper bounds, Ap € RmX‘Fl, b,e e R™
where e is a vector of “all-ones”, and t= min{t: Apzp < b+te,lp < zp <up} >0. Then,
for any extended matriz A = [Ap, Ap/] € R™*™ and scalar 3 there is a closed-form extended
vector « = (ap,ap/) such that az > f3, for every z such that Az < b,lp < zp <up,zp > 0.

Proof: First, consider the linear program that defines . Let (f, %) be an optimal solution
and w be the optimal dual multipliers associated with the matrix constraints. Then,

t = b+ Arip, (18)

where 4, = 0 — 221 wyay, is the reduced cost associated with the variable z;, for each
keF.

Now, consider Program (17) and let © be the optimal dual multipliers associated with
the matrix constraints. Then,

apiZp = (b+ fe) + prip
e =

D
=  apip —tie =0b+ prir, (19)
where pr = ai — Zﬁl vay is the reduced cost associated with the variable zi, for each
keF.
If 3 < apip — toe then define ap = max(0, Zl";l Dag), for every k € F'. For every z
such that Az < b,lp < zp < up, zpr > 0 we have that

azZ = QpFRp +Qpzp
> Z <[)k + Z@We) 2k + Z (Z ﬁlalk-) Zk (20)
kEF 1=1 keF’ \i=1
= prpzrp+0Az
> ppzp + 0b (21)
> ppip -+ 0b (22)
= apip — toe (23)
> 4, (24)

where the inequality (20) follows from the definition of jpp, the definition of aps and the fact
that zps > 0; the inequality (21) follows from the fact that © < 0 and Az < b; the inequality



(22) follows the fact that pr(zr — 2x) > 0, for every k € F, which is consequence of the
values of the reduced costs at optimality; the inequality (23) follows from (19); and finally
the inequality (24) holds by hypothesis.

If 3> apip — toe then a similar formula works but we need to increase © by a suitable
positive multiplier of 1. Observe that 2 is feasible for the linear program that defines ¢ and
so, from (18), we have that ¢ < b + 4p2p, or equivalently,

B — (apip — toe) < b+ §ypip, (25)

where § = (3 — (apzp — toe)) /i > 0. Now, define a = max (0,>;", (0 4 0w), a), for
every k € I’. For every z such that Az < b,lp < 2p < up,zp > 0 we have that

az = QFRp +apzpr
Z Z (ﬁk + Z@lalk> 2k + Z (Z (’lA) + (Sﬁ))l alk> Zk (26)
keF =1 keF’ \i=1

ﬁFZF + (TA} + (S’LZ)) Az + (5’3/FZF

> przp +0b+ 6Wb + 0irzp (27)
> prip+ b+ 6wb+ 69pip (28)
> prip+0b+ (B (apip — tie)) (29)
= f (30)

where the inequality (26) follows from the definition of gz, the definition of aup and the fact
that zgs > 0; the inequality (27) follows from the fact that o + 6w < 0 and Az < b; the
inequality (28) follows the fact that pr(zrx — 2x) > 0 and i (2zk — 2x) > 0, for every k € F,
which is consequence of the values of the reduced costs at optimality; the inequality (29)
follows from (25); and finally the equality (30) is a consequence of (19). O

This result can be easily generalized to a situation in which a distinct ¢ variable occurs
for each constraint. This is in fact the usual procedure with most phase-one implementations
of the Simplex algorithm for linear programs.

When solving a nonlinear program whose feasible region PN {z: zp = 0, zj = i} is empty,
most standard nonlinear programming algorithms are not ready to provide some point (, )
that solves the following program

min ¢
G(zr,0) < te,

s.t. zr >0, ke F zj =1,
zr<1l,ke FN{l,...,p},

(31)

and in this way proving infeasibility. In fact, it may occur that what seems to be an infeasible
problem is just a numerical difficulty of meeting the constraints to a desired accuracy. The
solution of the program (31) provides a verification of infeasibility and, as saw in the proof
of Proposition 3, the dual variables that may be required for the lifting procedure. Since the
Slater condition holds, the optimal solution (%, 2%.) of Program (31) also solves the following
linear program defined by a suitable matrix A* € dG(2%,0),

min ¢

G(2%,0) + Al(zp — 2%,0) < te,
s.t. zr, >0,k € F, z; =1,

zp <1, ke FNn{l,...,p},

(32)
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Then, to complete the lifting procedure we just have to solve

min éFzF
G(25,0) + Al (zp — 24,0) < fe, (33)
s.t. zrk >0,k € F, zj =1,

2 <Lke Fn{l,...,p},

and, as explained in the proof of Proposition 3 we are now able to define él = (éF,é}},) €
Of (&) such that £z > 3, for every z € PN {z:2; = i}. Since zp > 0, for every z € P;, then
again

£= (€F7¥gg§(5%f))

=

is a subgradient of the function f at & such that éx > 3, for every z € P;. Moreover, since
&x < (B then we have found a separating hyperplane.
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