
��������� 	�� �
�����	� 
��
�	����

�� ������

� ����	���


�������� 	
�� 
��
�� ����

������ ����� ���
������� �
��� ������ �� �!��� 	
"� #����� 

��

������ ������������	 
� �����
�����



The Advanced School and Workshop on Modelling and Numerical Simulation in
Continuum Mechanics was one of the events included in the C.I.M 2003 Thematic Term
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application-orientated workshop. It was held at the Department of Mechanical Engineering of
the Faculty of Sciences and Technology of the University of Coimbra, from July 14 to 18, 2003.

Twenty two speakers gave lectures at the event presenting either short courses, plenary lectures,
or invited/contributed talks. Various problems in Structural Mechanics, Shell Theory, Shape
Optimization and Fluid Mechanics were addressed either from modelling, computational or
industrial application viewpoints. In this Volume, we have gathered both the lecture notes,
written for the short courses and the plenary lectures, and the one page abstracts of the invited
and contributed talks.
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generous financial support from Fundação Calouste Gulbenkian, CMUC (Centro de Matemática
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• Juhani Pitkäranta : Shells and finite elements: from classicism to modernism

• Cristian Teodosiu : Computational mechanics of metallic materials at large strains

Plenary Lecturers

• Nadir Arada, Adélia Sequeira : A note on non-newtonian modelling of blood flow in small
arteries

• Kjell Mattiasson : Finite element simulation of sheet metal forming from an industrial
perspective
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Numerical analysis of discrete schemes approximating

grade-two fluid models.

Recent results and open problems

V. Girault∗

March 31, 2003

Abstract

These notes are devoted to some numerical schemes for approximating the solutions of incom-
pressible grade-two fluid models in 2-D. First, we recall briefly the essential points of the theoretical
analysis of the model. Next we take advantage of the information gained through this analysis to
devise appropriate numerical schemes and algorithms. We include considerations on a scheme for the
3-D model, whose numerical analysis is still an open problem.

1 Introduction

A grade-two fluid is one of the theoretical models introduced by Rivlin and Ericksen [55] for describing
non-Newtonian behaviour. Its equations generalize the Navier-Stokes equations and it is believed to
describe the motion of a water solution of polymers (cf. [23]). Interestingly, its equations have been
interpreted recently by Camassa, Holm, Marsden, Ratiu and Shkoller (cf. for instance [36, 37]) as a
model of turbulence. In the simplest case, the equations have the form

∂

∂t
(u− α∆ u)− ν∆ u + curl(u− α∆ u)× u +∇p = f , (1.1)

div u = 0 , (1.2)

with tangential Dirichlet boundary conditions and an initial condition. Here u is the velocity, p is related
to the pressure, ν ≥ 0 is the viscosity and α > 0 is the normal stress-modulus when the equations model
a non-Newtonian fluid, and an averaged-length scale when the equations model turbulence.

Analyzing schemes approximating a grade-two fluid model is interesting, not only on account of these
two interpretations, but also because it gives an insight on what can be done to overcome the difficulties
raised by the highly non-linear term curl∆ u× u, and what are the open problems if they have not yet
been overcome.

In some sense, the theoretical results that have been proven up to date for this model are fairly satis-
factory, but there still remain important open questions such as the problem posed by non-homogeneous
Dirichlet boundary conditions or that posed by a rough exterior force, such as an L2 force, to mention
just these two “simple” questions. At least for the steady 2-D problem, we can handle tangential Dirichlet
boundary conditions, i.e. with no ingoing or outgoing flow. But if there is an ingoing or outgoing flow,
the problem is ill-posed and we do not know what additional boundary condition must be added to make
the problem well-posed.

In contrast, results of numerical analysis obtained so far are very scanty. We now know how to analyze
carefully chosen schemes for the steady problem in 2-D. Again in 2-D, we can hopefully do the numerical

∗Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie, Paris, France, email: girault@ann.jussieu.fr

1



analysis of schemes that approximate the time-dependent problem without expecting major difficulties.
But so far, no one knows how to analyze schemes that approximate this problem in 3-D, be it steady
or unsteady. The explanation is simple: we lack some discrete a priori estimates, estimates that appear
plausible, but for which we have yet no proof. These estimates are a crucial ingredient in the numerical
analysis of several models of non-Newtonian fluids, and this analysis will remain an open question as long
as these estimates are not established.

In 2-D, a grade-two fluid model has a global solution without restriction on the size of the data and
on the boundary of the domain, exactly as for the Navier-Stokes equations. This remarkable property
is due to the fact that, when the problem is written in the form of a generalized Stokes equation and
a transport equation, solutions can be constructed without requiring that the velocity be bounded in
W 1,∞. Then if the equations of a grade-two fluid model are suitably discretized, and the finite-element
spaces well-chosen, this property can be preserved. In this case, the numerical analysis of such schemes
can be done successfully. This analysis does not carry over yet to 3-D because the exact problem requires
a velocity in W 1,∞ and hence the discrete schemes also require that the discrete velocity be uniformly
bounded in W 1,∞, with respect to the discretization parameters.

After this introduction, we recall the analysis of the exact problem (1.1), (1.2). Then we present
a centered and an upwind scheme in 2-D, for which we can establish a priori estimates, existence of
discrete solutions and their strong convergence without restriction on the data and the domain. Then,
by suitably restricting the domain and the data, we prove uniqueness and error estimates and establish
the convergence of a simple algorithm for computing the discrete solution. We propose a scheme for
the 3-D model and examine the open questions raised by its numerical analysis. Finally, we describe a
least-squares algorithm that gives good results, but for which there is no analysis.

We close this introduction with a list of notation that will be used in the sequel. We state them
in 3-D because the theoretical problem is of course three-dimensional, but the numerical study will be
done mainly in 2-D. Unless otherwise specified, the domains of interest Ω will all have a boundary ∂Ω
that is at least Lipschitz-continuous (cf. [35]). Let (k1, k2, k3) be a triple of non-negative integers and set
|k| = k1 + k2 + k3; we define the partial derivative ∂k of order k:

∂kv =
∂|k|v

∂xk1
1 ∂xk2

2 ∂xk3
3

.

Recall the standard Sobolev spaces, for a non-negative integer m and a number r ≥ 1 (cf. [1] or [46])

Wm,r(Ω) = {v ∈ Lr(Ω) ; ∂kv ∈ Lr(Ω) ∀|k| ≤ m} ,

equipped with the seminorm

|v|W m,r(Ω) =

 ∑
|k|=m

∫
Ω

|∂kv|r dx

1/r

,

and the norm (for which it is a Banach space)

‖v‖W m,r(Ω) =

 ∑
0≤k≤m

|v|rW k,r(Ω)

1/r

,

with the usual modification when r = ∞; we refer to [35], [45] or [1] for extending this definition to
fractional Sobolev spaces. When r = 2, this space is the Hilbert space Hm(Ω). In particular, the scalar
product of L2(Ω) is denoted by (·, ·). These definitions are extended straightforwardly to vector-valued
functions, with the same notation, except for non-Hilbert norms. In the case of a vector u = (u1, u2, u3),
we set

‖u‖Lr(Ω) =
[∫

Ω

|u(x)|r dx

]1/r

,
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where | · | denotes the Euclidian norm: |u|2 = u · u.
For imposing vanishing boundary values on ∂Ω, we define

H1
0 (Ω) = {v ∈ H1(Ω) ; v|∂Ω = 0} .

We shall frequently use Sobolev imbeddings: for a real number p ≥ 1 in 2-D or 1 ≤ p ≤ 6 in 3-D, there
exists a constant Sp (that depends only on the dimension and the domain) such that

∀v ∈ H1
0 (Ω) , ‖v‖Lp(Ω) ≤ Sp|v|H1(Ω) . (1.3)

When p = 2, this is Poincaré’s inequality and S2 is Poincaré’s constant. Owing to Poincaré’s inequality,
the seminorm | · | is a norm on H1

0 (Ω), equivalent to the full norm. As it it is directly related to the
gradient operator, we choose this seminorm as norm on H1

0 (Ω), and in particular, we use it to define the
dual norm on its dual space H−1(Ω).

For imposing tangential boundary conditions, we define

H1
T (Ω) = {v ∈ H1(Ω)3 ; v · n = 0 on ∂Ω} , (1.4)

where n est the unit normal vector to ∂Ω, directed outside Ω. An easy application of Peetre-Tartar’s
Theorem (cf. [50], [59] or [29]) proves the analogue of Sobolev’s imbeddings in H1

T (Ω) for any real number
p ≥ 1 in 2-D or 1 ≤ p ≤ 6 in 3-D:

∀v ∈ H1
T (Ω) , ‖v‖Lp(Ω) ≤ S̃p|v|H1(Ω) . (1.5)

In particular, for p = 2, the mapping v 7→ |v|H1(Ω) is a norm on H1
T (Ω), equivalent to the H1 norm

and S̃2 is the analogue of Poincaré’s constant. We shall also use the classical spaces for Navier-Stokes
equations:

V = {v ∈ H1
0 (Ω)3 ; div v = 0 in Ω} , div v =

3∑
i=1

∂vi

∂xi
, (1.6)

W = {v ∈ H1
T (Ω) ; div v = 0 in Ω} , (1.7)

L2
0(Ω) = {q ∈ L2(Ω) ;

∫
Ω

q dx = 0} ,

H(curl,Ω) = {v ∈ L2(Ω)3 ; curlv ∈ L2(Ω)3} ,

where
curlv =

( ∂v3

∂x2
− ∂v2

∂x3
,
∂v1

∂x3
− ∂v3

∂x1
,
∂v2

∂x1
− ∂v1

∂x2

)
. (1.8)

2 Formulation

A grade-two fluid is a fluid of differential type. Its Cauchy stress T is given by:

T = −pI + µA1 + α1A2 + α2A
2
1 , (2.1)

where I is the identity tensor and A1 and A2 are the first two Rivlin-Ericksen tensors [55] defined
recursively by

A1 = L1 + Lt
1 , (L1)i,j = (∇u)i,j =

∂ui

∂xj
, A2 =

d
dt

A1 + A1L1 + Lt
1A1 .

Here d
dt denotes the convective or material derivative :

d
dt

A1 =
∂

∂t
A1 + u · ∇A1 .
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For the fluid to be thermodynamically compatible (cf. [22]), the viscosity µ and the material moduli α1

and α2 must satisfy
µ ≥ 0 , α1 ≥ 0 , α1 + α2 = 0 . (2.2)

By substituting (2.1) into the balance of linear momentum:

%
d
dt

u = div T + %f , (2.3)

where % is the density and f is an exterior force (such as gravity) and dividing by the density, we find
the momentum equation of a grade-two fluid:

∂

∂t
(u− α1∆ u)− µ∆ u + curl(u− (2α1 + α2)∆ u)× u

− (α1 + α2)∆(u · ∇u) + 2(α1 + α2)u · ∇(∆ u) +∇ p = f .
(2.4)

To simplify, we keep the same notation for the parameters and for the pressure:

µ :=
µ

%
, αi :=

αi

%
, p :=

1
%
p +

1
2
|u|2 − (2 α1 + α2)(u ·∆ u +

1
4
trA2

1) .

As α1 + α2 = 0, we set α = α1 and (2.4) simplifies to (1.1):

∂

∂t
(u− α∆ u)− µ∆ u + curl(u− α∆ u)× u +∇ p = f ,

that must be completed by the incompressibility condition (1.2), an initial condition at time t = 0 and a
no-slip boundary condition.

Remark 2.1 Note that when α = 0, (1.1) reduces to the Navier-Stokes equations owing to the identity:

u · ∇u = curlu× u +
1
2
∇(|u|2) .

As far as the steady 2-D problem is concerned, we prove further on that when α tends to zero, the
corresponding solutions tend to solutions of the Navier-Stokes problem. This is possibly also true in 3-D,
but it seems unlikely for the evolution problem (see Remark 3.5).

The condition α ≥ 0 has been (and is still) a source of rough controversy. From a mathematical point
of view, the term − ∂

∂tα∆ u in the left-hand side of the momentum equation makes the rest-state unstable
when α is negative, and therefore, we shall not study this case here.

3 Theoretical analysis

Let Ω be a bounded domain of IR3, with a Lipschitz boundary ∂Ω. Consider the problem: Find a velocity
vector u and a scalar pressure p, solution of

∂

∂t
(u− α∆ u)− µ∆ u + curl(u− α∆ u)× u +∇ p = f in Ω×]0, T [ , (3.1)

with the incompressibility condition:

div u = 0 in Ω×]0, T [ , (3.2)

to simplify, we only impose a homogeneous Dirichlet boundary condition:

u = 0 on ∂Ω×]0, T [ , (3.3)

and the initial condition:

u(0) = u0 in Ω with div u0 = 0 in Ω and u0 = 0 on ∂Ω . (3.4)

4



Remark 3.1 Considering that (3.1) involves a third derivative, we can ask the question: does (3.3)
impose enough boundary conditions to determine the solution of (3.1)–(3.4)? We shall see further on
that the answer is “yes”. More generally, [30] proves that the answer is also “yes” for the steady-state
problem in 2-D in the case where (3.3) is replaced by a tangential Dirichlet condition:

u = g on ∂Ω×]0, T [ with g · n = 0 . (3.5)

It is likely that, with adequate conditions on g, this result extends to the evolution problem (3.1)–(3.4).
But when the boundary values are not tangential, there are examples where the problem is ill-posed,
cf. [54].

Problem (3.1)–(3.4) is difficult because its non-linear term involves a third order derivative, whereas
its elliptic part only comes from a Laplace operator; for this reason, it behaves mostly as a hyperbolic
problem. For the past ten years, many publications have been devoted to this problem, but by far the
best proof of existence, due to Cioranescu and Ouazar, goes back to more than twenty years ago (1981)
and is found in the thesis of Ouazar [48]; it was published later by Cioranescu and Ouazar in [17, 18].

Here is a brief description of their construction. Some of its ideas will be very valuable for discretizing
the problem. Their assumptions on the data and the domain are: Ω simply-connected of class C3,1, f in
L2(0, T ;H1(Ω)3) and u0 in H3(Ω)3. Formally, observe first that (3.1) yields the energy equality:

1
2

d
dt
‖u(t)‖2L2(Ω) +

α

2
d
dt
|u(t)|2H1(Ω) + µ|u(t)|2H1(Ω) = (f(t),u(t)) . (3.6)

It shows in particular that, if a solution u exists, then it is unconditionally bounded in L∞(0, T ;H1(Ω)3)
by the data f . Now, set

z = curl(u− α ∆ u) . (3.7)

This choice is crucial, because Cioranescu and Ouazar prove that if curl(u− α ∆ u) ∈ L2(Ω)3 and Ω is
simply-connected, then u ∈ H3(Ω)3 and there exists a constant C such that

‖u‖H3(Ω) ≤ C
(
|u|2H1(Ω) + ‖curl(u− α ∆ u)‖2L2(Ω)

)1/2
. (3.8)

Next, take formally the curl of (3.1); this gives a transport equation, (that we multiply here by α):

α
∂

∂t
z + µz + α u · ∇ z − α z · ∇u = µ curlu + α curlf in Ω×]0, T [ , (3.9)

and formally multiply (3.9) by z. We obtain the inequality:

α

2
d
dt
‖z(t)‖2L2(Ω)+(µ−α‖∇u(t)‖L∞(Ω))‖z(t)‖2L2(Ω) ≤ (µ ‖curlu(t)‖L2(Ω)+α ‖curlf(t)‖L2(Ω))‖z(t)‖L2(Ω) .

(3.10)
By applying a Sobolev bound to ‖∇u(t)‖L∞(Ω), substituting (3.8) into the left-hand side of (3.10) and
the estimate deduced from (3.6) to bound ‖curlu(t)‖L2(Ω) in its right-hand side, we find that ‖z(t)‖2L2(Ω)

is bounded by the solution of a Riccati differential equation on the time interval [0, T ∗], for some T ∗ > 0,
T ∗ ≤ T . This shows that, if a solution u exists, then it is bounded in L∞(0, T ∗;H3(Ω)3). Finally, on
multiplying formally (3.1) by u′ and using the previous bound for u, we infer that u′ is also bounded in
L2(0, T ∗;H1(Ω)3). In principle, these a priori estimates are sufficient to construct a local solution of the
problem.

Remark 3.2 On one hand, the energy equality (3.6) explains why it is important that α be positive.
On the other hand, to obtain (3.10), we must eliminate the term α(u · ∇ z,z). In view of (3.2),

assuming that Green’s formula is valid, we have:

α

∫
Ω

(u · ∇ z)z dx =
α

2

∫
∂Ω

(u · n)|z|2ds . (3.11)

This term vanishes either if u ·n = 0 or if z = 0 where u ·n 6= 0. In the second case, what is the physical
meaning of this condition on z ? And what is the mathematical meaning of this condition on z, when z
is only in L2(Ω)3, as it is here ?
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Remark 3.3 At first sight, (3.6) seems minor compared to (3.8). But in fact, (3.6) is crucial in estimating
the term ‖curlu(t)‖L2(Ω) in the right-hand side of (3.9) in terms of the data f . If we replace it by
(3.8),then f is replaced by z, and the resulting loss of optimality is devastating. In particular, if this
is applied to the steady problem in 2-D, then we no longer know how to prove existence of solutions
without restricting the data. And, much worse, we do not know how to do the numerical analysis of
discrete schemes.

Constructing a solution by making use of (3.1), (3.7) and (3.9) is very difficult because these three
equations are redundant and no fixed-point can use all three at the same time. The originality and power
of the construction by Cioranescu and Ouazar lie in that they did use all three equations. Their idea
consists in discretizing (3.1) by a Galerkin method in the basis of the eigenfunctions of the operator
curl curl(u− α ∆ u), i.e. the functions wi ∈ H3(Ω)3 ∩ V such that,

∀v ∈ H3(Ω)3 ∩ V , (curl(wi − α ∆ wi), curl(v − α ∆ v)) = λi

(
(wi,v) + α (∇wi,∇v)

)
. (3.12)

This special basis has the effect that, on multiplying the i-th equation that discretizes (3.1) by the
eigenvalue λi and on summing over i, we derive a discrete version of the transport equation (3.9). This
allows to recover (3.10) in the discrete case. Thus, we construct a discrete solution um that is bounded
uniformly in L∞(0, T ∗;H3(Ω)3) with u′m bounded in L2(0, T ∗;H1(Ω)3). Note that all the above steps
(which were hitherto formal), and in particular the delicate Green’s formula (3.11), are justified because
the basis functions are sufficiently smooth. Furthermore, passing to the limit is standard, because this
limit is only taken in the discrete version of (3.1).

This proves local existence in time of a solution. But global existence for small data can also be estab-
lished, by taking better advantage of the small damping effect of the viscous term −µ∆ u. Unfortunately,
Cioranescu and Ouazar did not do this in 1981 and the authors that revisited the problem from 1993
on, for example [26] or [27], did not understand the subtlety of the special basis and did not realize that,
even if the 1981 results were not optimal, the method itself was optimal.

In reference [19], Cioranescu and Girault show how global existence can be achieved by the method
of Cioranescu and Ouazar. The idea is to derive slightly sharper a priori estimates:

‖u(t)‖2L2(Ω) +α |u(t)|2H1(Ω) ≤ e−µ K t(‖u0‖2L2(Ω) +α |u0|2H1(Ω))+
S2

2

µ

∫ t

0

e−µ K(t−s)‖f(s)‖2L2(Ω)ds , (3.13)

where
K =

1
α + S2

2

,

and setting y(t) = ‖z(t)‖2L2(Ω),

y′(t) +
µ

α
y(t)− 2 C2(α) y3/2(t) ≤ 4 µ

α2
e−µ K t(‖u0‖2L2(Ω) + α |u0|2H1(Ω))

+
4S2

2

α2

∫ t

0

e−µ K(t−s)‖f(s)‖2L2(Ω)ds +
2 α

µ
‖curlf(t)‖2L2(Ω) ,

(3.14)

which is indeed of Ricatti type, with the damping term µ
αy(t) (C(α) is a constant that depends only on

α). Owing to this damping term, we show that y(t) stays bounded in IR+ provided the data are small.
This allows one to prove global existence in time of solutions, with values in H3(Ω)3.

Regarding the regularity hypotheses on the data, it follows from (3.14) that curlf ∈ L2(Ω)3 is
sufficient (instead of f in H1(Ω)3). As far as the domain is concerned, Bernard proves in [6] and [7]
that we can take ∂Ω of class C2,1 and Ω multiply-connected. Furthermore, finding u in H3(Ω)3 is not
necessary; if we accept solutions that are less smooth, we can lower the regularity of ∂Ω. Indeed, (3.14)
only requires u in W 1,∞(Ω)3. Thus applying Sobolev’s imbedding, it suffices that u ∈ W 2,s(Ω)3 with
s > 3. This is also sufficient for estimating ‖u′(t)‖L2(Ω).
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Without details, let us describe two approaches proposed since 1993. The first one, presented in [26]
consists in the Helmholtz decomposition of u− α ∆ u:

u− α ∆ u = w −∇ q in Ω×]0, T [ ,

div w = 0 in Ω×]0, T [ , w · n = 0 on ∂Ω×]0, T [ ,

w(0) = w0 on Ω , where w0 is the Helmholtz decomposition of u0 ,

substituted into (2.4). This gives an “Euler”-type equation involving both w and u:

α
∂

∂t
w + µw + α u · ∇w + α (∇u)tw − µu +∇ p̂ = α f in Ω× (0, T ) , (3.15)

where p̂ is another modified pressure. To prove existence of solutions, the authors solve this coupled
system by Schauder’s fixed point. For small data, they find w in H3(Ω)3. But, by introducing (3.15),
they lose the original equation and hence they lose the energy equality (3.6). Moreover, looking for w in
H3(Ω)3 (achieved by differentiating three times (3.15)) brings even more restrictions on the size of the
data because each differentiation doubles the number of non-linear terms. For this reason, one should
avoid differentiating these equations. In particular, to prove regularity of the solution of the evolution
problem, one should not proceed as in [26] or [27], where existence and regularity are established in
Hm, for arbitrarily large m. In the case of local existence, the interval of existence in time decreases
exponentially with m, and in the case of global existence, the size of admissible data decreases also
exponentially with m. This is of course unnecessary.

There is however one situation where (3.15) is useful, and that is when the curl of f is not in L2(Ω)3.
Indeed, (3.15) avoids taking the curl of (3.1). Bresch and Lemoine have used this idea in a series of
publications, such as [12], to enable them to take f in Lp(Ω)3 with p > 3. This is more delicate than
in [26], since w is no longer in H3(Ω)3. The works of Bresch and Lemoine complete our results, but do
not extend them; indeed, they cannot recover our results when curlf ∈ L2(Ω)3, since they lose (3.6).

Remark 3.4 So far, nobody has established existence of solutions when f ∈ Lp(Ω)3 with p ≤ 3; in
particular, p = 2 is an open question.

Remark 3.5 We can let α tend to zero in (3.6), but this does not appear possible in (3.14) and neither
in (3.15). Nevertheless, for each given α > 0, the other data can be adjusted so that a global solution in
time exists.

The second approach, analyzed by Videman [63] consists in reverting to the momentum equation (2.3)
and writing f as a divergence:

f = div F .

To simplify, consider the steady problem, as the process is different for the evolution problem. By
introducing another modified pressure π and a tensor σ, the equations read

−∆ u +∇π = div σ , div u = 0 , (3.16)

u = 0 on ∂Ω , (3.17)

µσ + α u · ∇σ − α σ · (∇u)t = F − α π(∇u)t + α(∇u)t(∇u + (∇u)t)− u⊗ u . (3.18)

Again, this does not take the curl of f . In [63], Videman obtains an existence result that is comparable
to that of [12], i.e. for f ∈ Lp(Ω)3 with p > 3.
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3.1 The steady problem in two dimensions

The transport equation (3.9) substantially simplifies in 2-D, because u has the form u = (u1, u2, 0) and
its curl is curlu = (0, 0, curlu) where

curlu =
∂u2

∂x1
− ∂u1

∂x2
.

As a consequence, z has the form z = (0, 0, z) with z = curl(u−α∆ u), so that z · ∇u = 0. Hence (3.9)
becomes a scalar equation in z:

α
∂

∂t
z + µ z + α u · ∇ z = µ curlu + α curlf in Ω×]0, T [ .

It is no longer necessary to bound the gradient of u in L∞(Ω), owing that z · ∇u disappears. This has
allowed Ouazar to prove in [48] that, if ∂Ω is sufficiently smooth, the domain simply-connected and the
boundary data zero, but without restricting the size of the other data, then the evolution problem has a
unique global solution in time and the steady problem has always at least one solution.

The object of [30] is to extend this result to the steady problem with a tangential Dirichlet boundary
condition, in a Lipschitz domain, possibly multiply-connected. More precisely, we show that the problem:

−µ∆ u + curl(u− α ∆ u)× u +∇ p = f , div u = 0 ,

u = g on ∂Ω with g · n = 0 ,

has at least one solution whatever f ∈ H(curl; Ω), g ∈ H1/2(∂Ω)2 (with g · n = 0), µ > 0 and α ∈ IR.
(From the mathematical point of view, here we can take α < 0, but it may be that the problem has
no physical meaning). Of course, the method of Cioranescu and Ouazar can be used to prove existence
of solutions. But, since we propose to derive existence of discrete solutions further on, and as the
eigenfunctions wi do not lend themselves readily to discretization, we have chosen the following equivalent
formulation, that seems better adapted to numerics. It consists in a generalized Stokes equation coupled
with a transport equation, both of them linear; we denote it by Problem P:
• Problem P: Find (u, p, z) in H1

T (Ω)× L2
0(Ω)× L2(Ω) solution of

−µ∆ u + z × u +∇ p = f with z × u = (−zu2, zu1) , (3.19)

div u = 0 , (3.20)

u = g on ∂Ω with g · n = 0 , (3.21)

µ z + α u · ∇ z = µ curlu + α curlf . (3.22)

The crucial point here is that we prove that all solutions of (3.19)–(3.22) satisfy two energy inequalities,
one that bounds u in H1(Ω)2 and the other that bounds z in L2(Ω), without restriction on the data.
Moreover, we prove that when α tends to zero, each solution of (3.19)–(3.22) converges to a solution of
the Navier-Stokes equations.

To establish the energy inequalities we need:
• a Leray–Hopf lifting of the boundary datum g;
• an extension of Green’s formula (3.11) to the case of a Lipschitz boundary and a velocity in H1

T .

Let us first look at Green’s formula. It is used to eliminate α(u · ∇ z) in (3.22), and it is valid in
dimension n. As the right-hand side of (3.22) belongs to L2(Ω), we see that (3.22) is a particular case of
the scalar steady transport equation, in a Lipschitz domain of IRn: Find z in L2(Ω), such that

z +W u · ∇ z = h in Ω , (3.23)

where u is given in W , h is given in L2(Ω) and W ∈ IR is a given parameter. As z and h belong to
L2(Ω), (3.23) implies that z is slightly more regular and belongs to:

Xu = {z ∈ L2(Ω) ; u · ∇ z ∈ L2(Ω)} , (3.24)
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for u given in W ; it is a Hilbert space for the norm

‖z‖u =
(
‖z‖2L2(Ω) + ‖u · ∇ z‖2L2(Ω)

)1/2

.

Thus, we want to prove that

∀u ∈ W , ∀z ∈ Xu ,
n∑

i=1

∫
Ω

ui
∂z

∂xi
z dx = 0 . (3.25)

If it were known that H1(Ω) is dense in Xu, then (3.25) would stem trivially by density. Unfortunately,
when u belongs only to H1, this density must be established, and this is just as difficult as Green’s
formula itself. In fact, we shall see that these two properties are equivalent, because we shall deduce this
density from Green’s formula. The proof proceed in three steps:

i) First we show that the functions of D(Ω) are dense in

{z ∈ L2(Ω) ; u · ∇ z ∈ L1(Ω)} ,

for u given in H1(Ω)n. The most difficult point is the regularization of functions in this space. The
classical approach that consists first in extending functions ouside Ω is not appropriate here because it
does not preserve the operation u · ∇·. Instead, we regularize functions by convolution with a family of
mollifiers, parametrized by a set of directions and solid angles, that force the result to stay in the domain.
The normal direction, the most natural choice, is not suitable, because the boundary is only Lipschitz
and the normal vector is not smooth. Instead of the normal, we use the fact that the domain has the
uniform cone property (equivalent to a Lipschitz condition), and we use the direction of the cone axis and
its solid angle in each local chart covering the domain near the boundary. The idea of a fixed direction
in each local chart is inspired by the work of Puel and Roptin [53], who use the segment property.

ii) Next, for u ∈ W , we prove uniqueness of the solution of (3.23) in L1(Ω). For this, we use the
renormalizing of DiPerna and Lions [21]; existence of z is trivial as well as the estimates:

‖z‖L2(Ω) ≤ ‖h‖L2(Ω) , |W|‖u · ∇ z‖L2(Ω) ≤ ‖h‖L2(Ω) . (3.26)

iii) Finally, we establish Green’s formula (3.25) and the density of D(Ω) in Xu.

Remark 3.6 The density in i) holds without restriction on u. But is D(Ω) dense in Xu when u is
arbitrary in H1(Ω)n ? If we knew this were true, we could give meaning to the left-hand side of (3.11)
and we could solve the steady problem with any Dirichlet boundary condition, by imposing z where
u · n 6= 0.

The first estimate in (3.26) can be generalized to exponents p > 2. If h ∈ Lp(Ω) with p > 2,
by extending a result due to Ortega [47] (written on a smooth domain with a driving velocity u ∈
W 1,∞(Ω)n ∩H1

0 (Ω)n), we easily prove that the solution z of (3.23), for u ∈ W and Ω Lipschitz, belongs
to Lp(Ω) and

‖z‖Lp(Ω) ≤ ‖h‖Lp(Ω) . (3.27)

If p < 2, with p > 1 when n = 2 and p > 2n/(n + 2) when n ≥ 3, by proceeding by duality and
transposition (cf. [45]), we show that the transposed equation has one and only one solution z ∈ Lp(Ω) that
satisfies (3.27) and that solves (3.23). Then, a fixed-point argument on u shows that in two dimensions,
Problem P has at least one solution when f ∈ L2(Ω)2 with curl f ∈ Lp(Ω) for p > 1 and g = 0.

Remark 3.7 There remain many open questions concerning (3.23). For instance, what are minimal
conditions on Ω for z to belong to H1(Ω)? A formal differentiation of (3.23) yields the sufficient condition
on h and u: h ∈ H1(Ω) and u ∈ W ∩W 1,∞(Ω)n, small enough. More precisely, we obtain formally:

‖∇ z‖L2(Ω)

(
1− |W|‖∇u‖L∞(Ω)

)
≤ ‖∇h‖L2(Ω) .

But we do not know how to justify this inequality, without asking either ∂Ω smooth or Ω convex (in 2
or 3-D), because we use the regularity of a Laplace equation. This brings us to another question: what
are minimal conditions on Ω and u for z ∈ Hθ(Ω), with θ ∈]0, 1/2] ?
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Now we turn to the Leray–Hopf’s lifting. We need it to show existence of solutions of the generalized
Stokes system (3.19)–(3.21). This problem has the equivalent variational formulation: Find u ∈ V + wg

such that
∀v ∈ V , µ(∇u,∇v) + (z × u,v) = (f ,v) ,

where wg is a lifting of g in W (hence divergence-free). It is well-known that several liftings exist. At
first sight, the most natural choice is the solution of a non-homogeneous Stokes problem:

−∆ wg +∇ pg = 0 and divwg = 0 in Ω , wg = g on ∂Ω . (3.28)

This problem has a unique solution that depends continuously on g: there exists a constant L such that
(cf. for instance [29]):

|wg|H1(Ω) ≤ L‖g‖H1/2(∂Ω) . (3.29)

Now, for estimating u, we consider the equation satisfied by u0 = u−wg:

∀v ∈ V , µ(∇u0,∇v) + (z × u0,v) = (f ,v)− µ(∇wg,∇v)− (z ×wg,v) ,

that simplifies because (∇wg,∇v) = 0 and yields the estimate:

|u0|H1(Ω) ≤
1
µ

(
S2‖f‖L2(Ω) + ‖z‖L2(Ω) sup

v∈V

‖|wg| |v|‖L2(Ω)

|v|H1(Ω)

)
≤ 1

µ

(
S2‖f‖L2(Ω) + S4S̃4‖z‖L2(Ω)|wg|H1(Ω)

)
.

(3.30)

But this last estimate is usually not sufficiently sharp because it involves ‖z‖L2(Ω) multiplied by a factor
that is not necessarily small, except when g is small enough or µ large enough. Hence this wg is not
always convenient. A closer scrutiny at the first part of (3.30) reveals that it would be desirable to bound
‖|wg| |v|‖L2(Ω) by ε |v|H1(Ω) for arbitrary ε; this property is typical of Leray–Hopf’s lifting (cf. [39], [42]).

The idea for constructing this lifting (cf. [44] or [29]) consists in truncating wg so that it is supported
by a small neighborhood of the boundary, with “width” related to the parameter ε. But since truncation
does not preserve the zero divergence, the stream function of wg (or vector potential in 3-D) is truncated;
this stream function exists because g·n = 0. The disadvantage of the classical construction in [44] and [29]
is that the “width” of this support tends to zero exponentially with µ. From a theoretical point of view,
this is unimportant. From the approximation point of view, this is a serious drawback when µ is small
(even though the lifting is never computed), because it means that in order to prove existence of a discrete
solution, we must use a very fine mesh (possibly unrealistic) near the boundary.

However, in the case where g ·n = 0, this specific truncation is not necessary. Reference [32] constructs
a lifting ug supported in a neighborhood whose “width” is of the order of µ, when Ω is Lipschitz and g
belongs either to W 1−1/λ,λ(∂Ω)2 for some λ > 2, or to H1/2(∂Ω)2 when the boundary is a polygon. This
extends a result of [61], proven when ∂Ω is of class C3 and g ∈ C3(∂Ω)2. When g ∈ H1/2(∂Ω)2 and Ω is
a Lipschitz polygon (i.e. without cracks), we find (cf. [32]):

‖∇ug‖L2(Ωε) ≤ C
1

ε1/2+1/τ
‖g‖H1/2(∂Ω) , for 2 ≤ τ < ∞ , (3.31)

∀v ∈ H1
0 (Ω)2 , ‖|ug| |v|‖L2(Ωε) ≤ Cε1/τ |v|H1(Ωε)‖g‖H1/2(∂Ω) , for 1 < τ , (3.32)

where the constants C depend τ , but neither on g nor on ε. Thus, we obtain for each number τ > 1
2 :

‖z‖L2(Ω) ≤ 2
|α|
µ
‖curlf‖L2(Ω) + 2

√
2

µ
S2‖f‖L2(Ω) +

C

µτ
‖g‖1+τ

H1/2(∂Ω)
, (3.33)

where C depends only on τ and Ω. When Ω is an arbitrary Lipschitz domain and g ∈ W 1−1/λ,λ(∂Ω)2,
for some λ > 2, then there exists a constant C depending only on λ and Ω, such that:

‖z‖L2(Ω) ≤ 2
|α|
µ
‖curlf‖L2(Ω) + 2

√
2

µ
S2‖f‖L2(Ω) + (2

√
2)3/2 C

µ1/2
‖g‖3/2

W 1−1/λ,λ(∂Ω)
. (3.34)
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The factor 1/µ in the first two terms of (3.33) and (3.34) is inevitable: it arises even in the homogeneous
case. In contrast, the factor 1/

√
µ comes from the non-homogeneous boundary term and is negligible

with respect to an exponential. Summing up, when µ is small, we have gained substantially by not using
the classical lifting.

Now we prove existence of solutions of Problem P. Let {wi}i≥1 be a basis of H2(Ω) and Zm the
vector space spanned by wi for 1 ≤ i ≤ m. We discretize z by Galerkin’s method in this basis. For each
zm ∈ Zm, we set zm = (0, 0, zm) and we note u(zm), p(zm) the unique solution of the generalized Stokes
problem (3.19)–(3.21) with zm instead of z. Next, we discretize the transport equation (3.22) by: Find
zm in Zm solution of, for 1 ≤ i ≤ m,

µ (zm, wi) + α (u(zm) · ∇ zm, wi) = µ(curlu(zm), wi) + α (curl f , wi) . (3.35)

Observe that u(zm) belongs to a finite-dimensional space because so does zm. Hence, we can apply here
Brouwer’s fixed-point theorem. It implies existence of a solution zm satisfying the uniform estimates in
m (3.33) or (3.34). These estimates allow one to pass to the limit in (3.35) and (3.19)–(3.21), whence
existence of a solution of Problem P in H1

T (Ω)×L2
0(Ω)×L2(Ω), without restriction on the data. Finally,

Green’s formula (3.25) shows that all solutions of this problem satisfy these estimates.

These solutions depend on µ and α. In the estimates (3.33) and (3.34), we cannot let µ tend to zero,
but we can let α tend to zero. Green’s formula (3.25) and a similar limiting process allow one to prove
that when α tends to zero, each solution of Problem P converges strongly in H1

T (Ω)× L2
0(Ω)× L2(Ω) to

a solution of the steady incompressible Navier-Stokes equations.

Remark 3.8 We have seen that (3.19)–(3.21) define u in H1
T (Ω) in terms of z in L2(Ω). Moreover, u

is locally Lipschitz with respect to z. Indeed, set u1 = u(z) and u2 = u(z + ζ) for arbitrary z and ζ in
L2(Ω); we have

|u1 − u2|H1(Ω) ≤
S4S̃4

µ
|u2|H1(Ω)‖ζ‖L2(Ω) . (3.36)

We have also seen that (3.22) defines z in L2(Ω) in terms of u in H1
T (Ω), but in these spaces z is not

locally Lipschitz with respect to u. Indeed, let z1 be the solution of (3.22) associated with u and z2 the
solution of (3.22) associated with u + v where u and v are arbitrary in H1

T (Ω). Then,

µ (z2 − z1) + α (u + v) · ∇(z2 − z1) = µ curlv − α v · ∇ z1 ,

and we do not know how to bound the last term, because there is no reason why α v · ∇ z1 should be in
L2(Ω). For this term to be in L2(Ω), it suffices to ask for example that v ∈ L∞(Ω)2 and z1 ∈ H1(Ω).
Now, a sufficient condition for z1 ∈ H1(Ω) is (cf. Remark 3.7): Ω convex, u ∈ (W 1,∞(Ω) ∩ H2(Ω))2,
curlf ∈ H1(Ω) and

|α|‖∇u‖L∞(Ω) ≤ µ− η for a number η > 0, η < µ . (3.37)

In this case, we have

‖z2 − z1‖L2(Ω) ≤ ‖curlv‖L2(Ω) +
|α|
µ
‖v‖L∞(Ω)|z1|H1(Ω) .

The same argument shows that the mapping u 7→ z from H1
T (Ω) with values in Xu is not differentiable.

This explains the poor performance of the Implicit Function Theorem when applied to the discrete P.

4 Approximation in two dimensions

From now on, we assume that the domain Ω is a Lipschitz polygon, so it can be entirely triangulated.
We shall discuss here only two discrete schemes for Problem P: one that uses a centered approximation of
the transport term and one that uses an upwind approximation of the discontinuous Galerkin type. The
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reader can refer to [31] and [33] for other schemes. The numerical analysis of the upwind approximation
is more technical than that of the centered approximation, but it usually gives better results.

The crucial point of the preceding section is that Problem P has at least one solution, without restric-
tion on the data (exactly as for the incompressible steady Navier-Stokes system) and for constructing a
solution it is not necessary that the velocity gradient be bounded in L∞. The schemes presented here
are chosen so that this bound is not necessary in the discrete case. This will enable us to really do
their numerical analysis; otherwise, this analysis is an open problem. Thus, the finite element spaces are
chosen to satisfy three criteria:
• the schemes must have a solution in a Lipschitz polygon, without restriction on the data,
• always without restriction, each discrete solution must converge strongly to a solution of the exact
problem, as the mesh-size tends to zero,
• under suitable restrictions on the data and the angles of the polygon, the discrete solutions must satisfy
error inequalities that lead to error estimates.

Let us triangulate the domain. Let κ be an arbitrary triangle; we note hκ its diameter and ρκ the
diameter of its inscribed circle. Let h > 0 be a discretization parameter and Th a regular family of
triangulations of Ω, made of triangles with maximum diameter h, i.e.

h := max
κ∈Th

hκ , max
κ∈Th

hκ

ρκ
≤ σ0 , (4.1)

with a constant σ0 independent of h (cf. [16]). As usual, the triangulation is such that any pair of triangles
are either disjoint, or share a vertex, or a complete side.

4.1 A centered approximation

We first describe a general centered approximation with continuous pressure. Let Xh,T be a finite-
element space made of continuous vector-valued functions, with vanishing tangential trace on ∂Ω, Xh =
Xh,T ∩ H1

0 (Ω)2, and Mh and Zh be two finite-element spaces made also of continuous functions, the
functions of Mh having zero mean-value. We suppose that gh is a suitable approximation of g extended
to Ω, specified further on. We approximate Problem P by: Find uh in Xh+gh, ph in Mh and zh = (0, 0, zh)
with zh in Zh, such that

∀vh ∈ Xh , µ(∇uh,∇vh) + (zh × uh,vh)− (ph,div vh) = (f ,vh) , (4.2)

∀qh ∈ Mh , (qh,div uh) = 0 , (4.3)

∀θh ∈ Zh , µ (zh, θh) + α (uh · ∇ zh, θh) +
α

2
((div uh)zh, θh) = µ (curl uh, θh) + α (curlf , θh) . (4.4)

As usual, (cf. [60]), the last term in the left-hand side is chosen so that zh satisfies:

µ ‖zh‖2L2(Ω) = µ(curl uh, zh) + α(curl f , zh) . (4.5)

We note Wh and Vh the spaces:

Wh = {v ∈ Xh,T ; ∀q ∈ Mh ,

∫
Ω

q div v dx = 0} , Vh = Wh ∩H1
0 (Ω)2 . (4.6)

As in all approximations of incompressible fluids, the spaces Xh and Mh are not independent. They
must satisfy a compatibility condition, the discrete inf-sup condition of Babuška-Brezzi (cf. [3] or [13]),
uniform with respect to h: there exists a constant β∗ > 0, independent of h, such that for all qh ∈ Mh,

sup
vh∈Xh

∫
Ω

qh div vh dx

|vh|H1(Ω)
≥ β∗‖qh‖L2(Ω) . (4.7)

Similarly, to prove existence of discrete solutions, gh cannot be an arbitrary approximation of g in Xh,T ;
it must belong to Wh. This raises the same question on the lifting as for the exact problem: what is the
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choice of gh for ‖|gh| |v|‖L2(Ω) to be bounded by ε |v|H1(Ω) with ε arbitrary ? The simplest idea consists
in approximating well the lifting function ug. Therefore this approximation should belong to Wh and
mimick as best as possible the estimate (3.32). More precisely, suppose we have an operator Ph such that
Ph(ug) ∈ Wh and write

‖|Ph(ug)| |v|‖L2(Ω) ≤ ‖|Ph(ug)− ug| |v|‖L2(Ω) + ‖|ug| |v|‖L2(Ω) .

If Ph satisfies an optimal error estimate in L2+γ for γ > 0:

‖Ph(ug)− ug‖L2+γ(Ω) ≤ Ch
2

2+γ |ug|H1(Ω) ,

then in view of (3.31), we see that if h < ε, then (3.32) holds with the factor ε1/2−δ instead of ε1−δ, and
hence ε is of the order of µ2. This loss of ε1/2 is due to the fact that the discrete velocities are not exactly
divergence-free. When their divergence is zero, then the stream-function is directly approximated and we
recover the factor ε1−δ. The corresponding finite elements are more costly, but they allow to save on the
mesh-size.

The condition h < ε is very restrictive when ε is small, because it imposes a very small mesh-size
throughout the domain, solely due to the boundary datum. But if the support of Ph(ug) is close to that
of ug, then it can be replaced by a condition on the mesh-size near the boundary, since the support of
ug is concentrated there. Thus, we need only refine the triangulation near the boundary.

Besides this, to estimate the error of (4.2)–(4.4), we shall need further on the following decoupling
inequality:

|uh − u|W 1,r(Ω) ≤ |Ph(u)− u|W 1,r(Ω) + Ch2/r−1(K1(h)|Ph(u)− u|H1(Ω) + ‖p− rh(p)‖L2(Ω))

+ CK2(h)
(
1 + h2/r−1/2(1 + K1(h))

)
‖z − zh‖L2(Ω) ,

(4.8)

for r ∈ [2, 4], where K1 and K2 are defined further on. It enables to write the error on u in terms of that
on z. But to take good advantage of (4.8), we need a sharp estimate on the error of Ph in norm W 1,r.

From these considerations, it stems that we need an approximation operator that:
• preserves the discrete divergence,
• preserves approximately the support,
• and has optimal approximation properties in Lp and W 1,p for p > 2.
If an explicit and local construction of this operator is known, then these properties are easily proven.
But in the case of Taylor-Hood finite elements that we shall use here, this explicit construction is not
known. We cannot use directly Fortin’s Lemma, cf. [25] or [29], proving that the inf-sup condition (4.7)
guarantees automatically existence of an approximation operator preserving the discrete divergence and
stable in H1. Indeed, this operator is based on the solution of a discrete Stokes problem in the domain.
On one hand, this solution cannot (even approximately) preserve the support, because it is supported
by the whole domain. On the other hand, a good approximation estimate in Lp is derived by a duality
argument, which according to the values of p imposes restrictions on the angles of the boundary. Finally,
proving an optimal approximation estimate in W 1,p for p > 2 was until recently an open problem: it was
originally proven by [24] with a logarithmic factor.

In [31] and [34], we construct a quasi-local approximation operator that has the same properties
as a standard interpolation operator and that preserves the discrete divergence. The idea is to modify
appropriately the proof of the inf-sup condition proposed by [10] and [58] (cf. [29]). This proof proceeds in
two steps. First, a local inf-sup condition is established for discrete pressures with local zero mean-value.
Next passing to arbitrary discrete pressures is achieved by proving a global inf-sup condition for piecewise
constant pressures. The modification proposed here consists in eliminating this second step, because it
is not local.

Now, we describe the finite element spaces (cf. [38]):

Xh,T = {vh ∈ C0(Ω)2 ; ∀κ ∈ Th , vh|κ ∈ IP 2
2} ∩H1

T (Ω) , Xh = Xh,T ∩H1
0 (Ω)2 , (4.9)
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Mh = {qh ∈ C0(Ω) ; ∀κ ∈ Th , qh|κ ∈ IP 1} ∩ L2
0(Ω) , (4.10)

Zh = {θh ∈ C0(Ω) ; ∀κ ∈ Th , θh|κ ∈ IP 1} . (4.11)

The inf-sup condition for this element was first established by [5], next by [62] and later by [29] and
by [15]. All these proofs have in common the assumption that each triangle κ has at most one side on
∂Ω.

Eliminating the step with piecewise constant pressures stems from the observation that the above
references construct in each element an auxiliary velocity in the space

X̃h = {vh ∈ Xh ; ∀κ ∈ Th ,

∫
κ

div vh dx = 0} ,

and establish a local weak inf-sup condition for each pressure in

M̃h = {q̃h ; qh ∈ Mh} , where q̃h = qh −
1
|κ|

∫
κ

qh dx .

It is weak in the sense that the associated velocities do not vanish on the boundary of κ. Thus, if
Πh ∈ L(H1

T (Ω);Xh,T ) is an auxiliary interpolation operator that satisfies for all v ∈ H1
T (Ω):

∀κ ∈ Th ,

∫
κ

div(Πh(v)− v)dx = 0 , (4.12)

and has optimal approximation properties, this inf-sup condition allows one to define Ph by:

Ph(v) = Πh(v) + ch(v) , (4.13)

where the correction ch(v) ∈ X̃h is the solution of

∀qh ∈ M̃h ,

∫
Ω

qhdiv ch(v) dx =
∫

Ω

qhdiv(v −Πh(v)) dx . (4.14)

Owing to (4.12), (4.14) and the definition of X̃h, we have that Ph preserves automatically the discrete
divergence, i.e.

∀w ∈ H1
T (Ω) , ∀qh ∈ Mh ,

∫
Ω

qhdiv(Ph(w)−w) dx = 0 . (4.15)

To guarantee the quasi-local character of Ph, the elements are grouped into “star-like” macro-elements
(with or without overlaps) that share a common vertex, and ch(v) is made to vanish on the boundary
of each macro-element. Furthermore, in each macro-element, the inf-sup condition holds for any norm,
since the macro-element involves only finite-dimensional spaces on which all norms are equivalent. Hence
we can prove that:

∀v ∈ H1
T (Ω) , ‖v − Ph(v)‖Lp(Ω) ≤ C h2/p|v|H1(Ω) , (4.16)

∀v ∈ H1
T (Ω) ∩W s,p(Ω)2 , |v − Ph(v)|W m,p(Ω) ≤ C hs−m|v|W s,p(Ω) , (4.17)

for all p with 2 ≤ p ≤ ∞ and all s with 1 ≤ s ≤ 3, m = 0, 1. And by construction, the support of Ph(v)
satisfies:

dist
(
supp(Ph(v)), supp(v)

)
≤ C h , (4.18)

with a constant C independent of h.

Let us revert to the discrete problem (4.2)–(4.4). In view of the above considerations, we take
gh = Ph(ug). Note that the expression of ug is not necessary for this, because if w is another lifting of
g, then ug −w vanishes on the boundary, and since Ph preserves the zero boundary values, we have

Ph(w)|∂Ω = Ph(ug)|∂Ω . (4.19)
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This is why, in practice, gh is needed only on the boundary and is constructed by interpolating directly
g, with an interpolation that preserves the vanishing tangential trace.

Besides this, considering that f is fixed, for a given zh, the solution (uh, ph) of (4.2), (4.3) depends
only on the trace of gh. It is unique and does not depend on the choice of gh inside the domain. Thus,
according to this choice, we find a variety of estimates for uh and ph in terms of zh. In particular, we
can also use the discrete analogue wh of wg (cf.(3.28)) defined by: wh ∈ Vh + gh unique solution of:

∀vh ∈ Vh , (∇wh,∇vh) = 0 . (4.20)

Observing that
∀vh ∈ Vh + gh , |wh|H1(Ω) ≤ |vh|H1(Ω) ,

and taking vh = Ph(wg), we find

|wh|H1(Ω) ≤ |Ph(wg)|H1(Ω) ≤ C1|wg|H1(Ω) ≤ C1L‖g‖H1/2(∂Ω) , (4.21)

where the constant C1 is derived from (4.17) and L is the constant of (3.29). With these two liftings, it
is easy to show existence of a solution of (4.2)–(4.4):

Lemma 4.1 Under the above assumptions on the triangulation, for each zh ∈ Zh, (4.2), (4.3) has a
unique solution uh ∈ Xh + gh. This solution satisfies:

|uh|H1(Ω) ≤
S2

µ
‖f‖L2(Ω) + K1(h)C1L‖g‖H1/2(∂Ω) , (4.22)

where

K1(h) = 1 +
S4S̃4

µ
‖zh‖L2(Ω) ,

‖ph‖L2(Ω) ≤
1
β∗

(
S2‖f‖L2(Ω) + µC1L‖g‖H1/2(∂Ω) + S4S̃4|uh|H1(Ω)‖zh‖L2(Ω)

)
. (4.23)

Moreover, there exists a constant C2 > 0, independent of h, such that for all ε > 0, if for a number
τ > 0,

hb < C2ε
2+τ‖g‖−2−τ

H1/2(∂Ω)
, (4.24)

where hb is the maximum diameter of the elements in a neighborhood of ∂Ω, then for all s > τ
2 , we have

|uh|H1(Ω) ≤
S2

µ
‖f‖L2(Ω) +

C3

ε1+s
‖g‖2+s

H1/2(∂Ω)
+

ε

µ
‖zh‖L2(Ω) , (4.25)

where the constant C3 depends on s and τ , but not on h, µ and ε.

On substituting (4.25) into (4.5) and choosing

ε =
µ

2
√

2
,

we infer the following estimate for zh.

Theorem 4.2 Under the above assumptions on the triangulation, the constant C2 of (4.24) is such that
for all µ > 0 and α ∈ IR, for all f in H(curl,Ω) and all g in H1/2(∂Ω)2 satisfying g · n = 0, if

hb < C2(
µ

2
√

2
)2+τ‖g‖−2−τ

H1/2(∂Ω)
, for some τ > 0 , (4.26)

then (4.2)–(4.4) has at least one solution (uh, ph, zh) in (Xh + gh)×Mh×Zh and each solution satisfies
the a priori estimates (4.22), (4.23) and (4.25) with the same constant C3. In addition, for all s > τ

2 ,

‖zh‖L2(Ω) ≤ 2
√

2
(S2

µ
‖f‖L2(Ω) +

|α|√
2µ
‖curlf‖L2(Ω) + (

2
√

2
µ

)1+sC3‖g‖2+s
H1/2(∂Ω)

)
. (4.27)
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Note that these bounds still hold when α tends to zero.
These bounds, uniform with respect to h permit to establish weak convergence: we can extract a

sub-sequence, still noted uh, ph, zh such that

lim
h→0

uh = u weakly in W , lim
h→0

ph = p weakly in L2
0(Ω) , lim

h→0
zh = z weakly in L2(Ω) .

Then we prove that (u, p) is the solution of (3.19)–(3.21) associated with z. But passing to the limit in
(4.4), we do not recover (3.22), because in the trilinear terms of (4.4) we have the product of two weakly
convergent sequences. For this, we need the strong convergence of the divergence. Nevertheless, by taking
the difference between (4.2) and (3.19), we can prove that uh converges strongly to u in H1(Ω)2 and
similarly ph converges strongly to p in L2(Ω). The strong convergence of uh allows one to pass to the
limit in (4.4) and we find (3.22).

It remains to establish error estimates. By taking the difference between the exact and discrete
equations,we find the following equalities for all vh in Vh, all qh in Mh and all θh in Zh:

µ(∇(uh − u),∇vh) + ((zh − z)× uh,vh) + (z × (uh − u),vh)− (qh − p, div vh) = 0 , (4.28)

µ(zh − z, θh) + α ((uh − u) · ∇ zh, θh) + α (u · ∇(zh − z), θh) +
α

2
((div(uh − u))zh, θh)

= µ(curl(uh − u), θh) .
(4.29)

From these, we deduce first estimates (note that Ph(u)− uh vanishes on ∂Ω):

|u− uh|H1(Ω) ≤ 2|u− Ph(u)|H1(Ω) +
S4

µ
‖Ph(u)‖L4(Ω)‖z − zh‖L2(Ω) +

S4

µ
‖z‖L2(Ω)‖u− Ph(u)‖L4(Ω)

+
√

2
µ
‖p− rh(p)‖L2(Ω) ,

(4.30)

‖p− ph‖L2(Ω) ≤ 2 ‖p− rh(p)‖L2(Ω) +
µ

β∗
|u− Ph(u)|H1(Ω)

+
S4S̃4

β∗
(
‖z‖L2(Ω)|u− uh|H1(Ω) + |uh|H1(Ω)‖z − zh‖L2(Ω)

)
,

(4.31)

where rh(p) is a good approximation of p in Mh (cf. [9], [20] or [56]);

‖z − zh‖L2(Ω) ≤ 2 ‖z − λh‖L2(Ω) + ‖curl(u− uh)‖L2(Ω)

+
|α|
µ

(
‖(u− uh) · ∇λh‖L2(Ω) + ‖u · ∇(z − λh)‖L2(Ω) +

1
2
‖div(u− uh)λh‖L2(Ω)

)
,

(4.32)

for any λh ∈ Zh. Clearly, the difficulty comes from the factors of |α|µ in (4.32). It does not seem possible to
bound them without supposing that z belongs to H1(Ω) and u to a smaller space than H1(Ω)2 (compare
with Remark 3.8). If we assume that z ∈ H1(Ω) and u ∈ W 1,2+1/4(Ω)2, we have:

‖z − zh‖L2(Ω) ≤ 2 ‖z −Rh(z)‖L2(Ω) +
√

2|u− uh|H1(Ω)

+
|α|
µ

(|Rh(z)|H1(Ω)(‖u− uh‖L∞(Ω) + C

√
2

2
|u− uh|W 1,2+1/4(Ω)) + ‖u‖L∞(Ω)|z −Rh(z)|H1(Ω)) ,

(4.33)

where Rh(z) is also a good approximation of z in Zh and C is a Sobolev imbedding constant. The choice
of exponent 2 + 1/4 is arbitrary; it suffices that this exponent be greater than two. But it is better to
take it close to two, so as to avoid a quasi-uniformity condition on the mesh (i.e. hκ ≥ τh for τ > 0
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independent of h). With this choice, we need a bound for u− uh in W 1,2+1/4(Ω)2; this is the object of
(4.8):

|uh − u|W 1,r(Ω) ≤ |Ph(u)− u|W 1,r(Ω) + Ch2/r−1(K1(h)|Ph(u)− u|H1(Ω)

+ ‖p− rh(p)‖L2(Ω)) + CK2(h)
(
1 + h2/r−1/2(1 + K1(h))

)
‖z − zh‖L2(Ω) ,

where

K2(h) =
1
µ
‖w‖L4(Ω)

(
1 +

S2
4

µ
‖z‖L2(Ω)

)
,

and w is the solution of the generalized Stokes equation (3.19)–(3.21) with zh instead of z. It is written for
a quasi-uniform triangulation, because it involves inverse inequalities; on the other hand, if r ∈ [2, 4], it
requires no restriction on the angles of the domain. When the domain is convex (which is assumed in order
that z ∈ H1(Ω)) and when g belongs to H1/2+s(∂Ω)2 for some s ∈ (0, 1/2), then this quasi-uniformity
can be relaxed as follows: if

∀κ ∈ Th , ρκ ≥ γ h6 , (4.34)

with a constant γ independente of h, then

|uh − u|W 1,2+1/4(Ω) ≤ |Ph(u)− u|W 1,2+1/4(Ω) +
C1

ρ
1/9
min

(K1(h)|Ph(u)− u|H1(Ω)

+
√

2
µ
‖p− rh(p)‖L2(Ω)) + ‖z − zh‖L2(Ω)

(
C2K2(h) + C3h

1/4K3(h)(1 + K1(h))
)
,

(4.35)

where ρmin is the minimum of ρκ for all κ in Th, Ci denote constants independent of h and

K3(h) =
1
µ

(
‖w‖L∞(Ω) + C∞K2(h)‖z‖L2(Ω)

)
.

The same estimate is valid for ‖uh − u‖L∞(Ω) with the term ‖Ph(u) − u‖L∞(Ω) in the right-hand side.
By substituting these bounds into (4.33), supposing that the domain is convex and the data sufficiently
small and smooth (a condition that is close to the one that guarantees uniqueness of the exact solution),
we prove that ‖z − zh‖L2(Ω) satisfies an error inequality that shows that the scheme has order one when
z ∈ H2(Ω), u ∈ H3(Ω)2 and p ∈ H2(Ω):

‖z − zh‖L2(Ω) + ‖u− uh‖H1(Ω) + ‖p− ph‖L2(Ω) ≤ C h .

4.2 An upwind approximation

The above result is not optimal with respect to the degree of the polynomials used. The loss of optimality
arises from the discretization of the transport equation. We can gain a little – a factor h1/2 – by
an upwinding approximation of the transport term. There are several upwinding techniques. In [31]
upwinding is achieved by “streamline diffusion”, introduced by [40] (see also [41] and [52]). Whereas
in [33] upwinding is produced by the discontinuous Galerkin method introduced by [43] for solving a
neutron transport equation. We present here this second approach with the same velocity and pressure
spaces as in the preceding paragraph. On the other hand, we take for Zh piecewise polynomials of degree
one in each triangle:

Zh = {θh ∈ L2(Ω) ; ∀κ ∈ Th , θh|κ ∈ IP 1} . (4.36)

For each discrete velocity uh in H1
T (Ω) and for each triangle κ, we set

∂κ− = {x ∈ ∂κ ; αuh · n < 0} . (4.37)

Note that, when we describe all triangles κ of Th, ∂κ− only involves interior segments of Th since uh ·n = 0
on ∂Ω. Then, we discretize the trilinear terms α[(u · ∇ z, θ) + 1

2 ((div u)z, θ)] by

c(uh; zh, θh) =
∑

κ∈Th

(∫
κ

α(uh·∇ zh)θh dx+
∫

∂κ−

|αuh·n|(zint
h −zext

h )θint
h ds

)
+

α

2

∫
Ω

(div uh)zhθh dx , (4.38)
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where the symbol int (resp. ext) denotes the trace on the segment ∂κ of the function coming from the
interior (resp. exterior) of κ. Note also that, when summing over all triangles, the integral runs over
each internal side exactly once because uh · n changes sign when passing from one triangle to the next
adjacent triangle.

With Zh defined by (4.36), the discrete scheme reads: Find uh ∈ Xh + gh, ph ∈ Mh and zh ∈ Zh

solution of
∀vh ∈ Xh , µ(∇uh,∇vh) + (zh × uh,vh)− (ph,div vh) = (f ,vh) , (4.39)

∀qh ∈ Mh , (qh,div uh) = 0 , (4.40)

∀θh ∈ Zh , µ (zh, θh) + c(uh; zh, θh) = µ (curl uh, θh) + α (curlf , θh) . (4.41)

Remark 4.3 We can also approximate z by piecewise constant functions in each triangle. It can be
associated with the “mini-element” (cf. [2] or [29], [15]) for discretizing the velocity and pressure. The
analysis below extends to this approximation and we find an error of the order of h1/2.

The numerical analysis of (4.39)–(4.41) is very close to that of (4.2)–(4.4), and we shall only present
here modifications brought by (4.41). The following Green’s formula is established in [43].

Lemma 4.4 For all vh in Xh, for all zh and θh in Zh, we have

c(vh; zh, θh) =
∑

κ∈Th

(
−

∫
κ

α(vh · ∇ θh)zh dx +
∫

∂κ−

|αvh · n|zext
h (θext

h − θint
h )ds

)
− α

2

∫
Ω

(div uh)θhzh dx .

(4.42)

On one hand, when θh ∈ H1(Ω), (4.42) reduces to

c(vh; zh, θh) = −
∫

Ω

α(vh · ∇ θh)zh dx− α

2

∫
Ω

(div uh)θhzh dx . (4.43)

On the other hand, when θh = zh ∈ Zh, then

c(vh; zh, zh) =
1
2

∑
κ∈Th

∫
∂κ−

|αvh · n|(zext
h − zint

h )2ds . (4.44)

This enables us to deduce from (4.41) the following bound:

µ ‖zh‖2L2(Ω) +
1
2

∑
κ∈Th

∫
∂κ−

|αuh · n|(zext
h − zint

h )2ds = µ (curluh, zh) + α (curl f , zh) . (4.45)

Whence the existence theorem:

Theorem 4.5 There exists a constant C1 > 0, independent of h, such that for all µ > 0 and α ∈ IR, for
all f ∈ H(curl,Ω) and all g ∈ H1/2(∂Ω)2 satisfying g · n = 0, if

hb < C1µ
2+τ‖g‖−2−τ

H1/2(∂Ω)
, for some τ > 0 , (4.46)

then (4.39)–(4.41) has at least one solution and each solution satisfies the a priori estimates (4.22),
(4.23),

‖zh‖L2(Ω) ≤
√

2|uh|H1(Ω) +
|α|
µ
‖curlf‖L2(Ω) , (4.47)

1
2

∑
κ∈Th

∫
∂κ−

|αuh · n|
(
zext
h − zint

h

)2
ds ≤

(√
2µ|uh|H1(Ω) + |α|‖curlf‖L2(Ω)

)
‖zh‖L2(Ω) . (4.48)

Moreover, we have for all real number s > τ
2 :

‖zh‖L2(Ω) ≤
C2

µ1+s
‖g‖2+s

H1/2(∂Ω)
+ 2

√
2
S2

µ
‖f‖L2(Ω) + 2

|α|
µ
‖curlf‖L2(Ω) , (4.49)

where C2 depends on s and τ , but not on h or µ.
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As in the preceding paragraph, we prove that a subsequence of (uh, ph, zh) converges weakly to
functions (u, p, z) in H1

T (Ω)×L2
0(Ω)×L2(Ω); in addition,

∑
κ∈Th

∫
∂κ−

|αuh ·n|(zext
h − zint

h )2ds converges
to a number S ≥ 0. Passing to the limit in (4.39), we see that (u, p, z) satisfies (3.19). Next, we prove
strong convergence of uh and ph, and the strong convergence of uh allows one to pass to the limit in
(3.22). Next, we show that

lim
h→0

‖zh‖L2(Ω) = ‖z‖L2(Ω) .

This implies on one hand the strong convergence of zh and on the other hand that S = 0.
As far as error estimates are concerned, (4.30) and (4.31) are unchanged, while(4.32) is replaced by:

µ‖zh − ζh‖2L2(Ω) +
∑

κ∈Th

1
2

∫
∂κ−

|αuh · n|((zh − ζh)ext − (zh − ζh)int)2ds

+
∑

κ∈Th

(
−α

∫
κ

uh · ∇(zh − ζh)(ζh − z)dx +
∫

∂κ−

|αuh · n|((zh − ζh)ext − (zh − ζh)int)(ζh − z)extds

)
− α

2

∫
Ω

div(uh − u)(ζh − z)(zh − ζh)dx +
α

2

∫
Ω

div(uh − u)z(zh − ζh)dx

+ α

∫
Ω

(uh − u) · ∇ z(zh − ζh)dx = µ(z − ζh, zh − ζh) + µ(curl(uh − u), zh − ζh) ,

(4.50)

for arbitrary ζh ∈ Zh. The third and fourth terms of the left-hand side must be handled with care in order
to take advantage of the upwinding (cf. [52]). Here we take advantage of the discontinuity of functions
of Zh and we obtain with %h(z), the L2 projection of z in IP 1 in each triangle κ:

‖zh − %h(z)‖2L2(Ω) ≤ c5
|α|2

µ2

(
|z|2H1(Ω)‖uh − u‖2L∞(Ω) + |u|2W 1,∞(Ω)‖z − %h(z)‖2L2(Ω)

)
+ c6h

|α|
µ
‖uh‖L∞(Ω)|z − %h(z)|2H1(Ω) + c7

|α|2

µ2
‖z‖2H1(Ω)‖div(uh − u)‖2L2+1/4(Ω)

+ 2
(
‖z − %h(z)‖2L2(Ω) + 2|uh − u|2H1(Ω)

)
.

(4.51)

Besides this, (4.35) still holds here under the same hypotheses. Hence, as in the preceding paragraph,
we arrive at the following error inequality, under similar assumptions on the domain, the data and the
triangulation:

‖zh − z‖L2(Ω) ≤ C
(
‖Ph(u)− u‖L∞(Ω) + |Ph(u)− u|W 1,2+1/4(Ω) +

1

ρ
1/9
min

(|Ph(u)− u|H1(Ω)

+ ‖rh(p)− p‖L2(Ω)) + ‖Ph(u)− u‖L4(Ω) + ‖%h(z)− z‖L2(Ω) + h1/2|%h(z)− z|H1(Ω)

)
.

(4.52)

The last term above is dominating. In the best case, it is of the order of h3/2 and improving it appears
problematic. As a conlusion, if z ∈ H2(Ω), u ∈ H3(Ω)2 and p ∈ H2(Ω), the scheme has order 3/2:

|uh − u|H1(Ω) + ‖ph − p‖L2(Ω) + ‖zh − z‖L2(Ω) ≤ C h3/2 . (4.53)

We end this paragraph with a successive approximation algorithm for computing numerically (uh, ph, zh)
solution of (4.39)–(4.41). Let z0

h be an arbitrary function of Zh (for instance z0
h = 0); for k ≥ 0 we compute

the sequence uk
h ∈ Xh + gh, pk

h ∈ Mh and zk+1
h ∈ Zh by solving first the generalized Stokes problem:

∀vh ∈ Xh , µ(∇uk
h,∇vh) + (zk

h × uk
h,vh)− (pk

h,div vh) = (f ,vh) ,

∀qh ∈ Mh , (qh,div uk
h) = 0 ,
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and next the linear transport equation:

∀θh ∈ Zh , µ (zk+1
h , θh) + c(uk

h; zk+1
h , θh) = µ (curl uk

h, θh) + α (curl f , θh) .

We prove that this sequence of functions satisfy a priori estimates similar to (4.22), (4.23), (4.48) and
(4.49), uniform with respect to h and k. Therefore, we can extract a subsequence that converges uniformly
with respect to h when k tends to infinity. Under the sufficient conditions of Theorem 3.4 [33] on the
domain and data, the limiting functions is a solution (uh, ph, zh) of (4.39)–(4.41). We can proceed in the
same fashion to compute numerically a solution of problem (4.2)–(4.4).

Remark 4.6 Compare the convergence of this algorithm with the results of [4] obtained for the same
problem, with the same finite-element spaces, but with the other formulation (cf. (3.16)–(3.18)). The
authors prove existence and convergence of a solution of their scheme, but cannot establish convergence
of their successive approximation algorithm, except if the algorithm starts with an approximation of the
exact solution that has the same order of accuracy as their final result. In other words, they must have
already solved the problem they propose to solve in order to guarantee convergence of their algorithm.
This is a popular approach; it can be found in all publications intending to perform the numerical analysis
of Oldroyd models. All establish existence and convergence of a discrete solution, but none of them knows
how to prove convergence of an algorithm to compute this solution. The reader can refer to the article
by Picasso and Rappaz [51] where the analysis is an application of the Implicit Function Theorem.

4.3 Heuristic remarks on approximation in three dimensions

To simplify, consider the problem with a zero Dirichlet boundary condition in 3-D: Find (u, p,z) in
W 1,∞(Ω)3 × L2

0(Ω)× L2(Ω)3 solution of

−µ∆ u + z × u +∇ p = f , div u = 0 ,

u = 0 on ∂Ω ,

µz + α u · ∇ z − α z · ∇u = µ curlu + α curlf .

It is equivalent to the steady-state version of (3.1)–(3.4). The theoretical analysis of [7] shows that, under
suitable restrictions on the data and the domain, this problem has at least one solution.

Consider the centered approximation in 3-D with the Taylor-Hood IP 2-IP 1 finite-element spaces:

Xh = {vh ∈ C0(Ω)3 ; ∀κ ∈ Th , vh|κ ∈ IP 3
2 , vh|∂Ω = 0} ,

Mh = {qh ∈ C0(Ω) ; ∀κ ∈ Th , qh|κ ∈ IP 1} ∩ L2
0(Ω) ,

Zh = {θh ∈ C0(Ω)3 ; ∀κ ∈ Th , θh|κ ∈ IP 3
1} .

The pair (Xh,Mh) satisfies a uniform inf-sup condition [15], but in contrast to the 2-D element, it does
not appear to have a quasi-local operator unless the mesh is appropriately structured. If the mesh is
made of hexahedra decomposed into twelve tetrahedra, then an operator Ph can be constructed as in two
dimensions and it has the same approximation properties. With these spaces, we discretize Problem P
by: Find uh in Xh, ph in Mh and zh in Zh, such that

∀vh ∈ Xh , µ(∇uh,∇vh) + (zh × uh,vh)− (ph,div vh) = (f ,vh) , (4.54)

∀qh ∈ Mh , (qh,div uh) = 0 , (4.55)

∀θh ∈ Zh , µ (zh,θh) + α[(uh · ∇ zh − zh · ∇uh,θh) +
1
2
((div uh)zh,θh)]

= µ (curluh,θh) + α (curlf ,θh) .
(4.56)

Heuristically speaking, to obtain a priori estimates for uh, ph,zh, we must first derive from (4.54) with
fixed zh, a bound of the form:

‖∇uh‖L∞(Ω) ≤ C ,
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where C is uniformly bounded with respect to h. In 2-D, this inequality stems solely from inverse
inequalites because H2 is “almost imbedded” into W 1,∞. But in 3-D, this imbedding fails by a lot, and
we require sharp approximation properties of the Stokes projection. First, reverting to the solution w of
the generalized Stokes equation (3.19)–(3.21) with zh instead of z, we can prove that if the domain is
convex and the triangulation quasi-uniform, in view of the good approximation properties of Ph:

‖uh − Ph(w)‖L∞(Ω) ≤ C‖zh‖L2(Ω) ,

where C is a constant independent of h. Next, for fixed uh and zh, we see that (4.54) is a discretization
of:

−∆v +∇ q = f − zh × uh , div v = 0 in Ω ,

v = 0 on ∂Ω ;

more precisely, uh is the Stokes projection of v. Owing to Sobolev’s imbeddings, we see that if the angles
of the domain are sufficiently restricted for the homogeneous Stokes problem to have the regularity:
Lr(Ω)3 gives W 2,r(Ω)3 for some r > 3, and if f ∈ Lr(Ω)3, then v and q satisfy

|v|W 2,r(Ω) + |q|W 1,r(Ω) ≤ C‖zh‖L2(Ω)‖zh‖Lr(Ω) .

Therefore, the estimates we need reduce on one hand to proving

|uh|W 1,∞(Ω) ≤ C(|v|W 2,r(Ω) + |q|W 1,r(Ω)) , (4.57)

with a constant C independent of h and on the other hand, to proving that for given uh in W 1,∞(Ω)3

and curlf in Lr(Ω)3, the solution zh of (4.56) satisfies:

‖zh‖Lr(Ω) ≤ C , (4.58)

for the above r > 3. The proof of (4.57) is very recent while (4.58) is an open problem.

Remark 4.7 Regarding the exact problem, if f ∈ Lr(Ω)3 and the domain is as above, the solution u of
the first equation, for z given in Lr(Ω)3, satisfies the estimate:

|u|W 2,r(Ω) ≤ C1

(
‖f‖Lr(Ω) + C2‖z‖Lr(Ω) + C3‖z‖2Lr(Ω)

)
.

On the other hand, if curlf ∈ Lr(Ω)3, the solution z of the second equation, for u given in W 1,∞(Ω)3

verifying (3.37):
|α|‖∇u‖L∞(Ω) ≤ µ− η for some real number η > 0, η < µ ,

is bounded by:

‖z‖Lr(Ω) ≤
1
η

(
µ‖curlu‖Lr(Ω) + |α|‖curlf‖Lr(Ω)

)
.

Therefore, we can reasonably hope to be able to prove (4.58).

5 A least-squares algorithm

The algorithm described here is published in the thesis of Park [49]. It applies to the steady and unsteady
problem in two and three dimensions, with a homogeneous Dirichlet boundary condition; it could also
apply to a tangential condition (3.21). To simplify, we restrict the discussion to the steady problem.

Revert to the steady version of (3.1)–(3.4):

−µ∆ u + curl(u− α ∆ u)× u +∇ p = f , div u = 0 in Ω , (5.1)

u = 0 on ∂Ω . (5.2)
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In three dimensions, we suppose that the data are such that this problem has at least one solution.
Instead of z, we introduce the auxiliary variable w formally defined by:

w = u− α ∆ u .

Substituting into (5.1), we obtain:

−µ∆ u + curlw × u +∇ p = f .

Note that w determines u ∈ V in each of the last two equations. Hence, we cannot use both for an
iterative method; but in contrast, we can use them for a least-squares method. Whence the following
algorithm:

• For w given in H1(Ω)d, find u1 = u1(w) in H1
0 (Ω)d solution of

u1 − α ∆ u1 = w in Ω . (5.3)

• For the same w, find (u2 = u2(w), p) in H1
0 (Ω)d × L2

0(Ω) solution of

−µ∆ u2 + curlw × u2 +∇ p = f , div u2 = 0 in Ω , (5.4)

The systems (5.3) and (5.4) can be put into variational formulations and each one has a unique solution,
but clearly there is no reason why u1(w) = u2(w). This equality is “forced” by finding w ∈ H1(Ω)d that
minimizes the norm |u1(w)− u2(w)|H1(Ω). Thus, we introduce the functional J : H1(Ω)d 7→ IR defined
by:

∀v ∈ H1(Ω)d , J(v) =
1
2
|u1(v)− u2(v)|2H1(Ω) , (5.5)

and we rewrite the problem as: Find w∗ ∈ H1(Ω)d such that

J(w∗) = inf
v∈H1(Ω)d

J(v) . (5.6)

It follows from the above assumptions that the original problem (5.1)–(5.2) has at least one solution;
hence the minimum of J(w) is attained and is zero.

We propose to approximate w∗ by a simple gradient algorithm:
• Starting step: guess w0 ∈ H1(Ω)d and choose a threshold ε.
• General step: for n ≥ 0, knowing wn and while

J(wn) > ε , (5.7)

compute the gradient gn ∈ H1(Ω)d solution of

∀h ∈ H1(Ω)d , (gn,h) + (∇ gn,∇h) = J ′(wn) · h , (5.8)

and the number ρn by
J(wn − ρngn) = inf

ρ∈IR
J(wn − ρgn) , (5.9)

then compute wn+1 by
wn+1 = wn − ρngn , (5.10)

and return to the general step.

Let us describe the computations. To avoid using the curl operator explicitly in (5.4), we use:

∀u,v ∈ H1
0 (Ω)d , (curlw × u,v) = b(v;u,w)− b(u;v,w)− (∇(u ·w),v) ,
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where

b(u;v,w) =
d∑

i,j=1

ui
∂vj

∂xi
wj dx .

Then (5.3) and (5.4) are respectively equivalent to: Find u1 and u2 in H1
0 (Ω)d solutions of

∀v ∈ H1
0 (Ω)d , (u1,v) + α(∇u1,∇v) = (w,v) , (5.11)

∀v ∈ H1
0 (Ω)d , µ (∇u2,∇v)− b(u2;v,w) + b(v;u2,w)− (p̃, v) = (f ,v) , (5.12)

∀q ∈ L2
0(Ω) , (q, div u2) = 0 , (5.13)

where up to a constant, p̃ = p − u2 ·w. The first is a system of d decoupled Laplace equations and u1

depends linearly on w. The second is a linearized Navier-Stokes problem, but the dependence of u2 on
w is not quadratic. Set

u1 = D−1
α (w) ,

and H(w) = u1(w)− u2(w); we can write:

H ′(w) · h = U1 −U2 ,

where
U1 = D−1

α (h) ,

and U2 ∈ V is the solution of

∀v ∈ V , µ (∇U2,∇v)− b(U2;v,w) + b(v;U2,w) = b(u2;v,h)− b(v;u2,h) . (5.14)

It is readily seen that problem (5.14) has a unique solution, because the bilinear form in the left-hand
side is trivially elliptic and is continuous for w in L4(Ω)d. The analysis done in Section 2 yields on one
hand,

|u2|H1(Ω) ≤
S2

µ
‖f‖L2(Ω) , (5.15)

and on the other hand,

|u2(h1)− u2(h2)|H1(Ω) ≤ 2
S2S4

µ2
‖f‖L2(Ω)‖h1 − h2‖L4(Ω) . (5.16)

Similarly,

|u′2(w) · h|H1(Ω) ≤ 2
S2S4

µ2
‖f‖L2(Ω)‖h‖L4(Ω) . (5.17)

None of the higher-order derivatives of u2 vanish; their behaviour is analogous to that of the first deriva-
tive. Thus, the third derivative does not vanish, so that u2 is not quadratic with respect to w.

Now we turn to the gradient g. It is defined by: g ∈ H1(Ω)d, solution of

∀v ∈ H1(Ω)d , (g,v) + (∇ g,∇v) = (∇(U1 −U2),∇(u1 − u2)) .

But, as the divergence of u1 is not zero, we define the projection Pu1 ∈ V of u1 on V :

∀v ∈ V , (∇Pu1,∇v) = (∇u1,∇v)) ,

and the gradient can also be expressed as

∀v ∈ H1(Ω)d , (g,v) + (∇ g,∇v) = (∇U1,∇(u1 − u2))− (∇U2,∇(Pu1 − u2)) . (5.18)
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With (5.14), the equation of the gradient becomes:

∀h ∈ H1(Ω)d , (g,h) + (∇ g,∇h) =
1
α

(h,u1 − u2)−
1
α

(U1,u1 − u2)

− 1
µ

[
b(U2;Pu1 − u2,w) + b(u2;Pu1,w)− b(Pu1;u2,h)− b(Pu1 − u2;U2,w)

]
.

(5.19)

Now, we must compute ρ according to (5.9). This computation is heuristic, because u′′′2 is not zero.
The equation

(∇H ′(wm − ρgm) · gm,∇H(wm − ρgm)) = 0 , (5.20)

determines ρ. Let us approximate H(wm − ρgm) by its second-order expansion:

H(wm − ρgm) ' H(wm)− ρH ′(wm) · gm +
ρ2

2
H ′′(wm) · (gm, gm) ,

and similarly
H ′(wm − ρgm) · gm ' H(wm) · gm − ρH ′′(wm) · (gm, gm) .

By substituting these two approximations into (5.20), we find an equation of the form ϕ(ρ) = 0 where ϕ
is a polynomial of degree three:

ϕ(ρ) =‖gm‖2H1(Ω) − ρ
[
(∇H ′′(wm) · (gm, gm),∇H(wm)) + |H ′(wm) · gm|2H1(Ω)

]
3
2
ρ2(∇H ′(wm) · gm,∇H ′′(wm) · (gm, gm))− 1

2
ρ3|H ′′(wm) · (gm, gm)|2H1(Ω) .

A study of ϕ enables us to locate and approximate its roots.

For the moment, we do not know how to establish convergence of this algorithm, even under strong
hypotheses on the data, such as the sufficient conditions for uniqueness. The difficulty lies in the non-
quadratic dependence of u2 on w. Nevertheless the numerical experiments of [49] give good results. The
velocity and pressure are approximated by the classical Taylor-Hood finite-element spaces that we have
seen before: Xh is defined by (4.9) and Mh by (4.10). The variable w is approximated in the space Zh

defined by (4.11).
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Abstract. A stabilized finite point method (FPM) for the meshless analysis of
incompressible fluid flow problems is presented. The stabilization approach is based
in the finite calculus (FIC) procedure. An enhanced fractional step procedure allowing
the semi-implicit numerical solution of incompressible fluids using the FPM is described.
Examples of application of the stabilized FPM to the solution of incompressible flow
problems are presented.

1 INTRODUCTION

Mesh free techniques have become quite popular in computational mechanics. A
family of mesh free methods is based on smooth particle hydrodynamic procedures
[1,2]. These techniques, also called free lagrangian methods, are typically used for
problems involving large motions of solids and moving free surfaces in fluids. A second
class of mesh free methods derive from generalized finite difference (GFD) techniques
[3,4]. Here the approximation around each point is typically defined in terms of Taylor
series expansions and the discrete equations are found by using point collocation.
Among a third class of mesh free techniques we find the so called diffuse element (DE)
method [5], the element free Galerking (EFG) method [6,7] and the reproducing kernel
particle (RKP) method [8,9]. These three methods use local interpolations for defining
the approximate field around a point in terms of values in adjacent points, whereas
the discretized system of equations is typically obtained by integrating the Galerkin
variational form over a suitable background grid.
The finite point method (FPM) proposed in [10–15] is a truly meshless procedure. The

approximation around each point is obtained by using standard moving least square
techniques similarly as in DE and EFG methods. The discrete system of equations
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is obtained by sampling the governing differential equations at each point as in GFD
methods.
The basis of the success of the FPM for solid and fluid mechanics applications is

the stabilization of the discrete differential equations. The stable form found by the
finite calculus procedure presented in [16–21] corrects the errors introduced by the point
collocation procedure, mainly next to the boundary segments. In addition, it introduces
the necessary stabilization for treating high convection effects and it also allows equal
order velocity-pressure interpolations in fluid flow problems [19,21].
The content of the chapter is structured as follows. In the next section the basis of the

FPM approximation is described. The stabilized governing equations for incompressible
flows derived using the finite calculus (FIC) approach are then presented. Next a three
step semi-implicit fractional solution scheme using the FPM approximation is described
in some detail. Finally, examples of the efficiency and accuracy of the stabilized FPM for
numerical solution of incompressible flow problems are presented, namely the analysis of
a driven cavity flow, the solution of a backwards facing step, the analysis of a submerged
cylinder and the aerodynamic study of a NACA airfoil.

2 INTERPOLATION IN THE FPM

Let Ωi be the interpolation domain (cloud) of a function u(x) and let sj with
j = 1, 2, · · · , n be a collection of n points with coordinates xj ∈ Ωi. The unknown
function u may be approximated within Ωi by

u(x) ∼= û(x) =
m
∑

l=1

pl(x)αl = p(x)Tαααααααααααααα (1)

where αααααααααααααα = [α1, α2, · · ·αm]
T and vector p(x) contains typically monomials, hereafter

termed “base interpolating functions”, in the space coordinates ensuring that the basis
is complete. For a 2D problem we can specify

p = [1, x, y]T for m = 3 (2)

and

p = [1, x, y, x2, xy, y2]T for m = 6 etc. (3)

Function u(x) can now be sampled at the n points belonging to Ωi giving
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
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where uh
j = u(xj) are the unknown but sought for values of function u at point j,

ûj = û(xj) are the approximate values, and pj = p(xj).
In the FE approximation the number of points is chosen so that m = n. In this case

C is a square matrix. The procedure leads to the standard shape functions in the FEM
[22].
If n > m, C is no longer a square matrix and the approximation can not fit all

the uh
j values. This problem can be simply overcome by determining the û values by

minimizing the sum of the square distances of the error at each point weighted with a
function ϕ(x) as

J =
n

∑

j=1

ϕ(xj)(u
h
j − û(xj))

2 =
n

∑

j=1

ϕ(xj)(u
h
j − pT

j αααααααααααααα)
2 (5)

with respect to the αααααααααααααα parameters. Note that for ϕ(x) = 1 the standard least square
(LSQ) method is reproduced.
Function ϕ(x) is usually built in such a way that it takes a unit value in the vecinity

of the point i typically called “star node” where the function (or its derivatives) are to
be computed and vanishes outside a region Ωi surrounding the point. The region Ωi
can be used to define the number of sampling points n in the interpolation region. A
typical choice for ϕ(x) is the normalized Gaussian function and this has been chosen in
the examples shown in the paper. Of course n ≥ m is always required in the sampling
region and if equality occurs no effect of weighting is present and the interpolation is
the same as in the LSQ scheme.
Standard minimization of eq.(5) with respect to αααααααααααααα gives

αααααααααααααα = C̄−1uh , C̄−1 = A−1B (6)

A =
n

∑

j=1

ϕ(xj)p(xj)p
T (xj)

B = [ϕ(x1)p(x1), ϕ(x2)p(x2), ·ϕ(xn)p(xn)]

(7)

The final approximation is obtained by substituting αααααααααααααα from eq.(6) into (1) giving

û(x) = pT C̄−1uh = NTuh =
n

∑

j=1

N i
ju

h
j (8)

where the “shape functions” for the i-th star node are

N i
j(x) =

m
∑

l=1

pl(x)C̄
−1
lj = pT (x)C̄−1 (9)
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Figure 1. Fixed weighting least square procedure

It must be noted that accordingly to the least square character of the approximation

u(xj) � û(xj) �= uh
j (10)

i.e. the local values of the approximating function do not fit the nodal unknown
values. Indeed û is the true approximation for which we shall seek the satisfaction of
the differential equation and the boundary conditions and uh

j are simply the unknown
parameters sought.
The weighted least square approximation described above depends on a great extend

on the shape and the way to apply the weighting function. The simplest way is to define
a fixed function ϕ(x) for each of the Ωi interpolation domains [11,12].
Let ϕi(x) be a weighting functions satisfying (Figure 1)

ϕi(xi) = 1

ϕi(x) �= 0 x ∈ Ωi

ϕi(x) = 0 x �∈ Ωi

(11)

Then the minimization square distance becomes

Ji =
n

∑

j=1

ϕi(xj)(u
h
j − û(xj))

2 minimum (12)

The expression of matrices A and B coincide with eq.(7) with ϕ(xj) = ϕi(xj).
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Note that according to (1), the approximate function û(x) is defined in each
interpolation domain Ωi. In fact, different interpolation domains can yield different
shape functions N i

j . As a consequence a point belonging to two or more overlapping
interpolation domains has different values of the shape functions which means that
N i

j �= Nk
j . The interpolation is now multivalued within Ωi and, therefore for any

useful approximation a decision must be taken limiting the choice to a single value.
Indeed, the approximate function û(x) will be typically used to provide the value of
the unknown function u(x) and its derivatives in only specific regions within each
interpolation domain. For instance by using point collocation we may limit the validity
of the interpolation to a single point xi. It is precisely in this context where we have
found this meshless method to be more useful for practical purposes [10–15].

3 STABILIZED FPM USING A FINITE CALCULUS APPROACH

Finite element solution of the incompressible Navier-Stokes equations with the
classical Galerkin method may suffer from numerical instabilities from two main sources.
The first is due to the advective-diffusive character of the equations which induces
oscillations for high values of the velocity. The second source has to do with the mixed
character of the equations which limits the choice of finite element interpolations for
the velocity and pressure fields.
Solutions of these two problems have been extensively sought in the last years.

Compatible velocity-pressure interpolations satisfying the inf-sup condition emanating
from the second problem above mentioned have been used. In addition, the advective
operator has been modified to include some “upwinding” effects [22–30]. Recent
procedures based on Galerkin Least Square [31,32], Characteristic Galerkin [33,34],
Variational Multiscale [35–37] and Residual Free Bubbles [38–40] techniques allow equal
order interpolation for velocity and pressure by introducing a Laplacian of pressure
term in the mass balance equation, while preserving the upwinding stabilization of the
momentum equations. Most of these methods lack enough stability in the presence of
sharp layers transversal to the velocity. This defficiency is usually corrected by adding
new “shock capturing” stabilization terms to the already stabilized equations [41–43].
The computation of the stabilization parameters in all these methods is based in “ad
hoc” generalizations of the parameters for the 1D linear advective-diffusive-reactive
problem [44,45].
This paper presents a different point view for deriving stabilized a finite point method

for incompressible flow problems. The starting point are the stabilized form of the
governing differential equations derived via a finite calculus (FIC) procedure. This
technique first presented in [16,17] is based on writting the different balance equations
over a domain of finite size and retaining higher order terms. These terms incorporate
the ingredients for the necessary stabilization of any transient and steady state numerical
solution already at the differential equations level. Application of the MLS interpolation

5



and point collocation to the consistently modified differential equations for the fluid
flow problem leads to a stabilized system of discretized equations which overcomes the
two problems above mentioned, i.e. the advective type instability and that due to lack
of compatibility between the velocity and pressure fields.
For the sake of preciseness the basic ideas of the FIC method are given next.

3.1 Basic concept of the finite increment calculus (FIC) method

Let us consider a sourceless transient problem over a one dimensional domain AB of
length L (Figure 2). The balance of flux q over a domain of finite size belonging to L
can be written as

qA − qB = 0 (13)

where A and B are the end points of the finite size domain of length h. As usual qA
and qB represent the values of the flux q at points A and B, respectively.

For instance, in an 1D advective-diffusive problem the flux q = −cuφ+k dφ
dx , where φ is

the transported variable (i.e. the temperature in a thermal problem), u is the advective
velocity and c and k are the advective and diffusive material parameters, respectively.

� � � � � � � � � � �
� � � � � � � � � � �q

A
q

B

A B

h
x

Figure 2. Equilibrium of fluxes in a finite balance domain

The flux qA can be expressed in terms of the values at point B by the following
Taylor series expansion

qA = qB − h
∂q

∂x
|B +

h2

2

d2q

dx2
|B +Oh3 (14)

Substituting (14) into (13) gives after simplification and neglecting cubic terms in h

dq

dx
−

h

2

dq

dx
= 0 (15)

where all terms are evaluated at the arbitrary point B.
Eq. (15) is the finite form of the balance equation over the domain AB. The

underlined term in eq.(15) introduces the necessary stabilization for the discrete solution
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of eq.(15) using any numerical technique. Distance h is the characteristic length of the
discrete problem and its value depends on the parameters of discretization method
chosen (such as the grid size). Note that for h → 0 the standard infinitesimal form of

the balance equation
(

dq
dx = 0

)

is recovered.
Above process can be extended to derive the stabilized balance differencial equations

for any problem in mechanics as

rd −
hj

2

∂ri
∂xj

= 0 (16)

where ri is the standard form of the ith differential equation for the infinitesimal
problem, hj are the dimensions of the domain where balance of fluxes, forces, etc.
is enforced, and j = 1, 2, 3 for 3D problems. Details of the derivation of eq.(16) for
steady-state and transient advective-diffusive and fluid flow problems can be found in
[16]. Applications of the FIC approach to the Galerkin finite element solution of these
problems are reported in [16–21].
The underlined stabilization terms in eqs.(15) and (16) are a consequence of accepting

that the infinitesimal form of the balance equations is an unreachable limit within
the framework of a discrete numerical solution. Indeed eqs.(3) or (4) are not longer
valid for obtaining an analytical solution following traditional integration methods from
infinitesimal calculus theory. The meaning of the new stabilized equations makes only
sense in the context of a discrete numerical method yielding approximate values of the
solution at a finite set of points within the analysis domain. Convergence to the exact
analytical value at the points will occur only for the limit case of zero grid size (except
for some simple 1D problems [16]) which also implies naturally a zero value of the
characteristic length parameters.
The FIC formulation presented below for incompressible flows can be considered an

extension of that recently developed in [21] for finite element analysis of incompressible
Navier-Stokes flows. The set of stabilized governing equations is first discretized in
time using a semi-implicit fractional step procedure and then solved in space using the
FPM. The stabilized formulation allows the use of an equal order interpolation for the
velocities and pressure variables.

3.2 FIC formulation of viscous flow equations

We consider the motion around a body of a viscous incompressible fluid.
The stabilized FIC form of the governing differential equations for the three

dimensional (3D) problem can be written as

Momentum

rmi
−
1

2
hmj

∂rmi

∂xj
−
1

2
δ
∂rmi

∂t
= 0 on Ω i, j = 1, 2, 3 (17)

7



Mass balance

rd +
1

2
hdj

∂rd
∂xj

= 0 on Ω j = 1, 2, 3 (18)

where

rmi =ρ

[

∂ui

∂t
+

∂

∂xj
(uiuj)

]

+
∂p

∂xi
−

∂τij
∂xj

− bi (19)

rd =
∂ui

∂xi
i = 1, 2, 3 (20)

In above ui is the velocity along the i-th global reference axis, ρ is the (constant)
density of the fluid, p is the pressure, bi are the body forces acting in the fluid and τij
are the viscous stresses related to the viscosity µ by the standard expression

τij = µ

(

∂ui

∂xj
+

∂uj

∂xi
− δij

2

3

∂uk

∂xk

)

(21)

The boundary conditions for the stabilized problem are written as

njτij + ti +
1

2
hmjnjrmi = 0 on Γt (22)

uj − u
p
j = 0 on Γu (23)

where nj are the components of the unit normal vector to the boundary and ti and u
p
j

are prescribed tractions and displacements on the boundaries Γt and Γu, respectively.
The underlined terms in eqs.(17)–(22) introduce the necessary stabilization for the

approximated numerical solution.
The characteristic length distances hmj and hdj represent the dimensions of the finite

domain where balance of momentum and mass. The signs before the stabilization terms
in eqs.(17), (19) and (22) ensure a positive value of the characteristic length distances.
The parameter δ in eq.(17) has dimensions of time. Details of the derivation of eqs.
(17)–(23) can be found in [16,19,21].
Eqs.(17–23) are the starting point for deriving a variety of stabilized numerical

methods for solving the incompressible Navier-Stokes equations. It can be shown that a
number of standard stabilized finite element methods allowing equal order interpolations
for the velocity and pressure fields can be recovered from the modified form of the
momentum and mass balance equations given above [16,19].
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Alternative form of the mass balance equation

Taking the first derivative of eq.(21) gives (assuming the viscosity µ to be constant)

∂τij
∂xj

= µ∆ui +
µ

3

∂rd
∂xi

(24)

where ∆ = ∂2

∂xi∂xi
is the Laplacian operator. Substituting eq.(24) into (17) gives after

small algebra

∂rd
∂xi

=

(

µ

3
+

ρuihmi

2

)−1 [

r̄mi −
hmk

2

∂rmi

∂xk
+

ρuihmi

2

∂rd
∂xi

−
δ

2

∂rmi

∂t

]

no sum in i (25)

where

r̄mi = rmi +
µ

3

∂rd
∂xi

(26)

and rmi
is given by eq.(19).

Inserting eq.(25) into eq.(18) gives

rd + ci

(

r̄mi
−

hmk

2

∂rmi

∂xk
+

ρuihmi

2

∂rd
∂xi

−
δ

2

∂rmi

∂t

)

= 0 no sum in i (27)

with

ci =

(

2µ

3hdi

+
ρuihmi

hdi

)−1

no sum in i (28)

Eq.(27) can be rewritten as

rd − gii
∂2p

∂xi∂xi
+ rp = 0 (29)

where

rp = cir̄mi − gij
∂

∂xj

(

rmi − δij
∂p

∂xi

)

+
ρuihmi

2

∂rd
∂xi

−
δ

2

∂rmi

∂t
no sum in i (30)

and

gij =

(

4µ

3hdi
hmj

+
2ρuihmi

hdi
hmj

)−1

no sum in i (31)

Note that for hmi = hmj = h where h is a typical grid dimension (i.e. the average
size of a cloud of points), the value of gii is simply

gii =
(

4µ

3h2
+
2ρui

h

)−1
(32)
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The stabilization parameter gii has now the form traditionally used in the Galerkin
Least Square formulation for the viscous (Stokes) limit (ui = 0) and the inviscid (Euler)
limit (µ = 0) and deduced from ad-hoc extensions of the 1D advective-diffusive problem
[25–46]. Note, however, that the general form of the stabilization parameter gii is
deduced here from the general FIC formulation without further extrinsic assumptions.
Indeed, the precise computation of the characteristic length values is crucial for

the practical applications of above stabilized expressions. This topic is dealt with on
Section 7.

4 FRACTIONAL STEP APPROACH

The momentum equations (17) are first discretized in time using the following scheme

un+1
i = un

i −
∆t

ρ

[

ρ
∂(uiuj)

n

∂xj
+

∂pn+1

∂xi
−

∂τnij
∂xj

− bni −
hn
mk

2

∂rnmi

∂xk
−

δn

2

∂rnmi

∂t

]

(33)

Eq.(33) is now split into the two following equations

u∗i =un
i −

∆t

ρ

[

ρ
∂(uiuj)

∂xj
−

∂τij
∂xj

− bi −
hmk

2

∂rmi

∂xk
−

δ

2

∂rmi

∂t

]n
(34)

un+1
i =u∗i −

∆t

ρ

∂pn+1

∂xi
(35)

Note that the sum of eqs.(34) and (35) gives the original form of eq.(33).
Substituting eq.(35) into the stabilized mass balance equation (29) gives the standard

Laplacian of pressure form

(

∆t

ρ
+ gnii

)

∂2pn+1

∂xi∂xi
= r∗d + rnp (36a)

where

r∗d =
∂u∗i
∂xi

(36b)

Standard fractional step procedures neglect the contribution from the terms involving
gii in eq. (36a). These terms have an additional stabilization effect which improves the
numerical solution when the values of ∆t are small. Note that for ∆t → 0 the term
gii introduces the necessary stability in the laplacian equation, thereby overcoming the
Babuska-Brezzi conditions and allowing for equal order interpolation of the velocities
and pressure variables [22].
A typical solution in time includes the following steps.
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Step 1. Solve explicitely for the so called fractional velocities u∗i using eq. (33).

Step 2. Solve for the pressure field pn+1 solving the laplacian equation (36a).

Step 3. Compute the velocity field un+1
i for each mesh node using eq.(35)

5 NUMERICAL SOLUTION USING THE FPM

The implementation of the three step scheme described in previous section in the
context of the FPM is straight forward. Eq. (8) is used to define the approximation of
velocities and pressures within each cloud of point Ωi as

ûm =
n

∑

j=1

N i
ju

h
mj
; m = 1, 2, 3 for 3D (39)

p̂ =
n

∑

j=1

N i
jp

h
j (40)

where (̂·) denotes approximate values and the shape functions N i
j were defined in eq.(9).

Direct substitution of eqs.(39) and (40) into the stabilized governing equations
described in previous section gives the following numerical scheme for computation
of the point parameters uh

mj
and phj .

Step 1. Computation of fractional velocities

Compute explicitely the fractional velocities at each point k in the domain as

(û∗i )k = (f̂
n
i )k; k = 1, . . . , N ; i = 1, 2, 3 (41)

in which N is the total number of points in the domain and

(f̂n
i )k =

{

ûn
i −

∆t

ρ

[

ρ
∂(ûiûj)

∂xj
−

∂τ̂ij
∂xj

− bi −
hmj

2

∂r̂mi

∂xj
−

δ

2

∂r̂mi

∂t

]n}

k

(42)

where (̂·) denotes approximate values.
Once the values of û∗i have been obtained, the parameters uh

mj
can be computed at

each point by solving the following system of equations

(û∗m)k =
n

∑

j=1

Nk
j u

h
mj

, k = 1, . . . , N (43)

Eq.(43) is a system of N equations with N unknowns from where the parameters
uh
mj

, j = 1, . . . , N can be found. These parameters are needed to compute the
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derivatives of the velocity field in steps 2 and 3. Indeed the solution of eq.(43) must be
repeated for every component of the velocity vector (i.e. m = 1, 2, 3 for 3D problems).

Step 2. Computation of pressures at time n+ 1

Compute the pressure field at time n+ 1 by solving eq.(36a). Substituting eqs. (40)
and (43) into (36a) and sampling this equation at each point in the domain gives

Kn(ph)n+1 = r̂∗d + r̂np (44)

where (for 2D problems)

Kn
kj = (

∆t

ρ
+ ĝnii)





∂2Nk
j

∂x21
+

∂2Nk
j

∂x22



 (45)

r̂∗dk
=ĉiˆ̄rmi − ĝij

∂

∂xj

(

r̂mi − δij
∂p̂

∂xi

)

+
ρûihmi

2

∂r̂d
∂xi

−
δ

2

∂r̂mi

∂t
no sum in i

r̂∗pk
=

[

∂û∗i
∂xi

] (46)

Eq.(46) provides a system of equations from which the pressure parameters (phk)
n+1

can be found at each point k.

Step 3. Computation of velocities at time n+ 1

The final step is the explicit computation of the velocities in each point at time n+ 1.
Substituting the known values of ûi and p̂n+1 at each point into eq.(35) gives

(ûn+1
i ) =

[

û∗i −
∆t

ρ

∂p̂n+1

∂xi

]

k
; k = 1, . . . , N (47)

Note that the derivatives of the approximate functions ûi and p̂ are computed by
direct differentiation of the expressions (39) and (40), i.e.

∂ûm

∂xl
=

n
∑

j=1

∂N i
j

∂xl
uh
mj

∂p̂

∂xl
=

n
∑

j=1

∂N i
j

∂xl
phj

(48)

The steps 1–3 described above are repeated for every new time increment.
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A local time step size for each point in the domain can be used to speed up the search

of the steady state solution. The local time step is defined as ∆ti =
di
2|ui|

, where di is

the minimum distance from a star point to any of its neighbourghs in the cloud. Note
however that the full transient solution requires invariably the use of a global time step
∆tg equal for all nodes and defined as ∆tg = min(∆ti), i = 1, . . . , N .

6 BOUNDARY CONDITIONS

Prescribed tractions on the Neumann boundary Γt, (eq.(22)) or prescribed velocities
at the Dirichlet boundary Γu (eq.(23)) may be imposed.
During the fractional step solution, the first explicit step is solved without imposing

any boundary conditions. During the second step, two kinds of boundary conditions
may be imposed: on boundaries where the normal velocity is imposed to the value u

p
n,

eq.(23) reads using (35)

up
n = u∗ini −

∆t

ρ

∂pn+1

∂xi
ni (49)

Eq.(49) is a Neumann boundary condition for the pressure equation (36a). This
equation is imposed in the FPM during the pressure computation (step 2) as a new
equation for all points k belonging to the part of the boundary Γu where the normal
velocity is prescribed.
On outflow boundaries with njσij = 0 the pressure is imposed to a constant value,

i.e. p = 0. In the FPM, essential boundary conditions such as p = 0 are imposed using
the definition of the function itself via eq.(40) as

p̂i =
n

∑

j=1

N i
jp

h
j = 0 (50)

Equation (50) is sampled at the points located at a boundary where p = 0.
During the third step the velocities are computed at all points using eq.(47) at all

points within the analysis domain. In points where a velocity is imposed as an essential
boundary condition, the imposed velocity value is asigned directly to the point. Next,
the nodal velocity parameters uh

mj
are computed by solving the same system of equations

described by eq.(43). For points over Neumann boundaries, in particular on boundaries
where the tractions are prescribed to zero, the discretized form of eq.(22), i.e.

nj τ̂ij +
1

2
hmj

nj r̂mi
= 0 (51)

is used for computing the velocities at the boundary points.
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7 COMPUTATION OF THE STABILIZATION PARAMETERS

Accurate evaluation of the stabilization parameters is one of the crucial issues in
stabilized methods. Most of existing methods use expressions which are direct extensions
of the values obtained for the simplest 1D case. It is also usual to accept the so called
“streamline upwind” assumption. It can be shown that this is equivalent to admit that
vector hm has the direction of the velocity field [16,19]. This unnecessary restriction
leads to instabilities when sharp layers transversal to the velocity direction are present.
This additional defficiency is usually corrected by adding a shock capturing or crosswind
stabilization term [41–43]. In the FIC approach the crosswind stabilization is naturally
introduced into the discretized equations through the general form of the characteristic
length vector.
Let us first assume for simplicity that the stabilization parameters for the mass

balance equations are the same than those for the momentum equations. This implies

hm = hd = h (52)

The problem remains now finding the value of the characteristic length vectors h.
Indeed, the components of h introduce the necessary stabilization along the streamline
and transversal directions to the flow.
Excellent results have been obtained in all examples by using the same value of the

characteristic length vector for each momentum equation defined by

h = hs
u

|u|
+ hc

∇∇∇∇∇∇∇∇∇∇∇∇∇∇u

|∇∇∇∇∇∇∇∇∇∇∇∇∇∇u|
(53)

where u = |u| and hs and hc are the “streamline” and “cross wind” length parameters
given by

hs =max(l
T
j u)/|u| (54)

hc =max(l
T
j ∇∇∇∇∇∇∇∇∇∇∇∇∇∇u)/|∇∇∇∇∇∇∇∇∇∇∇∇∇∇u| , j = 1, 2, · · ·n (55)

where lj are the vectors linking each node in the cloud with the star node.
Note that the cross-wind terms in eq.(53) account for the effect of the gradient of the

velocity field in the stabilization parameters. This is an standard assumption in most
“shock-capturing” stabilization procedures [41–43].
Regarding the time stabilization parameter δ and in eq.(17) the value δ = ∆t has

been taken for the solution of the examples presented in the paper.
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8 NUMERICAL EXAMPLES

The following examples have been solved with the FPM presented in previous
section using a Gaussian weighting function in the WLS approximation and quadratic
interpolation (m = 6) for the both the velocities and the pressure. Typically each cloud
contains nine points (n = 9) which are chosen using a quadrant search scheme (i.e. the
star node plus the two closest points within each quadrant are selected) [11-13].

8.1 Driven cavity flow at Re = 1000

This is a classical test problem to evaluate the behaviour of any fluid dynamic
algorithm. A viscous flow is confined in a square cavity while one of its edges slides
tangentially. The boundary conditions are u = v = 0 in 3 edges and u = 1, v = 0 on the
upper edge. The problem is solved with the FPM using the distribution of 3,329 points
shown in Figure 3. Initially, except at the edge, the velocity is set to zero everywhere
including at the nodes located at the left and right top corners (ramp condition).

Figure 3. Driven cavity flow. Distribution of 3,329 points. Boundary conditions u = 0
at edges AC, CD and BD and points A and B. u = 1 and v = 0 over the
interior of line AB

Numerical results are shown in Figures 4, 5 and 6 for Re = 1000. Figures 4 and 5
show the velocity and pressure contours, respectively. The FPM results are compared
with experimental results obtained by Ghia et al. [46] showing the velocity x computed
along a vertical central cut (Figure 6). The comparison is satisfactory.
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Figure 4. Driven cavity flow. Velocity contours for Re = 1000

Figure 5. Driven cavity flow. Pressure contours for Re = 1000
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Figure 6. Driven cavity flow. Horizontal velocity distribution over the center line

8.2 Backwards facing step at Re = 389

In this example, the flow is contrained to move in a 2D domain which presents a
backwards step. The domain dimensions are presented in Figure 7. The step is one half
the width of the inflow.

At the inflow a constant velocity profile is fixed while at the outflow the pressure is
prescribed, being the velocity free. The non-slip condition is used at the walls, except
for the two inflow points, where the constant inflow velocity is imposed. No volume
forces are present.

The distribution of 8,462 points used near the step is represented on Figure 8. In the
rest of the domain a regular distribution of points is used.

Once the stationary state is reached, the solution shows horizontal velocities
represented on Figures 9 and 10 for two planes located at x = 2.55 S and x = 6.11
S from the step. The FPM results are compared with experimental results presented
on ref.[47] showing an excellent agreement.
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Figure 7. Backwards facing step. Geometry and boundary conditions

Figure 8. Backwards facing step. Distribution of 8,462 points

8.3 2D viscous flow around a cylinder

Figure 11 shows the geometry of the analysis domain and the boundary conditions.
The problem was solved for Re = 100 assuming laminar flow conditions. An arbitrary
grid of 9418 points was chosen for the analysis (Figure 12). The transient analysis was
run for 10000 time steps. The steady state solution was found after 18000 time steps.
Note that a full period in the solution requires just 321 time steps.

Figure 13 shows the velocity contour lines at four different times. Note the oscilatory
character of the solution. The time evolution of the lift force is shown in Figure 14.
The oscillation period deduced from the computation is 6.01 sec. This value compares
well with the experimental result of 5.98 sec. (� 0.5% error) reported by Roshko [48].
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Figure 9. Backwards facing step. Horizontal velocity distribution along a vertical line
at x = 2.55 S
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Figure 10. Backwards facing step. Horizontal velocity along a vertical line at
x = 6.11 S
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Figure 11. 2D flow around a cylinder. Analysis domain and boundary conditions.
Re = 100. Boundary tractions (ti) are assumed to be zero at the exit
boundary

Figure 12. Grid of 9418 points used for analysis of the 2D flow around a cylinder
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Figure 13. 2D flow around a cylinder (Re = 100). Velocity streamlines at different
times
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Figure 14. 2D flow around a cylinder. Time evolution of lift force

8.4 2D viscous flow around a Naca airfoil

The viscous flow around a NACA 0012 airfoil for an angle of attack of zero degrees
and Re = 10000 was analyzed. Laminar flow conditions were again assumed.
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Figure 15 shows the geometry of the domain and the boundary conditions. The grid
of 14249 points chosen is shown on Figure 16. A finer layer of 972 points was used
around the airfoil to capture viscous effects as shown in the figure.

u=1
v=0

u =0n

p=0
u=v=0

u =0n

Figure 15. 2D flow around a NACA airfoil. α = 0◦, Re = 10000. Analysis domain
and boundary conditions

Figure 16. Distribution of 14249 points for analysis of a NACA airfoil. Detail of
boundary layer of 972 point to capture viscous effects
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Figure 17 shows some numerical results of the velocity streamlines for the steady state
situation. Note the well developed wake at the back of the airfoil. A close up of the
streamlines next to the airfoil showing the boundary layer developed is also presented.

a)

b)

Figure 17. 2D analysis of a NACA airfoil. Velocity streamlines at steady state for
α = 0◦ and Re = 10000
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9 FINAL CONCLUSSIONS

The stabilized equations for a viscous incompressible fluid using the finite calculus
procedure are the basis for deriving a stabilized finite point method for the meshless
solution of incompressible flows. The three step semi-implicit fractional scheme provides
a simple and accurate procedure for both transient and steady state solutions using
equal order interpolation for the velocities and the pressure. The stabilized FPM is a
promising technique for the practical meshless solution of industrial flow problems.
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1 Introduction

The problem of mathematically or numerically modelling shell deformations is a rather
unique problem of engineering science: Equations similar to the linear shell equations
that describe the deformation of a shell as an elastic body are hardly met anywhere else.
When modelling shell deformations by finite elements, special difficulties also arise that
are characteristic to shell problems only.

Shells are anyway very common structures in both nature and engineering. The math-
ematical theory of shells also got its first inspiration from an old engineering strucure,
the church bell. The pioneering work, as motivated by this problem in particular, was
done by Love in 1888 [7]. Since then, the shell theory has expanded to what may now
be called the classical shell theory. This is documented in books written by numerous
authors including Love [8], Vlasov [18], Novozhilov [10] and many others.

The final words in the classical linear shell theory were set by Koiter [4] and Naghdi [9]
in the early 1960’s. Around the same time, the computer modelling of shell deformations
using finite elements took its first steps. This new ’modernism’, however, was not the
child of the ’classicism’ of shell theory. Rather, the finite element designers went back
to the basic equations of linear elasticity, known since the early 1800’s, and designed the
finite element models on the basis of those equations directly. The classical shell theory,
as developed after the late 1800’s, was thus more or less ignored – and is still ignored –
in the finite element engineering.

The early finite element models of shells, however, did not work as desired. Unexpected
numerical phenomena appeared in the context of finite element discretizations, and it
has taken a long time to understand the cause of such phenomena. Even today, shell
problems are still the most challenging problems of structural mechanics for the finite
element designer, and the results of numerical models cannot always be trusted.

The failure of finite element engineering calls for mathematical error analysis. The
finite element theory has been developed intensively since the 1970’s, but the theory is
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mostly based on far simpler problems than the shell problem. Only fairly recently there
have been serious attempts to extend the theory to cover the more specific problems met
in shell modelling. In this context, as it turns out, the results of classical shell theory are
needed once again. First of all, the understanding of the basic mathematical nature of shell
deformations is necessary for finite element error analysis, and this understanding is still
based primarily on the classical shell theory. Secondly, the numerical phenomena arising
in finite element models are understood more easily when the finite element approximation
is thought of in the context of the simpler classical shell models.

Thus, although the classical shell theory is still of little use in the finite element
modelling practice, a renessaince of the classical theory is seen in the finite element theory.
Our aim in this review is to demonstrate the new interaction of the ’classicism’ and the
’modernism’ in shell modelling. We start from the shell problem formulated as a 3D
elastic problem and discuss first the dimension reductions of classical shell theory and their
connection to the finite element approximations. We define then an extremely simplified
version of the classical shell models to be called the mathematical shell model. Here all
the unnecessary details of the classical shell theories are left out, while still preserving
the main characteristics of the original shell problem. We proceed to outline the leading
characteristic features of shell deformations on the basis of the simplified model. Based on
this information we further outline the leading steps required in the finite element error
analysis and derive some general error bounds.

2 The shell problem

The starting point of our study is the classical problem of linear elasticity where an elastic
body, consisting of homegeneous isotropic material and occupying a region Ω ⊂ R3, is
deformed under a given load and kinematic constraints. According to the energy principle,
the deformation is obtained by minimizing the total energy

F(u) =
1

2

∫

Ω

σ(u) : ε(u) dΩ− L(u) (2.1)

over the kinematicallly admissible displacement fields u = (u1, u2, u3) of the body. Here
L(u) is the load functional (potential energy of the load) and the first term is the strain
energy (deformation energy), expressed in terms of the stress tensor σ and the strain
tensor ε. In case of a homogeneous isotropic material the stress and strain are related
by the generalized Hooke law σ = λ trε I + 2µ ε, where I is the identity tensor and λ, µ
are the Lamé parameters of the material, defined in terms of the Young modulus E and
Poisson ratio ν (0 ≤ ν < 1/2) as

λ =
Eν

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)
.
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Taking into account the stress-strain relations, the leading strain energy term in Eq. (2.1)
takes the quadratic form

A(u,u) =

∫

Ω

σ(u) : ε(u) dΩ

=

∫

Ω

{
λ [trε(u)]2 + 2µ ε(u) : ε(u)

}
dΩ. (2.2)

As is well known, the actual mathematical character of the above problem depends
strongly on the geometric shape of the body Ω. Indeed, much of the classical linear elastic-
ity consists of developing specific theories for specific engineering objects like beams, bars,
rods, shafts, plates, etc. [8] Such objects have in common that their smallest characteristic
dimension is much less than the diameter of the body. What we consider here is the most
challenging one of the thin-body problems of classical linear elasticity: the problem of a
curved thin shell. An elastic body is a shell when it is a smoothly deformed thin plate, so
that Ω = Φ(Ω′) where Φ : R3 7→ R3 is a smooth map and Ω′ = ω × (−d/2, d/2), where
ω ⊂ R2 is an open set and d is much smaller than the smallest characteristic dimension
of ω. (As the latter we may take, say, the diameter of the largest disc fully contained
in ω.) More specifically we consider a shell of constant thickness d and assume that the
mapping Φ is of the form

Φ(x, y, z) = Φ(x, y, 0) + z n(x, y), (x, y, z) ∈ Ω′,

where n is the normal to the shell midsurface Γ defined as

Γ = Γ0, Γz = {Φ(x, y, z) | (x, y) ∈ ω} = Φ ( ω × {z}).
The coordinates x, y then parametrize the shell midsurface Γ, and x, y, z act as the natural
curvilinear coordinate system on Ω. Upon transforming the displacements and strains into
this coordinate system, the strain energy integral (2.2) takes the form

∫

Ω

{ .. } dΩ =

∫ d/2

−d/2

(∫

Γz

{ .. } dΓz

)
dz.

For a shell of revolution, it is easy to define the coordinates x, y as the principal
curvature coordinates, so that the coordinate lines are principal curvature lines. Consider
the special case of a cylindrical shell. Let (r, ϕ, x) be the cylindrical coordinate system
where x is the axial coordinate. In the above notation one has then r = R + z, where R
is the radius of the shell midsurface. Choosing y = Rϕ, we have defined the coordinates
x, y on Γ as the principal curvature coordinates associated to a unit metric tensor. The
mapping Φ may then be defined as

Φ(x, y, z) = (x, r sin(y/R), r cos(y/R))

= (x,R sin(y/R), R cos(y/R)) + z (0, sin(y/R), cos(y/R))

= Φ(x, y, 0) + z n(x, y).
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The displacement vector field u on the cylindrical shell is expressed in the chosen curvi-
linear coordinate system as

u(x, y, z) = u1(x, y, z) ex + u2(x, y, z) ey + u3(x, y, z) ez,

where ex = (1, 0, 0), ez = n, and ey = n × ex. The components of the symmetric strain
tensor ε(u) are then given by

ε11 =
∂u1

∂x
, ε22 =

∂u2

∂y
+

u3

r
, ε33 =

∂u3

∂z
,

ε12 = ε21 =
1

2

(
∂u1

∂y
+

∂u2

∂x

)
, ε13 = ε31 =

1

2

(
∂u1

∂z
+

∂u3

∂x

)
,

ε23 = ε32 =
1

2

(
∂u2

∂z
+

∂u3

∂y
− u2

r

)
.

3 Dimension reduction: The 2D m-models

The classical engineering and mathematical theory of shells, has produced a wide literature
and a large variety of specific shell models, where the original 3D elastic problem is
reduced to a 2-dimensional one. The current understanding of the mathematical nature
of shell deformation is almost enirely based on such 2D models, so let us outline, how the
dimension reduction is carried out in shell theory.

All dimension reductions may be viewed mathematically as being based on one primary
assumption: Supposer that the displacement field u varies as a function of x, y (i.e., along
the midsurface) in some characteristic length scale L. Then it is assumed that

teff =
d

L
¿ 1. (3.1)

Parameter teff is the effective thickness (dimensionless thickness) of the shell. In practice,
shell deformations are typically of multiscale nature, so that many length scales of different
orders of magnitude are present simultaneously. Asuumption (3.1) is then related to the
scale resolution ability of the dimension reduction model: The model is expected to resolve
a given length scale the more accurately the less the corresponding effective thickness teff.
The most typical length scales that may arise from the geometric or physical setup of the
problem are

• L = D = diam(Ω), or L = a = characteristic dimension of ω

• L = R = smallest principal radius of curvature on Γ

• L = length scale of load variation

• L = λ = wavelength of an eigenmode (vibration, buckling)
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A characteristic length scale may also arise from the Fourier mode analysis of the defor-
mation state, in which case

• L = characteristic wavelength of a Fourier mode.

An important and rather unique feature of shell deformations is the presence of boundary
layers that can have extremely wide range. Boundary layers in shell deformations are
rather complex multiscale phenomena that arise from the inherent asymptotic nature of
the linear elastic equation on a thin curved body. Under simplifying assumptions, it is
possible to perform a Fourier expansion of the layer into exponentially deacying modes
[17]. For each mode, the natural length scale is set as

• L = length scale of defay (Fourier layer mode).

Again the dimension reduction model is expected to approximate well layer modes de-
caying relatively slowly so that Eq. (3.1) holds. There are also layer modes with L ∼ d
thus violating the assumption. Such components of the 3D elastic deformation cannot be
captured by 2D shell models.

Under the basic assumption (3.1) there are two systematic ways of deriving approxi-
mate 2D shell models from the 3D elastic model of a shell: Either one simplifies the differ-
ential equatioins of 3D elasticity in the assumed coordinates using methods of asymptotic
analysis, or one proceeds from the energy principle (or from variational formulations)
and expands the displacement field as a polynomial in the normal coordinate z to the
shell midsurface. The former approach, although rarely systematic, was the dominant
approach in the classical theory of shells, written mostly before the era of computers, cf.
[8, 18, 10]. Here we choose the more ’modern’ energy approach, as this is parallel with
finite element modelling ideas.

We will call the dimension reduction model an m-model when based on expanding the
displacement field u = (u1, u2, u3) in the above curvilinear coordinate system (x, y, z) as





u1(x, y, z) = u(x, y) +
m∑

i=1

zi θi(x, y),

u2(x, y, z) = v(x, y) +
m∑

i=1

zi ψi(x, y),

u3(x, y, z) = w(x, y) +
m+1∑
i=1

zi ξi(x, y),

(3.2)

an minimizing the 3D energy (2.2) with this Ansatz. Here the stopping indices of the
expansions are chosen so that each displacement component produces a contribution up to
the oder O(|z|m) to the diagonal strains εii and hence also to the diagonal stresses σii. In
the resulting model the integrals over z can be evaluated, either exactly or approximately,
so one ends up in a 2D shell model where u, v, w, θi, ψi, ξi constitute the 3m+4 components
of the generalized displacement field, now defined over the shell midsurface Γ.
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In the numerical modelling of shells, the above m-model resembles closely a finite el-
ement model where the shell is discretized using a single layer of solid finite elements of
degree m + 1 in z. In such a model, the curvilinear coordinates x, y, z acts as the natural
reference coordinate system for defining the reference (master) elements on Ω′. In the
engineering software, shells are usually modelled in this way, so that no specific ’shell the-
ories’ are needed. The transformation of the displacements and strains to the curvilinear
coordinate system is neither needed in such models: The element stiffness matrices can be
evaluated simply by expressing the displacements and strains in a rectangular coordinate
system, then transforming the energy integrals into the reference coordinates, and finally
evaluating the transformed integrals numerically.

4 The reduced 3D model

In the above m-model hierarchy, the 7-field 1-model is of special interest, as this is the
lowest-order model that captures correctly the asymptotics of shell deformations at the
limit of zero thickness. All the the lowest-order 2D shell models found in the classical
shell theory may be understood as variations or simplifications of the 1-model. We will
also rely on such simplified models when resolving the asymptotics and boundary layers
of shell deformations, so let us discuss these simplifications.

The first step to simplify the 1-model is to eliminate the field components ξ1 and ξ2 so
as to obtain a 5-field model. The elimination is carried out by minimizing the energy first
with respect to ξ1, ξ2 and eliminating ξ1 and ξ2 from the corresponding Euler equations.
Under assumption (3.1) the minimization can be carried out approximately by dropping
the off-diagonal strina terms, as these are of order O(teff) compared with the diagonal
terms. To sufficient accuracy one may also approximate dΓz by dΓ when evaluating
the volume integrals. After these simplifications, the two Euler equations reduce to the
following integral constraints for the normal stress σ33 along the midsurface Γ :

∫ d/2

−d/2

σ33(x, y, z) dz =

∫ d/2

−d/2

z σ33(x, y, z) dz = 0, (x, y) ∈ Γ. (4.1)

These constraints are close to the simple constraint

σ33 = 0, (4.2)

which is the famous plane stress assumption in classical plate/membrane or shell theories.
Proceeding from Eqs. (4.1), the five-field model is now obtained by solving these

equations for ξ1, ξ2 and inserting the solutions in the 3D energy expression. Neglecting
again small terms of order O(teff), the resulting simplified strain energy expression can be
rewritten in the original form (2.2) of the 3D energy with the following two modifications
enforced:

(i) Set the strain ε33(u) to zero.
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(ii) Redefine the Lamé parameter λ as λ =
Eν

1− ν2
.

As is well known, the adjustement (ii) of λ is consistent with the plane stress assumption
(4.2). Thus we conclude that when obeying the energy formulation of the classical linear
elastic problem, it is the linear and quadratic terms in the expansion of the normal
displacement component u3 in (3.2) that effectively enforce the plane stress condition
(4.2) on a thin shell.

Once the above modifications within the 3D energy formulation are enforced, the
resulting model may be considered a variant of the 3D models as stated, i.e., with no
expansion of the displacement field assumed a priori. This is a shell model in itself, often
referred to as the reduced 3D model. In the numerical modelling of shells, the reduced 3D
model is the standard choice in combination with lowest-order element approximations
where the expansion of the displacement field is linear in z. A linear expansion is sufficient
within the reduced 3D model, since the modifications made in the model approximately
take into account the quadratic term in the 1-model.

Below we consider the reduced 3D model primarily as a simplification of the 1-model,
and we look for further simplifications of this model in the spirit of classical shell theory.
At this point we thus depart from the practice of the finite element modelling the original
3D elastic formulation overrules all specific shell theories. Why classical shell theories
are anyhow still important even in the context of finite element models, is basically for
mathematical reasons: Simpler 2D shell models are needed to understand the behavior of
the 3D finite element algorithms, and in particular to see the possible sources of failure.
From this point of view, if not from the programming point of view, the ’classicism’ of
the shell theory has still something important to offer to a finite element ’modernist’.

5 The classical 2D shell models

We proceed from the reduced 3D model considered as a simplified 1-model where the
displacement field is expanded as





u1(x, y, z) = u(x, y)− z θ(x, y),

u2(x, y, z) = v(x, y)− z ψ(x, y),

u3(x, y, z) = w(x, y).

(5.1)

Here u, v are the tangential displacements of the midsurface, w is the transverse deflection,
and θ = −θ1, ψ = −ψ1 are the so called rotations. Assuming this expansion, we can
simplify the model further by expanding the geometric coefficients in the strains εij as a
function of z and dropping all terms of order O(z2) in the expansions of the strains so
obtained. The resulting simplified strains then take the form

εij(x, y, z) = βij(x, y) + z κij(x, y), i, j = 1, 2,

εi3(x, y, z) = ρi(x, y), i = 1, 2,

ε33(x, y, z) = 0,
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where β = (βij) and κ = (κij) are tensor fields and ρ = (ρi) is a vector field defined
along the midsurface Γ. These are referred to as the membrane, bending and transverse
shear strains, respectively. These are related linearly to the displacement field compo-
nents u, v, w, θ, ψ via variable coefficients that depend on the local metric and curvature
parameters of Γ. The general expressions of these strains in a tensorial notation were first
derived by Naghdi [9]. For our purposes, it will be sufficient to resolve the leading terms
of these expressions in special coordinates, which we can do without advanced tensor
notation. Consider a point P ∈ Γ and assume coordinates x, y chosen so that ex and ey

are orthogonal at P and that the metric tensor of Γ is the unit tensor at P . Let further

b11 = ex · ∂n

∂x
, b22 = ey · ∂n

∂y
, b12 = b21 = ex · ∂n

∂y
= ey · ∂n

∂x

at point P , so that b = (bij) is the curvature tensor of Γ at P . Then the membrane
strains at P can be expanded as

β11 =
∂u

∂x
+ b11w + [u, v], , β22 =

∂v

∂y
+ b22w + [u, v],

β12 =
1

2

(
∂u

∂y
+

∂v

∂x

)
+ b12w + [u, v],

(5.2)

the transverse shear strains as

ρ1 = θ − ∂w

∂x
+ [u, v], ρ2 = ψ − ∂w

∂y
+ [u, v], (5.3)

and the bending strains as

κ11 =
∂θ

∂x
+ [u, v, w, θ ψ], κ22 =

∂ψ

∂y
+ [u, v, w, θ, ψ],

κ12 =
1

2

(
∂θ

∂y
+

∂ψ

∂x

)
+ [u, v, w, θ, ψ].

(5.4)

Here we show only the most significant terms that are needed below to characterize the
mathematics of shell deformations. The unresolved additional terms denoted by [..] are
variable-coefficient linear combinations of the displacement components indicated. In Eq.
(5.2) the sign of the curvature tensor is defined so that the principal curvature at P ∈ Γ
is positive when the corresponding center of curvature is in the direction −n from P .

The above assumptions hold at each point P for a cylindrical shell with the principal
curvature coordinates (x, y) chosen as above. In this case the the strains are defined
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precisely as

β11 =
∂u

∂x
, β22 =

∂v

∂y
+

w

R
, β12 =

1

2

(
∂u

∂y
+

∂v

∂x

)
,

ρ1 = θ − ∂w

∂x
, ρ2 = ψ − ∂w

∂y
+

v

R
,

κ11 =
∂θ

∂x
, κ22 =

∂ψ

∂y
+

1

R
β22,

κ12 =
1

2

(
∂θ

∂y
+

∂ψ

∂x
+

1

R

∂v

∂x

)
+

1

R
β22.

(5.5)

Using the strain expansion (5), the strain energy of the reduced 3D model may be
integrated with respect to z so as to obtain an expression of the form

A(u,u) =

∫

Γ

[. . .] dΓ,

where u now stands for the generalized displacement field (u, v, w, θ, ψ) defined on the
midsurface Γ. Dropping the z-dependence of the volume metric by writing dΓz = dΓ
causes only an error of order O(d/R) where R is the least principal radius of curvature
on Γ. Assuming this simplification it remains to evaluate the integrals

∫ d/2

−d/2

zi dz =





d for i = 0,

0 for i = 1,

d2/12 for i = 2,

to conclude that the strain energy can be expressed as

A(u,u) = D [Am(u,u) +As(u,u) +Ab(u,u) ], (5.6)

where D is a scaling coefficient defined by

D =
Ed

1− ν2
,

and Am,As,Ab stand for the scaled membrane, transverse shear and bending energy
functionals defined by

Am(u,u) =

∫

Γ

[ ν(β11 + β22)
2 + (1− ν)(β2

11 + 2β2
12 + β2

22) ] dΓ,

As(u,u) =
1− ν

2

∫

Γ

(ρ2
1 + ρ2

2) dΓ,

Ab(u,u) =
d2

12

∫

Γ

[ ν(κ11 + κ22)
2 + (1− ν)(κ2

11 + 2κ2
12 + κ2

22) ] dΓ.

(5.7)

The shell model (5.2)–(5.7) is usually referred to as the Naghdi model, referring to the
systematic derivation of the model in general coordinates x, y by Naghdi [9]). Earlier
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incredients of the model are found widely distributed in the literature on plate and shell
theories between the 1940’s and the 1960’s and even in the still earlier theory of beams.

The Naghdi model can be simplified by approximately minimizing the energy with
respect to the rotations θ, ψ and eliominating the rotations in this way. The process
is very similar to the derivation of the reduced 3D model as outlined above: Under the
basic assumption (3.1), the minimizing conditions can be written approximately (omitting
terms of order O(teff)) as

ρ1 = ρ2 = 0. (5.8)

These are the well-known Kirchhoff-Love constraints, originally found in plate theory.
Upon eliminating the rotations from these constraints as

θ =
∂w

∂x
+ [u, v], ψ =

∂w

∂y
+ [u, v]

results in a simplified energy expression where now u = (u, v, w) in (5.6), the membrane
strains remain unchanged from (5.2), the transverse shear strains vanish according to
constraints (5.8), and the bending strains are redefined in terms of u, v, w as

κ11 =
∂2w

∂x2
+ [u, v, w], κ22 =

∂2w

∂y2
+ [u, v, w], κ12 =

∂2w

∂x∂y
+ [u, v, w]. (5.9)

The model (5.2), (5.8), (5.9), (5.6)–(5.7) is the fundamental 2D shell model, used most
often as a basis of further mathematical studies of shell deformations. The model is often
named the Koiter model, referring to the first systematic derivation in a general coordinate
system x, y by Koiter [4, 5]. In principal curvature coordinates, however, the same model
was obtained earlier by Vlasov [18], and a number of small variations of the basic model
appear in the wide literature on shell theory before the 1960’s. The variations (usually
presented in princiipal curvature coordinates) typically differ only in how the additional
terms [u, v, w] are defined in the expressions (5.9) of the bending strains. Such variations
were proposed, e.g., by Novozhilov [10] and, indeed, already by Love in his pioneering
work on shell theory in 1888 [7]. For most practical purposes, the variations between the
different models are rather irrelevant. We name the Koiter model and its close variants
briefly as the classical 3-field model. The Naghdi model and its close variants are named
analogously as the classical 5-field model.

6 The mathematical shell model

The classical 3-field model, the derivation of which was outlined above, is still the basic
model of shell theory when the goal is to understand of the mathematical nature of shell
deformations. When the goal is to understand the behavior of finite element algorithms,
this models goes one step too far, since the Kirchhoff-Love constraints (5.8) is by no means
naturally imposed in finite element models. In fact, the difficulty of enforcing constriants
of this type is the main source of numerical error amplification in the finite element models
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of shell deformations. When analyzing finite element models we thus need to take a step
backwards and take the 5-field model as the starting point. The approximations done
when deriving this model can be reasonably traced numerically, so that this model is
expected to preserve the main characteristics of the original shell problem also from the
finite element modelling point of view.

Taking the classical 5-field and 3-field models as the starting point, we perform one
final step of simplification in these models. First, we set ν = 0 and scale the deformation
energy by setting D = 1 in Eq. (5.6). Secondly, we drop the additional terms [..] in the
strain expressions (5.2)–(5.4) and (5.9). Third, we assume that the curvature tensor (bij)
is constant on Γ and shorten the notation by writing a = b11, b = b22, c = b12.

It turns out that the above simplifications affect the main characteristic of the shell
problem neither mathematically or numerically. The scaling of the energy by setting
D = 1 is equivalent to scaling the load functional by factor D. The last two assumptions
are contradictory, but they hold anyway approximately on a shallow shell, the midsurface
of which deviates only slightly from a plane. In general, a shell may be considered shallow
if

δ =
L

R
¿ 1,

where L = diam(Γ) and R is the least principal radius of curvature on Γ. The generic
idea in shallow shell models is to expand the strains also with respect to δ and keep only
the leading terms. The third assumption above is consistent with such an approximation,
cf. [17] for a more detailed reasoning. The classical shell theory contains a large number
of specific simplified shell models derived by this kind of reasoning.

Under the above simplifying assumptions, the strains of the classical five-field model
are written as

β11 =
∂u

∂x
+ aw, β22 =

∂v

∂y
+ bw, β12 =

1

2

(
∂u

∂y
+

∂v

∂x

)
+ cw,

ρ1 = θ − ∂w

∂x
, ρ2 = ψ − ∂w

∂y
,

κ11 =
∂θ

∂x
, κ22 =

∂ψ

∂y
, κ12 =

1

2

(
∂θ

∂y
+

∂ψ

∂x

)
.

(6.1)

In the 3-field model the constraints (5.8) are again imposed, so that the bending strains
get redefined as

κ11 =
∂2w

∂x2
, κ22 =

∂2w

∂y2
, κ12 =

∂2w

∂x∂y
. (6.2)

In both cases the simplified strain energy functional is written as

A(u,u) = Am(u,u) +As(u,u) +Ab(u,u)

=

∫

Γ

( β2
11 + 2β2

12 + β2
22 ) dxdy +

1

2

∫

Γ

(ρ2
1 + ρ2

2) dxdy

+
d2

12

∫

Γ

( κ2
11 + 2κ2

12 + κ2
22 ) dxdy.

(6.3)

11



We name this simplified shell model as the mathematical shell model. This has thus two
variants, the 5-field model where u = (u, v, w, θ, ψ) where the strains are defined by Eq.
(6.1) and the 3-field model where u = (u, v, w), the membrane strains are as in Eq. (6.1),
the transverse shear strains vanish, and the bending strains are defined by Eq. (6.2).

In the mathematical shell models, the material parameters of the original shell problem
are thus scaled off, and the geometry of the shell is reduced to four constant parameters
a, b, c, d that define the curvature tensor of the midsurface and the thickness of the shell.
The model may be viewed as a scaled local approximation of the original shell problem
around a given point P of the midsurface. Following the usual geometric classification of
surfaces, we call the shell elliptic/parabolic/hyperbolic when, respectively, ab − c2 > 0 /
ab− c2 = 0 / ab− c2 < 0.

7 Shell deformation states

When the load functional in the 3D energy expression (2.1) is given, the shell deformation
is defined as the displacement field u that minimizes the energy over the energy space U
under the assumed kinematic constraints (essential boundary conditions) on ∂Ω. In the 3D
formulation, the energy space is the Sobolev space U = H1(Ω)3, and the Euler equations
of the energy minimization problem are the usual 3D equilibrium equations of linear
elasticity. We now make use of the classical shell theory to get some basic unerstanding
of the mathematical nature of shell deformations. To this end, we use the simplest shell
model at hand, the mathemathical 3-field shell model as defined above.

In the 3-field models of classical shell theory, the energy functional (2.1) is defined
in terms of the displacement field u = (u, v, w) that takes values in the Sobolev space
(energy space) U = H1(Γ)×H1(Γ)×H2(Γ). We will assume that the load functional is
given as

L(u) =

∫

Γ

(f1 u + f2 v + f3 w) dΓ,

as corresponding to a given distributed surface traction f = (f1, f2, f3) along Γ. (In
the original 3D problem, the traction may act, e.g., on the outer surface of the shell
at z = d/2.) In the mathematical 3-field model, the Euler equations of the energy
minimization are then written as





− ∂β11

∂x
− ∂β12

∂y
= f1,

− ∂β12

∂x
− ∂β22

∂y
= f2,

aβ11 + bβ22 + cβ12 +
d2

12
∆2w = f3,

(7.1)

where βij are defined as in Eq. (6.1). We call these the mathematical shell equations.
In the mathematical shell equations (7.1) the principal parameter is the visible param-

eter d. This may be considered equal to the effective (dimesnionless) thickness teff = d/L
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when L is chosen as the length unit of x, y. When the effective thickness is small, system
(7.1) may be viewed as a singular perturbation of the corresponding asymptotic sys-
tem obtained by setting d = 0. In the energy formulation this corresponds to setting
ρi = κij = 0 when minimizing the energy, i.e., the membrane energy is assumed to be
the only form of deformation energy. This is a shell model in itself, referred to as the
(shell) membrane theory in classical shell theory. In this model, one may aliminate w
from the last equation in Eq. (7.1) so as to obtain a system of PDE’s for u, v. This sys-
tem is elliptic/parabolic/hyperbolic as corresponding to the geometry of the shell, so the
shell geometry has a strong effect on the mathematical nature of the membrane theory.
The precise formulation of the membrane theory, as well as the regularity theory of the
solutions, are actually rather delicate mathematical problems, see [11, 12, 13] for a survey
over a specific set of shell problems.

When the deformation of the shell varies smoothly in a length scale L and approaches
the membrane-theory solution of the same nature when d → 0 and the load is fixed, the
deformation is called membrane-dominated. This is the first of the two main deformation
states of a shell. For example, the deformation of a closed eggshell under a smooth loading
is of this type. When the shell is not closed but has a boundary where some boundary con-
ditions a imposed (say, piece of a pipe with clamped ends), the pure membrane-dominated
behavior is less common, because a boundary layer typically appear at the boundary, and
this does not obey the laws of membrane theory. Similar phenomena appear when the
loading is not smooth. Even in such situations, the membrane-dominated deformation
can still be considered as one component of the deformation. This component can be
isolated from the layer by modifying the boundary conditions, so that the deformation
is decomposed in two parts, the membrane-dominated part and the layer part. In this
way the whole shell problem may be thought of being split in (two or more) subproblems
in such a way that each ’feature’ of the deformation is obtained as a solution to a single
subproblem. Such a splitting, though only imagined, helps also to understand the finite
element algorithms, see below.

The second main deormation state of the shell is a bending-dominated state. This can
occur if the kinematic constraints at the boundary of the shell are sufficiently weak so as
to allow a pure bending, i.e., a deformation u such that

β11(u) = β12(u) = β22(u) = 0. (7.2)

If the load is able to exite such deformations, the solution at small values of d is obtained
approximately my minimizing the energy this time under the constraints βij = ρi =
0. This is another asymptotic theory of shell deformations, known as the inextensional
theory. A smooth, nearly inextensional deformation is called beding-dominated. Such a
deformation occurs, e.g., on a piece of paper bent and clued to a cylindrical shell with
free ends. Only for or special loads, such as uniform normal pressure, the deformation is
membrane-dominated.

In the bening-dominated deformation state the deformation scales like u ∼ d−2 as the
load is fixed and d varies. The shell subject to such a deformation is thus rather ’soft’
or ’sensitive’ as compared with the membrane-dominated case. By eliminating u, v from
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contstaints (7.2) one gets the equation

b
∂2w

∂x2
+ a

∂2w

∂y2
− 2c

∂2w

∂x∂y
= 0. (7.3)

This equation is elliptic/parabolic/hyperbolic in the corresponding geometric categories
of the shell, so the effect of the shell geometry is seen also in the inextensional theory. In
view Eq. (5.5), Eq. (7.3) holds also in case of a cylindrical shell, with a = c = 0, b = 1/R.
Thus the the pure bending of a cylindrical shell is such that w (u and v as well) is linear
in the axial direction.

8 Boundary layers

Boundary layers in shell deformations are special, exponentially decaying solutions to the
homogneous linear elastic equations in the shell geometry. To understand the main layer
phenomenaa, it is again sufficient to consider the 3-field mathematical shell model. Thus
we look for the boundary layers as special solutions to the mathematical shell equations
(7.1) where f1 = f2 = f3 = 0. Exponentially decaying layer solutions to these equations
may basically arise as ’hot spots’ or point layers or as line layers. We will here only
summarize some of the results from [17] where line layers generated by a straight line
were considered.

Suppose the layer generator is the line x = 0. (This could be a boundary line or a
line where the load is irregular.) We look for solutions to the homogeneeous Eqs. (7.1)
that decay in x in the halfspace x > 0. Assuming a Fourier transform with respect to the
y-variable, we can obtain as special solutions Fourier layer modes of the form

u(x, y) = u(0) eikye−sx, (8.1)

where Re s > 0. Given k ∈ R, the possible values of s = s(k, d) are found as (complex)
solutions to a linear eigenvalue problem. We look in particular for boundary layer solutions
such that Re s(k, d) →∞ as d → 0. To this end, the dominant terms of the characteristic
are found to be [17]

1
12

d2 s8 + b2 s4 + 4c2 s2 + a2 + [. . .] = 0. (8.2)

The solutions of the desired type can then be expanded in terms of fractional powers of
d as

s(d, k) = A0(k) d−1/m + A1(k) d1/m + A2(k) d3/m + ..,

where either m = 2, m = 3, or m = 4, depending on the values of a, b, c. To find the
leading terms in these expansions, it suffices to set [. . .] = 0 in Eq. (8.2). The result is as
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follows.

Case 1 b 6= 0 : s(d, k) =

(
−12 b2

d2

)1/4

+ . . .

Case 2 b = 0, c 6= 0 : s(d, k) =

(
48 c2k2

d2

)1/6

+ . . .

Case 3 b = c = 0, a 6= 0 : s(d, k) =

(
−12 a2k4

d2

)1/8

+ . . .

Here Case 1 is the main shell layer mode that is possible in all shell geometries. In Cases 2
and 3, the curvature along the layer line vanishes, which is possible in a hyperbolic (Case
2) and parbolic (Case 3) shell geometries.

For each Fourier layer mode of the above type with Re s > 0, the characteristic length
scale of decay is L = 1/Re s. If we assume that a, b, c ∼ R−1 and k ∼ R−1, then the
effective thickness teff = d/L for the above three layer modes is of the order

teff ∼





(d/R)1/2, Case 1,

(d/R)2/3, Case 2,

(d/R)3/4, Case 3.

Since teff → 0 when d/R → 0, we conclude that the dimension performs well in the length
scales of the layer modes when d/R is small. Thus we may expect that the layer modes
obtained as solutions to the mathematical shell equations represent actual 3D phenomena.

When passing from the 3-field model to the 5-field version of the mathematical shell
model, the above three layer modes remain essentially unchanged, while a new short-
range layer mode in the length scale L ∼ d appears, with the corresponding root of the
characteristic equation (now of degree 10) expanded as [17]

s(d, k) = −6

d
+ . . .

Since the leading term does not depend oon the curvature parameters, the layer is present
also in a flat plate/membrane problem where a = b = c = 0. The dimension reduction
actually loses its validity in the range of this layer mode, since the effective for the charac-
teristic length scale of the layer is teff ∼ 1. Anyhow, the mere presence of the short-range
layer in the 5-field model does indicate a true phenomenon in the original 3D formulation
of the problem.

9 Shell deformation modes and the 3D FEM

To understand the performance of a finite element algorithm when modelling a shell de-
formation, it is necessary to split the problem in subproblems so that in each subproblem,
the solution has a well defined, characteristic behavio from the numerical modelling point
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of view. When isolating such subproblems, or deformation modes, classical shell theory
is of great help. In the previous sections we have outlined the program of analysis that
is needed as a basis of the mathematical understanding of finite element models of shell
deformations. We should underline once more that we are speaking of understanding, not
of programming. In the programming, the original 3D (or reduced 3D) formulation of the
shell progrem is sufficient. Classical shell 2D theories are not needed.

The starting point of the finite element error analysis thus the expansion of the exact
3D solution of the shell problem as

u = u1 + u2 + . . . (9.1)

This corresponds to splitting the load functional as

L(v) = A(u,v) = A(u1,v) +A(u2,v) + . . .

= L1(v) + L2(v) + . . .
(9.2)

The functionals Li may be viewed as generalized loads in the subproblems. Of course, to
actually find such loads would reguire the exact solution of the whole set of subproblems
and hence the original shell problem. The splitting is thus an imagined one only – it is
not done in practice.

The variational formulation of the original shell problem is stated as: Find u ∈ U
satisfying the kinematic constraints of the problem and such that

A(u,v) = L(v), v ∈ U0. (9.3)

Here U is the 3D energy space and U0 is the subspace where the homogeneous versions
of the kinematic constraints are imposed. When the splitting (9.1)–(9.2) is done, we
must distribute also the kinematic constraints in the subproblems. Once this is done, the
splitting (9.1)– (9.2) carries over to the variational formulation: Each ui is defined as the
solution to the subproblem where ui ∈ U satisfies the constraints of the subproblem and
Eq. (9.3) with ui replacing u and Li replacing L. One should note that the kinematic
constraints in the subproblems are, in general, inhomogeneous even if the constraints of
the original problem happen to be homogeneous.

The starting point of the finite element model is the variational formulation (9.3). We
set up a finite element subspace Uh ∈ U and we define the finite element solution as a
function uh ∈ Uh satisfying the interpolated kinematic constraints at the boundary and
such that

A(uh,v) = L(v), v ∈ Uh,0. (9.4)

The above splitting carries over to the finite element aproximation as well, so in the error
analysis we may consider each subproblem separately. The motivation of the splitting
actually comes here: If the splitting is done properly, we may be able to carry out the
finite element error analysis in each subproblem using the special characteristics of the
solution (deformation mode) ui. Indeed, the finite element error behavior turns out to be
rather different for different deformation bounds as described in the previous sections, so
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the splitting of the deformation into characteristic submodes is a must if we want sharp
error analysis.

As a natural starting point of the finite element model we may consider an approxima-
tion that resembles the m-model described in Section 3. Here one discretizes the reference
domain Ω′ using a single layer of solid elements (prisms) and assumes a polynomial ex-
pansion of degree m + 1 in z in each element. The error of such an approximation is
naturally decomposed in two parts by writing

u− uh = (u− u(m)) + (u(m) − uh), (9.5)

where u(m) is the deformation of the shell according to the m-model. The first term in
Eq. (9.5) is then the modelling error. To estimate this error term is a problem of shell
theory. We concentrate here on the second error term, the bounding of which is a problem
of numerical analysis. Here we assume moreover that m = 1.

When bounding the second term in Eq. (9.5) in case m = 1, we simplify the problem
in the same manner as the 1-model itself was simplified above. Thus we interpret the
3D finite element scheme as 2D scheme within the 5-field mathematical shell model as
described in Section 6. (As noted before, the 3-field model is inappropriate, since the
constraints (5.8) are problematic to impose in numerical models.) The simplification of
the finite element scheme from 3D to 2D is straightforward. What is leass clear is, whether
all the essential characteristics of the scheme are preseved in the transition. Although this
is by no means fully certified by our analysis, we can rely on the following conjecture that
alone is sufficient to justify the simplification: Any essential numerical difficulties that are
met in the finite element approximation within the mathematical shell model must also
be met in the 3D finite element models of shells. In other words, the difficulties within
the simplest shell model cannot be escaped by assuming more complex shell models as a
starting point.

10 Finite element error bounds

Following the philosophy as set above we now look at the finite element approximations of
shell deformations in more detail, assuming the mathematical 5-field model as the starting
point. Then we have u = (u, v, w, θ, ψ) and U = [H1(Γ)]5 in Eq. (9.3), with the bilinear
form A defined according to Eqs. (6.3) and (6.1). In the finite element formulation (9.4)
we approximate each displacement component separately and in the same way, so that
uh = (uh, vh, wh, θh, ψh) ∈ [Vh]

5 = Uh, where Vh ∈ H1(Γ) is a standard 2D finite element
space. We assume that Vh is associated to finite element subdivision of Γ into elements
(say, triangles or quadrilaterals) of diameter at most h. The element shape functions are
assumed to span all polynomials of given degree p, p ≥ 1.

The above finite element scheme is an obvious interpretation of the discretized 1-model
where the functions u, v, w, θ1, ψ1, ξ1, ξ2 in Eq. (3.2) are approximated in the correspond-
ing manner on the refernce domain ω. To carry out the error analysis of this scheme, we
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choose the error indicator to be

e(u) =
|||u− uh|||
|||u||| , (10.1)

where ||| · ||| is the energy norm defined by

|||u||| = [A(u,u) ]1/2. (10.2)

The error indicator is thus the relative error in the energy norm. This may be viewed as the
most favourable indicator, since the finite element method gives the best approximation
in the energy norm (within the assumed kinematic constraints on the boundary).

When the exact solution is split according to Eq. (9.1), the finite element error ac-
cording to indicator (10.1) is bounded accordingly as

e(u) ≤ A1 e(u1) + A2 e(u2) + . . . , (10.3)

where Ai = |||ui|||/|||u||| is the relative amplitude of component ui measured in the energy
norm. We will assume the splitting to be defined so that the bound (10.3) is essentially
sharp, i.e., so that the componentwise errors do not cancel. We have then reduced the
problem of bounding e(u) to that of bounding the componentwise errors e(ui). Below we
focus on such error terms, dropping henceforth the subindex i.

By definition, the finite element method is the best approximation method in the sense
that

|||u− uh||| ≤ |||u− ũ|||, (10.4)

where ũ is the interpolant of u in Uh. By the definition of the energy norm, the right side
of this estimate can be bounded as

|||u− ũ||| ≤ C||u− ũ||1 , (10.5)

where || · ||1 stands for the norm of the Sobolev space [H1(Γ)]5. We define more generally
the norm || · ||k of the Sobolev space [Hk(Γ)]5 as

||u||k =
{||u||2k + ||v||2k + ||w||2k + L2||θ||2k + L2||ψ||2k

}1/2
, (10.6)

where

||φ||2k =
k∑

l=0

l∑
i=0

∫

Γ

(
Ll ∂lφ

∂ix ∂l−iy

)2

dxdy. (10.7)

Here we have chosen L to be the length unit and taken into account that θ, ψ are dimen-
sionless while the unit of u, v, w, x, y is L. Below we think of L as the characteristic length
scale of the deformation component considered. In Eq. (10.5) and below, C stands for a
generic constant of harmless size.

By standard finite element approximation theory, and by standard Sobolev-norm no-
tation, we can bound the right side in Eq. (10.5) further as [1]

||u− ũ||1 ≤ C

(
h

L

)p

||u||p+1 . (10.8)
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We assume that u is sufficiently smooth so that the right side in Eq. (10.8) is finite, and
define

Qp(u) =
||u||p+1

||u||1 . (10.9)

This is a dimensionless constant that characterizes the regularity of u in the assumed
length scale L.

Combining now Eqs. (10.4)–(10.9) we obtain the final error bound

e(u) ≤ C Qp(u) K(u)

(
h

L

)p

, (10.10)

where

K(u) =
||u||1
|||u||| . (10.11)

For typical shell deformation modes varying in a given length scale L as assumed,
estimate (10.10) is essentially sharp, or at least cannot be improved without further
assumptions on the finite element algorithm. The factor K(u) in the error bound, as
defined by Eq. (10.11), may then viewed as the unavoidable error amplification factor
when approximating the field (component) u by means of standard finite elements of
degree p. Since |||u||| ≤ C||u||1, the factor K(u) is at least of order unity. The remaining
question then is, how big this factor actually is for typical shell deformations. This
question is actually the basic reason for splitting the displacement field in subfields as
assumed, since the question can only be given a definite answer for characteristic modes
of deformation.

In the membrane-dominated deformation state the membrane energy Am(u,u) dom-
inates in Eq. (6.3). This doiminance may be characterized by the more quantitative
estimate

As(u,u) +Ab(u,u) ≤ C (d/L)2Am(u,u). (10.12)

This assumption together with the scaled Korn inequality

||u||21 ≤ C [Am(u,u) +As(u,u) + (L/d)2Ab(u,u) ] (10.13)

implies that |||u||| ∼ ||u||1. Hence one has K(u) ∼ 1 when approximating a membrane-
dominated deformation that satisfies Eq. (10.12).

In the bending-dominated case one may assume more quantitatively that

Am(u) +As(u,u) ≤ CAb(u,u). (10.14)

Together with Eq. (10.13) this implies that |||u||| ∼ (d/L) ||u||1. Hence one has K(u) ∼
L/d = 1/teff when approximating a bending-dominated deformation that satisifes Eq.
(10.14)

When the field component u to be approximated is any of the boundary layer modes
(Fourier modes) as described in Section 8, a more detailed asymptotic analysis is rquired
to determine the size of the factor K(u). This was carried out in [17], where it was shown
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that also for the layer modes one has K(u) ∼ L/d = 1/teff , with L defind as the length
scale of the decay of the layer mode.

Summarizing the above results we conclude that for standard finite elements of degree
p, the error bound (10.10) holds with the regularity constant Qp(u) defined by Eqs. (10.9)
and (10.6)–(10.7) and with the size of the error amplification factor K(u) given for the
different deformation types as

K(u) ∼





1 for a membrane-dominated deformation,

1/teff for a bending-dominated deformation,

1/teff for boundary layer modes.

(10.15)

That error amplification by factor K(u) ∼ L/d = 1/teff appears in many (in fact, most)
deformation types of a shell is an unfortunate numerical phenomenon that is especially
harmful in the lowest-order (p = 1) finite element approximation. In that case severe
mesh overrefinement is needed to compensate for the effect when teff is small. At higher
values of p, say with p = 3 or p = 4, the error amplification can be compensated by
considerably milder mesh overrifenement, due to the fact that the factor K does not grow
with p. The much better behavior of high-order elements has also been demonstrated by
numerical experiments, see [2, 3, 6, 16]. The least conclusion from the error analysis and
from the experiments is then that when modelling shell deformations by finite elements,
software that offers the free choice of degree p is preferable.

11 The dream of the ”shell element”

In the finite element modelling of shells, and more generally in the modelling of thin
structures, there has been a long standing dream of dinding special low-order finite element
formulations that avoid the parametric error growth, as detected above for various shell
deformation types. The generic idea in such formulations is to modify the strain energy
functional A numerically so that Eq. (9.4) gets rewritten as

Ah(uh,v) = L(v), v ∈ Uh,0, (11.1)

where the numerically modified functional Ah replaces A. The modification causes an-
other error term to be controlled, so the modification has to be done carefully. The aim of
the modification is anyway to avoid the paramtric error growth when using the modified
error indicator

e(u) =
|||u− uh|||h
|||u||| , (11.2)

where ||| · |||h is the modified energy (semi)norm defined by

|||u|||h = [Ah(u,u) ]1/2. (11.3)

Modified low-order finite formulation of the type (11.1) have been very successful
on many thin-domain problems of linear elasticity. By now the theory based on the
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error indicator (11.2)–(11.3) is also understood in most cases, cf. [14, 15] and the further
references therein. In the shell modelling, however, there has been less success, regarding
both practice and theory. Our recommendation concerning the numerical modelling of
shells remains the same as in the previous section: One should go for standard finite
elements of high order. Dreams may be left as dreams.
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Abstract. This lecture focuses on some advanced constitutive models, which describe the 
plastic behaviour of metallic materials under intense forming sequences that may involve 
complex strain paths and/or large accumulated strains. The presentation is basically limited to 
the cold deformation of polycrystalline materials used in sheet metal forming. Within this 
framework, it addresses both the mechanical modelling of the plastic anisotropy induced by 
the texture and microstructural evolutions and the finite-element implementation of such 
models. 

1.  INTRODUCTION 

The plastic anisotropy of rolled and well-annealed metal sheets is mainly due to the 
crystallographic texture. On the other hand, their deformation-induced anisotropy is 
determined, to a large extent, by the interaction between preformed dislocation structures and 
the current loading. Both these types of plastic anisotropy have pronounced effects on the 
macroscopic behaviour of the sheet. For instance, Lian et al. [1] have shown that the necking 
behaviour in biaxial tension is very sensitive to the shape of the yield locus and, therefore, an 
accurate description of it is required. Zhang and Lee [2] and Yamamura et al. [3], among 
others, have pointed out the effect of the work-hardening on springback.  

The plastic behaviour at large strains is commonly modelled by using phenomenological 
laws involving isotropic and/or non-linear hardening. However, experimental studies have 
revealed that sharp strain-path changes can induce a complex anisotropic hardening 
behaviour, especially in the case of steel sheets. On the other hand, TEM evidence (see, e.g. 
[4-6]) has convincingly shown that such effects are the macroscopic counterpart of the 
evolution of dislocation structures. Therefore, we shall also consider the hardening behaviour 
at large plastic strains, by using a dislocation-based microstructural model, initially proposed 
by Teodosiu and Hu [7-9], and further developed in [10, 11], which takes into account the 
plastic anisotropy induced by the evolution of dislocation structures, in addition to the 
isotropic and kinematic hardening. This model includes, besides a scalar measure of the 
isotropic hardening, three tensor-valued internal variables, which describe, respectively, the 
back-stress, the directional strength of dislocation structures and their polarity. 

The incremental elastoplastic constitutive equations resulting from the rate models and 
their finite element implementation depend, of course, on the algorithms adopted for the time 
integration. For reasons of conciseness, we shall limit ourselves to mainly considering the 
tangent formulation of the incremental stress-strain relations, which is directly applicable to 
explicit time-marching schemes, referring to the available literature for more sophisticated, 
implicit algorithms.   
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2. CONSTITUTIVE MODELLING 

We restrict ourselves to the cold deformation of metals and neglect any viscous effects on the 
work-hardening. The elastic strains are considered negligibly small as compared to the 
corresponding plastic strains. Only the contribution of the microstructural evolution and of 
the initial texture on the plastic behaviour is considered, as they are predominant at 
moderately large strains, while the influence of the texture evolution on the work-hardening is 
neglected. 

In what follows, all tensor variables are denoted by bold-face symbols and their 
components, whenever used, are referred to a Cartesian orthogonal frame. The summation 
convention over repeated indices of such components is used throughout the paper. The 
superscripts T, S, and A denote the transpose, the symmetric part and the antisymmetric part 
of a second-order tensor, respectively. Let  denote two second-order tensors and S a 
fourth-order tensor. We define the double-contracted tensor product between such tensors, 
denote by a colon, as 

,A B

( ): , : , : :ij ij ijkl kl ij ijkl klij
.A B S A A= = =A B S A A S B S B   

We further define the norm of  as A ||  and its direction, if  is non-zero, by || ij ijA A=A A

|| || .A A  Finally, the norm of  is defined by S || .  || ijkl ijklS S=S

2.1 Kinematics of large elastoplastic deformations 

Consider a body B , e.g. a metal sheet, at time , and choose its configuration, say C , as 
reference configuration of 

0t 0

B . Let C  denote the current configuration of  B  at time t  and let 
 and x  denote the position vectors of a material point 0x X  in the configurations C  and C , 

respectively. When 
0

B  undergoes a plastic deformation, it generally has not a global natural 
(i.e. stress-free) configuration. The local natural configuration  of a material neighbourhood 

 of the material point 
Ĉ

( )N X X  is defined as the ideal configuration that  would assume 
if it were cut out and released from all constraints, the position of all crystal defects being 
kept constant, in order to preclude any plastic deformation. Let  be the local natural 
configuration of  obtained by the same procedure at time . Clearly, when using an 
updated Lagrangian description (see Sect. 3), the time interval [ ,  may be replaced by the 
current incremental lapse of time [ ,

(N X )

0Ĉ

]t
(N X ) 0t

t0

∆ ].tt t +  

 Let d ,  and d  denote, respectively, the same infinitesimal material vector in 

the configurations C C  and C  respectively (Fig. 1). We define the deformation 
gradient , the elastic distortions F  and  at times , respectively , and the plastic 
distortion 

0 ˆd , dx x x

F

0x̂
ˆ, C0, 0

ˆ ,
e e

0F t 0t
pF  by the relations 

e p
0 0ˆ ˆ ˆ ˆd d , d d , d d , d d= = = =x F x x F x x F x x F xe

0 0 0.  (2.1)
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This leads to the following multiplicative decomposition of the deformation gradient  into 
elastic and plastic parts 

F

e p e -1
0( )F = F F F . (2.2)

By time-differentiating this relation, it follows that the gradient L  of the velocity field can be 
written as 

-1 e e -1 e p p -1 e -1= = ( ) + ( ) (L F F F F F F F F& & & ) .  (2.3)

 
Figure 1. On the multiplicative decomposition of the elastoplastic deformation. 

For cold deformation of metals, the elastic part of F  involves strains that are a minute  
fraction of unity, but possibly large rotations. That is why, by using the polar decomposition 
of  we shall write F 1  where 1  is the unit second-order tensor, e  is a 
symmetric tensor of small elastic strains  and  is the rotation tensor 

. By introducing this expression of  into (2.2) and neglecting terms of second 
order in ||  we obtain 

e

e ,F e = ( + ) ,e R
( = , || 1 ),e e e R

1)=
,

T

e

||�
( TR R F

||e

T p -+ (e F Rp )& 1 T ,= +L R R R F

where 

o
&  (2.4)

o
T= - +e e R R e e R R& && T   

 d 0dx

0ˆdx
ˆdx

dx

0C

0Ĉ

C

Ĉ

pF

F

e
0F eF

0x

 

Y
Y

X  X

 

Y
Y

 
X X
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denotes the objective time-derivative of e  calculated with the spin . The symmetric and 
antisymmetric parts of (2.3) give the strain rate tensor  and the spin  respectively, as 

, TR R&
,W

,

D
o

p T= + = +D e D W R R W&  (2.5)p ,

where 
p p T p p Tˆ= , =D R D R W R W Rˆ  (2.6)

are the plastic strain rate and the plastic spin, and  and  are the symmetric and 
antisymmetric parts of  respectively. 

pD̂ pŴ
p p -1( ) ,F F&

( )N X

( )N X

T ,R R&
( )t

0(0) = ,R R

,

The as yet undefined orientations of the local natural configurations  can be chosen so 
as to simplify the description of the material response to subsequent deformations. For single 
crystals, this can be achieved by making the average lattice orientation of  be the same 
throughout the motion [12-14]. Indeed, this renders homogeneous the description of the 
elastic response when neglecting the influence of the plastic deformation on the elastic 
moduli. In addition, since the plastic deformation does not change the average lattice 
orientation, this choice justifies calling plastic deformation the mapping of C  onto   0

( )N X

( )N X

0
ˆ .C

p

T=W R R&

with the initial condition  where  is the orientation of the preferred frame at the 
beginning of the deformation process, e. g. the frame defined by the axes of plastic orthotropy 
of a rolled sheet. Moreover, since all crystal defects are corotational with the crystal lattice, it 
will be assumed that all tensor hardening variables turn with the same spin  while 
their objective rates, denoted by a small superposed circle, will be of Jaumann type. 

Mandel [15] has proposed a natural extension of these ‘isoclinic natural configurations’ 
to polycrystalline materials, by associating to each material neighbourhood  a preferred 
frame that rotates with a spin equal to the volume average of the spins of all grains in . 
Clearly, this formalism requires describing the initial texture of the metal by a sufficiently 
large number of grain orientations, following the evolution of these orientations throughout 
the deformation process, and deriving the macroscopic behaviour by a suitable micro-macro 
transition scheme. Although several procedures of this type are already available in the 
literature (see, e.g., [16-18]), their use remains limited to rather simple deformation processes. 
Therefore, we will limit ourselves in the following to a simplified approach, which can be 
considered as acceptable, for instance when simulating the sheet metal forming. Namely, 
since the work-hardening behaviour of polycrystalline materials at moderately large strains is 
not very sensitive to the choice of the spin  we shall simply assume that  in 
(2.5)

=W 0
2, the rotation field R  being determined by the evolution equation 

0R

,=R W R&  (2.7)
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2.2  Hypoelastic behaviour  

Assuming again that the elastic strains are small and that the axes of elastic and plastic 
anisotropy coincide, it may be shown that the time-differentiation of the hyperelastic 
constitutive equation leads to the hypoelastic form 

o o
p: : (σ c e c D D= = − ),  (2.8)

where c  is the tensor of elastic constants, whereas the objective time derivatives  and  are 
given by 

o
σ

o
e

s

o o
,= − + = − +σ σ Wσ σW ε ε Wε εW& & .  (2.9)

2.3 Yield condition and flow rule 

We assume that the yield condition has the form 

Φ = σ = 0,Y−  (2.10)

where  is the yield stress. The equivalent effective stress Y σ  is given by the general 
quadratic function 

2σ = : :s M s,  (2.11)

where  is the effective deviatoric stress tensor, 'σ  is the deviator of the Cauchy 
stress tensor,  denotes the back-stress, and  is a fourth-order tensor characterizing the 
texture anisotropy. Since s  is deviatoric and symmetric, it may be assumed without restriction 
of generality that M  is a fully symmetric tensor of fourth-order that is traceless in both the 
first and the second pair of indices, i. e. 

= 'σ X−
X M

,ijkm jikm kmij iikmM M M M= = = 0.  (2.12)

In fact,  should be added to the set of internal variable, too. However, since we neglect the 
texture evolution, we simply assume that the laminated sheet is initially orthotropic and 
remains so during the deformation. Then, the orthotropy axes, which are supposed to coincide 
initially with the fixed Cartesian axes 

M

ix , are subjected to the time-dependent rotation , 
while the evolution of   is given by 

R
M

ˆ .ijkm in jp kq ms npqsM R R R R M=  (2.13)

Alternatively, since the components of  in the corotational frame remain constant and 
equal to those of  in the fixed Cartesian frame, we may calculate the equivalent effective 
stress by 

M
M̂

2 ˆ ˆ ˆσ ,ijkm ij kmM s s=  (2.14)

where 
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îj in jp nps R R s=  (2.15)

are the components of the effective stress in the (current) orthotropy frame. In particular, if 
the initial plastic anisotropy can be described by Hill’s quadratic yield condition, Eq. (2.11) 
may be written in the form 

2 2 2 2 2 2
22 33 33 11 11 22 23 13 12ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆσ = ( ) + ( ) + ( ) + 2 + 2 + 2F s s G s s H s s L s M s N s− − − 2 ,  (2.16)

where F, G, H, L, M and N are material constants. 

The plastic strain rate is given by the associated flow rule 
S

p Φ λλ : ,
σ

D
σ

&
& ∂ = = ∂ 

M s  (2.17)

where  is the plastic multiplier and a superposed dot indicates the time differentiation. The 
equivalent plastic strain rate 

λ&
pε&  is defined as the power conjugate of σ , i.e.  

p pσ ε = : .s D&  (2.18)

Introducing (2.17) into this relation and considering (2.11), it follows that pε .= && λ  The 
equivalent plastic strain is defined by 

pt tp p

0 0

:
σ

ε ε dt dt.= =∫ ∫
s D&  (2.19) 

When the initial texture is isotropic, we may replace the tensor M  by  

(3 / 2) ,′=M I  (2.20)

where  is the unit fourth-order tensor in the applications of the space of symmetric and 
deviatoric tensors onto itself, and has the components 

′I

( )1

2 3
δ δ δ δ δ δ .ijkm ik jm im jk ij kmI ′ = + −

1   

Introducing (2.20) into (2.11) and taking into account that : ,′ =I s s  yields the expression of 
the generalized von Mises equivalent stress 

2 3
2

σ : .= s s  (2.21)

It may be shown that in a uniaxial tensile tes, this equivalent stress reduces to the effective 
tensile stress, which explains the choice of the normalizing factor 3/2 in (2.20). Furthermore, 
replacing  by (2.20) into the flow rule (2.17) gives the relation M

p 3λ
2σ

,=D
&

s  (2.22)
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which shows that the strain rate tensor and the effective stress tensor are now coaxial. It is 
worth noting that, although in this case the yield criterion is isotropic with respect to s , it is 
still anisotropic with respect to  σ , whenever the back-stress is non-zero. '

2.4 Isotropic hardening combined with saturated kinematic hardening 

One of the most common law used for the isotropic hardening is the Swift law defined by 

where C, ε0 and n are material parameters. The initial value of the yield stress is given by the 
relation  The Swift law is adequate for describing the behaviour of materials that 
exhibit a non-saturated isotropic hardening up to rupture. 

0 ε .nY C= 0

 Another frequent description of the isotropic hardening is given by the Voce law: 

where CR and Rsat are material parameters, Y0 is the initial yield limit, while the evolution of R 
describes the isotropic hardening. It is worth noting that by integrating the evolution equation 
(2.24)2 with the initial condition (2.24)3, the Voce law can be also written in the alternative 
algebraic form 

 The isotropic hardening can be combined with a kinematic hardening characterized by 
the evolution of the back-stress . We shall assume here that this evolution is governed by 
the saturation law that has been thoroughly investigated by Lemaître and Chaboche [19]: 

X

where  and  are material parameters and  is the initial value of . The ratio K γ 0X X / γK  
characterizes the saturation value of the kinematic hardening, while γ  characterizes its rate of 
approaching the saturation. 

A slightly different evolution equation for the back-stress proposed in the literature is 

where satX  characterizes the saturation value of , while  characterizes its rate of 
approaching the saturation. In the isotropic case, by considering (2.22), it is easily shown that 
the evolution equations (2.25) and (2.26) coincide, provided that  and 

 On the other hand, when no rotation takes place, Eqs. (2.25) predict that 

X XC

Xγ C=

X sat(2 .K C= / 3) X

[ ]
o

X sat( / σ) λ, (0)C X= −X s X X&
0 ,= X  (2.26)

o
p

0γ λ, (0)K= − =X D X X X& ,  (2.25)

p
0 sat R1 exp( ε ) ,Y Y R C = + − −    

which shows that Y  approaches asymptotically the value Y R0 sat+ under monotonic loading. 
Therefore, the Voce law is adequate for describing the behaviour of materials that exhibit a 
saturated isotropic hardening before rupture. 

0 R sat, ( )λ, (0)Y Y R R C R R R&= + = − = 0,  (2.24)

p
0(ε ε ) ,nY C= +  (2.23)
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the back-stress tends to be coaxial with a constant plastic strain rate pD , while Eqs. (2.26) 
predict that the back-stress tends to be coaxial and opposite with a constant deviatoric stress 

' , and these two predictions are different when the plastic anisotropy is significant. The 
latter conjecture seems more plausible from the physical point of view, because it corresponds 
to the very definition of the back stress as opposing the applied shear stress on each slip 
system. Therefore, we shall generally prefer using the evolution equations (2.26), in particular 
for the dislocation-based model that will be presented in the following subsection. 

σ

The mixed models obtained by combining one of the equations (2.23) and (2.24) with one of 
the equations (2.25) and (2.26) is adequate for materials exhibiting both isotropic hardening 
and a rather pronounced Bauschinger behaviour. Such a model involves 5 material 
parameters, which can be identified e.g. by using a uniaxial tensile test along the rolling 
direction, and monotonic and Bauschinger simple shear tests along the rolling direction. 

 

 

 

 

 

 

 

 

 
 
Figure 1. Comparison of mechanical tests with the prediction of the model combining 
isotropic hardening (Voce law) with kinematic hardening for aluminium alloys (a) AA5182-O 
and (b) AA6016-T4. (1) Uniaxial tensile test. (2) Monotonic simple shear test. (3), (4), (5) 
Bauschinger simple shear tests after 10%, 20% and 30% amount of shear in the forward 
direction. (6) Orthogonal test: simple shear in the rolling direction, following a 20% true 
tensile strain in the same direction (after [11]). 

As an illustration, let us consider the description of the mechanical behaviour of the 
sheets of aluminium alloys AA5182-O and AA6016-T4. Several uniaxial tensile tests and 
simple shear tests at different orientations show that these materials exhibit a weak planar 
anisotropy in the flow stress, and a pronounced saturation of the flow stress during monotonic 
loadings. The Bauschinger effect is rather small and no work-hardening stagnation occurs 
during the reversed deformation of Bauschinger tests. After an orthogonal strain-path change, 
no cross-hardening or softening effects are detected in the alloy AA5182-O, while the alloy 
AA6016-T4 presents an increase in the yield stress, which is not followed, however, by any 
softening effect. 

Figure 1 shows that this behaviour can be quite satisfactorily described by a combined 
model of isotropic hardening (Voce law) and saturating kinematic hardening. Indeed, 
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although the Bauschinger effect is relatively small, we observe that the match of experimental 
data is significantly improved when introducing the back-stress. The values of the hardening 
parameters for the alloy AA5182-O are: Y0 = 148.5 MPa, CR = 9.7, Rsat = 192.4 MPa, 
K = 2647 MPa, γ = 152.7 and those of the Hill parameters are F = 0.652, G = 0.570, 
H = 0.430, N = 1.61. The values of the hardening parameters for the alloy AA6016-T4 are: 
Y0 = 124.2 MPa, CR = 9.5, Rsat = 167.0 MPa, K = 3409 MPa, γ = 146.5 and those of the Hill 
parameters are F = 0.587, G = 0.590, H = 0.410, N = 1.27. 

2.5 A dislocation-based microstructural model 

In this section we will present the microstructural model proposed by Teodosiu and Hu [7-9], 
with its subsequent refinements introduced in [10, 11], which is intended to describe the 
plastic behaviour of some metallic rolled sheets at large strains and under complex strain-path 
changes. We shall limit ourselves to analyse the results obtained for the IF steel DC06 and the 
dual phase steel DP600, referring for other results concerning the high-strength steel 
HSLA340 and the aluminium alloys AA5182-O and AA6016-T4 to the report [11]. 

The hardening of the material is described by four internal state variables denoted by 
and  The tensor variables S  and  are associated, respectively, with the 

directional strength of planar dislocation sheets and with their polarity. S  is a fourth-order 
tensor and has the dimension of stress, while P  is a second-order tensor and has no 
dimension.  is a second-order deviatoric tensor and represents a kind of generalized back-
stress, which is intended to describe the rapid changes in the flow stress following a sharp 
change in the direction of the strain rate. Finally, 

, ,R X P .S P

X

R  is a scalar variable and describes the 
isotropic work-hardening associated with the randomly distributed dislocations. For well-
annealed materials, the initial values of all these internal variables are set equal to zero. On 
the contrary, for a predeformed material as a cold-rolled sheet, these initial values should be 
incorporated in the identification procedure of the model. 

The yield condition is still written in the form (2.10), but the yield stress is defined now 
by the relation 

0 ,Y Y R f= + + S  (2.27)

where Y  is the initial yield stress, 0 f  is a material parameter, whereas the terms R  and f S  
describe, respectively, the contributions of the randomly distributed dislocations and of the 
dislocation structures to the isotropic hardening.  

The definitions of the equivalent effective stress, the associated flow rule and the 
evolution equations of the hardening variables R  and  conserve the forms (2.11), (2.17), 
(2.23)

X
2 and (2.26)1, respectively. However, the parameter satX  in Eq. (2.26)1 is no longer 

assumed constant, but considered as a function of the dislocation structures, via the internal 
state variable . More precisely, it is assumed that S

2
sat 0 D L(1 ) ,X X f S r= + − + S2  (2.28)

where  
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D : :S = A S A  (2.29)

is the strength of the dislocation structures associated with the currently active slip systems, 
p

p
=

DA
D

 (2.30)

is the current direction of the strain rate tensor, and S  is the part of  associated with the 
latent slip systems, which is defined by 

L S

L D .S= − ⊗S S A A  (2.31)

TEM experimental evidence [4-6] strongly suggests that dislocation structures 
associated with the current direction A  of the strain rate tensor evolve quite differently from 
the latent dislocation structures, which explains the decomposition of  into  and S  
Moreover, for some metallic materials, e.g. the ferritic steels, two physical mechanisms may 
intervene immediately after an orthogonal strain-path change: either the partial disintegration 
of the latent dislocation structures or their softening after being sheared microbands 
associated with the newly activated slip systems. Both these mechanisms reduce the intensity 
of the latent part S  of the dislocation structures, whereas the part  associated with the 
currently active slip systems will increase. Hence, the following evolution equations of  
and S  are adopted: 

S DS L.

DS
L DS

L

n
o

L
L SL L

sat

S λ,C
S

 
= −  

 

S
S &  (2.32) 

( )D SD sat D D λ,S C S S g S h = − − 
&&  (2.33) 

where  and  characterize the saturation rates of  and , respectively,  denotes 
the saturation value of ,  is a scalar function describing the influence of the polarity of 
the planar dislocation structures, and  is a scalar function describing the slight variation of 

 at the beginning of the reversed deformation in a Bauschinger test and vanishing 
thereafter. Specifically, by denoting 

SDC SLC DS LS satS

DS g
h

DS

A A: , : ,P X= =P A X A  (2.34)

the functions  and  may be expressed as g h
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P

P D
D D

SD P sat

P D
D

SD P sat

1 i

(1 ) 1 otherwisen

C S P P
C C S

g
C SP

C C S


− − += 

  + −  + 

f 0≥

 (2.35) 

A

sat

1 1
2 X

Xh
 

= −
 

  (2.36) 

The initial values of  and S  may be obtained from the initial values S  and  of S , 
respectively , by using Eqs. (2.29) and (2.31), i.e. 

DS L 0 0A
A

D 0 0 0 L 0 D 0(0) : : , (0) (0) .S = = −A S A S S A A0S ⊗  (2.37)

It should be mentioned, however, that only  is an internal variable, whereas its 
decomposition into  and S  is only a means of getting more physical insight into the 
evolution equations postulated for various parts of . 

S

S
DS L

Finally the evolution law for  is assumed in the form P
o

P ( λ,C= −P A P &)  (2.38)

which shows that, whatever the initial value of , it will tend to if the direction of the 
strain rate remains unchanged for an amount of deformation that is sufficiently large with 
respect to 1/  

P A

P.C

In its extensive form, which is mainly used for mild and IF steels, the dislocation-based 
model involves 13 material parameters, namely Y0, f, CR, Rsat, CX, X0, CP, CSD, Ssat, nP, CSL, r, 
n. The somewhat simpler behaviour of other steels, which do not display a plateau in 
Bauschinger tests or a temporary work-softening after orthogonal strain-path changes, can be 
derived from the general model, by simply setting to zero some of the material parameters. 
This is the case, for example, of the dual phase DP600 presented in Fig. 2b. 

Figure 2 depicts the behaviour of two steels. The IF steel, whose behaviour is illustrated 
by Fig. 2a, exhibits a work-hardening stagnation followed by a resumption of work-hardening 
during the reversed deformation in Bauschinger tests. The length of the plateau increases with 
the amount of forward shear, during the first strain path. A cross-hardening effect is also 
detected after an orthogonal strain-path change, consisting of a temporary work-hardening 
followed by work-softening. As shown in Fig. 2a, the dislocation-based microstructural 
model is able to completely predict these various features. The values of the hardening 
parameters for the steel DC06 are: Y0 = 121.1 MPa, CR = 31.9, Rsat = 90 MPa, CX = 446, X0 = 
15.9 MPa, CSD = 4, CSL = 1.86, Ssat = 231.1 MPa, n = 0, nP = 27.9, r = 1.5, f = 0.445, CP = 5.5, 
whereas those of the Hill’s parameters are F = 0.243, G = 0.297, H = 0.703, N = 1.20. 
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The behaviour of the dual phase steel DP600, depicted in Fig. 2b, is slightly different 
from that of IF steel. In particular, no cross-hardening effects are observed after an orthogonal 
strain path change, but the presence of a plateau is clearly noticed in Bauschinger tests. As 
shown in Fig. 2a, the dislocation-based model is still able to completely depict these different 
observed features, by setting some parameters equal to 0. The values of the hardening 
parameters for the steel DP600 are: Y0 = 285 MPa, CR = 37.6, Rsat = 110.8 MPa, CX = 55.7, 
X0 = 169.4 MPa, CSD = 5.6, CSL = 0, Ssat = 330.7 MPa, n = 0, nP = 664.5, r = 0, f = 0.631, CP = 
0.54, whereas those of the Hill’s parameters are F = 0.503, G = 0.559, H = 0.441, N = 1.49. 

 

 

 

 

 

 

 

 

 
Figure 2. Comparison of mechanical tests with the prediction of the dislocation-based model 
in its (a) complete form for the IF steel DC06, (b) simplified form for the dual phase steel 
DP600. (1) Uniaxial tensile test. (2) Monotonic simple shear test. (3), (4), (5) Bauschinger 
simple shear test after 10%, 20% and 30% amount of shear in the forward direction. (6) 
Orthogonal test : simple shear in the rolling direction following a 20% true tensile strain in 
the same direction (after [11]). 

2.6  Elastoplastic constitutive equations 

As already mentioned in Sect. 2, we assume that all objective time derivatives are calculated 
with the same corotational spin R R  It then proves convenient to reformulate the 
constitutive and evolution equations in terms of ‘rotation-compensated’ quantities, which will 
be denoted by a superposed hat. More precisely, if  and  denote as before a second-order 
and a fourth-order tensor, respectively, then the corresponding rotation-compensated tensors, 

 and S , will be defined by 

T .= W&

T S

T̂ ˆ

ˆˆ , .ij ip jq pq ijkm ip jq kr ms pqrsT R R T S R R R R S= =  (2.39)

The main advantage of this transformation is that the Jaumann-type derivatives of the initial 
tensors are related to the material time derivatives of the rotation-compensated tensors by 
relations similar to (3.1), namely 

 o  o ˆˆ , .ij ijkmip jq pq ip jq kr ms pqrsT R R T S R R R R S= = &&  (2.40)
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It is also noteworthy that the transformation (2.39) preserves the norms and the double-
contracted tensor products.  

With this notation, the main equations of the dislocation-based microstructural model 
presented in Sect. 2.5 may be rewritten as follows. 

0
ˆΦ = σ = 0, = + + ,Y Y Y R f− S  (2.41) 

2 ˆˆ ˆ ˆ ˆσ = : : , = ' ˆ ,−s M s s σ X  (2.42) 

p
p p

p

ˆ1 ˆˆ ˆ ˆ ˆ ˆ ˆˆ ˆˆλ , : , : ( ),
ˆσ

= = = − =
DD V V M s σ c D D A
D

&& ,  (2.43) 

R sat X sat P
ˆˆ ˆ ˆˆ( )λ, ( / σ) λ, ( λ.R C R R C X C = − = − = − X s X P A& && && ˆ )P &  (2.44) 

D L D
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ: : , ,S S= = − ⊗A S A S S A A SL ,Z =  (2.45) 

( ) ( )n
D SD sat D D L SL sat L

ˆλ, / λ,S C S S g S h C Z S = − − = −  S&&& Ŝ &  (2.46) 

The plastic multiplier  can be determined by imposing the consistency condition for 
plastic loading. The result depends on whether the time-marching scheme is implicit and 
involves consistent elastoplastic moduli, or it is explicit, and hence requires only the 
calculation of tangent elastoplastic moduli. For simplicity, we restrict here ourselves to 
consider the latter case, and hence to impose the consistency condition in the rate form. For 
the plastic loading, the yield condition (2.41)

λ&

t
1 has to be identically satisfied in a 

neighbourhood of time t  and hence its time derivative at time  should vanish. By taking into 
account that 

2
D

ˆ ˆ ˆ|| || : ,S Z= = +S S S 2   

this condition gives 
D D

2 2
D

+
Φ = σ = 0.

+
S S Z Z

R
S Z

− −
& &

& &&  (2.47)

On the other hand, we have 

( )
( )

p

X sat

1 ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆˆσ : : : ( ) : : ( ) :
σ
ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ: : : : : λC X

′= = − = −

 = − + − 

M s s V σ X V c D D V

V c D V c V V X

& && &&

&

ˆ ˆ− X
  

( ) ( ){ }n 2
D D SD sat D D D SL sat/ λ.S S Z Z C S S g S h S C Z S Z + = − − − 

&& &   
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Next, by substituting these last two expressions and (2.44)1 into (2.47) and solving with 
respect to , we obtain λ&

0

α ˆ ˆλ : :
f

= V c D& ˆ ,  (2.48)

where  for the plastic loading and α 1= α 0=  for the neutral loading, the unloading or in the 
elastic state, while 

( ) ( )
( ) ( ){ }

0 R sat X sat

n 2
SD sat D D D SL sat2 2

D

ˆ ˆ ˆ ˆˆ: : :

/ .

f C R R C X

f C S S g S h S C Z S Z
Z S

= + − + −

 + − − − 
+

V c V V X
 (2.49)

Finally, introducing (2.48) into (2.43)1 and the result obtained into (2.43)3 yields the tangent 
elastoplastic constitutive equations 

where c  are the tangent elastoplastic moduli. epˆ

( ) ( )ep ep

0

αˆ ˆˆ ˆ ˆ ˆ ˆˆ : , : :
f

= = − ⊗σ c D c c c V c V& ˆ .  (2.50)

 When the elastic behaviour may be considered as isotropic, the tensor c  of the second-
order elastic constants has the components 

ijkl ijkl ij kl ik jl il jkˆ λδ δ µ (δ δ δ δ ),c c= = + +  (2.51)

where  and µ  are Lamé’s constants. It may be easily verified that in this case, for any 
deviatoric and symmetric second-order tensor, e. g. , we have 

λ
V

By introducing the last relation into (2.50)2, we deduce the corresponding expression of the 
tangent elastoplastic moduli: 

ˆˆ: : 2µ= =c V c V V̂. (2.52)

As already mentioned, using the rotation-compensated quantities in the constitutive 
modelling leads to an easier finite element implementation, as the objective rates of tensor 
variables are replaced by usual time derivatives. Moreover, by adequately choosing the 
orientation of the rotating frame (e.g. the orthotropic frame of a rolled sheet), it is often 
possible to assume that both the elastic and plastic parameters intervening in Eqs. (2.50) 
remain constant at each material point throughout the motion. Notwithstanding, when 
considering the global equilibrium equations, it is necessary to use a common frame and thus 
to rewrite Eq. (2.50)1 in the form 

2
ep

0

4µ ˆ ˆˆ ˆ α .
f

= −c c V⊗V  (2.53)

where 

o
ep :=σ c D,  (2.54)

ep epˆ .ijkm pi qj rk sm pqrsc R R R R c=  (2.55)
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In particular, as will be shown in the next section, Eq. (2.54) can be directly used for 
calculating the tangent stiffness matrix occurring in the principle of virtual power.  

3.  FINITE ELEMENT IMPLEMENTATION 

We will illustrate the finite element implementation of the constitutive modelling developed 
in the preceding section on the case of sheet metal forming. A large variety of FE 
formulations have been developed in this area, but no single software can reliably simulate all 
types of forming processes and predict the eventual occurrence of forming defects. We shall 
recall here briefly some of the merits and drawbacks of three main types of such FE 
approaches, namely the static explicit, static implicit and dynamic explicit algorithms (for a 
more detailed comparison of these time-marching schemes, we refer to Makinouchi et al. 
[20,21]). 

3.1 Principle of virtual power 

Due to the incremental character of the elastic behaviour, it is convenient to adopt an updated 
Lagrangian description of the deformation process. Namely, the configuration of the sheet at 
time  is taken as reference configuration for the lapse of time between t  and t  at the 
end of which the configuration of the sheet, the state variables, and the boundary conditions 
are updated. Then, the new configuration of the sheet is taken as reference configuration for 
the next time increment, and so on. 

t ∆ ,t+

By time-differentiating the quasi-static equilibrium equations, in the absence of body 
forces, we obtain 

0, , 1, 2,3,ij

j

S
i j

x
∂

= =
∂

&
 (3.1)

where S  is the first Piola – Kirchhoff stress tensor referred to the configuration of the sheet at 
the beginning of the time increment (not to be confused, of course, with the fourth-order 
tensor  used in Sect. 2 to describe the directional strength of dislocation structures), and S  
are the Cartesian co-ordinates of a current point of the sheet at the beginning of the increment. 

ix

 As regards the boundary conditions, we assume that the surface  of the sheet can be 
divided at time  into three parts: a part  on which the rate of the nominal stress vector s  
is prescribed, a second part  on which the velocity vector  is prescribed, and a third part 

 on which slipping conditions between the sheet and the tools, with Coulomb friction, are 
prescribed. Consequently, we may write 

S
t 1,S &

2 ,S v

3,S

n t *s& *v
3S

* *
1on , on ,ij j i i iS n s S v v S= =& & 2  (3.2)

where  is the unit outward normal to the sheet at time , whereas  and  are known 
functions of place and time. On the slipping surface  we have 

nt−sheet tool rel rel
τ f τ τ, µ | | / ||n nv v v v= =t  (3.3)||,
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where  and  are the components of the velocity vector  and of the Cauchy stress vector 
 on the normal  respectively, 

nv nt v
t ,n τ nt= −t t

tool
τ− v

n

*
τ&

 is the tangential component of t ,  is the 
friction coefficient, and  is the tangential relative velocity of the sheet with 
respect to the tool. It may be shown [22] that the friction forces can be iteratively taken into 
account, Eqs. (3.3) being replaced by 

fµ
rel sheet
τ τ=v v

sheet tool *
τ τ 3, on ,n nv v= =s s& & S  (3.4)

where s  is a known function at each iteration. 

In the present context, a velocity field  is said to be kinematically admissible if it satisfies 
Eqs. (3.2)

v
v2 and (3.3)1. A vector field δ  is said to be a virtual velocity field if it satisfies the 

homogeneous boundary conditions 

2δ on , δ 0 on .nS v= =v 0 3S  (3.5)

With these definitions, it may be proved that the following theorem holds. 

Principle of virtual power. A kinematically admissible velocity field  satisfies the boundary-
value problem defined by Eqs. (3.1), (3.2) and (3.4) if and only if the condition 

v

1 3

* *
τ τδ δ δ ,ij ij i i i iV S S

S L dV s v dS s v dS= +∫ ∫ ∫& & &  (3.6)

 where  is satisfied for any virtual velocity field δ  Here V  and  denote, 
respectively, the region occupied by the sheet at time t  and its boundary. 

δ (δ ) / ,ij i jL v= ∂ ∂x .v S

McMeeking and Rice [23] have proposed a slightly different form of this principle, 
which makes use directly of the Cauchy stress tensor σ  namely ,

1 3

o
* *

τ τ{( τ 2σ )δ σ δ } δ δ .ij ik kj ij jk ik ij i i i iV S
D D L L dV s v dS s v dS− + = +∫ ∫ & &

S∫  (3.7)

Here  denotes the Kirchhoff stress and  its Jaumann derivative. Apparently 
more complicated than Eq. (3.6), the form (3.7) of the principle has nevertheless the 
advantage of involving tensors that occur directly in the formulation of the constitutive laws. 

Actually, for sheet metal forming,  can be replaced with a good approximation by σ , which 
is directly provided by the tangent elastoplastic constitutive equations, as shown at the end of 
Sect. 2.6. 

e(det )=τ F σ
o
τ

o
τ

o

3.2 Static explicit algorithms 

Clearly, the inviscid plastic behaviour described in Sect. 2, in particular the tangent 
elastoplastic constitutive equation (2.54), is insensitive to the choice of the time scale.  
Consequently, all time derivatives of the fields involved in the principle of virtual work (3.7) 
and in the constitutive and evolution equations can be replaced by the increments of these 
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fields corresponding to a trial increment  of a monotonously increasing loading parameter 
, e.g. the controlled displacement of a stamping tool. 

dw
w

 Performing a finite element discretization, namely dividing the sheet into finite elements 
and assuming that the same shape functions are used to approximate the incremental 
displacement field d and the virtual displacement corresponding to the trial increment 

 of the loading parameter, we arrive in a standard way to a system of linear algebraic 
equations of the matrix form 

u δ(d )u
dw

[ ]{ } { }T d dK U F= ,  (3.8)

where [ ]TK  is the tangent stiffness matrix, while { }dU  and { }dF  denote, respectively, the 
arrays of trial incremental nodal displacements and forces corresponding to   d .w

The monitoring of the time increments in the static explicit formulation is most often 
realized by means of the so-called rmin-strategy (see, e.g. Kawka and Makinouchi [24]). 
Namely, after calculating the solution of system (3.8), the trial incremental displacement 
{ }dU  is weighted by a coefficient r  whose admissible value, denoted by is chosen in 
such a way that no significant changes occur in the stiffness matrix during the increment. 
Clearly, this condition can be satisfied only if the influence of the sources of non-linearities 
on the tangent approximation is limited by controlling the size of the increment. 

, min ,r

Thus, the calculation performed for each increment comprises two stages. At the first 
stage, one solves the system (3.8) and determines the values of  for which: r

(i) the material at a Gauss point passes from the elastic to the plastic state or viceversa; 

(ii) a free node gets into contact with the tools or, conversely, a contact node gets free; 

(iii) a sticking node becomes sliding; 

(iv) the largest absolute value of the incremental principal strains attains a prescribed 
upper limit, say ; max∆ε

(v) the Euclidian norm of the incremental rotation attains a prescribed upper limit, say 
; max∆ω

(vi) a change in the deformation process or a required output is attained. 

The minimum of all these values is denoted by  and defines the real size  of 
the incremental loading parameter.  

minr min∆ dw r w=

The second stage of the incremental step includes the validation of all changes for which 
the corresponding r-value does not exceed  by more than a small tolerance. Finally, the 
configuration of the sheet, the Cauchy stresses, as well as the orientation of the orthotropy 
frames and the hardening variables, are updated at all Gauss points in an explicit way, i.e. 
assuming that the rates of all quantities are constant over the time increment. The algorithm of 
the static explicit formulation is shown in Box 1. 

minr
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START 

• Input and check data 

• Repeat 
-      Impose a trial increment  of the loading parameter dw
-      Calculate the (tangent) stiffness matrix  TK

-   Solve the system of equations [ ]{ } { }T d dK U F=  for the incremental 

displacement { }dU  

-      Determine  minr

-      Update sheet and tool configurations and state variables 
-      Update contact/uncontact and sticking/slipping boundary conditions 
-      Output results 

until the end of the process 

END 

Box 1. Algorithm of the static explicit time integration. 

Despite the restrictions imposed on the size of the time step, the use of the tangent 
increments is inherently associated with some second-order deviations from local and global 
equilibrium. Whereas the accumulation of such incremental errors is generally harmless for 
the simulation of the deformation process, it can become critical e.g. for the prediction of the 
springback. Recently, this drawback has been largely eliminated by introducing in the static 
explicit formulation a new algorithm, called ALGONEQ, for systematically cancelling the 
non-equilibrated forces [3]. More precisely, the non-equilibrated nodal forces (and moments 
in the case of shell formulations) are calculated at the end of each increment. Then, whenever 
their maximum norm becomes higher than a certain tolerance multiplied by the maximum 
norm of the external forces, the non-equilibrated forces are cancelled by applying them with 
opposite signs on the sheet. An important feature of this algorithm is that this operation is 
generally performed in a single step, by using the corresponding tangent matrix, while the 
contact/sliding boundary conditions are corrected after updating the configuration of the sheet 
and the state variables ; thus, there are no iterations to perform and hence no convergence 
problems.  

Notwithstanding, the static explicit algorithms are still suffering from the severe 
limitation of the time increments that is necessary in order to maintain the deviations from 
linearity within admissible tolerances. The implicit algorithms, to which we will turn now, are 
mainly intended to reduce this computational effort, for a given level of accuracy. 
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3.3 Static implicit algorithms 

The main difference between the static implicit algorithms and the explicit ones is that the 
former employ a non-linear state-update algorithm over each increment and impose the 
consistency and equilibrium conditions on the final configuration of the increment. A large 
number of implicit algorithms have been proposed in the literature, which differ by the 
hypotheses made on the evolution of various non-linear geometric and physical quantities 
during each increment, by the way of taking into account this evolution in calculating the 
stiffness matrix and by the iterative methods employed to assure the equilibrium and the 
contact/friction conditions. Therefore, we will merely illustrate this class of algorithms on a 
particular example, called semi-implicit algorithm [25,26], which represents a good 
compromise between accuracy and computational effort and has been successfully used for 
simulating rather complex sheet metal forming processes [27,28].  

 The semi-implicit algorithm, which is based on a classical predictor – corrector scheme, 
is presented in Box 2. It should be mentioned that in this particular case the predictor is 
essentially based on the rmin-strategy explained in the preceding section. However, in 
determining the value of rmin, the condition (i) listed in Sect. 3.2 is suppressed, whereas 
conditions (iv) and (v) are significantly relaxed, thus reducing the number of increments that 
are required to simulate the process. This time-strategy is justified by the improved accuracy 
of the state-update algorithm. 

 The essential difference between the semi-implicit algorithm and the explicit one is the 
introduction at each increment of an equilibrium loop, which is shown schematically in 
Box 3. First, the incremental strains and rotations are computed using the midpoint rule of 
Hughes and Winget [29]. Then, the consistency condition is imposed by using a generalized 
midpoint rule (see, e.g. Pinski et al. [30]) and the resulting non-linear equation is solved at 
each integration point by means of a Newton - Raphson iteration. After calculating the stress 
increments, the residual nodal forces { }∆R  are calculated on the last determined 
configuration of the sheet and the system 

[ ]{ } { }∆ ∆ ,K U R=  (3.9)

is solved to obtained the correction { }∆U  of the incremental displacements. This procedure is 
repeated until the norm of the residual forces lies within preset limits.  To assure a quadratic 
convergence, one should use for [ ]K in (3.9) the consistent stiffness matrix, which can be 
calculated by linearizing the stress-update algorithm around the last determined configuration 
of the sheet. Alternatively, it is possible to replace [ ]K by the tangent stiffness matrix [ ]TK , 
calculated at the beginning of each equilibrium iteration. This option, which leads to a slower 
convergence rate, proves to be sometimes more cost-efficient, especially when the time 
increments are not very large. 
 The treatment of the contact/friction conditions in the present algorithm deserves a 
special explanation. Whereas conditions (ii) and (iii) in the determination of rmin are 
maintained,
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START 

• Input and check data 

• Repeat 
-      Impose a trial increment  of the loading parameter dw
-      Calculate the (tangent) stiffness matrix  TK

-   Solve the system of equations [ ]{ } { }T d dK U F=  for the incremental 

displacement { }dU  

-      Determine  minr
-      Update sheet and tool configurations and state variables 
-      Update contact/uncontact boundary conditions 
-      Equilibrium iterative loop (cf. Box 3) 
-      Adjust boundary conditions 
-      Output results 

until the end of the process 

END 

Box 2. Algorithm of the static semi-implicit time integration. 

• Repeat 
-     Calculate incremental strains and rotations by the mid-point rule 
-     Integrate the constitutive laws by using the generalized midpoint rule 

and a Newton-Raphson algorithm 
-     Calculate the residual forces { }∆R  

-   Solve the system of equations [ ]{ } { }∆ ∆K U R=  for the incremental 

displacement { }∆U  

-      Determine  minr
-    Update sheet configuration and state variables for fixed positions of the 

tools and a fixed value of the loading parameter 

 until the norm of the residual forces lies within  preset limits 

Box 3. Algorithm of the equilibrium iterative loop occurring in the static 
semi-implicit time integration. 
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only the contact/uncontact changes are validated at the end of the predictor phase, the 
sticking/slipping changes being considered too sensitive to a correct evaluation of the nodal 
forces. Finally, as shown in Box 2, all contact and friction boundary conditions are simply 
“adjusted” at the end of the equilibrium loop. Although this adjustment introduces new non-
equilibrated forces, they are not cancelled by a new equilibrium loop, before going to the next 
step. This option, which justifies the name ‘semi-implicit’ given to the algorithm, diminishes 
somewhat the accuracy of the simulation, but proves to significantly increase its robustness. 

 The evolution towards fully implicit algorithms may be done in two different ways. A 
direct generalization of the preceding algorithm is the introduction of a contact/friction loop 
that incorporates the equilibrium one. More precisely, at the end of each equilibrium loop, the 
contact/friction conditions are updated. This generates, as already mentioned, some new non-
equilibrated forces, which may be cancelled by a new equilibrium loop, and so on, until no 
changes occur in the contact/friction conditions. However, for problems involving a large 
number of sheet nodes, this latter situation can hardly be attained, and the iterations have to 
be limited by arbitrarily choosing their maximum number. 

 A second possible option is to use an augmented Lagrangian approach of the 
contact/friction. This leads to a non-linear system of equations whose unknowns are both the 
nodal displacements and the friction forces of the contact nodes and which can be solved 
within a unique iteration loop. For a thorough analysis of various strategies that can be used 
in this context and for their application to the simulation of forming processes, we refer to 
recent publications by Menezes and coworkers (see [31-33], where further references on this 
topic can be found). 

 Clearly, the main advantage of the implicit algorithms is their accuracy, which may be 
essential, e.g. when predicting springback. On the other hand, the convergence of the iteration 
schemes used in such formulations is not automatically assured, except for rather simple 
cases. 

3.4 Dynamic explicit algorithms 

Dynamic explicit algorithms are very robust and efficient for large-scale problems. The 
central difference explicit scheme is used to integrate the equations of motion, whereas the 
non-equilibrated forces are transformed into inertial forces at each step. Lumped mass 
matrices are used, and hence no system of equations has to be solved.  

Despite its success for industrial applications, dynamic explicit codes have also some 
intrinsic drawbacks. Thus, in order to reduce the number of steps necessary to simulate the 
almost quasi-static forming processes, several numerical artefacts have to be employed, e.g. 
the increase of the mass density and of the punch velocity by at least one order of magnitude 
and the introduction of an artificial damping, in order to limit the inertial effects. Moreover, 
the results obtained when simulating the springback, depend on the type and dimensions of 
the finite elements and even on the number of integration points (Matiasson et al. [34]). Thus, 
the simulation of forming defects requires a considerable experience on the user side for 
adequately designing the finite element mesh and choosing the scaling parameters for mass, 
velocity and damping (see, e.g. Lee and Yang [35]). 
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4.  CONCLUSION 

The constitutive models analysed in Sect. 2 are able to satisfactorily predict the complex 
behaviour of several steels and aluminium alloys used e.g. in the car manufacturing. They can 
be easily implemented in finite element codes and are not very time-consuming, as they imply 
uniquely calculations restricted to each Gauss point. On the other hand, all three classes of 
time-marching schemes presented in Sect. 3, namely the static explicit, static implicit and 
dynamic explicit algorithms, have some specific merits and drawbacks, and hence do not 
permit so far to make a unique choice, even when limiting the application area to the sheet 
metal forming. 
 

References 

1. Lian, J., Barlat, F., Baudelet, B. (1989), Plastic behaviour and stretchability of sheet 
metals. Part II: Effect of yield surface shape on sheet forming limit, Int. J. Plasticity, 5, 
131-147. 

2. Zhang, Z.T., Lee, D. (1995), Effect of process variables and material properties on the 
springback of 2D-draw bending parts (SAE Paper 950692 in SP-1067, Society of 
Automotive Sheet Engineers, Warrendale, PA), pp. 11-18.  

3. Yamamura, N., Kuwabara, T., Makinouchi, A., Teodosiu, C. (2001), Springback 
simulation by the static explicit FEM code, using a new algorithm for canceling the non-
equilibrated forces, in Proc. 7th Int. Conf. on Numerical Methods in Industrial Forming 
Processes (NUMIFORM’2001), Toyohashi, Japon. 

4. Hu, Z., Rauch, E.F., Teodosiu, C. (1992), Work-hardening behaviour of mild steel under 
stress reversal at large strains, Int. J. Plasticity, 8, 839-856. 

5. Thuillier, S., Rauch, E.F. (1994), Development of microbands in mild steel during cross 
loading, Acta Metall. Mater., 42, 1973-1983.  

6. Nesterova, E.V., Bacroix, B., Teodosiu, C. (2001), Microstructure and texture evolution 
under strain-path changes in low-carbon IF steel, Metall. Mater. Trans., A32, 2527-
2538. 

7. Teodosiu, C., Hu, Z. (1995), Evolution of the intragranular microstructure at moderate 
and large strains: modelling and computational significance, in Proc. 5th Int. Conf. on 
“Numerical Methods in Industrial Forming Processes” (NUMIFORM’ 95), Ithaca, USA, 
Eds. S.F. Shen, P.R. Dawson, Balkema, Rotterdam, pp. 173-182. 

8. Teodosiu, C. (1997), Plasticity of Single Crystals and Crystalline Aggregates, in “ Large 
Plastic Deformation of Crystalline Aggregates ”, Lecture Notes Int. Centre for Mech. Sci. 
(Udine, 1996), Ed. C. Teodosiu, Springer, Berlin, pp. 21-80. 

9. Teodosiu, C., Hu, Z. (1998), Microstructure in the continuum modelling of plastic 
anisotropy, in Proc. 19th Risø Int. Symp. on Materials Science, Risø National 
Laboratory, Roskilde, Denmark, pp. 149-168. 

22 



10. Haddadi, H., Bouvier, S., Levée, P. (2001), Identification of a microstructural model for 
steels subjected to large tensile and/or simple shear deformations, J. Physique IV France, 
11, 329-337.  

11. Banu, M., Bouvier, S., Halim, H., Maier, C., Tăbăcaru, V., Teodosiu, C. (2001), Selection 
and identification of the elastoplastic models for the materials used in the benchmarks of 
research project “Digital Die Design System” (Report of LPMTM – CNRS, University 
Paris 13, Villetaneuse, France). 

12. Teodosiu, C. (1970), A dynamic theory of dislocations and its applications to the elastic-
plastic continuum, in Proc. Int. on  “Fundamental Aspects of Dislocation Theory”, Eds. 
J. A. Simmons, R. deWit, R. Bullough, N.B.S. Spec. Publ. 317, Washington D.C., USA, 
vol. 2, pp. 837-876. 

13. Rice, J.R. (1971), Inelastic constitutive relations for solids: an internal-variable theory 
and its application to metal plasticity, J. Mech. Phys. Solids, 19, 433-455. 

14. Mandel, J. (1972), Plasticité classique et viscoplsticité, Lecture Notes Int. Centre for 
Mech. Sci. (Udine, 1971), Springer, Berlin. 

15. Mandel, J. (1982), Définition d’un repère privilégié pour l’étude des transformations 
anélastiques du polycrstal, J. Méc. Théor. Appl., 1, 7-23.  

16. Sarma, G.B., Dawson, P.R. (1996), Texture predictions using a polycrystal plasticity 
model incorporating neighbor interactions, Int. J. Plasticity, 12, 1023-1054. 

17. Balasubramanian, S., Anand, L. (1996), Single crystal and polycrystal elasto-
viscoplasticity: application to earing in cup drawing of f.c.c. materials, Computational 
Mechanics, 17, 209 - 225. 

18. Peeters, B., Seefeldt, M., Teodosiu, C., Kalidindi, S.R., Van Houtte, P., Aernoudt, E.  
(2001), Work-hardening/softening behaviour of b.c.c. polycrystals during changing 
strain paths. I. An integrated model based on substructure and texture evolution, and its 
prediction of the stress-strain behaviour of an IF steel during two-stage strain paths, 
Acta Materialia, 49, 1607-1619. 

19. Lemaître, J., Chaboche, J.-L. (1985), Mécanique des matériaux solides (Dunod, Paris). 
20. Makinouchi, A., Teodosiu, C., Nakagawa, T. (1998), Advances in FEM simulation and 

its related technologies in sheet metal forming, Annals of CIRP, 47, 641-649. 
21. Makinouchi, A., Teodosiu, C. (2001), Numerical methods for prediction of geometrical 

defects in sheet metal forming, in Proc. 1st M. I. T. Conf. on “Computational Fluid and 
Solid Mechanics” (M. I. T., Cambridge, Ma., USA). 

22. Teodosiu, C., Cao, H.-L. (1988), Residual stresses after axisymmetric deep drawing, in 
Proc. 15th Biennial Congress I.D.D.R.G. on “Controlling Sheet Metal Forming 
Processes, Dearborn, Michigan, USA, Ed. North American Deep Drawing Research 
Group: ASM International, pp. 309-319.  

23. McMeeking, R.M., Rice, J.R. (1975), Modelling large deformation anisotropic plastic 
behaviour of mild steel sheet, Int. J. Solids Struct., 11, 601-616. 

24. Kawka, M., Makinouchi, A. (1995), Shell-element formulation in the static explicit FEM 
code for the simulation of sheet stamping, J. Mater. Process. Technol., 50, 105-115. 

23 



25. Cao, H.-L. (1990), Modélisation mécanique et simulation numérique de l’emboutissage 
(application à la deformation plane et axisymétrique). Ph. D. Thesis, Inst. National 
Polytechnique de Grenoble, France. 

26. Teodosiu, C., Cao, H.-L., Ladreyt, T., Detraux, J.M. (1991), Implicit versus explicit 
methods in the simulation of sheet metal forming, in “FE simulation of 3D sheet metal 
forming processes in automotive industry”, VDI Berichte Nr. 894, Zürich, pp. 601-627. 

27. Cao, H.-L., Teodosiu, C. (1992), Numerical simulation of drawbeads for axisymmetric 
deep-drawing, in Proc. Int. Conf. NUMIFORM'92 on “Numerical Methods in Industrial 
Forming Processes”, Balkema, Rotterdam, pp. 439-448. 

28. Teodosiu, C., Daniel, D., Cao, H.-L., Duval, J.-L. (1995), Modelling and simulation of 
the can-making process using solid finite elements, J. Mater. Process. Technol., 50, 133-
143.  

29. Hughes T.J.R., Winget, J. (1980), Finite rotation effects in numerical integration of rate 
constitutive equations arising in large deformation analysis, Int. J. Numer. Meth. Engng., 
15, 1862-1867. 

30. Pinski, P.M., Ortiz, M., Pister, K.S. (1982), Numerical integration of rate constitutive 
equations in finite deformation analysis, Comp. Meth. Appl. Mech. Engng., 40, 137-158. 

31. Menezes L.F. (1994), Modelação tridimensional e simulação numérica dos processos de 
enformação por deformação plástica, aplicação à estampagem de chapas metálicas, 
Ph. D. Thesis, Coimbra, Portugal. 

32. Menezes, L.F., Teodosiu, C. (1999), Improvement of the frictional contact treatment in a 
single loop iteration algorithm specific to deep-drawing simulations, in Proc. Int. Conf. 
NUMISHEET’99 on “Numerical Simulation of 3D Sheet Forming Processes”, Eds. 
J.C. Gélin, P. Picart, Besançon, France, vol. 1, pp. 197-202. 

33. Menezes, L.F., Teodosiu, C. (2000), Three-dimensional numerical simulation of the 
deep-drawing process using solid finite elements, J. Mater. Proc. Technol., 97, 100-106. 

34. Mattiasson, K., Thilderkvist, P., Strange, A., Samuelsson, A. (1995), Simulation of 
springback in sheet metal forming, in Proc. Int. Conf. NUMIFORM’95, Eds. S. Shen, 
P.R. Dawson, Balkema, Rotterdam, pp. 115-124. 

35. Lee, S.W., Yang, D.Y. (1998), An assessment of numerical parameters influencing 
springback in explicit finite element analysis of sheet metal forming processes, J. Mater. 
Process. Technol., 80-81, 60-67. 

24 



A Note on Non-Newtonian Modelling of Blood Flow

in Small Arteries

nadir arada 1 and adélia sequeira2

Abstract

Due to the complex rheological behavior of blood flow, it is not possible to develop and com-
putationally evaluate appropriate continuum constitutive models describing in particular the
shear thinning and stress relaxation properties of blood flow. In this note we address in par-
ticular the well-posedness of the equations of motion of a specific shear-thinning viscoelastic
model for blood flow in small arteries.

Key words. Blood rheology, Oldroyd-B fluids, viscoelasticity, shear-dependent viscosity,
shear-thinning.

1 A brief introduction to blood rheology

Blood is a multi-component mixture with complex rheological characteristics. It consists of
multiple particles namely red blood cells - RBCs (or erythrocytes), white blood cells - WBCs (or
leucocytes), platelets and other matter, suspended in an aqueous polymer solution, the plasma
(Newtonian fluid), containing inorganic and organic salts, proteins and transported substances.
The haematocrit (cell matter that consists primarily of RBCs) forms approximately 45% of the
volume of normal human blood.

In large and medium vessels, blood is usually modelled as a Newtonian liquid. However, in
smaller vessels, with diameters comparable with those of the cells, blood behaves as a shear-
thinning fluid. In particular, at rest or at low shear rates, blood seems to have a high apparent
viscosity (due to RBCs aggregation into clusters called rouleaux) while at high shear rates the
cells become disaggregated and deform into an infinite variety of shapes without changing volume
(deformability of RBCs), resulting in a reduction in the blood’s viscosity. The deformed RBCs
align with the flow field and tend to slide upon plasma layers formed in between. Attempts to
recognize the shear-thinning nature of blood were initiated by Chien et al. [7], [8] in the 1960s.
Empirical models like the power-law, Cross [9], Carreau [6] or W-S generalized Newtonian fluid
models [32] have been obtained by fitting experimental data in one dimensional flows (see Fig.1–
2). Recently, Vlastos et al. [31] proposed a modified Carreau equation to capture the shear
dependence of blood viscosity. Also the belief that blood demonstrates a yield shear stress led
to one of the simplest constitutive models for blood, the Casson’s equation [26].
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Figure 1: Blood viscosity as a function of shear rate for three generalized Newtonian fluid models.

However, none of these models are capable of describing the viscoelastic response of blood.
Blood cells are essentially elastic membranes filled with a fluid and it seems reasonable, at least
under certain flow conditions, to expect blood to behave like a viscoelastic fluid. At low shear
rates RBCs aggregate and are ’solid-like’, being able to store elastic energy that accounts for
the memory effects in blood. Dissipation is primarily due to the evolution of the RBC networks
and, given the paucity of data on temperature effects, the internal energy is assumed to depend
only on the deformation gradient. At high shear rates, the RBCs disaggregate forming smaller
rouleaux, and later individual cells, that are characterized by distinct relaxation times. RBCs
become ’fluid-like’, losing their ability to store elastic energy and the dissipation is primarily
due to the internal friction. Upon cessation of shear, the entire rouleaux network is randomly
arranged and may be assumed to be isotropic with respect to the current natural configuration.
Thurston (see [27]) was among the earliest to recognize the viscoelastic nature of blood and that
the viscoelastic behavior is less prominent with increasing shear rate. He proposed a generalized
Maxwell model that was applicable to 1-D flow simulations ([28]) and observed later that, beyond
a critical shear rate, the non-linear behavior is related to the microstructural changes that occur
in blood ([29], [30]). Quemada [21] also proposed a non-linear Maxwell type model involving a
first order kinetic equation used to determine a structural parameter related with the viscosity.
Phillips and Deutsch [20] proposed a three dimensional frame invariant Oldroyd-B type model
with four constants which could not capture the shear-thinning behavior of blood throughout
the range of experimental data. The most recent three constant generalized Oldroyd-B model
of Yeleswarapu et al. [35] is an improvement on the last model. It has been obtained by fitting
experimental data in one dimensional flows and generalizing such curve fits to three dimensions.
It captures the shear-thinning behavior of blood over a much larger range of shear rates but it
has its limitations, given that the relaxation times do not depend on the shear rate, which does
not agree with experimental observations.
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Figure 2: Velocity profiles for steady, fully developed flow in a straight pipe.

A general thermodynamic framework has been recently developed by Rajagopal and Srinivasa
[23] for describing the response of bodies with multiple configurations. Rate type models due to
Maxwell, Oldroyd and others which can also describe shear-thinning, can be generated within
this framework. This approach is well suited for describing bodies whose response functions
change with deformation and activation. More interestingly, it is possible to develop fluid models
whose relaxation times depend on the shear rate and where, according to certain experimental
observations, the viscoelastic character of blood becomes less important with increasing shear
rate (see [2]).

While there has been a considerable research effort in blood rheology, the constitutive mod-
els have thus far focused on the aggregation and deformability of the RBCs, ignoring the role
of platelets in the flow characteristics. Platelets are biconcave discoid cells containing various
chemicals, much smaller than erytrocytes (approximately 6 µm3 in size as compared to 90 µm3)
and forming a small fraction of the particulate matter of human blood (around 3% by volume).
However they are by far the most sensitive of all the components of blood to chemical and phys-
ical agents, and play a significant role in blood rheology. Arterial occlusion, acute myocardial
infarction, venous thrombosis and most strokes are some of the pathological processes related
to platelet activation. Understanding these processes is an issue of major medical importance.

The mechanism of platelet activation and blood coagulation is quite complicated and not
yet completely well understood. Recently, Kuharsky and Fogelson [15] have developed a model
consisting of 59 first order ODEs that combines a fairly comprehensive description of coagulation
biochemistry, interactions between platelets and coagulation proteins and effects of chemical
and cellular transport. This model, as well as previous work developed along these lines (see
e.g. [10], [33], [14]) can be considered as an important achievement to capture many of the
biochemical aspects of the problem. However, they do not allow for the realistic hydrodynamical
and rheological characteristics of blood flow in vessels whose geometry is made complex by
the presence of wall-adherent platelets or atherosclerotic plaques. A phenomenological model
recently introduced by Anand and Rajagopal [1] can be considered as the first approach to
address this oversight.
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2 Mathematical results for a shear-dependent viscoelastic model

The mathematical analysis and numerical simulation of the equations of motion of non-Newtonian
viscoelastic fluids is a very challenging issue. The constitutive equations may lead to highly
nonlinear systems of PDEs of a combined elliptic-hyperbolic type (or parabolic-hyperbolic, for
unsteady flows) and the behavior of such equations is poorly understood. Special techniques of
nonlinear analysis are needed to investigate questions of existence, uniqueness and stability of
solutions and theoretical results are mainly based on ’small perturbations’. Usually the original
nonlinear problem is written in a decoupled form, composed of a Stokes-like system and a scalar
transport equation, that can be studied as two separate linear systems. The solvability of the
original problem is established using a suitable fixed point argument. This technique has been
successfully used in recent years for different viscoelastic fluids of differential and rate type, in
several geometries (see e.g. [11] - [16], [17], [19], [24], or the monographs [34], [25] and the
literature cited therein).

Numerical simulation is certainly considered as an important tool for prediction of non-
Newtonian phenomena. In the last two decades, intensive research has been performed in this
area, mainly for differential and rate-type models, using finite element or spectral methods for
steady flows, finite differences in time and finite element or finite volume approximations in
space for unsteady flows (see e.g. [13], the monograph [18] and references cited therein). The
major drawback of many numerical schemes, due to the formidable amount of computation
involved and to the loss of convergence for high values of the Weissenberg number (referred
as the ’high Weissenberg number problem’) is mainly related to the choice of improper bound-
ary conditions and to the hyperbolic nature of the equations. One of the problems is that a
straightforward Galerkin discretization of the constitutive law has poor stability properties if
the advection term involving the velocity field and the stress tensor becomes dominant. The
other problem is related to the mixed mathematical structure of the nonlinear systems whose
behavior under discretization is poorly understood. Typically, specific numerical upwinding or
artificial diffusivity techniques must be used together with appropriate choices of the spaces
for velocities, stresses and pressure in such a way that the LBB inf-sup condition for velocity
and pressure is satisfied and the stresses have higher accuracy than the velocities. In addition,
advanced computational techniques such as highly adaptive refinement, parallel processing and
novel matrix solvers will make the computations more affordable. The numerical schemes used
for solving these complex systems of PDEs, in particular for the proposed blood flow models,
must be based on a deep understanding of the mixed mathematical structure of the equations,
in order to prevent numerical instabilities on problems that are mathematically well-posed.

As far as we know, generalizations of the above mentioned viscoelastic models incorporating
a non-Newtonian viscosity function have not yet been studied from the mathematical point of
view. The well-posedness of the equations of motion of a generalized Oldroyd-B fluid with shear-
dependent viscosity, recently obtained by N. Arada and A. Sequeira [3] is a first step towards this
aim. The model is able to capture shear-thinning and viscoelastic effects and can be considered
thermodynamically based, in the simple case where the relaxation time is supposed to be a
constant. The remaining of this note will be devoted to the proof of these mathematical results,
following closely [3].
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2.1 Formulation of the problem

We are concerned with flows of incompressible viscoelastic Oldroyd-B fluids with shear dependent
viscosity in a bounded domain Ω of IR3. For these fluids, the extra-stress tensor is related to
the kinematic variables through

S + λ1
DS

Dt
= 2 (ν + νo(1 + |Dv|2)q) Dv + 2 λ2

DDv

Dt
, (2.1)

where v is the velocity field, Dv = 1
2(∇v + ∇vt) denotes the symmetric part of the velocity

gradient, q ∈] − 1
2 , 0[, νo and ν are nonnegative real numbers satisfying ν + νo > 0, λ1 > 0 and

λ2 > 0 are viscoelastic constants. The symbol D
Dt

denotes the objective derivative of Oldroyd
type defined by

DS

Dt
=

[ ∂

∂t
+ v · ∇

]
S − S ∇vt −∇v S.

The Cauchy stress tensor is given by T = −pI + S, where p represents the pressure.
We decompose the extra-stress tensor S into the sum of its Newtonian part τs = 2λ2

λ1
Dv and

its viscoelastic part τe. It can be easily seen that the constitutive equation for τe is given by:

τe + λ1
Dτe

Dt
= 2

(
ν + νo(1 + |Du|2)q − λ2

λ1

)
Dv.

Recalling the equations of conservation of momentum and mass in the domain Ω bounded in
IR3,

ρ
(∂v

∂t
+ v · ∇v

)
= ∇ · T + f, ∇ · v = 0, (2.2)

(ρ > 0 is the constant mass density of the fluid, f denotes the external forces) and the conser-
vation law given by (2.1), we look for steady solutions of the following system





−λ2

λ1
∆v + ρ v · ∇v + ∇p = f + ∇ · τe in Ω,

∇ · v = 0 in Ω,

τe + λ1 (v · ∇τe − τe∇vt −∇vτe) = 2
(
µ(|Dv|2) − λ2

λ1

)
Dv in Ω.

This system is supplemented by a Dirichlet homogeneous boundary condition

v = 0 on ∂Ω. (2.3)

We consider the dimensionless form of this system by introducing the following non-dimensional
quantities

x =
x̃

L
, v =

ṽ

V
, p =

p̃L

(ν + νo)V
, λ1 = λ̃1, λ2 = λ̃2,

where the symbol ˜ is attached to dimentional parameters (V and L represent reference velocity
and length). We also introduce the Weissenberg number We = λ1V

L
and the Reynolds number

Re = ρV L
(ν+νo) . Finally, the dimensionless system takes the form





−(1 − ε) ∆v + Re v · ∇v + ∇p = f + ∇ · τ in Ω,

∇ · v = 0 in Ω,

v = 0 on ∂Ω.

(2.4)
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τ + We (v · ∇τ + g(τ,∇v)) = 2
(

νo

ν+νo
((1 + |Dv|2)q − 1) + ε

)
Dv in Ω, (2.5)

with g(τ,∇v) = −τ ∇vt −∇v τ and 1 − ε = λ2

λ1µo
.

In all the sequel, we denote the norms in Hk(Ω) (k ∈ IN) by ‖ · ‖k. We set

H = {v ∈ L2(Ω) | ∇ · v = 0, v · n = 0 on ∂Ω},

where n is the unit outward normal vector to ∂Ω. Endowed with the L2-norm, H is a reflexive
Banach space. Unless otherwise specified, C stands for a generic constant depending on Ω.

2.2 Formulation of an equivalent problem

Our goal in this section is to reduce the nonlinear system to an equivalent problem in a way that
the ellipticity due to the viscoelastic terms becomes visible. This will lead to a reformulation of
(2.4)-(2.5) as a fixed point equation.

We first recall some useful results concerning the transport equation, as well as properties and
estimates of some operators. This is the aim of the following lemmas. The corresponding proofs
can be found in [3] and [4].

Lemma 2.1 Let Ω ⊂ IR3 be a bounded domain of class C3, ζ ∈ H, δ ∈]0, 1[ and k ∈ {0, 1, 2}.
There exists a positive constant γ (depending on Ω) such that if

2γ(1 − ε, 1)+We ‖∇ζ‖2 ≤ δ, (2.1)

then the following assertions are true

i) The operators K(ζ) ≡ I + We ζ · ∇ and Kε(ζ) ≡ I + (1 − ε) We ζ · ∇ are invertible with
continuous inverse from their domain Dk(ζ) = {u ∈ Hk(Ω) | ζ · ∇u ∈ Hk(Ω)} into Hk(Ω).
ii) The operator Lε(ζ) ≡ (1 − ε)I + ε K(ζ)−1 is an isomorphism in Hk(Ω) and

Lε(ζ)−1 = Kε(ζ)−1 K(ζ). (2.2)

Moreover, the following estimates hold

‖K(ζ)−1‖k ≤ 2, ‖Kε(ζ)−1‖k ≤ 2,

‖Lε(ζ)‖k ≤ 2 (1 − ε + |ε|), ‖Lε(ζ)−1‖k ≤ 2 1+|ε|
1−ε

.

Lemma 2.2 Let Ω ⊂ IR3 be a bounded domain of class C3, ζ and ζ̂ ∈ H satisfying (2.1),
δ ∈]0, 1[ and k ∈ {0, 1, 2}. Then the following estimates hold

‖K(ζ)−1φ −K(ζ̂)−1φ̂‖k

≤ C
(
‖φ − φ̂‖k + We‖∇(ζ − ζ̂)‖(k,1)+ (‖φ‖k+1 + ‖φ̂‖k+1)

)
,

‖Kε(ζ)−1φ −Kε(ζ̂)−1φ̂‖k

≤ C
(
‖φ − φ̂‖k + (1 − ε)We‖∇(ζ − ζ̂)‖(k,1)+ (‖φ‖k+1 + ‖φ̂‖k+1)

)
,

‖Lε(ζ)−1φ − Lε(ζ̂)−1φ̂‖k

≤ C
(

1+|ε|
1−ε

‖φ − φ̂‖k + |ε|We‖∇(ζ − ζ̂)‖(k,1)+ (‖φ‖k+1 + ‖φ̂‖k+1)
)
,

for all (φ, φ̂) ∈ (Hk+1(Ω))2, where C ≡ C(k, Ω).
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Let us now consider the system (2.4)-(2.5). By computing the divergence of both sides of
equation (2.5), we obtain

∇ ·
(
τ + We v · ∇τ + We g(v, τ)

)

= ∇ · τ + We
(
∂v : ∂τ + (v · ∇) ∇ · τ

)
+ We ∇ · g(v, τ)

= 2 ∇ ·
((

νo

ν+νo

(
(1 + |Dv|2)q − 1

)
+ ε

)
Dv

)

= ε∆v + 2νo

ν+νo
∇ ·

((
(1 + |Dv|2)q − 1

)
Dv

)
,

where (∂v : ∂τ)i =
∑

j,k
∂uk

∂xj

∂τij

∂xk
. Therefore, equation (2.5) becomes

(
I + We v · ∇

)
∇ · τ

= ε∆v + 2νo

ν+νo
∇ ·

((
(1 + |Dv|2)q − 1

)
Dv

)
−We

(
∇ · g(v, τ) + ∂v : ∂τ

)

≡ ε∆v + F (v, τ).

Supposing that there v satisfies (2.1), we deduce from assertion i) in Lemma 2.1 that

∇ · τ = ε K(v)−1 ∆v + K(v)−1 F (v, τ).

We replace ∇ · τ in (2.4) by its expression and get

−Lε(v) ∆v + Re v · ∇v + ∇p = f + K(v)−1 F (v, τ). (2.3)

By applying the operator Lε(v)−1 to (2.3) and taking into account (2.2), we obtain

−∆v + Re Lε(v)−1(v · ∇v) + Lε(v)−1∇p

= Lε(v)−1f + Lε(v)−1K(v)−1 F (v, τ) = Lε(v)−1f + Kε(v)−1 F (v, τ).

After calculating the commutator of Lε(v)−1 and ∇

∇(Lε(v)−1p) − Lε(v)−1∇p = ε We Kε(v)−1 [(∇v)t · ∇(K−1(v) Lε(v)−1p)], (2.4)

we finally transform (2.4)-(2.5) into the following equivalent system





−∆v + ∇(Lε(v)−1p) = Lε(v)−1F(v) + Kε(v)−1F̃(v, p, τ) in Ω,

∇ · v = 0 in Ω,

v = 0 in ∂Ω,

(2.5)

τ + We v · ∇τ = 2ε Dv + G(v, τ) in Ω, (2.6)

where

F(v) = f −Re v · ∇v,

F̃(v, p, τ) = 2νo

ν+νo
∇ ·

((
(1 + |Dv|2)q − 1

)
Dv

)
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−We
(
∇ · g(v, τ) + ∂v : ∂τ

)

+ε We (∇v)t · ∇(K(v)−1Lε(v)−1p),

G(v, τ) = 2νo

ν+νo

((
(1 + |Dv|2)q − 1

)
Dv

)
−We g(v, τ).

The proof of existence and uniqueness of solutions to system (2.5)-(2.6) is based on the Banach
fixed point theorem. More precisely, we define the mapping

Φ : (ζ, π, ϑ) −→ (v, p, τ),

through the Stokes system





−∆v + ∇(Lε(ζ)−1p) = Lε(ζ)−1F(ζ) + Kε(ζ)−1F̃(ζ, π, ϑ) in Ω,

∇ · v = 0 in Ω,

v = 0 in ∂Ω,

(2.7)

and the transport equation
τ + We ζ · ∇τ = 2ε Dv + G(ζ, ϑ) in Ω, (2.8)

and we look for a solution of (2.5)-(2.6) as a fixed point for the mapping Φ. We shall prove the
following main result.

Theorem 2.1 Let Ω ⊂ IR3 be a bounded domain of class C3 and f ∈ H1(Ω). Then, there
exists a constant κ > 0 such that if ‖f‖1 ≤ κ, then problem (2.4)-(2.5) admits a unique solution
(v, p, τ) ∈ H3(Ω) × H2(Ω) × H2(Ω). Moreover, the following estimate holds

‖∇v‖2 + ‖p‖2 + ‖τ‖2 ≤ C
(1−ε+|ε|)(1+|ε|)

1−ε
‖f‖1,

where C ≡ C(Ω).

2.3 Proof of the main result

Let us first state some estimates for the nonlinear terms that appear in our equivalent problem
(2.5)-(2.6). The proof of this result can be found in [4] and is omitted here.

Lemma 2.3 Let Ω ⊂ IR3 be a bounded domain of class C3, ζ and ζ̂ ∈ H satisfying (2.1),
(π, π̂, ϑ, ϑ̂) ∈ (H2(Ω))4. Then the following estimates hold

∥∥∥((1 + |Dζ|2)q − 1) Dζ
∥∥∥
2
≤ C ‖∇ζ‖2

2

∥∥∥(∇ζ)t · ∇(K(ζ)−1Lε(ζ)−1π)
∥∥∥
1
≤ C

1+|ε|
1−ε

‖∇ζ‖2 ‖π‖2

∥∥∥((1 + |Dζ|2)q − 1) Dζ − ((1 + |Dζ̂|2)q − 1) Dζ̂
∥∥∥

o

≤ C (‖∇ζ‖2 + ‖∇ζ̂‖2) (1 + ‖∇ζ‖2‖∇ζ̂‖2) ‖∇(ζ − ζ̂)‖1,
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∥∥∥(∇ζ)t · ∇(K(ζ)−1Lε(ζ)−1π) − (∇ζ̂)t · ∇(K(ζ̂)−1Lε(ζ̂)−1π̂)
∥∥∥

o

≤ C
(

1+|ε|
1−ε

‖∇(ζ − ζ̂)‖1 ‖π‖1 + We ‖∇ζ̂‖1
1+|ε|
1−ε

‖∇(ζ − ζ̂)‖1 (‖π‖2 + ‖π̂‖2)

+‖∇ζ̂‖1

[
1+|ε|
1−ε

‖π − π̂‖1 + |ε|We ‖∇(ζ − ζ̂)‖1 (‖π‖2 + ‖π̂‖2)
])

where C ≡ C(Ω).

For every δ ∈]0, 1[, let B(δ) be the convex set defined by

B(δ) =
{
(ζ, π, ϑ) ∈ H × H2(Ω) × H2(Ω) | ‖∇ζ‖2 + ‖π‖2 + ‖ϑ‖2 ≤ Λδ

}

where Λ = 1

2γ(1 − ε, 1)+We
, and γ is the constant appearing in (2.1).

Proposition 2.1 There exists κo > 0 such that if ‖f‖1 ≤ κo, then Φ applies B(δo) into B(δo)
for some δo ≡ δo(‖f‖1) < 1. Moreover, there exists C ≡ C(Ω) such that

Λ δo ≤ C
(1−ε+|ε|)(1+|ε|)

1−ε
‖f‖1.

Proof. Let (ζ, π, ϑ) ∈ B(δ). Classical results ensure existence of a unique solution (v, p) ∈
H × H2(Ω) to the Stokes system (2.7). This solution satisfies

‖∇v‖2 + ‖Lε(ζ)−1p‖2 ≤ C
(
‖Lε(ζ)−1 F(ζ)‖1 + ‖Kε(ζ)−1 F̃(ζ, π, ϑ)‖1

)

≤ C
(
‖Lε(ζ)−1‖1 ‖F(ζ)‖1 + ‖Kε(ζ)−1‖1 ‖F̃(ζ, π, ϑ)‖1

)
, (2.1)

where C ≡ C(Ω). Using the estimates stated in Lemma 2.1, it follows that

‖∇v‖2 + ‖p‖2 ≤ C
(
1 + ‖Lε(ζ)‖2

)(
‖∇v‖2 + ‖Lε(ζ)−1p‖2

)

≤ C
(
1 + ‖Lε(ζ)‖2

)(
‖Lε(ζ)−1‖1 ‖F(ζ)‖1 + ‖Kε(ζ)−1‖1 ‖F̃(ζ, π, ϑ)‖1

)

≤ C(1 − ε + |ε|))
(

1+|ε|
1−ε

‖F(ζ)‖1 + ‖F̃(ζ, π, ϑ)‖1

)
. (2.2)

On the other hand, in view of Assertion i) in Lemma 2.1, equation (2.8) admits a unique solution
τ = K−1(ζ)(2ε Dv + G(ζ, ϑ)) ∈ H2(Ω) satisfying

‖τ‖2 ≤ ‖K−1(ζ)‖2

(
|ε| ‖∇v‖2 + ‖G(ζ, ϑ)‖2

)
≤ 2(1 − ε + |ε|)

(
‖∇v‖2 + G(ζ, ϑ)‖2

)
,

which together with (2.1) gives the estimate

‖τ‖2 ≤ C (1 − ε + |ε|)
(

1+|ε|
1−ε

‖F(ζ)‖1 + ‖F̃(ζ, π, ϑ)‖1 + ‖G(ζ, ϑ)‖2

)
. (2.3)

Combining (2.2) and (2.3), we obtain

‖∇v‖2 + ‖p‖2 + ‖τ‖2

≤ C (1 − ε + |ε|)
(

1+|ε|
1−ε

‖F(ζ)‖1 + ‖F̃(ζ, π, ϑ)‖1 + ‖G(ζ, ϑ)‖2

)
. (2.4)
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Standard calculations give

‖g(ζ, ϑ)‖2 + ‖∂ϑ : ∂ζ‖1 ≤ C ‖∇ζ‖2 ‖ϑ‖2 ≤ C (Λδ)2, (2.5)

‖F(ζ)‖1 ≤ C
(
‖f‖1 + Re ‖∇ζ‖2

2

)
≤ C (‖f‖1 + Re (Λδ)2). (2.6)

Moreover, due to Lemma 2.3

∥∥∥((1 + |Dζ|2)q − 1) Dζ
∥∥∥
2
≤ C (Λδ)2. (2.7)

∥∥∥(∇ζ)t · ∇(K(ζ)−1Lε(ζ)−1π)
∥∥∥
1
≤ C

1+|ε|
1−ε

(Λδ)2, (2.8)

Taking into account (2.4)-(2.8) and the definition of G and F̃ , we deduce that

‖∇v‖2 + ‖p‖2 + ‖τ‖2 ≤ C(ε)
(
‖f‖1 + Λ1 (Λδ)2

)
,

where C(ε) = C
(1−ε+|ε|)(1+|ε|)

1−ε
and Λ1 = Re+ νo

ν+νo
+We (1+|ε|). Hence, one has Φ(B(δ)) ⊂ B(δ)

provided that

C(ε)
(
‖f‖1 + Λ1 (Λδ)2

)
≤ Λδ.

By classical arguments we can show that if ‖f‖1 < min( Λ
C(ε) ,

Λ2

4C(ε)2Λ1
), then there exist δo ≡

δo(‖f‖1) < 1 and δ1 > δo such that the last condition is satisfied for every δ ∈ [δo, min(1, δ1)[.
Moreover Λδo ≤ C(ε)‖f‖1. .

Proposition 2.2 Let δ and εo be as in Proposition 2.1. There exists δo > 0 such that if
‖f‖1 ≤ δo, then the mapping Φ : B(εo) −→ B(εo) is a contraction in H2(Ω) × H1(Ω) × H1(Ω).

Proof. Let (ζ, π, ϑ) and (ζ̂, π̂, ϑ̂) be in B(δo) and let (v, p, τ) and (v̂, p̂, τ̂) be their respective
images by Φ. Then





−∆(v − v̂) + ∇(Lε(ζ)−1(p − p̂)) = F1 in Ω,

∇ · (v − v̂) = 0 in Ω,

v − v̂ = 0 on ∂Ω

(τ − τ̂) + We ζ · ∇(τ − τ̂) = 2ε D(v − v̂) + G1 in Ω,

where
F1 = ∇((Lε(ζ̂)−1 − Lε(ζ)−1)p̂) + Lε(ζ)−1 F(ζ) − Lε(ζ̂)−1 F(ζ̂)

+Kε(ζ)−1 F̃(ζ, π, ϑ) −Kε(ζ̂)−1 F̃(ζ̂ , π̂, ϑ̂),

G1 = G(ζ, ϑ) − G(ζ̂, ϑ̂) + We (ζ̂ − ζ) · ∇ϑ̂.

Arguments similar to those used in the proof of Proposition 2.1 show that the triplet (v− v̂, p−
p̂, τ − τ̂) satisfies

1
1−ε+|ε|

(
‖∇(v − v̂)‖1 + ‖p − p̂‖1 + ‖τ − τ̂‖1

)
≤ C

(
‖F1‖o + ‖G1‖1

)

≤ C
( ∥∥∥(Lε(ζ̂)−1 − Lε(ζ)−1)p̂

∥∥∥
1
+

∥∥∥Lε(ζ)−1 F(ζ) − Lε(ζ̂)−1 F(ζ̂)
∥∥∥

o
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+
∥∥∥Kε(ζ)−1 F̃(ζ, π, ϑ) −Kε(ζ̂)−1 F̃(ζ̂, π̂, ϑ̂)

∥∥∥
o

+
∥∥∥G(ζ, ϑ) − G(ζ̂, ϑ̂)

∥∥∥
1
+ We‖∇(ζ − ζ̂)‖1 ‖ϑ̂‖2

)

≤ C
(

1+|ε|
1−ε

‖F(ζ) −F(ζ̂)‖o + ‖F̃(ζ, π, ϑ) − F̃(ζ̂, π̂, ϑ̂)‖o + ‖G(ζ, ϑ) − G(ζ̂, ϑ̂)‖1

+We
(
‖ϑ̂‖2 + |ε| (‖p̂‖2 + ‖F(ζ)‖1 + ‖F(ζ̂)‖1)

+(1 − ε) (‖F̃(ζ̂, π̂, ϑ̂)‖1 + ‖F̃(ζ̂ , π̂, ϑ̂)‖1)
)
‖∇(ζ − ζ̂)‖1

)

≤ C
{

1+|ε|
1−ε

‖F(ζ) −F(ζ̂)‖o + ‖F̃(ζ, π, ϑ) − F̃(ζ̂, π̂, ϑ̂)‖o + ‖G(ζ, ϑ) − G(ζ̂, ϑ̂)‖1

}

+C
{
We

(
‖ϑ̂‖2 + |ε| (‖p̂‖2 + ‖f‖1 + Re(‖∇ζ)‖2

2 + ‖∇ζ̂)‖2
2)

)

+(1 − ε)We
(

νo

ν+νo
(‖∇ζ‖2

2 + ‖∇ζ̂‖2
2) + We (‖ϑ‖2‖∇ζ‖2 + ‖ϑ̂‖2‖∇ζ̂‖2)

)

+|ε|(We)2 1+|ε|
1−ε

(
‖π‖2‖∇ζ‖2 + ‖π̂‖2‖∇ζ̂‖2

)}
‖∇(ζ − ζ̂)‖1. (2.9)

On the other hand, classical calculations give

‖ζ · ∇ζ − ζ̂ · ∇ζ̂‖o ≤ C (‖∇ζ‖2 + ‖∇ζ̂‖2) ‖∇(ζ − ζ̂)‖1, (2.10)

∥∥∥g(ζ, ϑ) − g(ζ̂ , ϑ̂)
∥∥∥
1
+

∥∥∥∂ϑ : ∂ζ − ∂ϑ̂ : ∂ζ̂
∥∥∥

o

≤ C(‖∇ζ̂‖2 + ‖ϑ‖2)
(
‖∇(ζ − ζ̂)‖1 + ‖ϑ − ϑ̂‖1

)
. (2.11)

Taking into account (2.9)-(2.11), Lemma 2.3 and the definition of F , F̃ , G, and with strightfor-
ward calculations, we finally obtain

‖∇(v − v̂)‖1 + ‖p − p̂‖1 + ‖τ − τ̂‖1

≤ C
(1+|ε|)(1−ε+|ε|)

1−ε
Θ(Λδo) ‖∇(ζ − ζ̂)‖1 + ‖π − π̂‖1 + ‖ϑ − ϑ̂‖1,

where

Θ̂(x) = |ε|We‖f‖1 + (1 + (1 + |ε|)We) x + We (|ε|Re + (1 − ε + |ε|)We) x2

+ νo

ν+νo
x (1 + x(1 − ε)We + x2).

The mapping Φ is then a contraction provided that

C
(1+|ε|)(1−ε+|ε|)

1−ε
Θ(Λδo) < 1.

The proof is complete.

The statement of Theorem 2.1 is a consequence of Proposition 2.1, Proposition 2.2 and the
following version of the Banach fixed point theorem.

11



Theorem 2.2 Let X and Y be Banach spaces such that X is reflexive and X ↪→ Y . Let B be a
non-empty, closed, convex and bounded subset of X and let Φ : B −→ B be a mapping such that

‖Φ(u) − Φ(v)‖Y ≤ M ‖u − v‖ for all u, v ∈ B, (0 ≤ M < 1),

then Φ has a unique fixed point in B.
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Abstract. During the last few years an enormous progress in the industrial use of numerical 
tools for the simulation of sheet forming processes has taken place. This is especially true for 
the automotive industry. The present paper tries to give a brief introduction to the subject of 
practical sheet metal forming, and to describe some of those forming defects, which can 
occur. Thereafter, a state-of-the-art review of methods and procedures for sheet forming 
simulation in practical use today will be presented. This concerns especially various Finite 
Element formulations used for the current application, including a brief historical review on 
the subject. Finally, some shortcomings of today’s simulation technology will be described. 
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1 INTRODUCTION 

An often-cited statement is that sheet metal forming during the last decade has turned from 
being an art to being a science. The background to this statement is that sheet metal forming, 
from ancient to modern times, has been the task of skilled craftsmen rather than of theorists 
and scientists. Very few theoretical aids have been available for facilitating the die designers 
in their task, but they have had to rely on their own experience and simple guidelines. The 
design and tryout of forming tools have, thus, been a time consuming trial and error process. 

However, the demand for shorter lead times, especially in the automotive industry, has 
accentuated the need for a computerized simulation aid, in which the forming process can be 
simulated, analyzed, and optimized, before any hard tools are built. During the last few years 
this desire has partially become reality, and today the simulation technique has been integrated 
in the die design process at many automotive and tool manufacturers. 

The aim of the present paper is to give a state-of-the art review of current sheet forming 
simulation methods. The focus will be on the industrial implementation of these methods, 
rather than on current academic achievements. In order to provide a historical perspective on 
the subject, a brief review of the developments in this area during the last three decades will 
also be given.  

2 SOME PRACTICAL ASPECTS ON SHEET METAL FORMING 

2.1 Sheet forming processes 

By far the most common sheet forming process is stamping, which especially is used in the 
huge automotive industry. In the stamping process the metal sheet is formed by rigid tools, 
which consist of a punch (male part), a die (female part), and, finally, a blankholder. The role 
of the blankholder is to press the blank against the die and prevent it from wrinkling, and also 
through friction forces control the material flow into the die cavity during the stroke. The 
main advantage of the stamping process is its high productivity, which is a very important 
quality in the highly efficient and automated car manufacturing industry. In Fig. 1 a Finite 
Element (FE) model of a stamping operation is displayed. 

 In hydroforming processes a hydraulic pressure replaces one of the rigid tools in the 
stamping process. For instance, in the flex-forming process the punch is replaced by a 
hydraulic pressure, which presses the blank down into the die cavity. Flex-forming is typically 
used in the aircraft industry, and for manufacturing of prototype parts in the automotive 
industry. The advantage of most hydroforming processes is that they allow parts to be 
manufactured, which would have been impossible in ordinary stamping. The main 
disadvantage is their low productivity, which makes them unsuitable to use in the automotive 
industry. 

One type of hydroforming processes has, however, gained a great deal of popularity in the 
automotive industry in later years. This is the tube hydroforming process. In this process beam 
type parts with closed cross sections are manufactured. A tube-shaped work piece is first bent, 
and then formed to its final shape by an internal hydraulic pressure against an enclosing rigid 
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die. Although tube hydroforming is a rather slow process, it has gained a wide appreciation, 
since, due to its good formability, it allows a part to be manufactured in one piece, instead of 
being welded together of several stamped parts. A FE model of a tube hydroforming part can 
be seen in Fig. 2. 

 
Figure 1   FE model of a stamping process. The parts are from top to bottom: punch, blankholder, blank, and 

die. 

 

Figure 2   FE simulation of a tube hydroforming process 
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2.2 Forming defects 

During the tryout of a forming process various types of defects are usually appearing in the 
formed part. Examples of such defects are: 

• Fracture in the material, usually preceded by a marked strain localization. 
• Excessive thinning in some areas of the blank 
• Wrinkling, which implies the formation of bulges with relatively short wavelength due 

to high compressive stresses. 
• Buckling, a term used for bulges with long wavelength, preferably appearing in 

unsupported areas of the blank with small compressive stresses. 
• Springback is a term for those deformations that take place when a work piece is 

removed from the tools after completed forming. 
• Various surface defects, which usually are due to insufficient stretching of the material. 
It is the purpose of the die design and process layout work, and the subsequent tool tryout, 

to optimize the forming process in such a way that these defects can be avoided. 

3 FINITE ELEMENT METHODS FOR SHEET FORMING SIMULATION 

3.1 Introduction 

The aim is that the simulation code should be able to simulate the complete forming 
process and to be able to unveil any possible defects. It should also be possible in the 
simulation to vary all those parameters, which in a practical case are used to optimize the 
process. 

Sheet forming simulations tend to be very time consuming. One reason for this is that the 
process itself is computationally very complicated, involving effects such as nonlinear 
material behaviour, large deformations, and complicated contacts between tools and work 
piece. Another reason is that the FE models usually are very big, containing tens and hundreds 
of thousands elements. In the development of FE codes for sheet forming simulation, 
computational efficiency has therefore always been a primary concern. 

3.2 Finite Element formulations 

Through the years a number of different FE formulations for sheet forming simulation have 
been presented. These can differ from each other in several respects, such as FE types, 
kinematic description, constitutive description, and solution methodology. The bases for FE 
analysis of large deformation problems were not established until the mid 70’s, and it was not 
until then the first procedures for FE simulation of sheet forming were presented. 
The Hill’48 material model To be able to review the different FE formulations, we will first 
have a look at different ways of expressing the constitutive equations. The most commonly 
used constitutive relation in sheet metal forming contexts is the model of Hill1 from 1948. It 
can describe orthonormal anisotropy of the material. The model is also known as Hill’s 
quadratic model, since the stress terms describing the yield surface are all squared. The 
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effective stress can in matrix form be expressed as 

{ } [ ]{ }( ) 2/1T A σσ=σ  (1) 

where [A] is a matrix with constants describing the anisotropy of the material. 
The normality condition can for associated plasticity be written 
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In the special case of a quadratic yield condition this can, in view of Eq. (1), be expressed 
as 

{ } [ ]{ }σ
σ
λ

=ε Ap
&

&  
(3) 

Inverting this expression, and noting that pε=λ && , we get 

{ } [ ] { }p1
p A ε

ε
σ=σ − &
&  

(4) 

Note that this equation expresses total stress in terms of rate of plastic strain. Note also that 
it is only for quadratic yield conditions that the normality condition can be inverted to this 
form. 

If the plastic strain rates in Eq. (4) are replaced by total strain rates, i.e. the elastic part of 
the deformation is ignored, this equation will form the basis of the rigid-plastic theory. A 
couple of the earlier FE formulations for sheet forming simulation were based on this form of 
the constitutive equations. 
The flow formulation The flow-formulation for sheet metal forming is based on the above 
rigid-plastic material law. It uses a kind of Updated Eulerian formulation with nodal velocities 
as primary unknowns. The geometry is fixed in each time step, while the equilibrium is 
iteratively solved for. The geometry is then updated based on the calculated velocities. 

It is interesting to note that there exists a complete analogy between the equations of the 
flow approach, and of those of small strain, linear elasticity. The only differences being that 
strain rate and nodal velocity in the flow formulation take the place of strain and nodal 
displacement in linear elasticity, and that the elasticity modulus in the elastic constitutive 
equations corresponds to a nonlinear ‘viscosity’ term in the rigid-plastic equations. 

One of the main advantages of the flow approach is, thus, that the governing equations get 
a very simple appearance. A disadvantage of the approach is that problems occur when there 
are undeformed zones in the body, where 0e =& , and the ‘viscosity’ turns to infinity. It takes 
some artificial actions to cure that problem. Another obvious disadvantage is of course that no 
phenomena related to elasticity, such as springback, can be simulated. 

See for instance Onate et.al.2 for further references on the subject. 
The rigid-plastic formulation In the rigid-plastic approach the same rigid-plastic 
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constitutive relations as in the flow approach are used. However, some writers have preferred 
to rewrite these relations in terms of increments of strain. This leads naturally to a 
Langrangian FE formulation with nodal displacements as primary unknowns.  

The disadvantages of such an approach are of course the same as for the flow approach. 
However, the present formulation do also lack the simplicity of the flow formulation, since 
the kinematic relations in a Lagrangian formulation are much more complicated than those in 
an Eulerian one. 

Refs.3,4,5 are examples of works in which the rigid-plastic approach has been employed. 
The static-implicit method A sheet forming formulation, which is based on a Lagrangian 
description of motion and an elastic-plastic or elastic-viscoplastic constitutive law, is termed 
the solid approach. It is a formulation of considerable theoretical complexity, but has the 
advantage of being able to simulate also phenomena related to elasticity, such as springback. 
In contrast to the previous two approaches, this one is not restricted to quadratic yield 
conditions. 

The resulting system of equations is normally solved by the Newton-Raphson method, or 
some similar technique. The method is in that case also known as the static-implicit method. 
In later years the importance of the concept of consistent linearisation has been realized. This 
concept is essential in order to preserve the quadratic rate of convergence of the Newton 
method, and has applicability both on stress integration as well as on contact/friction 
procedures. The use of consistent linearisation has implied a dramatic improvement of the 
performance of the solid approach, both with regard to efficiency as well as to robustness. 

The main approximation introduced in the solid approach originates from the integration of 
the rate constitutive equations in order to calculate stresses. 

The present approach has been used by numerous researchers, and the reader is referred to 
the proceedings from some of the recent conferences on the subject of metal forming 
simulation for further references. See for instance Sünkel et.al.6, and Tang and Hu7. 
The static-explicit method The previous approaches have all been implicit in the sense that 
an iterative procedure has been employed in each step in order to fulfill the static equilibrium 
conditions. However, some authors have used a technique in which no iterations at all are 
performed. The updating of the geometry is just based on the result of the first iteration in 
each step. This implies that equilibrium is never satisfied. In order to reduce the errors 
involved, very small steps have to be taken. Several thousand steps are common for an 
ordinary simulation. 

 An advantage of this approach is that it is quite robust, since there are no iterative 
processes that have to converge. Even instability phenomena like wrinkling have been 
simulated by means of this procedure. The procedure is called the static-explicit approach in 
order to distinguish it from the better known dynamic-explicit approach. 

This procedure has been particularly popular among Japanese researchers. A couple of 
recent papers on this subject are Nakamachi8, and Kawka and Makinouchi9. 
The dynamic, explicit method Metal forming problems can generally be considered to be 
quasi-static problems, i.e. inertia forces do not have any major influence on the processes. All 
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the previous approaches can be considered as ‘natural’ in the sense that they are quasi-static. 
Despite this fact an approach, in which the problem is treated as a transient, dynamic one, has 
become the most popular method in later years. This particular type of method has previously 
been used to simulate highly transient problems like explosions, projectiles penetrating 
targets, automobile crashes, and so on. 

The reasons for using a method like this in metal forming problems are twofold: The 
method is extremely robust, and it is very efficient, especially for large-scale problems. 

The discretized dynamic equations are integrated by the central difference explicit time 
integration scheme. Furthermore, lumped mass matrices are used, which implies that the mass 
matrix is diagonal, and no system of equations has to be solved. The critical time step is 
approximately equal the time for a bending or compression wave to travel through the 
smallest element in the mesh. A typical time step in a sheet forming analysis is therefore of 
the order of a microsecond. The number of time steps in a typical sheet forming simulation is 
normally several tens of thousands. 

Other advantages of the dynamic, explicit method are, for instance, that, because of the 
small time steps, the kinematic and contact conditions become very simple. The memory and 
data storage requirements are, furthermore, relatively small. The method is well adapted for 
vectorization and parallelization. 

In the dynamic explicit method the computing time is directly proportional to the duration 
of the analyzed event. In order to speed up the computations it is customary to use a fictitious 
time scale and/or a fictitious density. It is, however, essential to control that the inertia forces 
do not influence the solution. 

A majority of the most popular commercial codes for sheet metal forming simulation are 
based on the dynamic, explicit method. See for instance Hallquist et.al.10, Haug et.al.11, 
Mercer et.al.12, and Aberlenc et.al.13. 
On-step methods The so-called one-step methods are variants of the static-implicit method, 
where the complete solution is performed in one single step under the assumption of linear 
strain paths. The history dependency of material and contacts are thus neglected. The main 
advantage of these methods is of course the short computing time, which is a fraction of the 
one for any of the previous methods. 

In spite of the considerable simplifications introduced in these methods, they still have 
proven useful in some applications. Especially in early phases of the tool design process, even 
the rough predictions from a code like this can be a valuable aid. However, in later evaluations 
of process and die designs more accurate methods have to be used. Recent presentations of 
one-step methods can be found in Batoz et.al.14 and El Mouatassim et.al.15. 
The AUTOFORM approach The approach used in the commercial code AUTOFORM is 
another variant of the static-implicit method. Normally, quasi-static, implicit codes make use 
of direct, linear solvers. The disadvantage of such solvers is that the computing time increases 
roughly with the second to the third power of the number of equations, which makes them less 
suitable for large scale problems. Iterative solvers, on the other hand, for which the computing 
time increases almost linearly with the size of the problem, are inappropriate for sheet metal 
forming problems, since the resulting system of equations is highly ill-conditioned. A 



Kjell Mattiasson 

8 

condition for an efficient utilization of an iterative solver is that the system of equations is 
well conditioned. 

AUTOFORM uses basically membrane element, but bending can be considered as a 
secondary effect. The special feature of this code is that, in each time step, the motions of the 
nodes perpendicular to the tool surfaces are uncoupled from motions tangential to these 
surfaces. In each new step a form of the sheet is first sought, that satisfies the boundary 
conditions determined by the tools. Thereafter equilibrium is determined iteratively. Within 
this process the nodes have only two degrees of freedom each - two translation components in 
a tangent plane to the tool surface. The resulting system of equations is well conditioned, and 
an iterative solver can effectively be utilized. 

The advantage of the present approach is that it is highly efficient and robust. The 
disadvantage is that, since it is based on membrane theory, some approximations are 
introduced in the solution, and phenomena related to bending, such as wrinkling, cannot be 
directly simulated. 

For a more detailed description of this approach the reader is referred to, for instance, 
Kubli and Reissner16. 

4 THE PRACTICAL USE OF SHEET METAL FORMING SIMULATION IN A 
HISTORICAL PERSPECTIVE 

The bases for FE analysis of large deformation problems were not established until the mid 
70’s, and it was not until then the first procedures for FE simulation of sheet forming were 
presented. Early attempts to simulate sheet metal forming processes by means of the Finite 
Element method were usually based on 2D, or axisymmetric models. The ‘flow’ and the 
‘rigid-plastic’ approaches were more popular than the ‘solid’ one, mainly because it was 
possible to advance the solution in much bigger increments in these approaches. 

In 1978 Wang and Budiansky17 published the first complete 3D formulation for sheet 
forming problems, based on a membrane formulation and a ‘static-explicit’ approach. The 
practical application of sheet forming simulation was, however, during many years hampered 
by too unstable numerical procedures and excessive computing times, even for very small 
problems. 

Ten years later, in 1988, Tang et.al.18 published results from practical applications of a 
code, developed at Ford, to the simulation of stamping of real 3D automotive parts. This code 
was based on large strain shell theory and a ‘static-implicit’ approach. Models with up to 400 
elements were analyzed, and the reported computing time was about 20 hours. 

In 1989 results from a Volvo/Control Data project was presented (Honecker and 
Mattiasson19), in which the ‘dynamic-explicit’ approach was evaluated in application to sheet 
metal stamping. The results from this study were very promising. Problems with up to 10,000 
shell elements could be solved within 1.5 hour on a super computer. Also the robustness of 
this approach was found to be widely superior to that of any other method. 

From that time the practical utilization of sheet forming simulations within the industry has 
shown an explosive development. Most companies within the automotive industry are today 
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performing sheet stamping simulations on a regular basis. Dynamic explicit codes, such as 
LS-DYNA, PAM-STAMP, OPTRIS, ABAQUS/Explicit, and others, are dominating the soft-
ware market. Exceptions can be found in Japan, where also a couple of codes based on the 
‘static-explicit’ approach have found some industrial usage. The highly specialized code 
AUTOFORM (see Sect. 3.2) is also widely used, often as a complement to other codes. 
Various one-step codes are frequently used as preliminary design tools. 

There are several reasons for the breakthrough of simulation aids in the sheet forming 
industry in later years. One reason is of course the development of efficient and robust 
simulation methods. Another equally important factor is the rapid development of computer 
hardware, which makes it possible for most companies to perform simulations of complex 
production parts in reasonable time and to a reasonable cost. However, the forming simulation 
is just one activity in a chain of activities. A necessary condition for the success of forming 
simulations has also been the rapid development of the softwares used before and after the 
forming simulation in this chain of actions. For instance, a necessary condition is the 
availability of CAD systems in which the geometry of the products can be numerically 
described and easily modified. Another necessary condition is the availability of efficient tools 
for creating FE meshes on the CAD surfaces. Finally, the development of computer graphics 
and efficient post-processors make it possible to easily evaluate the huge amount of output 
data from the simulation codes. 

5 MATERIAL MODELING 

5.1 Introduction 

The cold rolling of the sheet material generates crystallographic textures, which is observed 
as a mainly orthogonal plastic anisotropy. The anisotropy normal to the sheet surface is known 
to be the most significant one, and is known as normal anisotropy. If also the anisotropy in the 
plane of the sheet is considered, the term planar anisotropy is used. 

The level of the anisotropy is usually characterized by the plastic anisotropy parameter R, 
defined as the relation between plastic strain rates in the width and thickness directions, 
respectively, in a uniaxial tension test, i.e. 

p
t

p
b

e
e

R
&
&

=  
(5) 

Normally, tension tests are performed on sheet strips cut from the blank in three different 
directions: 0o, 45o, and 90o to the rolling direction. When only normal anisotropy is 
considered, an average value of the anisotropy parameters in three directions is used: 

4
RR2R

R 90450 ++
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Normally 1 < R < 2 for steel, and R < 1 for aluminium. Below some of the most common 
yield surfaces for normal and planar anisotropy will be reviewed.  
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5.2 Yield criteria for normal anisotropy 

In 1948 Hill1 presented his classical quadratic yield function for three dimensional, 
orthogonal, anisotropic plasticity. Especially in its plane stress, normal anisotropic form, it is 
the, without comparison, most widely used yield criterion for sheet forming applications. The 
expression for the effective stress is given in Eq. (7) (compare Eq: (1)) 
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Hill’s yield surfaces for different values of the anisotropy constant R are shown in Fig. 3a. 
Hill’s yield condition has proved to yield good result for mild steel. However, for high 
strength steel qualities, and especially for aluminium, it fails in providing satisfactory results. 

Another yield function, suggested by Hosford20, has been shown to yield excellent fit to 
crystallography-based yield surfaces for values of the exponent m in the range 6-8 (see Eq. 
(8)). Hosford’s yield surface for different values of R is displayed in Fig. 3b. The expression 
for the effective stress is shown in Eq. (8). Hosford’s criterion, can be shown to reduce to 
Hill’s quadratic yield function in the special case when R=2.  
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Figure 3  (a) The Hill’48 yield function, and (b) Hosford’s yield function for m=8 
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It has been observed in numerous experiments that the shapes of the yield surfaces for 
metallic materials can be found somewhere between two extremes, represented by the yield 
surfaces of Tresca and von Mises, respectively. It is interesting to note that Hosford’s yield 
surface, for increasing value of the exponent m, approaches Tresca’s yield surface. 

5.3 Yield criteria for planar anisotropy 

A great number of yield criteria for planar anisotropy have been presented. Here a couple 
of the most well known criteria will be presented. 

Barlat and Lian21 have proposed a yield criterion, which can be viewed as a generalization 
of Hosford’s criterion for normal anisotropy to the more general planar anisotropic case. An 
advantage of this criterion is that the anisotropy properties can be represented by parameters 
obtained in simple standard tests. The effective stress in the Barlat-Lian criterion can be 
expressed as 
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Note that this expression corresponds to Hosford’s yield criterion with the normal stress in 

the y-direction weighted by a factor h, and the shear stress weighted by a factor p. The 
material constants a, c, and h can be expressed in terms of R-values in the 0o- and 900- 
directions. The parameter p cannot be calculated directly, but has to be solved for iterativly 
from an equation involving the anisotropy parameter R in the 45o direction. An extension of 
Eq. (9) to three dimensional, orthotropic plasticity has been proposed by Barlat et.al.22. 

Karafillis and Boyce23 used the “mapped stress tensor” concept to derive a three 
dimensional, anisotropic material model. In their model they introduced a linear 
transformation tensor acting on the stresses σij in the real material. The transformation tensor 
“weights” the different stress components of the anisotropic material. The weighted stresses 
can be considered to act on a corresponding, fictitious, isotropic material. For the case of an 
isotropic material, the transformed stress tensor will be equal to the deviatoric stress tensor 
acting on the real material. The transformed stress tensor is called the “isotropy plasticity 
equivalent (IPE) deviatoric stress tensor”. The transformation can be written 

klijklij LS
~

σ=  (10) 

The isotropic yield function, corresponding to the stress state ijS
~

, is prescribed and the 
elements of the transformation tensor, describing the anisotropy of the material, are 
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determined from a suitable set of experiments. In the present case the isotropic yield function 
is general enough to able to describe both the lower (Tresca) and the upper bounds, existing 
for isotropic yield functions. 

6 PREDICTION OF FORMING DEFECTS 

6.1 Introduction 

Current methods and codes for sheet metal forming are quite successful in predicting 
parameters, which are related to the deformation of the sheet material, for instance strain 
distributions, thinning, and draw-in of the blank edge. The forces acting in the interfaces 
between the blank and the tools can usually also be predicted with satisfactory precision. 
However, some forming defects like rupture, springback, and surface deflections, can unfort-
unately not always be predicted with the desired level of accuracy. 

Much of the modern research on sheet metal forming simulation is consequently devoted to 
these particular issues. It is, however, the object of the current presentation to describe the 
methods that are in practical use today to predict these defects. 

6.2 Prediction of rupture 

The risk for rupture in the material is usually evaluated by means of a so-called Forming 
Limit Diagram (FLD). This is an experimentally determined curve in the principal strain 
plane, showing combinations of principal strains leading to rupture. In these experiments 
rectangular sheets with different widths are stretched over a hemispherical punch until rupture 
occurs. Every single width of the sheet specimen corresponds to a unique linear strain path up 
to failure, and gives one point on the FLD. 

The risk for failure is normally evaluated in the post-processing of the results from the 
simulation code, but the FLD can also be built in the material model as failure criterion. 
Critical zones in the formed part can be detected by visualising a “failure index”, defined as  

c = ε1/fl(ε2) (11) 

where fl(ε2) is the forming limit curve viewed as a function of the minor principal strain. This 
index indicates rupture when c ≥ 1. In Fig. 4 this index is visualised as colour fringes for a 
formed panel. As can be seen a critical area is detected and is marked by red colour. 

If the strains in the middle surface of every element in the critical area are plotted in a 
principal strain diagram this results in a diagram like the one in Fig. 5. Some strain points in 
this diagram are situated above the forming limit curve, indicating material failure in the 
corresponding elements. 

A lot of criticism can be raised against the use of FLDs as failure criteria. There is first of 
all a big uncertainty about the exact appearance of the forming limit curve itself, since this is 
highly dependent on the test procedure. Secondly, the FLD is created from linear strain paths, 
while the strain paths leading to failure in the actual forming operation very seldom are linear. 
It has in fact been shown that the limit strains are highly dependent on the strain path. This 
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deficiency of the conventional failure evaluation procedure is especially evident for multistage 
forming processes. 

Current research on methods for rupture prediction is therefore concentrated on finding 
procedures that can handle nonlinear or broken strain paths. Stress based forming limit 
concepts and damage mechanics models are example of attempts in that direction. 

 

Figure 4  Colour fringes indicating ”failure index”. Red colour indicates rupture. 

 

Figure 5  Forming limit diagram for the critical zone visualised in Fig. 4. 
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6.3 Springback 

Springback analyses by means of dynamic, explicit codes must, in contrast to forming 
simulations, be performed in a real time scale. The normal procedure is then to apply 
boundary conditions so that rigid body motions are prevented, remove the tools 
instantaneously, apply a suitable amount of damping, and then let the work piece vibrate 
freely until a static equilibrium is reached. The drawback of such a procedure is that, first of 
all, it is very difficult to estimate what amount of damping should be applied without first 
doing a separate eigenfrequency analysis, and, secondly, that the time for reaching a static 
equilibrium many times can be several times longer than the time needed for the actual 
forming operation. For this reason the static-implicit method is preferred for springback 
analyses. 

A condition for an accurate springback analysis is that the calculated stresses after the 
completed forming simulation are correct. It has, however, been shown that it is much more 
difficult to obtain accurate stresses than accurate strains.  

In connection to the NUMISHEET’93 conference a benchmark test was set up, which 
aimed at letting the participants determine the springback in a deep-drawn, U-shaped sheet 
strip, both experimentally and/or numerically. The numerical benchmark results were, 
however, very disappointing, showing a great scatter among the different participants. Most 
codes seemed to strongly underestimate the springback.  

Later on the author and colleagues, Mattiasson et.al.24, did reanalyse the present problem in 
order to find out the causes of the inaccurate springback predictions. Especially the influences 
of various model parameters on the resulting stress state after completed forming were 
studied. In Fig. 6 the longitudinal stress history during the forming operation in a point on the 
outer surface of the sheet strip is displayed. The influence of the mesh size in the sheet is 
studied, and results are shown for element sizes 3.0 mm and 0.5 mm. For the larger element 
size a pronounced relaxation of the stresses, after the point in question has left the draw 
radius, can be observed. The results for the finer mesh, which represent a converged solution 
with respect to the element size, do not show this stress relaxation. In Fig. 7 the geometry of 
work piece after springback is displayed for various element sizes. 

The observed stress relaxation phenomenon could be explained by the small variations in 
strains in the vertical part of the work piece, which are caused by the basically flat elements in 
the sheet slipping over the draw radius. 

The referred study showed, thus, that the main reason for the inaccurate springback results 
was the use of a too coarse mesh in the sheet. In fact, an extremely fine mesh was needed in 
order to get a converged solution. There were, however, a number of other factors that had 
substantial influence on the results. For instance, it was shown to be very important to include 
the Bauschinger effect in the modelling of the material hardening. Furthermore, the fictitious 
process time used in a dynamic-explicit method should be at least twice the time normally 
used, when an accurate solution for strains is of primary interest. 

Even though the above observations have been considered, the agreement between 
measured and calculated springback for complex parts have in many cases been poor. This 
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indicates the problem of springback is not yet fully understood, and that this should be a 
focused are for current research. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6  Stress history at a point on the outer surface of a U-shaped deep drawn sheet strip (from Mattiasson 
et.al.24).  (a) Element size 3.0 mm,  (b) Element size 0.5 mm 
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Figure 7  Geometry after springback for different element sizes (from Mattiasson et.al.24) 
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7 SUMMARY 

Sheet metal forming simulation is today used by routine by most car manufacturers and major 
tool makers. Simulations of varying complexity are performed in different phases of the 
forming process development. One-step codes are mainly used in the early product design 
stage to evaluate manufacturing feasibility. The advantage of one-step codes is the short turn 
around time. Computing time as well as the time needed for data preparation are considerably 
shorter than for incremental codes. 

More thorough analyses are performed by means of incremental codes to support the die 
and process design. Today the software market for this type of codes is dominated by codes 
based on the dynamic-explicit method. The computing time for complex production parts is 
typically several hours. 

There are some areas of sheet forming simulation for which there exist particular needs for 
further research and development. This concerns especially detection and evaluation of certain 
types of forming defects, such as rupture, springback and surface deflections.  
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Digital Manufacturing in Press Part Production

Dr. Schiller, Prof. Dr. Roll, Dr. Wöhlke, Mr. Wiegand

DaimlerChrysler AG, Production Planning Mercedes-Benz Passenger Cars, Germany

1 Challenges
In view of the challenges faced by automobile manufacturers today, there are a
number of factors that need to be considered. At least in the triad markets (Europe,
the USA and Japan), manufacturers face increasingly global competition on satu-
rated markets. This development is also expressed in steadily growing pressure for
consolidation and concentration in the automobile industry. Concentration of course
not only affects vehicle producers but also component manufacturers. In this context,
component manufacturers are focussing more and more on complete packages in
the value addition chain. As a result, new key players have emerged; to a growing
extent, they are also increasing the competition in the automobile industry.

1.1 Product offensive - effects
In spite of these challenges, DaimlerChrysler shows that the company has already
succeeded in adapting to new requirements and in continuously boosting production
figures in the past. Over the past five years, sales have almost doubled. One of the
key factors in this development has been the product offensive which was success-
fully launched at the beginning of the 1990's. A large number of attractive model
series and product variants have been developed in the course of this offensive (see
Fig. 1).

Fig. 1: A large number of attractive models have been developed as a result of
DaimlerChrysler’s “product offensive” during the 1990s.
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However, this gratifying development has had dramatic effects on production plants
and on the engineering and design departments. Whereas in the past it was only
necessary to design a new vehicle at intervals of 2 to 3 years, this interval has now
been reduced to 3 to 4 months. It has almost become normal not only for one model
series but also for several vehicle projects to be in the design and start-up process at
the same time. In addition, pressures on costs are steadily growing.

1.2 The MB Development System (MDS) process model
However, it is only possible to tap the potential for reducing design and start-up times
if the underlying processes are precisely defined and a binding definition of the links
between these processes is available. In this context, DaimlerChrysler already star-
ted work on the Mercedes-Benz Development System (MDS) six years ago. This pro-
cess model describes the content of the individual phases, from the strategy, tech-
nology and vehicle phases through to series production, and precisely defines the
time links between them. The objective is to record as comprehensively as possible
all the major activities involved in process phases and to set out the links between
the individual units concerned, e.g. between development and the various enginee-
ring departments. Compliance with the required degree of process and product ma-
turity is monitored at various milestones, referred to in the model as quality gates.

Conventional development and engineering methods alone are inadequate for shor-
tening development processes and design times to the extent required. In the future,
the production engineering departments will also need to stronger implement digital
planning and review methods similar to the Digital Mock-up (DMU) review of 3D pro-
duct models in the development departments and to apply these methods on a
consistent basis. This applies especially to processes which are on the critical path
within overall project planning or would result in considerable cost and effort in the
event of any changes. A typical example are processes for the design and review of
press tools for the production of body parts which depend considerable on the manu-
facturing time of the tool builder. These processes have a considerable impact on the
start of production (SOP) and the start-up curve of a new vehicle project. In order to
shorten development times for press tools more drastically in the future,
DaimlerChrysler is introducing an engineering process for sheet metal part produc-
tion with digital support.

With respect to the MDS process outlined above, the following activities offer
considerable potential for the use of digital design methods in tool production for
body and structural components (see Fig 2):

•  If a manufacturing feasibility review is carried out at an early stage in the
technology phase, the feasibility of manufacturing the part in terms of forming
operations can be ensured on the basis of an initial simulation without any need
for the production of costly prototype tools or complex testing.

•  Before the tool design specification has been issued, forming geometries for the
various process stages and the tool designs derived from these geometries can
be changed on the basis of simulations until the ideal part is produced. This
approach results in a further reduction in engineering time combined with a
significant increase in maturity.

•  As part of an overall review (carried out prior to commissioning), the fit and func-
tion of the press tool design can be verified by a virtual inspection process while
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design is in progress. The commissioning can then be started when this review
has been completed.

•  The digital models can also be used for start-up support (prior to ramp-up), for
the advance training of operation and maintenance personnel and for the offline
generation of the control programs actually to be used for production. This results
in a significant shortening of the start-up phase following the introduction of new
tools.

Fig. 2: MDS Process Model – Potential of Digital Planning

The workflow including the various process stages from methods planning, via
forming simulation and tool design to press line/shop simulation and the use of
the digital tools and systems concerned are described in greater detail below.

Fig. 3: Interaction between Product Development and Production Engineering

As a result of the consequently shortening of product development and production
engineering periods, production engineering and development have increasingly be-



Page 4

come parallel processes (see Fig. 3). From the production planning point of view,
production requirements must therefore be taken into consideration as early as pos-
sible in the development process, at a point where product data are only available in
digital form, as CAD models.

2 The vision of the digital factory
In this context, the DaimlerChrysler vision of the digital factory is as follows: in the
future, no production facility will be designed, constructed or commissioned without a
full review carried out using digital design methods. The review will cover the entire
factory and all buildings as well as individual units such as shops, production lines,
cells and manual work stations. Individual tools, operational steps and technical
operations such as welding, bolting or adhesive bonding will also be included. It will
be important not to neglect the human factor, both in combination with tools and
machines and with respect to ergonomic aspects such as physical loads.

If this vision is viewed in isolation with respect to individual levels, it may not seem to
be very innovative as various digital design and simulation methods have been used
for individual process stages in the past. However, it represents a considerable
challenge if the entire system including all the individual aspects is to be linked in the
form of continuous workflows with access to a central data management system. For
the pressed part workflow described below, this applies in particular to the process
engineers, engineering departments and software partners involved in the process.

2.1 Process engineering activities
The objective of the engineering process is to design and realize the production
facility required on the basis of the available product data. This process is currently
supported by a wide range of software systems. Normally, there is only a file-based
data exchange mechansim between the various systems used. The data are stored
in a number of different local databases and often need to be transferred from one
system to the next manually. As a result, databases are often not up-to-date and
complex and time-consuming data compilation and reconciliation processes are un-
avoidable. Keeping the present situation in mind, the following sections consider the
directions in which the methods of the digital factory have to be developed in order to
succeed in the future, with special reference to planning of press part production.

2.2 Main approaches for the development of the digital factory
In the opinion of DaimlerChrysler, the new digital design methods of the digital factory
will need to be based on the following four main approaches (see Fig 4). It will be
necessary to apply these approaches consistently if the potential time and cost
savings referred to above are to be realized in the process as a whole.

1. Initially, standards and production principles in accordance with the Mercedes-
Benz Production System (MPS) will need to be defined and systematically sup-
ported.

2. In the future, data integration will be necessary in order to replace the wide va-
riety of individual databases currently used by a few data management systems.
Systems must be designed in such a way that each data record only needs to be
recorded and saved once and the supplier of the data remains responsible for
updating it. This will apply to all data, including 3D product and factory data, tool
and equipment data records, process and production plans and simulation results.
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Of necessity, this will call for certain changes in the approaches and working
methods of development and engineering staff. In the future, it will be necessary
to save incomplete data and interim versions on the system and not just com-
plete, reviewed results. In addition, all the information saved will need to be
available throughout the world.

3. Processes will need to be defined and integrated in the form of workflows so that
the sequential working methods currently used can be replaced by a form of
meshed cooperation including revision management.

4. The automation of repetitive routine design tasks will relieve the workload on
production engineers and ensure further benefits.

Fig. 4: Main Approaches of the Digital Factory

3 Sheet metal part production workflow
These aspects are illustrated below on the basis of the workflow for sheet metal part
production. The objective is also to demonstrate how an ideal development and re-
view process for press tool design can already be supported by digital methods to-
day. An important approach is the use of deep drawing simulation early in the tech-
nology phase in order to verify forming feasibility and define forming geometries. In
this way, the production of a component in the press line can already be simulated
over several stages from the design model through to the actual design of the press
tools before the first prototype is produced (see Fig. 5).

•  Starting with the product data (CAD geometry and product structure) from vehicle
development, the production-specific attributes such as material, sheet thickness,
etc., required as a basis for subsequent process stages are added.

•  In methods planning, the sequence of operations needed for the forming of the
component is defined and the necessary additional design work is performed; in
other words, active areas are added to the CAD model of the finished product.
These additions include the geometry of the holders required to fix the part in
position during pressing and the resulting punch and die geometry.
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•  After forming geometries have been defined and the FEM net has been automa-
tically generated, the flowing behavior of the sheet metal during the deep drawing
process is determined by a forming simulation. The results of the simulation are
visualized for assessment. This approach indicates points where the sheet may
become too thin, leading to cracks, and areas of excessive thickness where
buckling could occur. In addition to the deep drawing stage, all the subsequent
stages, such as cutting, hemming, folding, etc., as well as springback effects on
the component can now be simulated. In this way, it is possible to optimize the
entire production process in advance.

•  The next stage following the completion of the manufacturing feasibility review is
tool design; in this stage, 3D solid models of the press tools are generated on
the basis of the forming geometry defined in previous stages. These models can
be reviewed by virtual inspection using a press line simulation, in other words a
DMU study of the tool. This allows the mechanical elements required, such as
vacuum holders, supports, etc., to be defined and the control programs for the
press to be generated. At the same time, it is possible to define and optimize the
physical properties of the tool using strength calculations (FEM net generation
and simulation).

•  Press shop simulation is an overall review process which allows the investiga-
tion and verification of deployment planning and various alternative logistics
configurations (for blank supply and finished part handling). Using the results,
throughputs and pressing rates can be optimized at an early stage. It is even
possible to test future maintenance processes on the digital model.

Fig. 5: Sheet Metal Part Production Workflow

Commercial software solutions are now available to support all the stages mentioned
above, allowing a continuous digital workflow. You could say that a part runs through
the digital factory before it is actually physically produced. It is optimized and impro-
ved until it is ready for production by the physical factory. This approach has consi-
derable benefits:

•  Changes in basic planning data and design improvements can be implemented
cost-effectively and reviewed digitally. Especially, this process can not only be
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carried out stepwise and in one direction. By simply varying the parameters used,
a large number of scenarios can be generated and compared.

•  In the workflow system, requests for changes can be transmitted to upstream and
downstream process stages using a defined change management system with
suitable communications mechanisms. Defined standard elements, the data inte-
gration and documentation procedures described above and digital design me-
thods are all used in a tightly meshed network for the individual process stages.

•  The most important benefit is that digital methods allow engineering and planning
know-how to be integrated into the development process at an earlier stage.

3.1 Early DMU studies
Using CAD systems and simulation combined with large-screen projection systems,
allows at an early stage of the project the presentation of the actual design status of
forming tools in 3D with a scale of 1:1. This approach, which depends on the
capability of 3D modeling and VR visualization of the press tools, allows a continuous
verification of engineering and planning progress and significantly shortens develop-
ment times. Apart from virtual tool inspection, also packaging studies are possible.
These studies, based on 3D models, determine whether there is sufficient space for
the installation of all the parts and assemblies required. In tool production and press
line design, these problems arise in connection with the design and review of press
tools for sheet metal part production. Production engineers are not only interested in
verifying the feasibility of producing all the parts and tools required and the com-
patibility of the parts and tools but also in the following questions:

•  whether the components can in fact be installed in the space available,

•  whether certain tools and equipment items are accessible,

•  what is the ideal installation and production sequence.

3.2 Potential of digital methods
Previously, it was only possible to answer such questions at a much later stage by
producing prototypes or even by trial and error on the physical press. At that stage,
parts had already been produced and tools ordered; any changes required were both
costly and time-consuming. With reference to current cost levels, the use of digital
methods in press line design and tool production offers considerable savings po-
tential.

Especially tool modification costs incurred as a result of the redesign of a part or
the production of a completely new part can be significantly reduced by virtual tool
inspection on a 3D model. As a result, the start-up costs of the tool in the press
shop can also be reduced, as it is possible to raise the overall quality and maturity of
the tool to series production levels at a very early stage. Part of the prototype tests
oin the ty-out presses can be omitted by using digital planning methods, facilitating
production engineering and capacity deployment in the pressing shop. Some savings
will also be possible in terms of capital expenditure; there are already indications
that the hardware simulators now needed in press shops will no longer be required in
the future if press line simulation is used at an early stage in the design process. The
potential benefits of digital engineering and simulation systems in press shop design
are already evident, even without considering the shortening of the process.
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4 Examples of the four main approaches
With reference to the four main approaches for digital methods, we would now like to
discuss the individual aspects on the basis of the development and design of
pressing tools and facilities for sheet metal part production.

4.1 Standardization
One example of standardization in connection with digital press shop planning are
preconfigured digital models of press lines which are defined independently from
the press tools by the press line manufacturer. In combination with predefined stan-
dard modules for the mechanical equipment, these preconfigured packages allow a
very rapidly model generation process of fully-equipped press lines. These modules
can then be used for the verification and optimization of the press tools, which are
also designed by using predefined components. Design standards, reinforcement
structures etc. can also be stored in the form of rules, allowing the generation of
easily adaptable intelligent design modules for the engineering departments. Such
standard elements can be easily and rapidly combined to develop the press tools and
mechanical equipment required for producing a specific sheet metal part at a very
early stage in the project. In addition, the cost benefits of standardization effects are
substantial.

4.2 Data integration
In this context, data integration does not mean that all the data are stored in one
large database but that the three engineering points of view which are relevant to the
data: the Product, Process and Resource-oriented views - or PPR – are administered
jointly by a smart data management system. This includes all the data generated
from development through production engineering to production (in the pressing
shop). It is clear that data from production must be transferred to the engineering and
development departments, for example in order to take changes or optimizations into
account.

In the case considered here, data from a variety of individual sources are needed for
tool simulation and design. These include:

•  tables of material data and parameters
•  CAD models (surfaces) containing component data and active areas
•  forming geometries and derived FEM models (networks)
•  simulation results (ASCII or binary data)
•  CAD models (solids) of pressing tools and jigs
•  geometric or functional models of pressing facilities and machines

Data integration is based on the use of CATIA data to allow continuous work on the
CAD models of components, tools and machines in a closely connected way over the
entire process chain. The additional design surfaces needed for verifying manufac-
turing feasibility and the FEM models for forming simulation are derived from these
data. Together with the forming geometries and solid tool data generated, these are
used as inputs for a press line simulation. All the data records referred to must be
managed consistently and must be linked with each other to allow process, product
and resource-oriented views.
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4.3 Workflow management – use of digital methods
As digital engineering methods become more revalent, it will become necessary to
think more and more in terms of workflows and to network individual tasks previously
performed in sequence more closely to shorten the entire process. This approach will
go beyond the digitization and optimization of individual processes and will ensure
better process integration, bringing fundamental changes in working methods. The
engineer will no longer be forced to search for and acquire the data required but will
be informed automatically of any changes in components or tools in the process of
design or development.

Both, the presented workflow approach and the networking between individual tasks
will mean that changes will not only be documented but will also be made available
almost on a real time basis. With respect to tool engineering, it will therefore be
possible to take tool changes into account and distribute the information required in a
targeted way even before the first prototype has been built. The result will be a signi-
ficant improvement in the engineering maturity of the project. The quality of integra-
ted engineering will remain at a consistently higher level, ensuring that the results
required can be obtained in a significantly shorter time.

4.4 Automation of routine tasks
As in production, manufacturing engineering includes a large number of repetitively
routine tasks which could be automated with system help. Together with data acqui-
sition work, these routine tasks take up a large proportion of the engineering capacity
available, leaving relatively little time for creative work. We would like to illustrate this
problem using the example of press tool design.

Using classical design methods (CATIA), it currently takes between 10 and 14 days
to generate additional surfaces for the blank holder on the base of the original tool
data. These surfaces are required for creating tool geometries for methods planning
and forming simulation. If digital factory methods are adopted and mathematical
support curves are defined for the missing surfaces, the generation process itself can
be performed by the computer without further intervention. This approach reduces
the time needed to between one and two hours. When the forming geometries are
available, the methods engineer can then concentrate on finding the best tool shape,
which can then be verified by forming simulation.

A further example is automated collision testing of 3D press tools with a press line
model; this supports virtual tool inspection and functional optimization. Although vir-
tual reality methods have been introduced for visual inspection by the engineer, this
process has not yet been significantly accelerated. The full benefits of digital design
methods can only be tapped a planning task can be performed automatically by the
computer system. With digital design, calculations can be performed virtually over-
night and the engineer is then given a result list, e.g. of the press tools which could
lead to collisions in the press line. This is the point where creative engineering is cal-
led to identify feasible solutions, design modifications or tool optimization.

4.5 Digital CIP
Digital design methods also allow a continuous improvement process, digital CIP to
be started on the basis of digital models before the system is built and commis-
sioned. In the case of sheet metal part production, the first optimizations for increa-
sed operating cycles can already be performed on the 3D data records and press
models that follow the tool design process. Control programs for the press line can
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also be generated on this basis. Together, these developments allow operations staff
to be involved at an early stage and to be trained using maintenance simulations.

Currently, there is still an interim stage in this process. The digitally reviewed results
of design work are implemented as realistically as possible in the pre-production
series shop and the press tools are still tested and optimized on try-out presses as a
sort of hardware validation prior to the start of production. This stage can be referred
to as the "physical mock-up". The advantage of digital CIP is that this process can be
initiated on the basis of the digital mock-up well before operation starts.

5 Qualification requirements for the digital factory
In this context, it is necessary to develop a detailed job description and qualification
profile for the digital production planner of the future. This profile must then be com-
pared with current qualification profiles in order to define appropriate training re-
quirements. Training will not concentrate so much on the use of software tools as on
the new processes, procedures and methods involved. It will be necessary to initiate
a changed consciousness or a new paradigm. For example, data, including incom-
plete intermediate data, will need to be disclosed and accessible at a considerably
earlier stage in the future. Proactive information on any changes will be required.
Training on the actual systems used should only start when the trainees have under-
stood and adopted this new approach.

Summary and outlook

We described a new engineering process for press part production which will be im-
plemented at DaimlerChrysler. To reach the challenging goals of reducing planning
time, handling of complex part geometries, reducing manufacturing costs and impro-
ving the press tool quality, the use of digital planning methods is required. Therefore,
four main approaches are presented and discussed which are considered as the ba-
sics when applying techniques of digital manufacturing to a specific area of applica-
tion. We illustrated the effects at the workflow of press part production where fea-
sibility checks and review steps are ensured with the help of digital planning and
simulation tools. Resulting is a steady increase in the maturity of tool design from the
initial idea through to commissioning. Also, the duration of production engineering of
press tools and the amount of manual re-work can be significantly reduced by using
digital planning methods. DaimlerChrysler is working within the Digital Manufacturing
project on the goal to implement the necessary methods and tools to support new
planning workflows. So, the digital factory plays a key role in facing up the described
challenges and will force changes in working practices of planning engineers.
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Abstract

Contact phenomena abound, and play an important role in structural and mechanical engineering. Owing to their
inherent complexity, they are modelled by highly nonlinear inequalities. Considerable progress has been achieved
in modelling, variational analysis and numerical approximations of contact problems involving viscoelastic and
viscoplastic materials. Moreover, it has led to several new types of variational inequalities. We present some
recent results on the variational and numerical analysis of contact problems in viscoplasticity and some numerical
examples of engineering applications.

1 Introduction

Contact phenomena among deformable bodies abound in industry and everyday life, and play an important role in
structural and mechanical systems. The complicated surface structure, physics and chemistry involved in contact
processes make it necessary to model them with highly nonlinear initial-boundary value problems. The famous
Signorini problem was formulated in [23] as a model of unilateral frictionless contact between an elastic body and
a rigid foundation. Mathematical analysis of this problem was first provided by Fichera [11]. Duvaut and Lions,
in their monograph [6], systematically modelled and analyzed many important contact problems within the frame-
work of the theory of variational inequalities. Numerical approximations of variational inequalities arising from
contact problems were described in detail by Kikuchi and Oden [16], and Hlaváček et al. [14]. The mathematical,
mechanical and numerical state of the art can be found in the proceedings Raous et al. [17], and in the special
issue Shillor [22].

In earlier mathematical publications it was invariably assumed that the deformable bodies were linearly elas-
tic. However, a number of recent publications is dedicated to the modelling, variational analysis and numerical
approximations of contact problems involving viscoelastic and viscoplastic materials. Moreover, a variety of new
and modified contact conditions were employed, reflecting the different settings and the nature of the problems.
The settings studied were with unilateral or bilateral contact, with friction or frictionless. And in the cases of
frictional contact, a number of different contact and friction conditions were employed.

Investigation of these problems led us to new variational inequalities, the well-posedness of which we estab-
lished. Moreover, two types of numerical approximations were analyzed and error estimates were derived. These
were the semi-discrete schemes, where only the spatial variables were discretized, and fully discrete schemes
where both the time and the spatial variables were discretized. Here, we summarize our main recent results, and
present a few numerical examples of engineering applications in viscoplastic materials.

In Section 2 we introduce notation and some preliminary material. In Section 3, we discuss several contact
problems involving viscoplastic materials. We present the weak formulations, the well-posedness results and error



estimates for the numerical approximations. Because of space limitation, we only show results for the fully discrete
schemes. In Section 4, we show some numerical examples.

2 Preliminaries

We consider mathematical models for quasistatic contact between a deformable body and a rigid or also deformable
foundation. The physical setting is as follows. A deformable body occupies an open, bounded and connected set
Ω ⊂ R

d, d = 1, 2 or 3. The boundary Γ = ∂Ω is assumed to be Lipschitz continuous and has the decomposition
Γ = ∪3

i=1Γi into mutually disjoint, relatively open sets Γ1, Γ2 and Γ3, with Lipschitz relative boundaries if d = 3.
The set Γ3 represents the potential contact surface, and we assume meas (Γ1) > 0. Since the boundary is Lipschitz
continuous, the unit outward normal vector ν exists a.e. on Γ.

We are interested in the evolution of the body’s mechanical state over the time interval [0, T ] (T > 0). The
body is clamped on Γ1 and so the displacement field vanishes there. A surface traction of density f 2 acts on Γ2

and a volume force of density f 0 acts in Ω, both depending on time. We assume that they change slowly in time
so that the accelerations in the system are negligible, which means that the process is quasistatic.

We denote by S
d the space of second order symmetric tensors on R

d, or equivalently, the space of symmetric
matrices of order d. The inner products and the corresponding norms on R

d and S
d are

u · v = uivi, ‖v‖ = (v · v)1/2 ∀u,v ∈ R
d,

σ · τ = σijτij , ‖τ‖ = (τ · τ )1/2 ∀σ, τ ∈ S
d.

Here and below, i, j = 1, 2, . . . , d, and the summation convention over repeated indices is adopted. Moreover,
an index which follows a comma indicates a partial derivative. Let ε and Div be the deformation and divergence
operators, respectively, defined by

ε(u) = (εij(u)), εij(u) =
1

2
(ui,j + uj,i), Div σ = (σij,j).

Denoting by u the displacement and σ the stress fields in the body, we have

Div σ + f0 = 0 in Ω × (0, T ), (1)

u = 0 on Γ1 × (0, T ), (2)

σν = f2 on Γ2 × (0, T ). (3)

Here, (1) are the equilibrium equations, (2) and (3) are the displacement and the traction boundary conditions on
Γ1 and Γ2, respectively. We need to supplement these relations with a constitutive law and a contact condition on
Γ3 × (0, T ).

We need the following function spaces:

H = {u = (ui) | ui ∈ L2(Ω)}, Q = {σ = (σij) | σij = σji ∈ L2(Ω)},
H1 = {u = (ui) | ui ∈ H1(Ω)}, Q1 = {σ ∈ Q | σij,j ∈ H}.

These are real Hilbert spaces endowed with the inner products

(u,v)H =

∫

Ω

uivi dx, (σ, τ )Q =

∫

Ω

σijτij dx,

(u,v)H1
= (u,v)H + (ε(u), ε(v))Q, (σ, τ )Q1

= σ, τ )Q + (Div σ, Div τ )H ,

and the associated norms are denoted by ‖ · ‖H , ‖ · ‖Q, ‖ · ‖H1
and ‖ · ‖Q1

.
Everywhere in this paper, unless stated otherwise, V stands for the space V = {v ∈ H1(Ω)d | v = 0 on Γ1}

equipped with the inner product

(u,v)V = (ε(u), ε(v))Q ∀u, v ∈ V (4)

and the associated norm ‖ · ‖V . Since meas(Γ1) > 0, it follows from Korn’s inequality that ‖ · ‖H1(Ω)d and ‖ · ‖V

are equivalent norms on V .
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For an element v ∈ H1, we also denote by v its trace γv on Γ; vν and vτ denote the normal and tangential
components of v on Γ given by vν = v · ν, vτ = v − vνν. For an element σ ∈ Q1, we denote by σν its trace
on Γ. If σ is a smooth function (e.g. continuously differentiable on Ω), then

(σ, ε(v))Q + (Div σ,v)H =

∫

Γ

σν · v da

for all v ∈ H1, where da is the surface measure. In this case the normal and tangential components of σ are given
by σν = (σν) · ν, στ = σν − σνν.

Given a real normed space (X, ‖ · ‖X) we denote by C([0, T ];X) and C1([0, T ];X) the spaces of continuous
and continuously differentiable functions from [0, T ] to X with the respective norms

‖x‖C([0,T ];X) = max
t∈[0,T ]

‖x(t)‖X , ‖x‖C1([0,T ];X) = max
t∈[0,T ]

‖x(t)‖X + max
t∈[0,T ]

‖ẋ(t)‖X .

Here and below, a dot above a variable represents its derivative with respect to time. For an integer k ≥ 0, and
p ∈ [1,∞], W k,p(0, T ;X) is the Sobolev space of the vector-valued functions x such that

‖x‖W k,p(0,T ;X) =
k

∑

j=0

‖x(j)‖Lp(0,T ;X) < ∞.

In our numerical approximations of the problems, we use the finite element method (FEM) for spatial discretiza-
tion, and finite differences for the temporal derivative. We now describe briefly a finite dimensional space Hh

1 ,
which approximates H1, via the FEM. The details can be found in, e.g., [5]. For the sake of simplicity, we assume
that Ω is a polygon or polyhedron. Then Γ3 = ∪I

i=1Γ3,i, and each piece Γ3,i is represented by an affine function.
Let T h be a regular finite element partition of Ω in such a way that if a side of an element lies on the boundary, the
side belongs entirely to one of the subsets Γ1, Γ2 and Γ3,i, 1 ≤ i ≤ I . Let h be the maximal diameter of the ele-
ments. We define Hh

1 ⊂ H1 to be the finite element space consisting of piecewise linear functions, corresponding
to the partition T h. If the solution u is known to have higher regularity, we may use higher order elements; our
error analysis can be easily extended to such cases.

We employ the partition of the time interval [0, T ] : 0 = t0 < t1 < · · · < tN = T . We denote the step-size
by kn = tn − tn−1, for n = 1, . . . , N , and let k = maxn kn be the maximal step-size. For a continuous function
w(t), we let wn = w(tn). Given a sequence {wn}N

n=0, for n = 1, . . . , N , we denote ∆wn = wn − wn−1, and let
δwn = ∆wn/kn be the corresponding divided difference, where no summation is implied over the index n.

Everywhere below, the symbol c represents a positive constant which may change its value from place to place
and may depend on the input data, but it is independent of discretization parameters h and k.

3 Contact problems in viscoplasticity

We use the rate-type viscoplastic constitutive law

σ̇ = Eε(u̇) + G(σ, ε(u)), (5)

where E and G are material constitutive functions. The function E is assumed to be linear while G is nonlinear.
The Perzyna laws is an example of such elastic-viscoplastic constitutive law,

ε̇ = E−1σ̇ +
1

µ∗
(σ − PKσ),

in which µ∗ > 0 is the viscosity constant, K is a nonempty, closed, convex set in the space of symmetric tensors
and PK is the projection mapping on K. Note that G does not depend on ε.

Rate-type viscoplastic models of the form (5) have been used to describe the behavior of rubbers, metals,
pastes, rocks, etc. Models of mechanical problems of this form may be found in [2] (see also references therein).
Existence and uniqueness results for initial–boundary value problems involving (5) were obtained in [15] for
displacements-tractions conditions.
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We assume in the sequel that E = (Eijkl) and G : Ω × S
d × S

d → S
d satisfy the assumptions:

(a) Eijkl ∈ L∞(Ω), 1 ≤ i, j, k, l ≤ d.
(b) Eσ · τ = σ · Eτ , ∀σ, τ ∈ Sd a.e. in Ω.
(c) There exists an α0 > 0 such that Eτ · τ ≥ α0|τ |2 ∀ τ ∈ Sd, a.e. in Ω.







(6)

(a) There exists an L > 0 such that
‖G(x,σ1, ε1) − G(x,σ2, ε2)‖ ≤ L (‖σ1 − σ2‖ + ‖ε1 − ε2‖) ∀σ1,σ2, ε1, ε2 ∈ S

d, a.e. in Ω.
(b) For any σ, ε ∈ S

d, the mapping x 7→ G(x,σ, ε) is measurable.
(c) The mapping x 7→ G(x,0,0) belongs to Q.















(7)

Forces and tractions are assumed to satisfy:

f0 ∈ W 1,∞(0, T ;H), f2 ∈ W 1,∞(0, T ;L2(Γ2)
d) (8)

and we denote by f ∈ W 1,∞(0, T ;V ) the unique element given by

(f(t),v)V = (f0(t),v)H + (f2(t),v)L2(Γ2)d ∀v ∈ V,∀ t ∈ [0, T ]. (9)

We present now a number of contact problems involving viscoplastic materials of the type (5).

3.1 The Signorini problem

We assume the contact without friction and there is no penetration between the body and the foundation. The
classical formulation of the problem is the following:

Find a displacement field u : Ω × [0, T ] → R
d and a stress field σ : Ω × [0, T ] → S

d satisfying (1)–(3), and

σ̇ = Eε(u̇) + G(σ, ε(u)) in Ω × (0, T ), (10)

uν ≤ 0, σν ≤ 0, σνuν = 0 on Γ3 × (0, T ), (11)

στ = 0 on Γ3 × (0, T ), (12)

u(0) = u0, σ(0) = σ0 in Ω. (13)

Here, u0 and σ0 are given initial data, expressions (11)and (12)are the nonpenetration (Signorini) and no friction
conditions, respectively . Let U = {v ∈ V | vν ≤ 0 on Γ3}, where V is defined in Section 2. Assume, for the
initial data

u0 ∈ U, σ0 ∈ Q, (14)

(σ0,v − ε(u0))Q ≥ (f(0),v − u0)V ,∀v ∈ U (15)

The weak formulation for the contact problem is:

Problem 3.1 Find a displacement u : [0, T ] → U and the stress tensor σ : [0, T ] → Q such that u(0) = u0,
σ(0) = σ0 and, for a.e. t ∈ (0, T ),

σ̇(t) = Eε(u̇(t)) + G(σ(t), ε(u(t))),

(σ(t), ε(v) − ε(u(t)))Q ≥ (f(t),v − u(t))V ∀v ∈ U.

The following result has been established in [24].

Theorem 3.2 Assume that (6), (7), (8), (14) and (15) hold. Then the problem 3.1 has a unique solution u ∈
W 1,∞(0, T ;U), σ ∈ W 1,∞(0, T ;Q1).

For numerical approximations, let V h ⊂ V be a finite dimensional subspace of V and define Uh = {vh ∈
V h | vh

ν ≤ 0 on Γ3}. Let Qh ⊂ Q be a finite dimensional subspace of Q such that ε(V h) ⊂ Qh. Let PQh : Q →
Qh be the orthogonal projection defined by (PQhq, qh)Q = (q, qh)Q ∀ q ∈ Q, qh ∈ Qh. Then a fully discrete
approximation of problem 3.1 is:

4



Problem 3.3 Given uh
0 ∈ Uh and σh

0 ∈ Qh find uhk = {uhk
n }N

n=1 ⊂ Uh and σhk = {σhk
n }N

n=1 in Qh such that
uhk

0 = uh
0 , σhk

0 = σh
0 , and, for n = 1, . . . , N ,

δσhk
n = PQhEδε(uhk

n ) + PQhG(ε(uhk
n ),σhk

n ),

(σhk
n , ε(vh − uhk

n ))Q ≥ (fn,vh − uhk
n )V ∀vh ∈ Uh.

Problem 3.3 has a unique solution for k small enough. We obtain the following error estimates by modifying
the results in [3](see also [7]). Remark that they are satisfied when V h is the space of piecewise linear polynomials
and Qh the space of piecewise constant functions.

Theorem 3.4 Assume that the conditions in Theorem 3.2 hold and also the following ones:

• ‖u0 − uh
0‖V ≤ ch, ‖σ0 − σh

0‖Q ≤ ch,

• [H2(Ω)]d ∩ U is dense in U : infvh∈Uh ‖v − vh‖V ≤ c(v)h, ∀v ∈ [H2(Ω)]d ∩ U ,

• ‖(IQ − PQh)τ‖Q ≤ ch, ∀τ ∈ Q,

• u ∈ L∞(0, T ; [H2(Ω)]d),

then

max
1≤n≤N

(

‖un − uhk
n ‖V + ‖σn − σhk

n ‖Q

)

≤ ch1/2‖u‖L∞(0,T ;[H2(Ω)]d) + c k
(

‖u̇‖L∞(0,T ;V ) + ‖σ̇‖L∞(0,T ;Q)

)

.

If we further assume

• uν ∈ L∞(0, T ;H2(Γ3), σν ∈ L∞(0, T ;L2(Γ3))

• infvh∈Uh

[

‖v − vh‖V + ‖vν − vh
ν ‖1/2

L2(Γ3)

]

≤ c(v)h, ∀v ∈ [H2(Ω)]d ∩ U ,

then we have an optimal order error estimate

max
1≤n≤N

(

‖un − uhk
n ‖V + ‖σn − σhk

n ‖Q

)

≤ ch
(

‖u‖L∞(0,T ;[H2(Ω)]d) + ‖uν‖1/2
L∞(0,T ;H2(Γ3)

)

+ c k
(

‖u̇‖L∞(0,T ;V ) + ‖σ̇‖L∞(0,T ;Q)

)

. (16)

3.2 Frictionless contact problems with normal compliance

We consider frictionless contact with a deformable foundation which we model by

−σν = r∗ (uν − g)α
+, στ = 0 on Γ3 × (0, T ). (17)

Here α ∈ (0, 1], g is the initial gap between the elastic-viscoplastic body and the foundation and 1/r∗ may be
interpreted as the coefficient of deformability of the foundation. We assume

g ∈ L2(Γ3), g ≥ 0, r∗ ∈ L∞(Γ3), r∗ > 0 a. e. on Γ3. (18)

Condition (17) is the normal compliance condition. The expression uν − g, when positive, represents the penetra-
tion of the body into the foundation. Signorini’s nonpenetration condition is obtained from (17) when r∗ → ∞,
i.e. when the coefficient of deformability of the foundation tends to zero. Then, the classical formulation of the
problem is to find a displacement field u : Ω × [0, T ] → R

d and a stress field σ : Ω × [0, T ] → S
d satisfying

(1)–(3), (10), (13) and (17).
Let

j(u,v) =

∫

Γ3

r∗(uν − g)α
+vν , ∀u,v ∈ V. (19)

Assume for the initial data,

u0 ∈ V, σ0 ∈ Q, (σ0, ε(v))Q + j(u0,v) = (f(0),v)V ∀v ∈ V. (20)

The weak formulation for the contact problem is:
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Problem 3.5 Find a displacement u : [0, T ] → V and a stress tensor σ : [0, T ] → Q satisfying u(0) = u0,
σ(0) = σ0, and, for a.e. t ∈ (0, T ),

σ̇(t) = Eε(u̇(t)) + G(σ(t), ε(u(t))),

(σ(t), ε(v))Q + j(u(t),v) = (f(t),v)V ∀v ∈ V.

Well-posedness of the problem 3.5 has been studied in [9].

Theorem 3.6 Assume (6), (7), (8), (18)–(20). Then the problem 3.5 has a unique solution u ∈ W 1,∞(0, T ;V ),
σ ∈ W 1,∞(0, T ;Q1).

For numerical approximations, let V h ⊂ V and Qh ⊂ Q be finite-dimensional spaces. We assume that these
spaces satisfy ε(V h) ⊂ Qh. This assumption is very natural and holds for finite element approximations when
the polynomial degree for the space V h is at most one higher than that for the space Qh. Then a fully discrete
approximation to the problem 3.5 is:

Problem 3.7 Given uh
0 ∈ V h and σh

0 ∈ Qh, find uhk = {uhk
n }N

n=1 ⊂ V h and σhk = {σhk
n }N

n=1 ⊂ Qh such that
uhk

0 = uh
0 , σhk

0 = σh
0 , and, for n = 1, . . . , N ,

δσhk
n = PQhEδε(uhk

n ) + PQhG(ε(uhk
n ),σhk

n ),

(σhk
n , ε(vh))Q + j(uhk

n ,vh) = (fn,vh)V ∀vh ∈ V h.

Problem 3.7 has a unique solution for k small enough and we have the following error estimates(see [9])which
can be applied in the habitual case with V h the space of piecewise linear polynomials and Qh the space of piecewise
constant functions.

Theorem 3.8 Assume that the conditions in Theorem 3.6 hold and also the following ones:

• ‖u0 − uh
0‖V ≤ ch, ‖σ0 − σh

0‖Q ≤ ch,

• [H2(Ω)]d ∩ V is dense in V : infvh∈V h ‖v − vh‖V ≤ c(v)h, ∀v ∈ [H2(Ω)]d ∩ V ,

• ‖(IQ − PQh)τ‖Q ≤ ch, ∀τ ∈ Q,

• u ∈ L∞(0, T ; [H2(Ω)]d),

then

max
1≤n≤N

(

‖un − uhk
n ‖V + ‖σn − σhk

n ‖Q

)

≤ ch‖u‖L∞(0,T ;[H2(Ω)]d) + c k
(

‖u̇‖L∞(0,T ;V ) + ‖σ̇‖L∞(0,T ;Q)

)

. (21)

Variational and numerical analysis of a quasistatic frictionless contact problem for viscoplastic materials with
a general normal compliance contact condition have been obtained in [9].

3.3 Frictionless contact between two viscoplastic bodies

We consider two elastic-viscoplastic bodies occupying two bounded domains Ω1 and Ω2 of R
d (d ≤ 3). We use the

superscript m to indicate that the variable is related to Ωm, where here and below m = 1, 2. For each domain Ωm,
we assume its boundary Γm is Lipschitz continuous, and is partitioned into three disjoint measurable parts Γm

1 , Γm
2

and Γm
3 , with meas (Γm

1 ) > 0. The unit outward normal to Γm, is denoted by νm = (νm
i ). We are interested in

the evolution of the contact process over [0, T ], (T > 0). The bodies are clamped on Γm
1 × (0, T ), volume forces

of density fm
0 act on Ωm × (0, T ) and surface tractions of density fm

2 act on Γm
2 × (0, T ). The two bodies are in

contact along the common part Γ1
3 = Γ2

3, denoted by Γ3 below. The contact is frictionless and we model it by the
Signorini condition on Γm

3 × (0, T ) with vanishing gap function. Finally, we assume that the process is quasistatic
and use (5) as constitutive law. The mechanical problem we study is formulated as follows:
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Find displacement fields um = (um
i ) : Ωm × [0, T ] → R

d and stress fields σm = (σm
ij ) : Ωm × [0, T ] → S

d,
m = 1, 2, which satisfy

σ̇m = Emε(u̇m) + Gm(σm, ε(um)) in Ωm × (0, T ),

Div σm + fm
0 = 0 in Ωm × (0, T ),

um = 0 on Γm
1 × (0, T ),

σmνm = fm
2 on Γm

2 × (0, T ),

u1
ν + u2

ν ≤ 0, σ1
ν = σ2

ν ≤ 0,

σ1
ν (u1

ν + u2
ν) = 0, σm

τ = 0 on Γ3 × (0, T ),

and the initial conditions
um(0) = um

0 , σm(0) = σm
0 in Ωm.

We introduce the spaces

V m = {v = (vi) | vi ∈ H1(Ωm), vi = 0 on Γm
1 , 1 ≤ i ≤ d},

Qm = {τ = (τij) | τij ∈ L2(Ωm), 1 ≤ i, j ≤ d},
Qm

1 = {τ ∈ Qm | Div τ ∈ L2(Ωm)d}.

These are Hilbert spaces with their canonical inner products. Since meas(Γm
1 ) > 0, by Korn’s inequality,

‖ε(v)‖Qm is a norm on H1(Ωm)d and is equivalent to ‖v‖H1(Ωm)d .
We make the following assumptions on : Em = (Em

ijkl) and Gm : Ωm × Sd × S
d → S

d:

(a) Em
ijkl ∈ L∞(Ωm), 1 ≤ i, j, k, l ≤ d;

(b) Emσ · τ = σ · Emτ ∀σ, τ ∈ S
d, a.e. in Ωm;

(c) There exists an αm > 0 such that Emτ · τ ≥ αm|τ |2 ∀ τ ∈ S
d, a.e. in Ωm.







(22)

(a) There exists an Lm > 0 such that ‖Gm(x,σ1, ε1) − Gm(x,σ2, ε2)‖
≤ Lm (‖σ1 − σ2‖ + ‖ε1 − ε2‖)∀σ1,σ2, ε1, ε2 ∈ S

d, a.e. in Ωm;
(b) ∀σ, ε ∈ S

d, the mapping x 7→ Gm(x,σ, ε) is measurable;
(c) The mapping x 7→ Gm(x,0,0)belongs to Qm.















(23)

The force densities satisfy:

fm
0 ∈ W 1,∞(0, T ;L2(Ωm)d), fm

2 ∈ W 1,∞(0, T ;L2(Γm
2 )d). (24)

We define the product spaces V = V 1 × V 2, Q = Q1 × Q2 and Q1 = Q1
1 × Q2

1. These are all Hilbert spaces
endowed with the canonical inner products (·, ·)V , (·, ·)Q and (·, ·)Q1

, respectively. The associated norms are ‖·‖V ,
‖ · ‖Q and ‖ · ‖Q1

, respectively. Moreover, (·, ·)V is the inner product on V .
Let f(t) denote the element of V , for t ∈ [0, T ], given by

(f(t),v)V = (f1
0(t),v

1)L2(Ω1)d + (f2
0(t),v

2)L2(Ω2)d + (f1
2(t),v

1)L2(Γ1

2
)d + (f2

2(t),v
2)L2(Γ2

2
)d ,

for all v = (v1,v2) ∈ V . We define the set U of admissible displacement fields by

U = {v = (v1,v2) ∈ V | v1
ν + v2

ν ≤ 0 on Γ3}, (25)

and we suppose that

u0 = (u1
0,u

2
0) ∈ U, σ0 = (σ1

0,σ
2
0) ∈ Q, (σ0, ε(v − u0))Q ≥ (f(0),v − u0)V . (26)

Finally, we use the notation ε(v) = (ε(v1), ε(v2)) for v = (v1,v2) ∈ V and Eε = (E1ε1, E2ε2), G(σ, ε) =
(G(σ1, ε1), G(σ2, ε2)) for ε = (ε1, ε2) ∈ Q and σ = (σ1,σ2) ∈ Q.

The weak formulation of the contact problem is:
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Problem 3.9 Find a displacement field u : [0, T ] → U and a stress field σ : [0, T ] → Q1 such that u(0) = u0,
σ(0) = σ0, and, for a.e. t ∈ (0, T ),

σ̇(t) = Eε(u̇(t)) + G(σ(t), ε(u(t))),

(σ(t), ε(v − u(t)))Q ≥ (f(t),v − u(t))V ∀v ∈ U.

The well-posedness of the problem 3.9 has been established in [18]; the main existence and uniqueness result
is the following.

Theorem 3.10 Under the assumptions (22), (23), (24), and (26), Problem 3.9 has a unique solution (u,σ) ∈
W 1,∞(0, T ;U × Q1).

We turn to numerical approximations. Let T h be a regular FEM partition of the domain Ω in such a way that if
a side of an element lies on the boundary, then the side is entirely on one of the subsets Γ

m

1 , Γ
m

2 and Γ3. We choose
a finite element space V h ⊂ V for the approximation of u, and another FEM space Qh such that ε(V h) ⊂ Qh,
for the approximation of σ. Then, we define the discrete admissible set

Uh = {vh = (v1,h,v2,h) ∈ V h | v1,h
ν + v2,h

ν ≤ 0 on Γ3} ⊂ U.

Then, a fully discrete scheme, which is an improved version of the one in [12], is the following:

Problem 3.11 Given uh
0 ∈ Uh and σh

0 ∈ Qh, find a displacement field uhk = {uhk
n }N

n=0 ⊂ Uh and a stress field
σhk = {σhk

n }N
n=0 ⊂ Qh such that uhk

0 = uh
0 , σhk

0 = σh
0 , and, for n = 1, . . . , N ,

δσhk
n = PQhEδε(uhk

n ) + PQhG(σhk
n , ε(uhk

n )),

(σhk
n , ε(vh − uhk

n ))Q ≥ (fn,vh − uhk
n )V ∀vh ∈ Uh.

By slightly modifying the arguments in [12], we have the following result.

Theorem 3.12 Assume that the conditions in Theorem 3.10 hold and also the following ones:

• ‖u0 − uh
0‖V ≤ ch, ‖σ0 − σh

0‖Q ≤ ch,

• [H2(Ω1)]d × [H2(Ω2)]d ∩ U is dense in U and

inf
vh∈Uh

‖v − vh‖V ≤ c(v)h, ∀v ∈ [H2(Ω1)]d × [H2(Ω2)]d ∩ U,

• ‖(IQ − PQh)τ‖Q ≤ ch, ∀τ ∈ Q,

• um ∈ L∞(0, T ; [H2(Ωm)]d) (m = 1, 2),

then

max
1≤n≤N

(

‖un − uhk
n ‖V + ‖σn − σhk

n ‖Q

)

≤ ch1/2‖u‖L∞(0,T ;[H2(Ω)]d) + c k
(

‖u̇‖L∞(0,T ;V ) + ‖σ̇‖L∞(0,T ;Q)

)

.

If we further assume

• um
ν ∈ L∞(0, T ;H2(Γ3) (m = 1, 2), σν ∈ L∞(0, T ;L2(Γ3))

• infvh∈Uh

[

‖v − vh‖V + ‖vν − vh
ν ‖1/2

L2(Γ3)

]

≤ c(v)h, ∀v ∈ [H2(Ω1)]d × [H2(Ω2)]d ∩ U ,

then we have an optimal order error estimate

max
1≤n≤N

(

‖un − uhk
n ‖V + ‖σn − σhk

n ‖Q

)

≤ ch
(

‖u‖L∞(0,T ;[H2(Ω)]d) + ‖uν‖1/2
L∞(0,T ;H2(Γ3)

)

+ c k
(

‖u̇‖L∞(0,T ;V ) + ‖σ̇‖L∞(0,T ;Q)

)

. (27)

Note that these estimations are valid when V m,h is the space of piecewise polynomials of degree less or equal
1 and Qm,h is the space of piecewise constant functions.

For brevity, in this resumed version we do not include the analysis of interesting method of discretisation with
non matching methods (see [8], [13]).
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4 Numerical examples

To verify the accuracy of the numerical methods described in Section 3, a number of numerical experiments have
been performed on test problems in one, two and three dimensions. We describe in this section some numerical
results.

4.1 The Signorini contact problem in viscoplasticity

4.1.1 A one-dimensional test problem

Problem 3.1 has been tested with the data:

Ω = (0, 1), T = 10 sec., Γ1 = {0}, Γ2 = ∅, Γ3 = {1}, f0(x) = 10N/m, g = 0.25m,
u0(x) = 0m, σ0(x) = 10 − 10xN/m, E(x) = 10N, G(σ, ε) = −σ + 10ε.

In Section 3.1, we considered the Signorini contact problem with a zero gap. The results stated there can be
extended straightforward to the situation with a nonzero initial gap g.

The exact solution of the 1-D problem is:

For 0 ≤ t ≤ ln 2 (no contact) :

{

σ(t, x) = 10 − 10x,

u(t, x) = (1 − e−t)(x − x2

2 ).
(28)

For t > ln 2 (in contact) :











σ(t, x) =
5

2
(2e−t + 3) − 10x,

u(t, x) =
1

2
x2(e−t − 1) +

1

4
x[2e−t + 3 − 4e−t].

(29)

Employing the fully discrete problem described in Section 3.1, the numerical method has been implemented.
In Fig. 1, the displacement fields at the times t = 0.5, 1, 2, 4, 8 sec. are depicted. The discretization parameters
are k = 0.01 and h = 0.01. The difference between the numerical and exact solutions (28)-(29) is also plotted.
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Figure 1: Displacement field and exact error for different time values.

In Figure 2 we show the evolution of the displacements at the nodes x = 0.25, 0.5, 1, and its corresponding
error values. We observe the effect produced at the contact time t = ln 2 (approx 0.69). Finally, the values of
the exact error are calculated for a number of time and spatial discretization parameters, and asymptotic behaviour
(16) has been obtained, for an asymptotic constant C = 0.9645 × 10−1.

4.1.2 A two-dimensional test problem

We use the data:

Ω = (0, 1) × (0, 1), T = 1sec, Γ1 = [0, 1] × {1}, Γ2 = {0, 1} × (0, 1), Γ3 = [0, 1] × {0},
f0 = (0,−10t)N/m2, f2 = (0, 0)N/m, σ0 = 0N/m2, u0 = 0m.
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Figure 2: Evolution of displacements of points x = 0.25, 0.5, 1, and its corresponding exact error

E is the plane stress elasticity tensor:

(Eτ )αβ =
Eκ

1 − κ2
(τ11 + τ22)δαβ +

E

1 + κ
ταβ ,

for α, β = 1, 2, where E is the Young’s modulus and κ is the Poisson’s ratio. In this example E = 108N/m2 and
κ = 0.3.

We consider an obstacle defined implicitly by

(x1 − 3)2

900
+

(x2 + 3)2

9
− 1 = 0,

and the gap function g(x) is given as the distance between the contact point x and the obstacle.
The classical Perzyna’s viscoplastic function (see [2] and [15]) has been considered in its 2-D version, i.e.,

G(σ, ε) = − 1

2µ∗
E(σ − PKσ), (30)

where µ∗ > 0 is the viscosity coefficient and PK is the orthogonal projection operator (with respect to the norm
||τ || = (Eτ, τ)1/2) over the convex subset K ⊂ S

2 defined by:

K = {τ ∈ S
2 | τ2

11 + τ2
22 − τ11τ22 + 3τ2

12 ≤ σ2
Y },

σY being the uniaxial yield stress. In this case, we used σY =
√

10N/m2 and µ∗ = 100N/m2.
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Figure 3: Von-Mises stress on deformed configuration and evolution of the u2 component in a 2-D Signorini problem

In Figure 3 the deformed configuration, the Von-Mises norm for the stress at time t = 1sec., and the evolution
of the contact boundary are plotted.
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4.1.3 A three-dimensional test problem

In the three-dimensional case, we use the data:

Ω = (0, 3) × (0, 1) × (0, 1), T = 1 sec, Γ1 = {0} × [0, 1] × [0, 1], Γ3 = (0, 3) × (0, 1) × {0},
Γ2 = Γ − (Γ1 ∪ Γ3), σ0 = 0N/m3, u0 = 0m.

f2 = (0, 0, 0)N/m2, f0(x1, x2, x3, t) =

{

(0, 0,−10t)N/m3 if x1 = 0,
(0, 0, 0)N/m3 otherwise.

Here, E is the three-dimensional elasticity tensor,

(Eτ )ij =
Eκ

(1 + κ)(1 − 2κ)
(

3
∑

k=1

τkk)δij +
E

1 + κ
τij ,

for i, j = 1, 2, 3, where Young’s modulus E and Poisson’s ratio κ are 108N/m3 and 0.3, respectively. The
constitutive function G(σ, ε) is again Perzyna’s, i.e. (30) in its three-dimensional version with

K = {τ ∈ S
3 | (σ11 − σ22)

2 + (σ22 − σ33)
2 + (σ33 − σ11)

2 + 6(σ2
12 + σ2

13 + σ2
23) ≤ σ2

Y }.

Here, we used σY =
√

10N/m3. In Figure 4 the displacements and the Von-Mises norm for the stress are
shown at the final time T . Also, the evolution of the second component of the displacement field of the contact
nodes on surface x1 = 0 is shown.
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Figure 4: Von-Mises stress on deformed configuration and evolution of the u2 component in a 3-D Signorini problem

4.2 Contact problem with normal compliance

Because of limited extension of the paper we only describe a one dimensional test. The contact problem with a
deformable foundation described in Section 3.2 is considered with the data:

Ω = (0, 1), T = 10 sec, Γ1 = {0}, Γ2 = ∅, Γ3 = {1}, f0(x, t) = 10N/m, g = 0.25m, α = 1,
u0(x) = 0m, σ0(x) = 10 − 10xN/m, E(x) = 10N, G(σ, ε) = −σ + 10ε, r∗ = 100N/m.

The exact solution of this problem is:

For 0 ≤ t ≤ ln 2 (no contact) :







σ(x, t) = 10 − 10x,

u(x, t) = (1 − e−t)(x − x2

2
).

(31)

For t > ln 2 (in contact) :















σ(x, t) =
5(2e−t + 3 + 40r∗)

2(10r∗ + 1)
− 10x,

u(x, t) =
x2

2
(e−t − 1) + x[

2e−t + 3 + 40r∗

4(10r∗ + 1)
− e−t].

(32)
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Figure 5: Displacement field and exact error at different times in a 1-D normal compliance problem.

By using the discrete problem in Section 5.2, we have implemented the numerical method on a standard work-
station. Figure 5 depicts the displacements at the times t = 0.5, 1, 2, 4, 8 sec., calculated with parameters h = 0.01
and k = 0.01. We also plot the difference with the exact solution (32)–(32) scaled by the factor 103.

In Figure 6 we show the evolution of the points x = 0.25, 0.5, 1), and the corresponding error between the
numerical solution and the exact values.
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Figure 6: Evolution of displacements of points x = 0.25, 0.5, 1 and corresponding scaled exact error.

From the exact error values, asymptotic behaviour (21) is obtained with an asymtotic constant C = 0.9557 ×
10−1, independent of h and k.

4.3 Contact problem between two viscoplastic bodies

4.3.1 A two-dimensional test problem: case 1

We consider the contact problem between two viscoplastic bodies described in Section 3.3 with the data:

Ω1 = (0, 4) × (0, 1), Ω2 = (0, 4) × (−1, 0), T = 1sec, Γ1
1 = {4} × [0, 1], Γ2

1 = {4} × [−1, 0],
Γ3 = (0, 4) × {0}, Γ1

2 = Γ1 − (Γ1
1 ∪ Γ3), Γ2

2 = Γ2 − (Γ2
1 ∪ Γ3),

f1
0 = (0, 0)N/m2, f2

0 = (0, 0)N/m2, f2
2 = (0, 0)N/m, σ0 = 0N/m2, u0 = 0 m,

f1
2(x1, x2, t) =







(0,−10t)N/m if 3 ≤ x1 ≤ 4, x2 = 1,
(10t, 0)N/m if 0.5 ≤ x2 ≤ 1, x1 = 0,
0 otherwise,

The Young’s modulus and Poisson’s ratio for the two viscoplastic bodies Ω1 and Ω2 are 108N/m2 and κ = 0.3.
The Perzyna law (30) is used, where µ∗ = 100N/m2 and σY = 10N/m2. Figure 7 depicts the displacements and
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the Von-Mises norm for stress at the final time.

Figure 7: The displacements and the Von-Mises norm in a 2-D contact problem between two viscoplastic bodies (case 1).

4.3.2 A two-dimensional test problem: case 2

In this case, we study the contact problem between two viscoplastic bodies in the setting described in Figure 8 is
considered.

Figure 8: Contact between two viscoplastic bodies (case 2).

The Young’s modulus and Poisson’s ratio for the two viscoplastic bodies Ω1 and Ω2 are 108N/m2 and κ = 0.3.
The Perzyna law (30) is used, where µ∗ = 100N/m2 and σY = 10N/m2. In Figure 9 the displacements and the
Von-Mises norm for stress at the final time are shown.

4.3.3 A three-dimensional test problem

Finally, we consider a contact problem between two viscoplastic bodies in three dimensions. The following data
have been used:

Ω1 = (1, 2) × (1, 4) × (0, 1), Ω2 = (0, 3) × (0, 1) × (0, 1), T = 1sec, Γ1
1 = ∅,

Γ2
1 = {0, 3} × [0, 1] × [0, 1], Γ3 = (1, 2) × {1} × (0, 1), Γ1

2 = Γ1 − (Γ1
1 ∪ Γ3), Γ2

2 = Γ2 − (Γ2
1 ∪ Γ3),

f1
0 =

{

(0,−100t, 0)N/m2 if x2 = 4, 1 ≤ x1 ≤ x2, 0 ≤ x3 ≤ 1,
(0, 0, 0) in another case.

f2
0 = (0, 0, 0)N/m2, f1

2 = (0, 0, 0), f2
2 = (0, 0, 0)N/m, σ0 = 0N/m2, u0 = 0m.

As above, Perzyna’s law and elasticity tensor E were considered with parameters µ∗ = 100N/m3, E =
108 N/m2 and κ = 0.3. Figure 10 depicts the displacemeyts and the Von-Mises norm for stress are shown.
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Figure 9: Displacements and the Von-Mises norm in a 2-D contact problem between two viscoplastic bodies (case 2).

Figure 10: Displacements and the Von-Mises norm in a 3-D contact problem between two viscoplastic bodies.

5 Conclusion

Considerable progress has been made on the modelling, variational analysis and numerical analysis of quasistatic
contact phenomena. Our understanding of the behavior of the models for these processes has deepened, and the
new problems led to the investigation of new types of variational inequalities. These kind of methods can be
extended to quasistatic and dynamic contact problems for viscoelastic materials (see, for example, [1], [20], [21])
and other models including damage and wear that leads to new and interesting types of variational inequalities (see
[1], [10], [22], [25]).
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Departamento de Matemática, Apartado 3008, 3000 Coimbra, Portugal.
email: ferreira@mat.uc.pt

Abstract

Most quantities appearing in physical applications are ruled by systems of partial differential
equations. An example is given by the deformations and stresses of elastic and inelastic bodies
subject to load, studied in solid mechanics.

It is well known that for problems defined in two dimensional domains, piecewise linear finite
element solutions are second order approximations for the solution with respect to L2 norm,
but their gradient are only first order approximations for the gradient of the solution. These
convergences are obtained assuming that the triangulations of the domain are quasi-uniform and
regular.

In this talk we study the convergence properties of the numerical approximations for the
solution of systems of elliptic equations defined on two dimensional polygonal domains. These
approximations are constructed using a non standard fully discrete piecewise linear finite element
method based on non uniform triangulations and considering a variational formulation with a
sesquilinear form which can be not strongly coercive. For s ∈ {1, 2}, we prove order s convergence
for the piecewise linear finite element solution and its gradient, if the solution of the system is
in the Sobolev space Hs+1(Ω).

Several authors studied the superconvergence of the gradient. For instance, about two
decades ago, M. Zlámal found superconvergence of the gradient for certain quadrature finite
element solutions on nearly rectangular grids. Furthermore J. Brandts studied superconver-
gence of the gradient of the piecewise linear finite element solution, but the grids were assumed
regular and quasi-uniform.

The nonstandard finite element method studied in this work is equivalent to a carefully
defined finite difference method and hence we conclude that this last method is supraconvergent.
Supraconvergent finite difference schemes have been largely studied in the literature.

In the present work we start describing the nonstandard piecewise linear finite element
method for a general uniformly strongly elliptic system. The stability of the sesquilinear form
that defines the nonstandard method is established. Using the stability properties we study the
behavior of the error. Examples illustrating the performance of the method are considered for
planar elasticity problems.
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In this lecture, the dynamics of a non-neutrally buoyant particle moving in a rotating vessel filled
with a Newtonian fluid is examined analytically and experimentally. The geometry under study
is used in mineral particle separators, suspension bioreactors and other equipment of industrial
interest. In particular, the dynamical problem to be discussed simulates the motion of micro-
carriers in NASAs microgravity bioreactors. These rotating vessel bioreactors have been used
extensively to study suspended tissue growth on earth. Virtual mass, gravity, pressure, steady
and history drag effects at low particle Reynolds numbers are considered. The presence of lift
forces, both steady and unsteady, are taken into account. Results are compared to traditional
formulations of low Reynolds flows that do not account for small, inertial lift effects. Substantial
differences were found by including lift in the formulation during our preliminary analysis and
therefore we seek to confirm these exciting results experimentally. For particles lighter than the
fluid, an asymptotically stable equilibrium position was found to be at a horizontal distance
from the center of rotation and at an angle with the X-axis.

To our knowledge this work is the first to solve the particle Lagrangian equation of motion in
its complete form (with or without lift) for a non-uniform flow using an exact method, and also
the first to validate relevant expressions for Saffmans and McLaughlins lift coefficients with this
flow configuration. Our formulation of this problem predicts that even at very small rotation
rates a remarkable phenomenon occurs due to lift effects exclusively: the equilibrium position
of particles lighter than the fluid is always below (assuming the gravity acceleration to point
down) the horizontal plane containing the axis of the cylinder. This result is in direct contrast
with the behavior predicted by the Maxey-Riley equation which does not include lift effects.
The exact solution of the Maxey-Riley equation derived during this research effort predicts
that a light particle will reach equilibrium above the central plane. We will show that even
at very small Rep and shear Reynolds number Res lift effects will force a light particle below
the central horizontal plane, provided that Rep is less or equal to Res. We also show that this
flow configuration can be used to determine experimentally the lift coefficient for a particle in a
uniform vorticity field.
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ABSTRACT 
 

Bulk forming is a critical activity characterized by short lead times 
and constant technological modifications in order to improve quality 
and reduce manufacturing costs. 
 
The utilization of experimental techniques and numerical simulation 
softwares at both basic and advanced levels can help engineers solving 
different technological tasks; (i) they may be used as tools for 
designing and optimizing a process, (ii) they may help testing the 
impact of different raw materials and lubricants on the final properties 
of the formed parts, and (iii) they may also serve in-plant engineers 
debugging and solving formability problems, evaluating possible 
changes in process parameters and making small modifications in the 
shape of already existing dies/tools. 
 
This presentation outlines a number of examples and discusses the 
benefits and limitations in using experimental and numerical 
simulation procedures. 
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Solving multiobjective engineering problems is a very difficult task due to, in general, in this 

class of problems, the objectives conflict across a high-dimensional problem space. In these 

problems, there is no single optimal solution; the interaction of multiple objectives gives rise 

to a set of efficient solutions, known as the Pareto-optimal solutions. During the past decade, 

Genetic Algorithms (GAs) (Goldberg, 1989) were extended in order to tackle this class of 

problems, such as the work of Schaffer (1985), Fonseca and Fleming (1995), Horn et al. 

(1994), Srinivas and Deb (1995) and, Zitzler and Thiele (1998). These multiobjective 

approaches explore some features of Evolutionary Algorithms, in particular, since these 

algorithms work with populations of candidate solutions, they can, in principle, find multiple 

Pareto-optimal solutions in a single run; on the other hand, using some diversity-preserving 

mechanisms Evolutionary Algorithms can find widely different Pareto-optimal solutions. In 

this talk a review of the latest developments on evolutionary multiobjective optimization is 

going to be presented, with some examples on structural optimization. 
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ABSTRACT 
 
 Metal forming processes are generally characterised for involving important changes of the 
initial shape of a workpiece by plastic deformation controlled by contact, with friction, provided by the 
tools. These processes have been generating challenging problems in the numerical modelling. Some 
developments in the solution of some of those problems are here addressed.  
 In order to handle the large deformations involved in metal forming and the “locking” problems 
related to the incompressibility of plastic deformation a lot of effort has been put forward on element 
architecture. One of the more recent approaches is based on the concept of enhanced strain element 
that was established as a generalisation of the so-called incompatible modes element. The classical 
enhanced strain elements presented severe hourglass instabilities in certain finite strain regimes. 
Departing from the classical enhanced strain technique a special 3-D hexahedral element is described. 
The formulation contains a penalty stabilizing term that results naturally from the variational principle 
associated to the total potential as defined in the original formulation but not assuming orthogonallity 
between enhanced strains and stresses.  The element performs well in large finite strain problems, has 
no special treatment or directional enhancement in order to be used in plate and shell analysis and may 
be used in bulk forming, solid analysis, sheet metal forming and in classical beam and plate analysis.  
 The contact problem between deformable bodies in 3-D, including friction, is still a challenging 
problem to be solve adequately in large-scale applications. In metal forming processes this may be an 
important issue to be addressed if the tool deformation or tool ware are to be taken into account or if 
self-contact in workpiece regions is to be avoided. Some innovative procedures are presented for 
contact detection and the circumventing of the equidistance dilemma and face selection, including 
criteria for avoiding wrong selection of target faces. A new Augmented Lagrangian function 
corresponding to a variation of the classical Rockafellar Lagrangian is proposed resulting in continuous 
second order derivatives if Lagrange multipliers are greater or equal than one and therefore avoiding 
sequential unconstrained minimization techniques. A new regularisation approach for friction forces, 
which rely solely on the use of curvilinear coordinates rather than a particular stress rate, is proposed. 
 An important aspect in the analysis of finite strain plasticity and metal forming is the one related 
to the representation of material softening behaviour and particularly strain localisation, either shear 
bending or localised necking that are known to pre-date ductile failure. A continuous damage model in 
close coupling with finite strain plasticity may numerically represent ductile fracture mechanisms. The 
straightforward numerical implementation of the softening part of ductile material behaviour, which 
may theoretically represent discontinuous strain rate components and shear bands leads to mesh size 
and orientation dependence.  A gradient damage model is proposed with the purpose of attenuating 
mesh dependency.  The stain softening behaviour is modelled through a variant of Lemaitre’s damage 
evolution law, which allows taking into account the crack closure effect in compression. 
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Contact phenomena involving deformable bodies abound in industry and everyday life. The contact of
the braking pads with the wheel or the tire with the road are two simple examples. In the last decades,
a considerable progress has been made in their modelling and analysis, and the literature in this field is
extensive. See, for example, [2] for a survey devoted to the contact of elastic bodies.

We investigated recently two frictionless models, for the Signorini contact and for the contact with
normal compliance (see [3, 4]). In these papers the material was assumed to have linear viscoelastic
behavior with long-term memory, that we describe with a Volterra-type integral equation of the form

σij(t) = Aijklεkl(u(t)) +
∫ t

0

Bijkl(t− s)εkl(u(s))ds,

where σ = (σij), u = (ui) and ε(u) = (εij(u)) represent the stress tensor, the displacement field and the
linearized strain tensor, respectively. Moreover, A = (Aijkl) and B = (Bijkl) are the fourth order tensors
of elastic coefficients and the relaxation tensor, respectively. Thus, at each time t > 0 the stress tensor
depends on all the previous strain states. Real materials in nature, like rubbers, organic polymeers or
some kinds of wood have such a mechanical behavior.

In a variational form, the mechanical problems studied in the above papers lead to evolutionary vari-
ational inequalities for the displacement field involving an integral term of Volterra type. Here, we will
show that, as the obstacle becomes less deformable, the weak solution of the normal compliance contact
problem tends to the weak solution of the Signorini contact problem. We also present some numerical
results of simulations that confirm the theoretical exposition.

Finally, we improve our model by taking into account the Tresca’s friction law. This leads to an evolu-
tionary variational inequality involving both a Volterra-type integral term and a partial derivative term
with respect to the time variable. The analysis has been performed by using arguments of evolutionary
inequalities established in [1], convexity and fixed point.
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A heterogeneous medium is considered, occupying the entire plane R2, with periodic
heterogeneities. The heat conduction problem and the linear elasticity problem are
studied in this infinite medium. This is done numerically by implementing a periodic
finite element mesh, which can also be viewed as a mesh on the two-dimensional torus.

The goal of this study is to compute the effective conductivity/elasticity tensor,
which describes the overall properties of the body when charges are applied “at infinity”.
Then, shape optimization is performed: one looks for the geometry of the heterogeneities
that optimizes, in some sense, the effective properties of the body. A matrix made of
a certain material is considered, having periodically distributed inclusions of a weaker
material. The analysis is restricted to one periodicity cell only; one or two inclusions
are considered in the cell. The shape of these inclusions is changed gradually in order
to optimize the effective properties of the body.

A functional depending on the effective coefficients and on the volume proportion
is defined, and a minimization algorithm is applied to this functional. One needs to
compute the derivative of the functional with respect to the shape of the inclusion(s).
This information is used by the minimization algorithm (a steepest descent algorithm).

The finite element mesh must change its geometry and topology along the opti-
mization process. The inclusions can pass through the border of the periodicity cell, as
long as they do not touch the other inclusions, or their own translations.



A viscoelastic beam oscillating between two
stops with damage

M. Campo1 J.R. Fernández1 and M. Shillor2

In many materials there is an important decrease in their load bearing capacity, because of development
of internal microcracks. As a result of the tensile or compressive stresses in the body, these microcracks
open and grow which, in turn, causes the load bearing of the material to decrease. This reduction in the
strenght of the material is modelled by introducing the damage field β = β(x, t) as the ratio

β = β(x, t) =
Eeff

E

between the effective modulus of elasticity Eeff and the modulus of the damage-free material E. Following
Frémond and Nedjar [?], the evolution of the microscopic cracks causing the damage is described by the
differential inclusion ([?, ?])

cdβ
′ − κβxx −m

(
1− β

β

)
+ d1(uxx)2+ + d2(uxx)2− − q ∈ ∂χ[β∗,1](β),

where κ > 0 is a constant relating to the diffusion of damage and cd, m, d1, d2, q and β∗, 0 < β∗ < 1,
are process parameters that must be obtained experimentally.

In the present work, we consider an uniform viscoelastic beam which is clamped at one of its ends to an
oscilating device. The motion of the other end is constrained by two obstacles: the stops. This problem,
without considering the damage, was introduced in [?]. The contact was supposed to be without friction
and was modelled with a normal compliance condition, i.e., the stops are assumed to be flexible, with
resistance proportional to the deflection.

A fully discrete scheme is proposed for the numerical solution of the model, using the finite element
method to approximate the spatial variable and the Euler method to discretize the time derivatives.
Error estimates are derived for the approximative solutions. The scheme was implemented on computer
and numerical simulations of the evolution of the mechanical state and damage of the material will be
presented.
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The study of instabilities and bifurcations in systems with friction has been motivated by
several experimental observations related to technological problems and industrial processes
(like the occurrence of break squeal in vehicles or intermittent flows in granular media). The
scientific community has also become progressively aware that friction-induced instabilities are
responsible for the occurrence of earthquakes.

The research summarized in this presentation addresses two phenomena that, under certain
conditions, may occur in mechanical systems with unilateral contacts with friction: (i) the direc-
tional instability of static equilibrium configurations; this is a dynamic (divergence) instability
phenomenon caused by combined stiffness, mass and friction effects; (ii) the occurrence of angu-
lar bifurcations in quasi-static trajectories; this is a case of multiplicity of quasi-static solutions
caused by combined stiffness and friction effects. We deal with finite dimensional plane linearly
elastic systems constrained by plane rigid frictional contacts.

The stability study leads to a complementarity eigenproblem and we use it to give a necessary
and sufficient condition for an equilibrium state to be directionally unstable. The instability
modes and the corresponding coefficients of friction at the stability-instability transition may be
obtained by solving another complementarity eigenproblem in which the coefficient of friction is
the unknown eigenvalue.

Another kind of problem that may be formulated at an equilibrium state is the quasi-static
rate problem, which consists of finding the first order right rates of change of displacements and
reactions, for a given external loading rate at that state. For plane systems this problem may
be formulated as a linear complementarity eigenproblem.

For constant external forces at a given equilibrium state, the directional instability problem
at the stability-instability transition and the rate problem are the same. This means that an
eigenmode in the stability-instability transition corresponds to an infinity of solutions to the
rate problem for constant applied loads, and vice-versa.

For several finite element discretizations of elastic solids in frictional contact with flat ob-
stacles, we show, compare and discuss the solutions to the above problems that are computed
with two different algorithms.
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Abstract

Let Ωεt = (0, L)× (−t, t)× (−ε, ε) be the reference configuration of an elastic, homogeneous and isotropic
solid. We assume ε and t to be very small with respect to L (length), so that Ωεt can be seen as a plate of
thickness 2ε and middle surface (0, L)× (−t, t) or as beam with cross section (−t, t)× (−ε, ε) (which has
area Aτ = 4εt). The body Ωεt is assumed to be clamped in one or two ends {0, L}× [−t, t]× [−ε, ε]. The
plate/beam is submitted to the action of volume forces and surface tractions acting only on the upper
and lower faces [0, L] × [−t, t] × {−ε, ε}. The part of the lateral surface not clamped is assumed free of
forces.
We denote by uεt the corresponding displacement field, solution of the three-dimensional linear elasticity
model. The plates theory justifies that for ε sufficiently small uεt can be approximated by ūεt where the
bending ūεt

3 is the solution of the Kirchhoff-Love model and (ūεt
1 , ūεt

2 ) solves a plane elasticity problem,
both problems posed in the middle surface. A mathematical justification of this fact is now well-known [1].
In the same way, the beams theory for this case proposes to approximate uεt by ũεt, where the flexions
(ũεt

2 , ũεt
3 ) are the solution of the model of Bernoulli-Navier and ũεt

1 is determined from the stretching
equation, both problems posed on the interval (0, L). This approach is also mathematically justified by
asymptotic analysis [3].
In this work we assume that ε and t are of the same order of magnitude and we try to answer the
following question: what is the rapport between ūεt (Kirchhoff-Love solution) and ũεt (Bernoulli-Navier
solution). Given the linearity of the equations of the Kirchhoff-Love model, we impose conditions to the
material and choose appropriate assumptions the order magnitude of the forces. Using the asymptotic
technique (Lions [2]) taking t as small parameter on the Kirchhoff-Love model, after a change of variable
(consisting of a zoom in x2-direction) to the reference middle surface (−1, 1) × (−ε, ε) and a suitable
scaling of the unknowns, we prove that, up a factor 1− ν2 (ν: Poisson’s coefficient of the material), the
(scaled) Bernoulli-Navier model is the H1×H1×H2-limit of the (scaled) Kircchoff-Love model as t tends
to zero. In other words, de Bernoulli-Navier model is the natural approximation of the Kirchhoff-Love
model when t is sufficiently small.
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