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IT Segunda Parte: Mar Portugués “Possessio maris”
IV. O MOSTRENGO
(by Fernando Pessoa)

The monster that lies at the edge of the sea
In the pitch dark of night rose up and flew;
Around the ship it soared three times,
Three times it swooped a-screeching,

And cried: “Who can it be that dared to enter
My caverns that I never disclose,

My pitch dark roofs on the edge of the world?”
And the man at the helm cried out all a-tremble:
“Our noble King John the Second!”
“Whose are the sails over which I skim?
Whose are the keels I see and hear?”

So said the monster, and thrice it circled,
Thrice it did swirl so filthy and huge.
“Who comes to do what only I can,

I who dwell where none did ever see me
And drain the fears of the fathom-less sea?”
And the man at the helm did tremble and say:
“Our noble King John the Second!”

Three times from the helm his hands he raised,
Three times on the helm he lay them down,
And said, three times having trembled:
“Here at the helm I am more than I am:

I am a people who want the sea that is yours;
And stronger than a monster, that my soul doth fear
Which soars in the dark at the edge of the world,
Is the commanding will, that binds me to the helm,
Of our noble King John the Second!”

The challenge that the today’s mens of the helm face is the monster of com-
plexity, the complexity that may be due to the presence of uncertain or imprecise
information, or because the systems we are trying to understand can only be de-

scribed by partial truth.

Our mens of the helm Robert Babuska, Georg Dorffner, J. Félix Costa, Carlos
Fonseca, and Juergen Schmidhuber present in this volume the recent develop-
ments in dealing with the monster of complexity, by means of introducing the
methods and their sound mathematical foundations.

They are supported by some brave sea-mens.

We thank their contribution to this Workshop and Advanced Course and
we hope that the built environment will be pleasant and fruitful for all the

participants.

The Editors
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Neuro-Fuzzy Methods for Modeling and Identification

Robert Babuska
Delft University of Technology,Faculty of Information Technology and Systems
Control Systems Engineering Group, P.O.Box 5031, 2600 GA Delft, The Netherlands
e-mail: R.Babuska@dcsc.tudelft.nl

Abstract

Most processes in industry are characterized by nonlinear and time-varying behavior. Nonlin-
ear system identification is becoming an important tool which can be used to improve control per-
formance and achieve robust fault-tolerant behavior. Among the different nonlinear identification
techniques, methods based on neuro-fuzzy models are gradually becoming established not only in
the academia but also in industrial applications. Neuro-fuzzy modeling can be regarded as a gray-
box technique on the boundary between neural networks and qualitative fuzzy models. The tools
for building neuro-fuzzy models are based on combinations of algorithms from the fields of neural
networks, pattern recognition and regression analysis. In this paper, an overview of neuro-fuzzy
modeling methods for nonlinear system identification is given, with an emphasis on the tradeoff be-
tween accuracy and interpretability.

Keywords: neuro-fuzzy systems, nonlinear identification, fault-detection and diagnosis, ANFIS net-
work, Takagi—Sugeno fuzzy system.

1 Introduction

The design of control systems is currently driven by a large number of requirements posed by increasing
competition, environmental requirements, energy and material costs and the demand for robust, fault-
tolerant systems. These considerations introduce extra needs for effective process modeling techniques.
Many systems are not amenable to conventional modeling approaches due to the lack of precise, formal
knowledge about the system, due to strongly nonlinear behavior, high degree of uncertainty, or time-
varying characteristics.

Neuro-fuzzy modeling has been recognized as a powerful tool which can facilitate the effective
development of models by combining information from different sources, such as empirical models,
heuristics and data. Neuro-fuzzy models describe systems by means of fuzzy if-then rules, such as ‘If
x is small then y is large’ represented in a network structure, to which learning algorithms known from
the area of artificial neural networks can be applied. Thanks to this structure, neuro-fuzzy models are to
a certain degree transparent to interpretation and analysis, i.e., can be better used to explain solutions to
users than completely black-box models such as neural networks.

'Based on: R. Babugka. N euro-fuzzy methods for modeling and identification. In A. Abraham, L.C. Jain, and J. Kacprzyk,
editors, Recent Advances in Intelligent Paradigms and Applications, pages 161-186. Copyright Springer-Verlag, Heidelberg,
2002. Reprinted with permission.
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2 Fuzzy Systems and Neural Networks

Both neural networks and fuzzy systems are motivated by imitating human reasoning processes. In
fuzzy systems, relationships are represented explicitly in the form of if—then rules. In neural networks,
the relations are not explicitly given, but are ‘coded’ in the network and its parameters. In contrast to
knowledge-based techniques, no explicit knowledge is needed for the application of neural nets.

Neuro—fuzzy systems combine the semantic transparency of rule-based fuzzy systems with the learn-
ing capability of neural networks. This section gives the background on nonlinear input—output modeling,
fuzzy systems and neural nets, which is essential for understanding the rest of this paper.

2.1 Nonlinear System Identification

A wide class of nonlinear dynamic systems with an input u and an output y can be described in discrete
time by the NARX (nonlinear autoregressive with exogenous input) input—output model:

y(k+1) = f (x(k)) €9
with  x(k) = [y(k) ... y(k —ny + 1) u(k) ... u(k —ny, +1)]"

where y(k + 1) denotes the output predicted at the future time instant & + 1 and x(k) is the regressor
vector, consisting of a finite number of past inputs and outputs. The dynamic order of the system is
represented by the number of lags n, and n,. Although for simplicity stated with a scalar input and
output, the NARX model can also be used for multivariable systems. In that case, however, the number
of regressors usually becomes large and one may prefer the nonlinear state-space description:

Ek+1) = g(&(k),u(k)) ©)
y(k) = h(&(k))

The task of nonlinear system identification is to infer the unknown function f in (1) or the functions g
and h in (2) from available data sequences {(u(k),y(k)) | k=1,2,...,N}.

In black-box modeling, these functions are approximated by some general function approximators
such as neural networks, neuro-fuzzy systems, splines, interpolated look-up tables, etc. If the aim of
modeling is only to obtain an accurate predictor for y, there is not much difference between these models,
as they all can approximate smooth nonlinear systems arbitrarily well. Often, however, besides accurate
predictions, one wants to have a model that can be used to learn something about the underlying system
and analyze its properties. From this point of view, fuzzy and neuro-fuzzy systems are more transparent
than most other black-box techniques.

2.2 Fuzzy Models

A mathematical model which in some way uses fuzzy sets is called a fuzzy model. In system identifica-
tion, rule-based fuzzy models are usually applied. In these models, the relationships between variables
are represented by means of if-then rules with imprecise (ambiguous) predicates, such as:

If heating is high then temperature increase is fast.

This rule defines in a rather qualitative way the relationship between the heating and the temperature in
a room, for instance. To make such a model operational, the meaning of the terms ‘high’ and ‘fast’ must
be defined more precisely. This is done by using fuzzy sets, i.e., sets where the membership is changing
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gradually rather than in an abrupt way. Fuzzy sets are defined through their membership functions which
map the elements of the considered universe to the unit interval [0, 1]. The extreme values 0 and 1 denote
complete membership and non-membership, respectively, while a degree between 0 and 1 means partial
membership in the fuzzy set. Depending on the structure of the if—then rules, two main types of fuzzy
models can be distinguished: the Mamdani (or linguistic) model and the Takagi—Sugeno model.

2.2.1 Mamdani Model.

In this model, the antecedent (if-part of the rule) and the consequent (then-part of the rule) are fuzzy
propositions:
R;: |f$ISAZthenyISBZ Z:1,2,,K A3)

Here A; and B; are the antecedent and consequent linguistic terms (such as ‘small’, ‘large’, etc.), repre-
sented by fuzzy sets, and K is the number of rules in the model. The linguistic fuzzy model is useful for
representing qualitative knowledge, illustrated in the following example.

Example 1 Consider a qualitative description of the relationship between the oxygen supply to a gas
burner (z) and its heating power (y):

Rq: If Oy flow rate is Low then heating power is Low.
Ra: If Oy flow rate is OK  then heating power is High.
Ra: If Oy flow rate is High then heating power is Low.

The meaning of the linguistic terms {Low, OK, High} and {Low, High} is defined by membership func-
tions such as the ones depicted in Fig. 1. Membership functions can be defined by the model developer
based on prior knowledge or by using data (in this example, the membership functions and their domains
are selected quite arbitrarily).

& ® J:4 b 4

0 1 2 3 0 3 8 3 0
O & m'h [} ¥y W

Figure 1: Membership functions for the Mamdani model.

The meaning of the linguistic terms is, of course, not universally given. In this example, the defini-
tion of the fuzzy set OK, for instance, may depend on the flow-rate of the fuel gas, the type of burner,
etc. When input—output data of the system under study are available, the membership functions can be
constructed or adjusted automatically, as discussed later on. Note, however, that the qualitative relation-
ship given by the rules is usually expected to be valid for a range of conditions.

(]
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2.2.2 Takagi-Sugeno Model.

The Mamdani model is typically used in knowledge-based (expert) systems. In data-driven identification,
the model due to Takagi and Sugeno has become popular. In this model, the antecedent is defined in the
same way as above, while the consequent is an affine linear function of the input variables:

Ri: lfxis A;theny; =alx+b;, i=1,2,... K, )

where a; is the consequent parameter vector and b; is a scalar offset. This model combines a linguistic
description with standard functional regression: the antecedents describe fuzzy regions in the input space
in which the consequent functions are valid. The output y is computed by taking the weighted average
of the individual rules’ contributions:

K K
Yy X Bix)(afx+b)
_ =1 _ =l )
y K K
> Bi(x) > Bi(x)
i=1 i=1
where (3;(x) is the degree of fulfillment of the ith rule. For the rule (4), 8;(x) = p4,(x), but it can also
be a more complicated expression, as shown later on. The antecedent fuzzy sets are usually defined to
describe distinct, partly overlapping regions in the input space. The parameters a; are then (approximate)
local linear models of the considered nonlinear system. The TS model can thus be regarded as a smooth
piece-wise linear approximation of a nonlinear function or a parameter-scheduling model. Note that the
antecedent and consequent variables may be different.

Example 2 Consider a static characteristic of an actuator with a dead-zone and a non-symmetrical re-
sponse for positive and negative inputs. Such a system can conveniently be represented by a TS model
with three rules each covering a subset of the operating domain that can be approximated by a local linear
model, see Fig. 2. The corresponding rules are given in the right part of the figure.

Ry : If uis Negative theny; = aju— by

Ro : Ifuis Zero then yo = asu — by

Rs: Ifuis Positive  then ys3 = azu — by

_ MNeg(u)yl + /JZero(u)yQ + NPos(u)yS

v X 2o X # YT s (W) F zero(u) + s ()

u

Figure 2: A Takagi—Sugeno fuzzy model as a piece-wise linear approximation of a nonlinear system.

O

As the consequent parameters are first-order polynomials in the input variables, model (4) is in the
literature also called the first-order TS model. This is in order to distinguish it from the zero-order TS
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model whose consequents are simply constants (zero-order polynomials):
R;: If xis A; then y; = b;, i=1,2,...,K. (6)
For this model, the input—output equation (5) reduces to:
K
Z; Bi(x)b;

y=" )
2 filx)

The above model can also be obtained as a special case of the Mamdani system (3) in which the conse-
quent fuzzy sets degenerate to singletons (real numbers):

1, ify=1b;,
p(y) = { 0, otherwise. ®

2.2.3 Fuzzy Logic Operators.

In fuzzy systems with multiple inputs, the antecedent proposition is usually represented as a combination
of terms with univariate membership functions, by using logic operators ‘and’ (conjunction), ‘or’ (dis-
junction) and ‘not’ (complement). In fuzzy set theory, several families of operators have been introduced
for these logical connectives. Table 1 shows the two most common ones.

Table 1: Commonly used functions for fuzzy logic operators.

Aand B AorB not A
Zadeh min(pa, 4g) max(pa, LB) 1—pa
probabilistic 1A - LB HA+ B — A - UB 1—pa

As an example, consider the commonly used conjunctive form of the antecedent, which is given by:

R;: If T is Ail and T 1S Aig and ... and Tp is Aip then Yi = aZTx + b; ©)]

with the degree of fulfillment

52()() = min (MAil (ml)v KA (1‘2), sy HA (xp))

or
ﬂl(x) = KAy (Il) T KA (IQ) T Ay (Ip)
for the minimum and product conjunction operators, respectively. The complete set of rules (9) divide

the input domain into a lattice of overlapping axis-parallel hyperboxes. Each of these hyperboxes is a
Cartesian product intersection of the corresponding univariate fuzzy sets.
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2.2.4 Dynamic Fuzzy Models.

In the modeling of dynamic systems, fuzzy models are used to parameterize of the nonlinear functions f
in (1) or g and A in (2). Consider, for instance, the TS NARX model:

ny
Ri: M x(k)is A; then yi(k+1) = > agy(k — j+1)
j=1

Ty

+szju(k -7+ 1) +c
j=1

where the antecedent regressor x(k) is generally given by (1), but it may of course contain only some
of the past inputs and outputs or even other variables than u and y. Similarly, state-space models can be
represented in the TS framework by:

&(k+1) = ®&Kk)+Tulk)+ a;
yi(k) Ci&(k) +c;

An advantage of the state-space modeling approach is that the structure of the model can easily be related
to the physical structure of the real system, and, consequently, the model parameters are physically
relevant. This is not necessarily the case with input-output models. In addition, the dimension of the
regression problem in state-space modeling is often smaller than with input—output models.

R;: If S(k) is Az and ll(k') is B; then {

2.3 Artificial Neural Networks

Artificial neural nets (ANNSs), originally inspired by the functionality of biological neural networks can
learn complex functional relations by generalizing from a limited amount of training data. Neural nets
can thus serve as black-box models of nonlinear, multivariable static and dynamic systems and can be
trained by using input—output data observed on the system. The most common ANNSs consist of several
layers of simple processing elements called neurons, interconnections among them and weights assigned
to these interconnections. The information relevant to the input—output mapping of the net is stored in
the weights.

2.3.1 Multi-Layer Neural Network.

A feedforward multi-layer neural network (MNN) has one input layer, one output layer and an number of
hidden layers between them. For illustration purposes, consider a MNN with one hidden layer (Fig. 3).

The input-layer neurons do not perform any computations, they merely distribute the inputs x; to the
weights wl’s of the hidden layer. In the neurons of the hidden layer, first the weighted sum of the inputs
is computed

zj = thwi =whx, j=1,2,....m. (10)

It is then passed through a nonlinear activation function, such as the tangent hyperbolic:

1 —exp(—2z;)

R s it VO S N 1
vi 1+ exp(—2z;)’ J ’ 1 an
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Figure 3: A feedforward neural network with one hidden layer.

Other typical activation functions are the threshold function (hard limiter) and the sigmoidal function.
The neurons in the output layer are linear, i.e., only compute the weighted sum of their inputs:

h
Y= Zw?lvj =w))Tx, 1=1,2,...,n. (12)
j=1

Training is the adaptation of weights in a multi-layer network such that the error between the desired
output and the network output is minimized. Two steps are distinguished in this procedure:

1. Feedforward computation. From the network inputs x;, the outputs of the first hidden layer are
first computed. Then using these values as inputs to the second hidden layer, the outputs of this
layer are computed, etc. Finally, the output of the network is obtained.

2. Weight adaptation. The output of the network is compared to the desired output. The difference
of these two values, the error, is then used to adjust the weights first in the output layer, then in the
layer before, etc., in order to decrease the error (gradient-descent optimization). This backward
computation is called error backpropagation [1, 2].

A network with one hidden layer is sufficient for most approximation tasks. More layers can give a better
fit, but the training takes longer. Choosing the right number of neurons in the hidden layer is essential
for a good result. Too few neurons give a poor fit, while too many neurons result in overtraining of the
net (poor generalization to unseen data). A compromise is usually sought by trial and error methods.

2.3.2 Dynamic Neural Networks.

A dynamic network can be realized by using a static feedforward network combined with an external
feedback connection. The output of the network is fed back to its input through delay operators z~1.
This is in fact a realization of the NARX model (1). Fig. 4 shows an example of a first-order system
y(k + 1) = fnn(y(k)v u(k))

Another possibility is to use recurrent networks in which neurons are arranged in one or more layers
and feedback is introduced either internally in the neurons, to other neurons in the same layer, or to
neurons in preceding layers. Examples of these networks are the Elman network (Fig. 5) or the Hopfield

network.
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Figure 5: Dynamic network with internal feedback connections (Elman network).

2.3.3 Error Backpropagation.

Consider for simplicity a MNN with one output. A set of N input-output data pairs {(xy,y;) | k =
1,2,..., N} is available. We represent this set as a matrix X € RY*P, having the input vectors x;, in its
rows, and a column vector y* € R, containing the desired outputs Yyt

X =[x, ooxn]"s ¥ = [y yi]” (13)

The difference between the desired output y* and the output of the network y is called the error. This
error is used to adjust the weights in the net via the minimization of the following cost function:

N

1 . .
Jzékz_:lei with e, =y — Yk -

Note that the network’s output y is nonlinear in the weights w (for notational convenience, all the weights
are lumped in a single vector w). The training of a MNN is thus a nonlinear optimization problem to
which various methods can be applied:

o Error backpropagation (first-order gradient).
e Newton, Levenberg-Marquardt methods (second-order gradient).
e Genetic algorithms and many others techniques

First-order gradient methods are based on the following general update rule for the weights:

w(n+1) = win) - a(n)V.J(w(n)), (14)
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where w(n) is the weight vector at iteration n, a(n) is a (variable) learning rate (a parameter) and
VJ(w) is the Jacobian of the network

_ [97(w) 2J(w) oJ(w)1"

)

VJ(w)

8w1 871)2 T 8wM

The nonlinear optimization problem is thus solved by using the first term of its Taylor series expansion
(the gradient). Second-order gradient methods make use of the second term as well:

J(w) = J(wq) + VJ(wo)T (w —wp) + %(w — wo)TH(wp)(w — wy),

where H(wy) is the Hessian. After a few steps of derivations, the update rule for the weights appears to
be:

w(n+1) = w(n) - HY(w(n))V.J(w(n)) (15)
The essential difference between (14) and (15) is the size and the direction of the gradient-descent step,
see Fig. 6. Second order methods are usually more effective than first-order ones. Here, we will, however,
present the error backpropagation, (first-order gradient method) which is easier to grasp. The step toward
understanding second-order methods is then quite straightforward.

-aVJ

o~

CH'VJ

;“ T T
(VR w wn) wr ) w
(a) first-order gradient (b) second-order gradient

Figure 6: First-order and second-order gradient-descent optimization.

Let us derive the update laws for the sample-by-sample case, which can be used both for on-line and
off-line learning. For simplicity, the sample index k is dropped out of the formulas. We start with the
output-layer weights, for which the Jacobian is:

oJ 0J 0Oe 0
=22 W e, j=12,...m, (16)

Bu? = Be By Bul

and from (14), the update law for the output weights follows:
wi(n + 1) = wj(n) + a(n)vje. (17)
For the hidden-layer weights, we have the Jacobian:

8.] - 8J (91)]‘ (92’]‘

owh  Ovj 0z 8wfj

18)
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with the partial derivatives:

8J 81)]' ’ 82]'
o, Y o a;j(2)); Ful " (19)
and from (14), the following update law for the hidden-layer weights is obtained:

wii(n + 1) = wij(n) + a(n)z;0j(z))ews . (20)
From this equation, one can see that the error is propagated from the output layer to the hidden layer,
which gave rise to the name ‘backpropagation’.

The presentation of the entire data set sample-by-sample is called an epoch. Usually, several learning
epochs must be applied in order to achieve a good fit. From a computational point of view, it is more
effective to present the data set as the whole batch. The backpropagation learning formulas are then
applied to vectors of data rather than the individual samples.

2.3.4 Radial Basis Function Network.

The radial basis function (RBF) network is a two-layer network with an architecture depicted in Fig. 7.
This network is represented by the following function:

y=7(x =) widi(x) @1
i=1

where the usual choice for the basis functions ¢;(x) is the Gaussian function:

X —C; 2
060 = exp 1)

Figure 7: Radial basis function network.

Note that adjustable weights are only present in the output layer. The connections from the input
layer to the hidden layer are fixed to unit weights. The free parameters of RBF nets are the output
weights w; and the parameters of the basis functions (centers c; and radii ;). Since the network’s output
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(21) is linear in the weights w;, these weights can be estimated by least-squares methods. For each data
point xy, first the outputs of the neurons are computed:

Vi = di(Xp)

and put in the matrix V' = [vg;]. Introducing the weight vector w = [ws,...,w,], we can write the
following matrix equation for the whole data set:

y*=Vw.
The least-square estimate of the weights w that minimize the network error e = y* — y is:
w=[VIV] ' vTy. 22)

The adaptation of the RBF parameters c; and o; is a nonlinear optimization problem that can be solved
by the gradient-descent techniques described above.

3 Neuro-Fuzzy Modeling

At the computational level, a fuzzy system can be seen as a layered structure (network), similar to arti-
ficial neural networks of the RBF type [3]. In order to optimize parameters in a fuzzy system, gradient-
descent training algorithms known from the area of neural networks can be employed. Hence, this
approach is usually referred to as neuro-fuzzy modeling [4, 5, 6].

Consider first a simple example of a zero-order TS fuzzy model with the following two rules:

If r1is Aqq and o is Aoy then Yy = by
If T is A12 and T is AQQ then Yy = by

0
n i &
0 » &

-
-]

Figure 8: An example of a zero-order TS fuzzy model with two rules represented as a neuro-fuzzy
network.

Fig. 8 shows a network representation of these two rules. The nodes in the first layer compute
the membership degree of the inputs in the antecedent fuzzy sets. The product nodes II in the second



Neuro-Fuzzy Methods for Modeling and Identification 13

layer represent the antecedent connective (here the ‘and’ operator). The normalization node N and the
summation node X realize the fuzzy-mean operator (5). This system is called ANFIS — Adaptive Neuro-

Fuzzy Inference System [5]. Typically, smooth antecedent membership functions are used, such as the
Gaussian functions:

2
20} 7

2 — )2
pa;; (55 cijy 0ij) = exp (—M . (23)

The input—output equation of a general zero-order TS model with the conjunctive form antecedent is:

K .
y=> )b with 7i(x)=—— (24)
=1

The first-order TS fuzzy model can be represented in a similar fashion. Consider again the example with
two rules:

If 1 is A11 and zo is Aoy then y; = a1121 + ajoxe + by
If z1is A1o and zo is Ago then Yo = a21T1 + ATy + by

for which the corresponding network is given in Fig. 9.

allxl + a‘?g_ 2 + bl

Xy

X;

Figure 9: An example of a first-order TS fuzzy model with two rules represented as a neuro-fuzzy
network called ANFIS.

The input—output equation of a first-order TS model is:

K
Y= Z ~i(x) (a;x + b,;) (25)
i=1

with ;(x) given by (24).
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3.1 Constructing Neuro-Fuzzy Networks

Both prior knowledge and process data can be used to construct neuro-fuzzy systems. Prior knowledge
can be of a rather approximate nature (qualitative, heuristics). Two main approaches to the integration of
knowledge and data can be distinguished:

1. Expert knowledge is formulated as a collection of if—then rules. In this way, an initial model is
created. The parameters of this model (the membership functions, consequent parameters) are then
fine-tuned by using process data.

2. Fuzzy rules (including the associated parameters) are constructed from scratch by using numerical
data. In this case, the advantage of using a neuro-fuzzy model is the possibility to interpret the
obtained result (which is not possible with truly black-box structures like neural networks). An
expert can confront the information stored in the rule base with his own knowledge, can modify
the rules, or supply additional ones to extend the validity of the model, etc.

The above techniques can, of course, be combined, depending on the problem at hand.

3.2 Structure and Parameters

The two basic steps in system identification are structure identification and parameter estimation. The
choice of the model’s structure is very important, as it determines the flexibility of the model in the
approximation of (unknown) systems. A model with a rich structure can approximate more complicated
functions, but, at the same time, will have worse generalization properties. Good generalization means
that a model fitted to one data set will also perform well on another data set from the same process. In
neuro-fuzzy models, the structure selection process involves the following main choices:

o Selection of input variables. This involves not only the physical inputs u but also the dynamic
regressors, defined by the input and output lags, n,, and n,, respectively. Prior knowledge, insight
in the process behavior and the purpose of the modeling exercise are the typical sources of infor-
mation for the choice of an initial set of possible inputs. Automatic data-driven selection can then
be used to compare different structures in terms of some specified performance criteria.

e Number and type of membership functions, number of rules. These two structural parameters are
mutually related (for more membership functions more rules must be defined) and determine the
level of detail, called the granularity, of the model. The purpose of modeling and the amount of
available information (knowledge and data) will determine this choice. Automated, methods can
be used to add or remove membership functions and rules.

3.3 Gradient-Based Learning

It is quite straightforward to derive the gradient-descent learning rule for the b; ¢;; and o;; parameters.
The procedure is identical to the derivation of the backpropagation formulas (16) through (20). Consider
the zero-order ANFIS model, given by rules (6). For the consequent parameters b;, we have the Jacobian:
oJ 0J Oe
— =———=—ve, i=12,...K, 26
b de ab, o T Ee (26
and the update law:
bi(n+1) =b;(n)+ an)ye, i=1,2,...K. (27)
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For the centers and spreads of the Gaussian membership functions (23) we apply the chain rule for
differentiation and after some algebra, the following update formulas are obtained:

Ty — Cij . .
cij(n+1) = ¢ij(n) + 2a(n)yielb; — vl J 5 Y i=1,2,...K, j=1,2,...,p. (28)

and
oij(n + 1) = 03;(n) + 2a(n)vie[b; — y]

i=1,2,...,p. (29)

The parameter-update equations for the first-order ANFIS model can be derived in a similar fashion.

3.4 Hybrid Learning Techniques

We have already noticed that the output-layer parameters in RBF networks can be estimated by linear
least-squares (LS) techniques (22). As LS methods are more effective than the gradient-based update rule
(27), hybrid methods are often applied that combine one-shot least-squares estimation of the consequent
parameters with iterative gradient-based optimization of the membership functions [7].

In terms of error minimization, the choice of a particular least-squares estimation method is not cru-
cial. If, however, the consequent parameters are to be interpreted as local models, for instance, great care
must be taken in the choice of the estimation method. The problem is that the ANFIS models, especially
the first-order one, tend to be over-parameterized for most approximation problems. This may lead to
numerical problems, over-fitting and meaningless parameter estimates. The following example demon-
strates this problem.

Example 3 Assume we wish to approximate a second-order polynomial y = f,(u) = 3u? — 5u + 6 by
a first-order ANFIS model. First we choose two points ¢1 and ¢5 and define initial triangular membership
functions for ¢ < u < ta:

uftl

pay (u) = g, =1 (30)

The model consists of two rules:
R;: Ifuis A; then y; = a;u + b;, 1=1,2

By substituting the membership functions (30) into (5), the output of the TS model is obtained (after
some elementary algebra):

a; — a u? toas — tiay + by — bgu tobo — t1b1

lo —t1 lo—t1 la—t

As this is a second order polynomial in u, our model can perfectly represent the given nonlinear system.
However, it has four free parameters (a1, as, b1 and be) while three are sufficient to fit the polynomial —
it is thus over-parameterized. This is a very simple example, but the essence of the over-parameterization
problem remains the same when approximating complex unknown systems.

O

To circumvent over-parameterization, the basic least-squares criterion can be combined with ad-
ditional criteria for local fit, or with constraints on the parameter values. In the following, different
techniques are discussed.
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3.4.1 Global Least-Squares Estimation.

The global least-squares estimation method yields parameters that minimize the following prediction
error criterion:

N K 2
0 = arg min Z (yz — Z’Yi(xk) [ka.l] 0i> .
k=1 i=1

where 87 = [87 ... 6] is the concatenation of all the individual rules’ parameter vectors. For the data
matrices (13), this criterion can be rewritten in a matrix form:

0 = argmin (y* — A8)’ (y* — AG) (31

with A = [I'1¢p ... T where ¢ = [X 1] and T'; = diag (v;(x1) ... vi(xn)), ie., a diagonal
matrix having v;(xy) as its kth diagonal element. The optimal solution of (31) is then directly obtained
by using matrix pseudo-inverse:

0— (A"A) 'A"y". (32)

3.4.2 Local Least-Squares Estimation.

While the global solution gives the minimal prediction error, it may bias the estimates of the consequents
as parameters of local models. If locally relevant model parameters are required, a weighted least-
squares approach applied per rule should be used. This is done by minimizing a set of K weighted local
LS criteria:

6; = arg min (y* — goGi)T Li(y"—¢0;), i=12... K (33)
for which the solutions are
- -1 « .
OZZ(QOII‘ZCP) (Plriya i=12... K.

In this case, the consequent parameters of the individual rules are estimated independently of each other,
and therefore the result is not influenced by the interactions of the rules. At the same time, however, a
larger prediction error is obtained than with global least squares.

Example 4 The application of local and global estimation to the TS model from Example 3 results in the
consequent models given in Fig. 10. Note that the consequents estimated by local least squares describe
properly the local behavior of the function, but do not give a good fit. For global least squares, the
opposite holds — a perfect fit is obtained, but the consequents are not relevant for the local behavior of
the system.

O

When interpreting ANFIS models obtained from data, one has to be aware of the trade-offs between
local and global estimation. Constrained and multicriteria optimization can also be applied to restrict the
freedom in the parameters.
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Figure 10: Results of local (left) and global (right) estimation of the consequent parameters. The dashed
line is the output of the model.

3.4.3 Constrained Estimation.

Knowledge about the dynamic system such as its stability, minimal or maximal static gain, or its settling
time can be translated into convex constraints on the consequent parameters (see Fig. 11). By using
input-output data, optimal parameter values are then found by means of quadratic programming, instead
of least squares. There are two types of constraints, global and local. Local constraints represent detail
knowledge pertaining to each specific rule, while global constraints apply to the entire model and should
thus refer to some global system properties such as the overall stability. To see this, realize that the affine
TS model (4) can be regarded as one quasi-linear system

K K
. (Z %(x)a?> x+ D7) = a’ (x)x + b(x) . (34)

with input-dependent ‘parameters’ a(x), b(x) which are convex linear combinations of the individual
consequent parameters a; and b;, i.e.:

K K
a(x) =Y vi(x)ai, b(x) =D vi(x)b;. (35)
i=1 i=1

This property allows us to define global convex constraints for the entire model. Besides, it also facilitates
the analysis of TS models in the framework of polytopic systems (linear differential inclusions). Methods
have been developed to design controllers with desired closed loop characteristics and to analyze their
stability [8].

3.4.4 Multi-Objective Optimization.

Another possibility is to regularize the estimation by penalizing undesired local behavior of the model.
This can dramatically improve the robustness of the construction algorithm, eventually leading to more
relevant (interpretable) parameter estimates. One way is to minimize the weighted sum of the global and
local identification criteria (31) and (33):

K
6 — arg min {(y* —A0)" (y* —AO)+ D> iy —90) Ti(y* - <p0i)} :

i=1
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Figure 11: Convex constraints on the consequent parameters.

The weighting parameters §; > 0 parameterize the set of Pareto-optimal solutions of the underlying
multi-objective optimization problem and thus determine the tradeoff between the possibly conflicting
objectives of global model accuracy and local interpretability of the parameters.

3.5 Initialization of Antecedent Membership Functions

For a successful application of gradient-descent learning to the membership function parameters, good
initialization is important. Several initialization methods are briefly reviewed in this section.

3.5.1 Template-Based Membership Functions.

With this method, the domains of the antecedent variables are a priori partitioned by a number of mem-
bership functions. These are usually evenly spaced and shaped. The rule base is then established to cover
all the combinations of the antecedent terms. A severe drawback of this approach is that the number of
rules in the model grows exponentially. Furthermore, if no knowledge is available as to which variables
cause the nonlinearity of the system, all the antecedent variables are usually partitioned uniformly. How-
ever, the complexity of the system’s behavior is typically not uniform. Some operating regions can be
well approximated by a local linear model, while other regions require a rather fine partitioning. In order
to obtain an efficient representation with as few rules as possible, the membership functions must be
placed such that they capture the non-uniform behavior of the system.

3.5.2 Discrete Search Methods.

Iterative tree-search algorithms can be applied to decompose the antecedent space into hyper-rectangles
by axis-orthogonal splits. In each iteration, the region with the worst local error measure is divided
into two halves (or other portions). Splits in all dimensions of the input are tested and the one with the
highest performance improvement is chosen. This successive partitioning stops when a specified error
goal is met or when the desired number of rules is reached. The first four steps of such an algorithm are
illustrated in Fig. 12. An advantage of this approach is its effectiveness for high-dimensional data and
the transparency of the obtained partition. A drawback is that the tree building procedure is sub-optimal
(greedy) and hence the number of rules obtained can be quite large [9].
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Figure 12: Antecedent space decomposition by a heuristic search algorithm. The dark areas represent
rules with the worst local fit in the given step.

3.5.3 Fuzzy Clustering.

Construction methods based on fuzzy clustering originate from data analysis and pattern recognition,
where the concept of fuzzy membership is used to represent the degree to which a given data object
is similar to some prototypical object. The degree of similarity can be calculated by using a suitable
distance measure. Based on the similarity, data vectors are clustered such that the data within a cluster
are as similar as possible, and data from different clusters are as dissimilar as possible.

Figure 13: Identification of membership functions through fuzzy clustering.

Fig. 13 gives an example of two clusters in R? with prototypes v and vo. The partitioning of the
data is expressed in the fuzzy partition matrix U = [p1;;] whose elements are the membership degrees
of the data vectors xy, in the fuzzy clusters with prototypes v;. The antecedent membership functions
are then extracted by projecting the clusters onto the individual variables. For the initialization of first-
order ANFIS models, the prototypes can be defined as linear subspaces or the clusters are ellipsoids with
adaptively determined shape. The number of clusters in the data can either be determined a priori or
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sought automatically by using cluster validity measures and merging techniques [10].

4 Simulation Examples

In this section, two simulation examples are given to illustrate several important issues related to the
training of neuro-fuzzy systems. The first example is a simple fitting problem of a univariate static
function. It demonstrates the typical construction procedure of a neuro-fuzzy model. Numerical results
show that an improvement in performance is achieved at the expense of obtaining if-then rules that are
not completely relevant as local descriptions of the system.

The second example, the modeling of a nonlinear dynamic system, illustrates that the performance
of a neuro-fuzzy model does not necessarily improve after training. This is due to overfitting which in
the case of dynamic systems can easily occur when the data only sparsely cover the domains.

4.1 Static Function

Let us approximate a univariate function y = sin(u) by the ANFIS model with linear consequent func-
tions. We choose the number of rules to be five and construct an initial model by clustering the data
U x Y, using a methodology based on the Gustafson-Kessel algorithm [10]. The following rules are

obtained:
Ifuis Ay then y = 5.721u + 0.030

If uis As then y = 0.035u + 0.904
If uis Ag then y = —5.302u + 2.380
Ifuis Ay then y = 0.734u — 1.413
If uis As then y = 6.283u — 5.623

The fit of the function with this initial model is shown in Fig. 14a. The membership functions and the
corresponding local models are given in Fig. 14b. The membership functions are denoted from left to
right by A through As.

1 1 —_—— .
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0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
u u
(a) The data (solid) and the model (dashed-dotted). (b) Local models (top) and membership functions (bot-
tom).

Figure 14: Approximation by the initial TS fuzzy model. The root mean squared error is RMS= 0.0258.
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Note that this initial model can easily be interpreted in terms of the local behavior (the rule conse-
quents) and it is already reasonably accurate (the root mean squared error is RMS= 0.0258). However,
by using the ANFIS method, the model parameters can be fine-tuned and the approximation accuracy
can be significantly improved. A model obtained after 100 learning epochs of hybrid learning using the
anfis function of the MATLAB Fuzzy Logic Toolbox [7] is described by the following fuzzy rules:

If uis A then y = 5.275u + 0.065
If uis A} then y = 0.442u 4 0.899
If wis Al then y = —3.206u + 1.405
Ifuis Aj then y = 0.977u — 1.693
If uis Ag then y = 5.062u — 4.388

The performance has improved to that degree that no approximation error is visible (Fig. 15a). The
root mean squared error is now RMS= 0.0011, which is about 23 times better than the initial model.
The membership functions have only been slightly modified, but the change in the local models is more
apparent, see Fig. 15b.

1
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0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
u u
(a) The data (solid) and the model (dashed-dotted). (b) Local models (top) and membership functions (bot-
tom).

Figure 15: Approximation by the TS fuzzy model fine-tuned by ANFIS. The root mean squared error is
RMS= 0.0011.

A closer look at the consequents, both graphically and in terms of the numerical values, reveals that
after learning, the local models are much further from the true local description of the function. To
quantify this, we can compute the difference between the consequent parameters of the fuzzy models,
denoted by 6, and the ‘true’ local estimates 8, computed by least squares for the data in core(A;). For
the initial fuzzy model, we have ||@ —6y|| = 1.81, while for the ANFIS model we have ||@ — 0y || = 5.30.
The rules of the fine-tuned neuro-fuzzy model are thus less accurate in describing the system locally.
This contradiction between local and global approximation accuracy is inherent to TS fuzzy systems
with linear consequents [11] and thus also to the ANFIS network. Great care must be exercised when
one attempts to interpret rules in trained neuro-fuzzy models.
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4.2 pH Neutralization Process

A neutralization tank with three influent streams (acid, buffer and base) and one effluent stream is con-
sidered. The identification and validation data sets are obtained by simulating the model by Hall and
Seborg [12] for random changes of the influent base stream flow rate ). The influent buffer stream and
the influent acid stream are kept constant. The output is the pH in the tank. The identification data set,
containing N = 499 samples with the sampling time of 15 s, is shown in Fig. 16. This data set was
obtained from [13].

NS} [9%)
(=) (=)
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(=]

Base flow rate
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Figure 16: Identification data.

The process is approximated as a first-order discrete-time NARX model:

pH(k +1) = f(pH(k), Q(k)),

where k denotes the sampling instant, and f is an unknown relationship approximated by a neuro-fuzzy
model. Based on prior knowledge about the process, it was decided to include only Q(k) in the an-
tecedent (it is known that the main source of nonlinearity is the titration curve, which is the steady-state
characteristic relating @ to pH). The number of membership functions (and thus also rules) was set to
three. The initial membership functions were evenly spread over the domain, as shown in the left panel
of Fig. 17.

0.5 0.5

10 20 30 10 20 30
Q(k) Q(k)

Figure 17: Membership functions before (left) and after training (right). The membership functions are
denoted from left to right by 'Low’, "Medium’ and "High’.

The initial rule base, with the consequent estimated by weighted local least squares (33), is given by:

If Q(k)is Low  then pH(k + 1) = 0.83pH(k) 4 0.09Q(k) + 0.03
If Q(k) is Medium then pH(k + 1) = 0.83pH(k) + 0.09Q (k) + 0.10
If Q(k)is High  then pH(k + 1) = 0.46pH(k) 4 0.02Q(k) + 5.09
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After 1000 epochs of hybrid learning using the ANFIS function of the MATLAB Fuzzy Logic Toolbox
[7], the following rule base has been obtained:

If Q(k) is Low’  then pH(k + 1) = 0.37pH(k) — 0.05Q(k) + 2.14
If Q(k) is Medium’ then pH(k + 1) = 0.91pH(k) + 0.06Q(k) — 0.23
If Q(k) is High'  then pH(k + 1) = 0.40pH(k) + 0.03Q(k) + 5.63

Note that the consequent model in the first rule has a negative coefficient for Q (k). As this is a physically
impossible value, not interpretation can be given to these parameters and this trained model has become
a complete black-box. Also notice in Fig. 17 that the membership functions were adjusted in a very
peculiar way by the gradient-descent optimization method.

Table 2: Comparison of RMS before and after training.

before training after training
training data set 0.90 0.82
validation data set 0.81 0.89

Table 2 shows that while the numerical performance in terms of the root-mean-square error improved
for the training data, it has become worse for the validation data. This is a typical example of overtraining.
This can also be observed in Fig. 18 where the predictions generated by the model are less accurate after
training than before. Clearly, this kind of behavior is difficult to predict for a new problem at hand. The
importance proper model validation can thus hardly be overemphasized.

0 20 40 60 80 100 120 0 20 40 60 80 100 120
Time [min] Time [min]

(a) initial model (b) after training

Figure 18: Performance of the initial and trained model on the validation data set (solid — data, dashed —
model).

5 Concluding Remarks

Neuro-fuzzy modeling is a flexible framework in which different paradigms can be combined, providing,
on the one hand, a transparent interface with the designer and, on the other hand, a tool for accurate
nonlinear modeling and control. The rule-based character of neuro-fuzzy models allows for the analysis
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and interpretation of the result. Conventional methods for numerical validation can be complemented by
human expertise, which often involves heuristic knowledge and intuition.

A drawback of neuro-fuzzy modeling is that the current techniques for constructing and tuning fuzzy
models are rather complex, and their use requires specific skills and knowledge. In this sense, it will
probably never become a ‘one-button’, fully automated identification technique. Neuro-fuzzy model-
ing should rather be seen as an interactive method, facilitating the active participation of the user in a
computer-assisted modeling session. This holds, to a certain degree, also for other, more established
methods. Modeling of complex systems will always remain an interactive approach.

Further Reading. More details on the different methods and tools can be found in references [4, 6, 14],
among others. A large number of works are being regularly published in fuzzy systems oriented journals
(IEEE Transactions on Fuzzy Systems, Fuzzy Sets and Systems) and also IEEE Transactions on Systems
Man and Cybernetics.

Software. Various tools were developed for MATLAB.T™ Examples are the Fuzzy Logic Toolbox for
MATLAB (http://www.mathworks.com/products/fuzzylogic) and the Fuzzy Modeling and Identification
Toolbox developed by the author of this chapter (http://Lcewww.et.tudelft.nl/” babuska). These tools
were used to generate the solutions of the examples in this chapter.
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Abstract

This paper presents a brief overview on models from neural computation and their
applicability to problems in time series and signal processing. Much focus is put
on pointing out the relationships between neural networks and more traditional
methods for time series analysis. For more details on some of the advanced models,
the reader is refered to the bibliography.

1 Neural computation

Neural computation in pattern recognition refers to an array of models and
methods originating in the first attempts to formalise information processing
in the brain. A typical neural network, depicted in figure 1, is of the form

out Z Uljf Z wzlajm (1)

or

" Zvl]f J > (wy —af (2)
=1 =1

where mz and x_?“t stand for input and output values, respectively, and
vy; and wy stand for the so-called weights, or degrees of freedom, of the
models. Equation 1 corresponds to the well-known multilayer perceptron
(MLP), when f is a so-called sigmoid function, such as f(z) = 17;,, or
f(x) = tanh(x). Equation 2 corresponds to the rdial basis function network
(RBFN), with f, for instance, being the Gaussian function f(z) = exp(—z?).

The main strength of this type of neural network is that it can approxi-

mate any arbitrary nonlinear function #°“* = F(#**), provided the number
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Figure 1: A generic multilayer neural network for function approximation

k of so-called hidden units is large enough ([Hornik et al. 1989]). Thus they
are called universal function approrimators. Approximation is done by a
weighted superposition of simple nonlinear functions (the sigmoid or the
Gaussian). [Bishop 1995] calls this a semi-parametric estimation of a func-
tion, since on one hand the function F' is parameterised through the weights,
but within the capacity of a given network little has to be assumed about
the shape of the function (similar to non-parametric estimates).

When it comes to pattern recognition, neural networks have little to
do with the brain, despite their original motivation (the weighted sum in
equation 1 and the sigmoid were introduced to roughly mimic the poten-
tial accumulation and firing behavior of biological neurons). Instead, they
are advanced methods for nonlinear exploratory and inductive statistics.
Learning in neural networks (also called training) must be seen in the same
realm. Weights are usually derived during model estimation in a mazimum
likelihood framework, using data from a so-called training set. In its simplest
form (see below), maximizing likelihood amounts to minimizing the summed
squared error E = Y01 (438 — 29"%)2, where 228 is given by the train-
ing samples. Two types of applications are usually distinguished: regression
— i.e. estimating continuous output values — and classification. For more
details on neural networks for pattern recognition, see [Bishop 1995].

Neural computation nowadays encompasses a much wider array of meth-
ods than the original neural networks. They include support vector machines
(for which the lower part of the network is kept fixed through the choice of
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proper kernel functions), independent component analysis for source separa-
tion, Gaussian and other mizture models, and many types of unsupervised
learning methods. What they all have in common is that

e there is a strong focus on nonlinearity
e complexity is approximated by superpositions of simpler building blocks

e thus, focus is on semi-parametric methods

In this paper, we restrict ourselves to universal approximators (such as
the MLP or RBFN), since they are mostly used in time series and signal
processing. An important extension, which is of interest with respect to
time series, are so-called recurrent neural networks. They are characterized
by the introduction of feedback connections from hidden or output units to
the input layer (see figure 7 and 8 below).

2 Time Series Processing

Time series processing is the field of pattern recognition and analysis of
time-varying data. A typical time series problem is given by a vector of
observable measurements at consecutive points in time ¢:

ft,t:O,l,... (3)

If ¥ is indeed a vector, i.e. more than one variable is observed, one
speaks of a multivariate time series: if it is a scalar, the time series is called
univariate. The representation of a time-varying set of variables in equation
3 makes several important assumptions:

e Time is discrete, meaning that the observables are measured only at
discrete points in time. This is different from so-called continuous time
models. In signal processing terms one could speak of ”sampling” the
original process observable into the variable vector ;.

e Points in time for measurement are equi-distant, meaning that there
is a constant time interval between points of measurement.

We restrict our discussion in this paper to this kind of discrete-time
processes, since they are the most common models for practical applica-
tions and are most amenable to analysis with common methods from neural
computation.

The length of the time interval depends on the type of application. Typ-
ical examples of time series are

e sampled acoustic or biosignals (time interval usually milli- or nanosec-

onds)
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e measurments of oxygen saturation in intensive care (typically seconds)

e measurements of process parameters in industry (typically seconds or
minutes)

e temperature measurements in meteorology (typically hours)
e stock or option prices in the financial markets (typically days)
e econometric measures like inflation rate (typically weeks)

e the number of sunspots (years)

This overview of possible applications highlights that there is no principle
difference between what is called signal processing and what is called time
series processing. Formally the methods are the same or very similar, only
the time interval (short for signals, longer for time series) and the focus of
the application usually differs. In signal processing, typical problems are

e Filtering of the signal, i.e. changing its general characteristics

e Source separation, i.e. considering the signal as a mixture of unknown
sources and dividing it into them

Typical problems in the domain of time series processing are

e Forecasting, i.e. estimating the future development of the time series

e Noise modeling, i.e. estimating the stochastic variability of the time
series

Problems common to both domains are

e Pattern recognition, i.e. recognising typical wave forms or subsequences

e Modeling of the underlying process, i.e. finding a mathematical model
that describes the generating process underlying the observable vari-
ables.

In this paper, the focus will be on modeling and forecasting.

Figure 2 depicts two typical time series, which will be used as examples
in this paper — one from finance, namely returns from the daily Austrian
stock exchange index ATX, and one from astronomy, namely the annual
number of observed sunspots since the 18th century (this is a well-known
benchmark time series).

The former is a typical case of a rather noisy time series. It is derived
from differencing the original time series of daily index values by calculating
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Figure 2: Two typical time series: Returns from the Austrian stock exchange
index ATX (left), and the annual number of subspots since 1770 (right).

Tt = Tt — T—1 (4)

Differencing is a proper preprocessing method for many applications in
order to remove trends and some instationarities. In financial applications
this has the direct interpretation as “returns”, i.e. potential wins or losses
one would get when trading the commodity.

The latter is a typical case of a more structured time series. What can be
observed are distinct so-called seasonalities, i.e. recurring periodic patterns
in the time series. For optimal modeling, such seasonalities should also be
removed, e.g. by the following type of differencing:

Yt = Tt — Tt—s (5)

where s is the time interval between seasonal peaks.

3 Forecasting as modeling

In this section we will see that forecasting time series is akin to finding a
model for the generating process. We will restrict ourselves to univariate
time series, keeping in mind that all models can easily be extended to the
mulitvariate case.

I
1950

2000
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3.1 Autoregressive modeling and feedforward networks

Forecasting can be interpreted as making optimal use of past information
to predict the future. Of course, in real-world applications most of the time
we must assume stochasticity, i.e. forecasting can only lead to an estimate
in terms of an expected value or expectation, from which actual observations
will differ due to unpredictable influences, modeled as a noise process.

One of the most common assumptions in time series forecasting is based
on taking past observations as the sole past information available. The
expected value is assumed to a be a function of a fixed, and limited, number
of past observations. The noise process is assumed to be additive. This
leads to the following expression:

= F(2i_1,24-9,...,%p) + €& (6)

For convenience we denote X;, = (xi—1,%¢—2,...,%Tt—p). € is usually
refered to as a random shock. This type of model is generally called an
autoregressive (or AR) model, since it amounts to a general regression of
the observable variable x; over its own past values. p is called the order
of the model and corresponds to the number of past observations used in
the regression. The best forecast after model estimation is to output the
expected value p; = F(X; ).

Using a limited number of past observations corresponds to the common
Markov assumption, which states that all we have to know to predict the
future is the present state of the system, in this case given by the vector of p
past observations. In other words, we assume that we do not have to know
the entire evolution of the time series in order to predict.

It is obvious that equations like 6 can be seen both as a model for fore-
casting (i.e. the best prediction is, after an appropriate estimation of the
parameters describing f, to forecast the expected value p; = @ = F(X;p))
and as a generative model describing the underlying process. Given proper
starting values, equation 6 can be used to generate time series values with
the same characteristics as the original observations, drawing ¢; from the
assumed distribution.

The most commonly used version in time series processing literature is
the class of linear AR models, i.e. where F(z) is a linear function of the
following type:

p
Ty = Eaiﬂ?t—i + € (7)
i=1

The noise process behind ¢; is usually assumed to be identically indepen-
dently distributed (i.i.d.), typically following a Gaussian distribution with
zero mean and a given variance o2, i.e. € ~ N(0,0?).
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The simplest form of a linear AR process is one of order 1 with a1 =1
and € ~ N(0,1):

Tt = Tt—; + €t (8)

This process is called random walk. The expected value, and therefore
the best possible prediction, for z; is the previous value z; 1. In other
words, the process is characterised by the fact that at each time step an
ii.d. disturbance ¢; is added to the observed variable. If a given time series
follows a random walk, the best possible prediction is trivial and leads to
no new information. This process is especially important for domains like
financial time series processing, since it corresponds to the hypothesis of an
efficient financial market. The hypothesis says that at each time step (e.g.
each day) all available information that could be used to beat the market
(i.e. to profit from a non-trivial prediction) has already been absorbed by the
market mechanisms, rendering such profitable forecasting impossible. But
also in other domains it is important to keep the random walk in mind before
applying any more complex prediction method, and always benchmark such
a model against it.

Naturally, more complex time series processes exist, also in the financial
markets, and thus its is now worthwhile to explore how neural computation
can enhance the common linear AR models. From equation 6 the main con-
tribution from neural computation in this context becomes clear: any uni-
versal approximator can potentially be used to model an arbitrary nonlinear
function F(z). An example is shown in figure 3. A multilayer perceptron,
as an example, can be used to model an arbitrary nonlinear autoregressive
process. The way the past p observations z;_; are used is usually called
time window, or sometimes a special form of time delay, in neural network
literature.

3.2 Complex noise models

Nonlinearity is not the only sensible extension to the classical linear AR
model in equation 7. Recently, research has focused on modeling more com-
plex noise processes than the ususal Gaussian distribution with constant
variance o2 ([Schittenkopf et al. 2000, Neuneier et al. 1994, Husmeier 1999]).

[Bishop 1995] has demonstrated that the minimization of the summed
squared error in regression (and, therefore, in autoregression), assuming
linear output activation functions, corresponds to a maximum likelihood
estimation assuming constant Gaussian noise N(0,0%). After estimation
(“learning”), o2 corresponds to the normalised residual quadratic error. This
is illustrated in figure 4. An autoregressive process of order 1 can be visu-
alised by plotting all past observations x;_1 against the present observations
x¢, to be forecast. The noise process determines how the actual observations



Neural Computation and Applications in Time Series and Signal Processing 33

My

Figure 3: A feedforward neural network as a nonlinear autoregressive model.

are distributed around the expected value, given by the, potentially nonlin-
ear, function F'(x;_1).

The illustration in figure 4 makes clear that the noise around the ex-
pected value does not have to be constant, nor does it have to be Gaussian.
Instead, it can be seen as also being dependent on the input, i.e. the past
observations. In formal terms

—

e~ D(0), 9)

where .
0= g(Xtp) (10)

D is an arbitrary parameterised distribution with parameters g and is
called the conditional distribution, since it depends on the past. One could
also speak of a time-dependent noise distribution, since it is permitted to
change at every time step.

Estimation of the models is straight-forward if one sticks to the maximum
likelihood framework suggested above. The model likelihood becomes

L= ﬂd(é’ = g(X,2)) (11)

where N is the number of time series samples in the training set, and d
is the probability density function corresponding to D.

The simplest extension to the standard AR case is sticking to the Gaus-
sian distribution but keeping the variance o2 time-dependent. The likelihood
in this case is
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Figure 4: Plotting x; over x;_1 can visualize the role of the noise process in
autoregression. For any particular input z;_1, the density function of the
noise process ¢; describes the distribution of actual observations correspond-
ing to that input. This makes clear that the noise does not have to constant,
i.e. independent from x;_1, or even Gaussian.

@@ —pu(xyp)?

N [ T
== " (12)
i—1 1/2m0? (Xt’p)

In neural networks terms this means an additional output unit corre-
sponding to the estimate of o2, as depicted in figure 5. In time series lit-
erature this case is known as a heteroskedastic time series, i.e. a time series
with time-dependent variance of its noise process. This is of particular in-
terest in financial time series analysis, since it corresponds to the case of
a time-dependent wvolatility of a commodity. Looking at the ATX return
series, one sees that this is apparently the case. At different points in time
the variance of returns appears to be of different quantity, which can be
modeled by a heteroskedastic process. When building a model for option
pricing, this dependency is of particular interest. But this is not the only
application where heterosketasticity plays an important role. The fact that
knowing about the variance of the noise process permits the estimation of
a reliable confidence interval in which actual observations are expected to
lie highlights the great potential of using such extended models. The noise
process in this case is no longer i.i.d. — the distributions guiding the ran-
dom shocks are still independent, but no longer identical (although still all
Gaussian).
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Figure 5: A simple extension to the feedforward neural network to account
for heteroskedasticity. An additional output for o? is added to account for
its potential nonlinear dependence on X

What has been said about the general (nonlinear) neural network case
is, of course, also true for the linear case. It is worth noting that a particular
type of linear' case to model heteroskedastic time series is the well-known
autoregressive conditional hetereoskedasticity (ARCH) model [Engle 1982],
frequently used in finance. The ARCH model is defined as

0,52 = Zaﬂt{i (13)

where r2_, are past returns of the time series (i.e. the values of the differ-

enced original time series) and o7 is the variance of a Gaussian distribution.

In this case, , i.e. the expected value of the time series 7, is assumed to

be 0 (or modeled separately using an AR model, replacing r; by the residu-

als of that process). Comparing equation 13 to 12 one sees that the neural
network case is a nonlinear generalisation of the ARCH model.

Another extension is to choose a parametric probability density function
other than the Gaussian, in order to model specific characteristics of the
conditional distribution of time series values. In financial time series analy-
sis, it is known that conditional distributions (as well as unconditional ones)
can have a higher kurtosis than a Gaussian. For these purposes, the use of
a student t-distribution is rather commen.

!Strictly speaking, the ARCH model is quadratic in 7;—; but linear in r2_,
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In the spirit of neural computation, an even more general model appears
appropriate in those cases where conditional distributions are unknown but
expected to be non-Gaussian. Any arbitrary density function can be ap-
proximated by a mizture of Gaussians. Consequently, [Bishop 1994] has
suggested the so-called mizture density network (MDN) to model arbitrary
noise distributions in regression. Several authors ([Schittenkopf et al. 2000,
Neuneier et al. 1994, Miazhynskaia et al. 2003]) have demonstrated the vi-
ability to use mixture density networks for arbitrary conditional return dis-
tributions in financial time series analysis.

The definition of a mixture density network is straight-forward given
equation 11, if one inserts the following density function:

k (z—pi(Xgp))?2
- . X _ 2 PaAe,plJ
d(fi,o?,7) = _TilXep) Ak (14)

i=1 /2107 (Xt p)

Introducing arbitrary nonlinearity, this amounts to a neural network with
3k outputs, each one corresponding to one of the parameters of the mixture,
in a straight-forward extension of the network in figure 5. Since there is
no reason to assume that the three sets of paramaters — namely the centers
Wi, the widths UZ-Q and the weights, or priors, m; — have related nonlinear
dependencies on the past, the choice of three different networks is often more
appropriate. Learning (model estimation), as was the case for the simpler
cases above, amounts to maximising the corresponding likelihood function
(minimising the negative log likelihood, respectively). The corresponding
error, or loss, function no longer corresponds to a simple squared error,
however.

The advantage of using mixture density networks in forecasting is that
now arbitrary conditional distributions can be modeled in a semi-parametric
way. By replacing the multilayer network with a single-layer perceptron, lin-
ear versions can be obtained as well. [Miazhynskaia et al. 2003] has shown
that this leads to more reliable confidence intervals for the estimated fore-
casts, which in their case can be used in risk analysis.

One remark, however, is in place. Mixture models — similar to the ap-
proximation of nonlinear functions in a neural network — usually suffer from
an identifiability problem. In other words, parameters resulting from esti-
mations cannot be interpreted by assigning a meaning to them. Similarly, it
can no longer be guaranteed that it is really “pure” noise that is modeled.
This is exemplified in figure 6, depicting an MDN estimate for the sunspot
time series?. An autoregressive mixture density network of order 1 is used to
model the distributions x; (plotted against x;_1). It is obvious that an AR
model of order 1 is insufficient to model the structure behind the time series.

2Note that the original, although normalised, time series is used, without removing
seasonalities
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Figure 6: The resulting estimations from training a mixture density network
with the subspot data. Two lines of error bars are drawn depicting the
centers and widths of the two Gaussians of the mixture, dependent on the
input x;—1. Especially in the middle range, the resulting mixture density is
bimodal reflecting the fact that in an AR(1) view, for each input the next
value is about as likely to be higher as it is to be lower. The two additional
lines depict the priors 7; for each Gaussian in the mixture.

Given a time series value around 0, the probability of the series to go up is
about equal to it going down. For reliable forecasts of the expected value, an
order of at least 2 would be necessary. The resulting model estimate in figure
6 describes this as a bimodal distribution for each x; 1 around the value 0.
This apparently complex noise process thus captures some of the structure
in the data, which would more appropriately be captured by a second-order
AR process. Choosing too general a model, therefore, no longer permits the
strict distinction between structure in the data and noise. Therefore such
models should be used with care.

3.3 Moving average models and recurrent networks

Another common class of models uses a different kind of past information
for forecasting. Instead of past time series values, the expectation for xz;
is assumed to depend on past random shocks €;_;. In the linear case this
amounts to:
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Figure 7: A recurrent Jordan network as an instantiation of a nonlinear
moving average model.

q
Ty = — Z biEtfi (15)
=0

For convenience, we denote E;, = (€—1,€—2,...€—4). By letting the
index run from 0 to ¢, the current random shock is included in this model
(bp = 1). This type of model is called a moving average (MA) process of
order ¢g. It has been shown that any finite AR process corresponds to an
MA process of infinite order, and vice versa. Still, a finite MA process, or
even the combination of AR and MA processes (so-called ARMA models)
can be viable models for a given time series.

In analogy to above, neural networks can be used to generalise linear
MA process to arbitrary nonlinear versions. The question is, however, what
input to use to the network, if past random shocks are not really known.
[Connor et al. 1992] and [Dorfiner 1996] have demonstrated that using past
estimates, i.e. past outputs of the network, as inputs, in the limit of the
model converging to the true model, amounts to being equivalent to using
past random shocks as inputs. If the network outputs the correct expected
value for x;, £y = ¢, then ¢ 1 = ;1 — &; 1. In other words, Z; 1 im-
plicitly contains the information about the past random shock and can thus
be used as an input to the network. Using past estimates amounts to a
recurrent connection of the network’s output to the input (see figure 7), i.e.
a recurrent network usually called a Jordan network (see [Dorfiner 1996] for
the theoretical equivalence to an MA process in the limit).

We can therefore conclude: Recurrent Jordan networks are instantiations
of nonlinear moving average processes. Little is known, however, about
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convergence properties of this type of model (i.e. whether and how quickly
they converge toward the true model, which is a prerequisite for being an
MA process).

In this context, it is worth looking at another common time series model
and its nonlinear generalisation. For heteroskedastic time series, a property
known as wvolatility clustering is often observed. This means that a high vari-
ance (high volatility) is often followed by several time steps of high variance.
For instance, in the financial markets large shocks tend to prevail for some
time. To model this property, the GARCH model (generalised autoregres-
sive conditional heteroskedasticity) was introduced ([Bollerslev 1986]):

P P
of = airi i+ Y bio; (16)
i=1 i=1

Couched in neural networks terms, as the nonlinear ARCH above, this
again means using past estimates (this time of o2) as input to the network.
Therefore, a nonlinear GARCH model can be obtained by introducing the re-
current mizture density network [Schittenkopf et al. 2000, Tino et al. 2001].

3.4 State space models and recurrent networks

Another common method for time series processing are so-called state space
models [Chatfield 1989]. Here the assumption is that the current state (in
terms of the Markov assumption) is not given by the past observations di-
rectly but is hidden. The observations thus depend on a state vector §:

Ty = Cgt + € (17)

where C is a transformation matrix. The time-dependent state vector is
usually modeled by a (multivariate) linear AR(1) process:

gt = Agt—l + Bﬁt (18)

where A and B are matrices, and 7} is a vectorial noise process, similar to
€; above.

If we further assume that the states are also dependent on the past time
series observations (an assumption, which is common, for instance, in signal
processing — see [Ho et al. 1991)), and neglect the additional noise term Bij;:

gt = Agt—l + DXt,p (19)

then we basically obtain an equation describing a recurrent neural network
type, known as Elman network (after [Elman 1990]), depicted in figure 8.
The Elman network is an MLP with an additional input layer, called the
state layer, receiving as feedback a copy of the activations from the hidden
layer at the previous time step. If we use this network type for forecasting,
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Figure 8: The Elman recurrent network as an instantiation of the state-space
model.

and equate the activation vector of the hidden layer with §, the only differ-
ence to equation 19 is the fact that in an MLP a sigmoid activation function
is applied to the input of each hidden unit:

5 = (A5 1+ DX,,) (20)

where f is a sigmoid function. In other words, the transformation is not
linear but the application of a logistic regressor to the input vectors. This
leads to a restriction of the state vectors to vectors within a unit cube, with
non-linear distortions towards the edges of the cube. Note, however, that
this is a very restricted non-linear transformation function and does not
represent the general form of non-linear state space models (see below).

Like above, the strong relationship to classical time series processing
can be exploited to introduce “new” learning algorithms. For instance, in
[Williams 1992] the Kalman algorithm, developed for the original state space
model (Kalman filter) is applied to general recurrent neural networks.

As hinted upon above, a general non-linear version of the state space
model is conceivable, as well. By replacing the linear transformation in
equations 17 and 18 by an arbitrary non-linear function, one obtains
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Figure 9: An extension of the “Elman” network as realization of a non-linear
state-space model

5 = Fy(5i1) (22)

Like in the previous sections on non-linear ARMA models, these non-linear
functions F} and F5 could be modeled by an MLP or RBFN. The resulting
network is depicted in figure 9. An example of the application of such a
network is [Kamiho et al. 1993].

It has frequently been noted in literature that the state vector § ap-
parently implicitly contains information of the entire past of the time series.
Therefore, recurrent networks seemingly are not limited to a fixed time hori-
zon, as are ARMA models. In practice, however, this is not true. The influ-
ence of past information vanishes exponentially, leading to a model that ac-
tually only takes recent information into account. A similar observation ap-
plies to model estimation. The gradient in minimizing the negative log like-
lihood, which must be “propagated back” via the recurrent connections, also
vanishes exponentially ([Bengio et al. 1994]), rendering training difficult in
many cases. Thus there is evidence that in practical applications, recurrent
networks can have a disadvantage against feedforward networks, although
potentially equally powerful (see, for instance, [Hallas & Dorffner 1998]).

4 Discrete valued and symbolic time series

So far, we have discussed time series with continous values z;. In many
applications, however, observations can only take one of a small finite set
of values. Examples are binary measurements or very coarsely quantised
signal values. A special case are symbolic time series, where values do not
have an order (or the order is neglected) and can be considered as symbols
from a given finite alphabet, i.e. z; € {s;}, where s; are arbitrary symbols.
Examples are letters in a text, amino acids in a gene string, or continuous
time series that have been quantised into a small number of intervals (e.g.
‘up’ and 'down’ for stock price returns).
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Forecasting can again be viewed as estimating expected values based
on past information. The main difference is that probability densities are
replaced by discrete probabilities for the symbols in the alphabet. The
equivalent to an AR model would be looking at the string of past p symbols
and finding estimates for each symbol to follow the string. This conditional
probability distribution can be denoted as P(x¢|z;—12t—2 ... Z¢—p), where the
condition part denotes the concatenation of the past p symbols.

This type of model is called a Markov chain (or Markov model) of order
p. The probabilities can easily be estimated as the empirical probabilities
(frequencies) that each symbol in the alphabet follows the particular given
string. However, this type of model easily runs into problems for higher
orders, since long substrings can be rather rare in the entire time series,
rendering the estimation of empirical probabilities impossible.

Therefore, several authors ([Ron et al. 1996, Tino & Dorffner 2001]) have
proposed so-called variable-length Markov models which only consider con-
texts (i.e. substrings) that occur frequently enough in the time series. The
approach by [Tino & Dorfiner 2001], the so-called fractal prediction machine
(FPM), not only has a very intuitive geometric interpretation, but also
bears an important similarity to another class of recurrent neural network.
Basically, each potential substring is mapped onto a point in a logy(n)-
dimensional space (where n is the size of the alphabet), following a simple
mapping borrowed from iterated function systems ([Barnsley 1988]). This
is illustrated in figure 10. When this is done for every substring of length
p, the resulting distribution of points has the following interesting property:
Strings that have a large common suffix (i.e. have a large common ending
substring) are mapped onto points that are close together in space. There-
fore, clusters of points correspond to substrings that frequently occur in the
time series. Using a simple clustering algorithm, this can be used for iden-
tifying substrings, for which a reliable probability estimate for subsequent
symbols can be found.

The result can be viewed as a stochastic automaton, each state of which
forms an equivalence class of substrings. For each such state, probabilities
can be estimated by calculating the relative frequencies of symbols that
follow. This view leads to an analogy to state space models and recurrent
neural networks, as was exemplified above for continuous-valued time series.
As shown in [Tino & Dorflner 1998], the mapping of the FPM corresponds
to the recurrent part of a second-order neural network, while the feedforward
part would take the role of estimating probabilities for each state.

5 Signal filtering

As stated above, there is no principled formal distinction between what is
usually termed time series processing and signal processing. The main differ-
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Figure 10: The basic mechanism of a fractal prediction machine to map
substrings of symbolic sequences onto points in space: Each symbol in the
alphabet is assigned a corner in the logy(n)-dimensional space for an al-
phabet of size n. For a given work window, all symbols in the resulting
substring are processed in order, starting with the most recent one. As in
an iterative function system, an affine mapping of the entire space onto one
of the n subspaces (“corners”) is performed, one particular mapping for each
symbol. By tracing the center point of the space through all the mappings,
the end point reached corresponds to the entire substring. The interesting
property is that substrings with long common suffixes are mapped to points
that are close in space.
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ence lies in how problems are phrased and not in the chosen methodology.
A common problem for signal processing is finding appropriate filters to
describe or generate signals.

Digital filters can be depicted in a way that is pratically identical to
autoregressive and moving average models. The former case, for instance,
corresponds to the so-called finite impulse response filters. Therefore, there
is a strong correspondance between forecasting and filtering models.

Autoregressive models can also be shown to be equivalent to the well
known spectral analysis of signals. In other words, parameters of a linear
AR model of a given order can be used as signal descriptors in a similar
way as a spectrum derived from Fourier analysis. This gives rise to ap-
plications in recognizing typical signal patterns (waveforms) or to classify
signals. A typical example is the classification of electroencephalographic
(EEG) recordings of a person during sleep into one of several sleep stages
(see, e.g., [Sykacek et al. 2002]).

Another important function of AR filtering is that of denoising. Accord-
ing to the formulation in equation 6, the model divides the signal into signal
content (the predictable component) and a (usually white) noise process.
The residuals after model estimation thus corresponds to noise that can be
removed from the original signal.

From what we have seen in time series processing, it becomes clear that
neural networks lend themselves for nonlinear extensions of classical linear
filters ([Haykin 1986]). However, they should be seen as means to an end (i.e.
more optimal denoising) but due to the identifiability problem mentioned
above they cannot be used in the same way to describe signal characteristics
in a parametric manner.

6 Practical considerations

We have seen that neural networks are powerful models that can be used
in various time series and signal processing applications. Straight-forward
extensions of simple mathematical principles have lead to advanced models
desribing time series and signals in an intricate way (e.g. with respect to the
noise process). Power in modeling, however, always comes with a price that
has to be paid through extra care and sound validation techniques, without
which neural networks are easily mis-applied.
In particular,

e Semiparametric nonlinear techniques need a sensible model selection
and validation strategy. In general pattern recognition, usually resam-
pling strategies such as n-fold cross-validation are applied to this avail
— meaning that multiple runs with different training and independent
validation sets must be performed. In time series processing it can be
shown that, in order to be truly independent, validation sets should
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always be observations that occur after the training set. This leads
to a sliding window technique that should be applied when validating
process models in a maximum likelihood framework (see, for instance,
[Schittenkopf et al. 2000]).

e Models with a large number of degrees of freedom (e.g. weights in a
neural network) need large number of training samples. Stationarity
of the time series becomes an important issue here. In other words,
training sets for time series processing can often not be extended to
arbitrary size, since the main characteristics of the time series or signal
might change. Thus there often is an inherent limit to the complexity
of the models that can reliably be estimated.

e It is not a priori clear for a given time series whether nonlinearity in-
deed plays a large role. In the financial markets, for instance, there
is growing evidence that arbitrary nonlinearity in a model cannot sig-
nificantly improve forecasting performance. Therefore, any complex
neural network model should always be carefully validated against its
linear or otherwise more parametric counterparts.

e Identifiability, as mentioned several times in this paper, might not be
a problem for many engineering solutions (e.g. finding good forecasts).
But for many applications (e.g. filtering) it does play a role and of-
ten leaves neural networks useless (or at least, difficult to deal with),
despite their potential power in modeling.

7 Summary and conclusions

The purpose of this paper was to give a short overview of the potential of
neural computation methods in modeling time-varying data. Much emphasis
was put on showing that neural networks are embedded in more traditional
time series theory and have the potential to provide powerful alternatives
and extensions, especially with respect to nonlinearity. Time series and
signal processing, however, is a field with a long traditon that has not waited
for neural computation to provide viable models. Linear ARMA models,
Markov chains, linear filters, etc. are rather powerful in themselves and must
therefore always be considered before blindly applying a neural network.

Many important topics have not been addressed, such as deterministic
chaos in nonlinear processes, the relationship between recurrent networks
and stochastic automata, etc. Also, a large part of neural computation,
from support vector machines, wavelet networks to independent component
analysis could not be dealt with. Nevertheless, the hope is that the reader
could get a glimpse of the fascinating potentials of advanced models to
desribe time-varying data, which is prevalent in a great many of practical
applications.
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Abstract. Recursion theory on the reals, the analog counterpart of recursive function theory, is an
approach to continuous-time computation inspired in the models of Classical Physics. In recursion
theory on the reals, the discrete operations of standard recursion theory are replaced by operations
on continuous functions, such as composition and various forms of differential equations as indefinite
integrals, linear differential equations, and more general Cauchy problems. We define classes of
real recursive functions, in a manner similar to the standard recursion theory, and we study their
complexity. We consider, namely, the structural and the computational complexity of those classes.
As a result, we prove both upper and lower bounds for several classes of real recursive functions,
which lie inside the primitive recursive functions and, therefore, can be characterized in terms of
standard computational complexity.

Key words: Continuous-time computation, differential equations, recursion theory, computational complexity.

1 Introduction

Recursive function theory provides the standard notion of computable function [Cut80,0di89]. Moreover,
many time and space complexity classes have recursive characterizations [Clo99]. As far as we know,
Moore [Mo096] was the first to extend recursion theory to real valued functions. We will explore this
and show that all main concepts in recursion theory like basic functions, operators, function algebras,
or functionals, are indeed extendable in a natural way to real valued functions. In this paper, we define
recursive classes of real valued functions analogously to the classical approach in recursion theory and we
study the complexity of those classes. In recursion theory over the reals, the operations typically include
composition of functions, and solutions of several forms of differential equations. On one hand, we look
at the structural properties of various algebras of real functions, i.e., we explore intrinsic properties of
classes of real recursive functions such as closure under iteration, bounded sums or bounded products.
We investigate links between analytical and computational properties of real recursive functions. For
instance, we show that a departure from analyticity to C°° gives closure under iteration, a fundamental
property of discrete functions. On the other hand, we use standard computational complexity theory
to establish upper and lower bounds on those algebras. We establish connections between subclasses
of real recursive functions, which range from the functions computable in linear space to the primitive
recursive functions, and subclasses of the recursive functions closed under various forms of integration.
We consider, in particular, indefinite integrals, linear differential equations, and more general Cauchy
problems. Finally, we describe some directions of work that suggest that the theory of real recursive
functions might be fruitful in addressing open problems in computational complexity.

* A similar version of this paper was presented at UMC’02 [Cam02]. This paper describes join work with Félix
Costa (I.S.T./Universidade Técnica de Lisboa) and Cris Moore (Santa Fe Institute and University of New
Mexico).
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2 Recursive functions over R

Moore [Moo96] proposed a theory of recursive functions on the reals, which is defined in analogy with
classical recursion theory. A function algebra

[Bl, Bz, eeey 01, 02, ],

which we also call a computational class, is the smallest set containing basic functions {B1, Bs,...} and
closed under certain operations {O1, s, ...}, which take one or more functions in the class and create
new ones.

Although function algebras have been defined in the context of recursion theory on the integers, they
are equally suitable to define classes of real valued recursive functions. As a matter of fact, if the basic
functions in a function algebra are real functions and the operators map real functions into real functions,
then the function algebra is a set of real functions. Furthermore, if the basic functions have a certain
property (e.g. continuity or differentiability) which is preserved by the operators, then every function in
the class will have that same property on its domain of definition. In recursion theory on the reals we
consider operations such as the following.

COMP (Composition). Given functions fi,..., f, of arity n and g of arity p, then define h such that
h(z) = g(f1(2), .., f ().

f (S-integration). Given functions fi,..., fi, of arity n, and g1, ..., gm of arity n + 1 + m, if there is a
unique set of functions hy,. .., h,,, such that

h(e,0) = f(2) "
8yh($,y) = g(wayah(way))a Vy SRS Sa

on an interval I containing 0, where S C I is a countable set of isolated points, and h is continuous
for all y € I, then h = h; is defined.

p (Zero-finding). Given f of arity n + 1, then define h such that

_ def [y~ =sup{y e Ry : f(z,y) =0}, if —y~ <yt
h@) = wyf(.y) = {y+ =inf{y € Ry : f(z,y) =0}, if —y~ >y*

whenever it is well-defined.

To match the definition in [M0096], derivatives of functions can have singularities (we denote the set
of singularities by S). The definition above allows the derivative of h to be undefined on the singularities,
as long as the solution is unique and continuous on the whole domain. To illustrate the definition of the
operator [, let’s look at the following example.

Ezample 1. (,/7) Suppose that the constant 1 and the function g(y,z) = 1/2z are defined. Then, the
solution of

1
dyh = % and h(0) =1. (2)
is defined on I = [—1,1]. Indeed, the function h(y) = y/y + 1 is the unique solution of Equation (2) on
[—1,1]. The set of singularities is S = {—1}, so 9,h(y) doesn’t have to be defined on y = —1.

Clearly, the operations above are intended as a continuous analog of operators in classical recursion
theory, replacing primitive recursion and zero-finding on N with S-integration and zero-finding on R.
Composition is a suitable operation for real valued functions and it is therefore unchanged. Then, the
class of real recursive functions is defined in [Moo96] as:

Definition 1. The real recursive functions are [0,1,U; COMP, [, p],
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where 0 and 1 are simply constant functions, and U denotes the set of projections U*(z1,...,2,) = z;.
We also define real recursive constants as:

Definition 2. A constant a is said to be computable if there is an unary real recursive function f such

that f(0) = a.

Then, if a constant a is computable, then one can also define, with composition and zero, a constant
unary function g as g(z) = f(0(z)) = a, for all z. As we will see below, some irrational constants like e
or 7 are real recursive, and therefore we can define a function whose value is precisely e or «. This is in
contrast to the definition of real numbers computable by Turing machines, where an irrational number
is said to be computable if there is a sequence of rationals that converge to it effectively.

If p is not used at all we get Mo, the “primitive real recursive functions”, i.e., [0,1, —1,U; COMP, [].
These include the differentially algebraic functions, as well as constants such as e and w. However, M,
also includes functions with discontinuous derivatives like || = V2.

To prevent discontinuous derivatives, and to make our model more physically realistic, we may require
that functions defined by integration only be defined on the largest interval containing 0 on which their
derivatives are continuous. This corresponds to the physical requirement of bounded energy in an analog
device. We define this in a manner similar to S-integration, but with the additional requirement of the
continuity of the derivative:

T (SC'-integration). Given functions fi,..., fm of arity n, and g1, ..., gm of arity n 4+ 1 + m, if there is
a unique set of functions hy, ..., hny, such that

h(@,0) = f(), ‘)
ayh(m7y) = g(mayah(mvy))a Vy S Sa

on an interval I containing 0, where S C I is a countable set of isolated points, and h and dyh are
both continuous for all y € I , then h = hy is defined.

Then, restricting [ to I, we define the class [0,1 — 1,U; COMP,T]. Tt is clear that all functions in
[0,1 —1,U; COMP,I] are continuously differentiable on their domains. (A question that arises naturally
is if they are of class C*°.) Therefore, f(y) = /y + 1 mentioned in Example 1 cannot be defined on the

interval [—1,1] in D anymore, since its derivative is not continuous on that interval.

Ezample 2. () In D we can define a non-analytic function 6, such that 6.,(t) = exp(—1/t), when
t >0, and 0,(t) = 0, when ¢ < 0. First consider the unique solution of the initial condition problem

2= z and 2z(0) =exp(—1) (4)

with a singularity at ¢ = —1. This is 2(t) = 0 if t < -1, and 2(¢t) = exp(—tﬁ) if z > —1. Then
0o (t) = 2(t — 1). The function 6, can be though as a C™ version of the Heaviside function 6, defined
by 6(z) =0 when 2 < 0 and 6(z) = 1 when z > 0.

We can restrict the integration operation even more, if we don’t allow singularities for the derivatives in
the domain of existence of the solution. Formally, we say that a functions is defined by proper integration
if it is defined with the following operator:

I (Proper integration). Given functions fi, ..., f, of arity n, and g1,. .., gm of arity n + 1 4+ m, if there
is a unique set of continuous functions hq, ..., h.;,, such that

h(@,0) = f(2), 5
6yh(:15,y) = g(myy) h(may))a Vy € I7

on an interval I containing 0, then h = h; is defined.
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This proper form of integration preserves analyticity [Arn96]. Moreover, if the functions f1,..., fm
and gy, ..,gm are of class C*, then h is also of class C* on its domain of existence (cf. [Har82, 5.4.1]).
Since constants and projections are analytic and composition and integration preserve analyticity, then:

Proposition 1. All functions in [0,1,—1,U; COMP,I] are analytic on their domains.

Similarly, one proves that functions of one variable in [0, 1, —1,U; COMP, I] are precisely the differen-
tially algebraic functions [M0096,GC]. This means that the Gamma function, for instance, is not in the
class [0,1,—1,U; COMP, I]. Next, we give some examples of functions that do belong to that class.

Proposition 2. The functions +, —, x, exp, exp™, defined as expl®(z) = 1 and exp!"*!(z) =
exp(expl™ (z)) for any integer n, sin, cos, 1/z, log, and arctan belong to [0,1,—1,U; COMP,T].

To further explore the theory of real recursive functions, we restrict the integration operator to solving
time-varying linear differential equations, i.e.,

LI Linear integration. Given fi,..., f, of arity n and g11, - . . , gmm of arity n+1, then define the function
h = hy of arity n+ 1, where h = (hq,. .., hp,) satisfies the equations h(z,0) = f(z) and dyh(z,y) =
9(z,y)h(z,y).

As in classical recursion theory, we define new classes by restricting some operations but adding to
the class certain basic functions which are needed for technical reasons. A typical example is the integer
function called cut-off subtraction, defined by z~y = x —y if z > y, and x~y = 0 otherwise. In some
real recursive classes we include, instead, a basic function we denote by 6 and is defined by 6 (z) = 0
if <0, and O (z) = 2* if £ > 0. Clearly, p is an extension to the reals of the Heaviside function, and
6,(z) is an extension to the reals of z 0. In general, 8 is of class C*¥~*.

For example, we explore the class [0,1,—1, 7,6, U; COMP, L] for some fixed k. Since, unlike solving
more general differential equations, linear integration can only produce total functions, then:

Proposition 3. For any integer k > 0, if f € [0,1,—1,7,60;,U; COMP, LI, then f is defined everywhere
and belongs to class C*1L,

We will also consider an even more restricted form of integration, which is just the indefinite integral.
Formally, this is defined by:

INT Indefinite integral. Given fy,..., fp, of arity n and g1, ..., g of arity n+ 1, then define the function
h = hy of arity n+ 1, where h = (hq,. .., hp,) satisfies the equations h(z,0) = f(z) and dyh(x,y) =
9(z,y).

3 Structural complexity

In this section, we ask questions about intrinsic properties of classes of real recursive functions such
as closure under certain operations. We will see that some intriguing connections exist among closure
properties and analytical properties of the classes we consider.

Closure under iteration is a basic operation in recursion theory. If a function f is computable, so is
F(z,t) = fl1(z), the ’th iterate of f on x. We ask whether these analog classes are closed under iteration,
in the sense that if f is in the class, then so is some F(x,¢) that equals /() when ¢ is restricted to the
natural numbers.!

Proposition 4. [0,1,—1,U; COMP, 1] is closed under iteration.

! In [CMCO00] we answer this question for Shannon’s General Purpose Analog Computer. For connections between
real recursion theory and Shannon’s model see [GC].



The complexity of real recursive functions 53

Proof. (Sketch) Let’s denote [0,1,—1,U; COMP,I] bu D. Given f, we can define in D the differential
equation
(Boo(cosTt) + Ooo(— cosmt)) Qpyr = —(y1 — F(y2)) oo (sin 2mrt)

(B0 (sinmt) + Ooo(— sinmt)) Oyya = —(y2 — Y1) boo (— sin 2t)

with initial condition y;(z,0) = ya(z,0) = z, where 6, is the function defined in Example 2. We claim
that the solution satisfies y; (z,t) = fl(z), for all integer ¢ > 0. On the interval [0, 1], y5(z,t) = 0 because
0o (— sin 27t) = 0. Therefore, y, remains constant with value z, and f(y2) = f(z). The solution for y;
on [0, 1] is then given by

(6)

exp(sin(127rt) - L'OSIW) ?]i = _(yl - f(x))a

which we rewrite as ey] = —(y1 — f(z))- Note that € — 0" when ¢ — 1/2. Integrating the equation above
we obtain

y = 1(@) = esp(—1),

where the right hand side goes to 0 when ¢t approaches 1/2. Therefore, yi(z,1/2) = f(z). A similar
argument for y» on [4,1] shows that y2(z,1) = y1(z,1) = f(z), and so on for y; and y» on subsequent
intervals. The set of singularities of Equation (6) is {n/2,n € N}. O

However, if we replace SC'-integration by proper integration, which preserves analyticity, then the
resulting class is no longer closed under iteration. More precisely,

Proposition 5. [0,1,—1,U; COMP,I] is not closed under iteration.

Proof. (Sketch) We denote [0,1,—1,U; COMP,I] by D. Let’s suppose that D is closed under iteration.
Since exp € D, then there is a function F in D such that F(z,t) = expld(z) for all t € N and all 2 € R.
Therefore, F' has a finite description in D with a certain fixed number of uses of the I operation. However,
it is known that functions of one variable in D are differentially algebraic [Moo96], that is, they satisfy a
polynomial differential equation of finite order. So, for any fixed ¢, F' is differentially algebraic in . But,
from a result of Babakhanian [Bab73], we know that expl!! satisfies no non-trivial polynomial differential
equation of order less than ¢. This means that the number of integrations that are necessary to define
exp! has to grow with ¢, which creates a contradiction. |

Since [0, 1, —1, U; COMP, I] contains non-analytic functions while all functions in [0, 1, -1, U; COMP, I]
are analytic, one could ask if there is a connexion between those two structural properties of real recursive
classes. We believe that closure under iteration and analyticity are related in the following sense:

Conjecture 1. Any non trivial real recursive class which is closed under iteration must contain non-
analytic functions.

As a matter of fact, even if it is known that the transition function of a Turing machine can be
encapsulated in an analytic function [KM99,M0098], no analytic form of an iteration function is known.

Next we consider restricted operations as bounded sums and bounded products and we ask which real
recursive classes are closed under those operations. We say that an analog class is closed under bounded
sums (resp. products) if given any f in the class, there is some g also in the class that equals ) _, f(z,n)
(resp- [1,,«; f(x,m)) when ¢ is restricted to the natural numbers.

Let’s see how to define bounded sums in a real recursive class. Not surprisingly, we find that this is
related to indefinite integrals. We first define a step function F' which matches f on the integers, and
whose values are constant on the interval [j, j + 1/2] for integer j. F can be defined as F(t) = f(s(t)),
where s is a continuous step function that matches the identity over the integers. This can be defined with
the indefinite integral s(0) = 0 and s'(z) = c;0;(—sin27z).2 Then s(t) = 4, and F(t) = f(s(t)) = f(4),
whenever ¢ € [j,j + 1/2] for integer j. The bounded sum of f is then given by g, such that g(0) = 0 and
g'(t) = ¢ F(t) Oy (sin 2nt). Then g(t) = >, f(2) whenever t € [n—1,n—1/2]. So, we can define bounded
sums with the constant 7, a periodic function like sin, 6, and the operation of indefinite integrals. More
precisely,

2 The constant ¢y, is a rational or a rational multiplied by 7.
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Proposition 6. For all k € N, [0,1,—1,7,60%,sin, U; COMP,INT] is closed under bounded sums. More-
over, any real recursive class which is closed under composition and indefinite integrals and contains the
functions 0,1, —1,7,0y,sin, U is closed under bounded sums.

If a class is closed under bounded products and it contains, for instance, the identity function, then it
has to contain functions that grow faster than polynomials. For instance, the class
[0,1,—1,7, 8y, sin,U; COMP,INT] cannot be closed under bounded products. What can we say if the
analog class is closed under linear integration, instead of just indefinite integrals? We conjecture that the
answer is still negative, since we believe that the simulation of bounded products would have to rely on a
technique similar to Proposition 4 using synchronized clock functions, although we have no proof of this.

Let’s then consider the following weaker property. We say that a class is closed under bounded products
in a weak sense if, given any f in the class which has integer values for integer arguments (i.e., f is an
extension to the reals of some f : RxN — N), there is a g in the class such that g(z,¢) = [],,., f(z,n) when
t is restricted to the natural numbers. Then, in the presence of some appropriate non-analytic function
like 6y, proper integration and even linear integration are sufficient to simulate bounded products. In
particular,

Proposition 7. For all k € N, [0,1, -1, 7,80, U; COMP,LI] is closed under bounded products in o weak
sense.

Proof. (Sketch) Let f be a function on N and g be a the function on N defined from f by bounded product.
We show that if f has an extension to the reals in [0,1,—1, 7,8, U; COMP, LI] then g does also. First,
set g, = [1 j<n Ji- We can approximate the iteration g;11 = g;f; using synchronized clock functions as
in proof of Proposition 4. However, since we only allow linear integration, the simulated functions cannot
coincide exactly with the bounded product. Nevertheless, we can define a sufficiently close approximation
because f and g have bounded growth (we can show that any function in [0,1, —1,m, 6, U; COMP, L]] is
bounded by the iterated exponential expl™ for some m).
Let’s define a two-component function y(7,t) where y; (7,0) = y2(7,0) =1,

Oy = (y2F () — y1) ek (sin 2t) B(7) (7)
Ory2 = (Y1 — y2) ckOk(— sin27t) B(1)

B(7) is an increasing function of 7, F' is defined as f o s as in the proof of Proposition 6. We can
show that if 3 grows fast enough (roughly as fast as expl™), then by setting 7 = n we can make the
approximation error |y; (n,n) — gn| as small as we like. Since g has integer values, the accumulated error
on [0, n] resulting from this approximation can be removed with a suitable continuous step function that
matches the identity over integers. Note that the Equation (7) is linear in y; and ys.

We illustrate this construction in Figure 1. We approximate the bounded product of the identity
function, i.e. the factorial (n — 1)! = [];_,, j. We numerically integrated Equation (7) using a standard
package.

We can also show that a class is closed under the iteration of extensions to the reals of integer valued
functions, as long as it is closed under proper integration, and it contains the non-analytic function 6y, or
0. We call this property closure under iteration in a weak sense. For instance, it can be shown, using a
technique similar to [Bra95], that

Proposition 8. [0,1, —1,0,U; COMP,]I] is closed under iteration in a weak sense.

4 Computational complexity

In this section we explore connections among real recursive classes and standard recursive classes. Since
we are interested in classes below the primitive recursive functions, we can characterize them in terms
of standard space or time complexity, and consider the Turing machine as the underlying computational
model. This approach differs from others, namely BSS-machines [BSS89] or information-based complexity
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Fig. 1. A numerical integration of Equation (7), where f is a £ function such that f(0) = 1 and f(z) = z for
z > 1. Here, k = 2. We obtain an approximation of an extension to the reals of the factorial function. In this
example, where we chose a small 7 < 4, the approximation is just sufficient to remove the error with ¢ and obtain

exactly [[,.sn = 4! = ¢(y1(5)).

[TW98], since it focus on effective computability and complexity. There are two main reasons to this.
First, the Turing machine model allows us to represent the concept of Cauchy sequences and, therefore,
supports a very natural theory of computable analysis. Second, we aim to use the theory of real recursive
functions to address problems in standard computational complexity. This would be difficult to achieve
with an intrinsically analog theory like the BSS-machines over R.

To compare the computational complexity of real recursive classes and standard recursive classes we
have to set some conventions. On one hand, we follow a straightforward approach to associate a class of
integer functions to a real recursive class. We simply consider the discretization of a real recursive class,
i.e., the subset of functions with integer values for integer arguments. More precisely,

Definition 3. Given a real recursive class C, Fn(C) = {f : N* — N s.t. f has an extension to the reals
in C}.

If Fn(C) contains a certain complexity class C’, this means that C has at least the computational power
of C', i.e., we can consider C' as a lower bound for C.

On the other hand, we consider the computational complexity of real functions. We use the notion
of [Ko91], which is equivalent to the one proposed by Grzegorczyk [Grz55], and whose underlying com-
putational model is the function-oracle Turing machine. Intuitively, the time (resp. space) complexity of
f is the number of moves (resp. the amount of tape) required by a function-oracle Turing machine to
approximate the value of f(z) within an error bound 27", as a function of the input = and the precision
of the approximation 7.

Let’s briefly recall what a function-oracle Turing machine is (we give an informal description: details
can be found in [HU79,K091]). For any z in the domain of f, the oracle is a computable sequence ¢ such
that for all n € N, |¢(n) — z| < 27". The machine is a Turing machine equiped with an additional query
tape, and two additional states. When the machine enters in the query state, it replaces the current string
s in the query tape by the string ¢(s), where ¢ is the oracle, moves the head to the first cell of the query
tape, and switches to the answer state. This is done in one step of the computation. We say that the
time (resp. space) complexity of f on its domain is bounded by a function b if there is a function-oracle
Turing machine which, for any z in the domain of f and an oracle ¢ that converges to z, computes an
approximation of f(z) with precision 27" in a number of steps (resp. amount of tape) bounded by b(z,n).
Then, for space complexity we define:

Definition 4. Given a set of functions S, JRSPACE(S) = {f : R® — R s.t. the space complezity of f is
bounded by some function in S}.

Therefore, if a real recursive class C is contained in FRSPACE(S), then S can be considered a space
complexity upper bound for C.
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Suppose that a function f can be successively approximated within an error 27" in a certain amount
of space. Then, if f is integer, it just has to be approximated to an error less than 1/2 to know its value
exactly. Therefore, if a real recursive class C is computable in space bounded in S, then the discretization
of C is also computable in space bounded in S. Formally,

Proposition 9. Let C be a real recursive class. If C C JrSPACE(S), then Fn(C) C FSPACE(S).

Given the two conventions established in Definition 3 and Definition 4, we will show upper and lower
bounds on some real recursive classes. We can use the closure properties described in the last section
to compare discretizations of real recursive classes with standard recursive classes. For instance, since
[0,1,—1,U; COMP,T] contains extensions of the zero function, successor, projections, and the cut-off
function, and is closed under and composition and iteration, then we have the following upper bound for

the primitive recursive functions (see [CMCO00]):
Proposition 10. PR C Fx([0,1,-1,U; COMP,I)).

Note that the same inductive proof works for [0,1,—1,60;,U;COMP,I]. Therefore,
PR C A([0,1,-1,6;,U; COMP,T]).

The elementary functions &, which are closed under bounded sums and products, are a well-known
class in recursion theory. All elementary functions are computable in elementary time or space, i.e., in
time or space bounded by a tower of exponentials. As a matter of fact, the elementary functions are the
smallest known class closed under time or space complexity [0di00]. From Propositions 6 and 7 it follows
that

Proposition 11. For all k >0, £ C F([0,1, —1,6;,U; COMP, LI)).

In addition, all functions in [0,1,—1,6,U; COMP,LI] are computable in elementary space (or time)
[CMCO02]. Formally,

Proposition 12. For all k > 1, [0,1,—1,6;,U; COMP,LI] C 7RSPACE(E).
Combining this with Proposition 9 and Proposition 11, we conclude that:
Proposition 13. For all k > 1, £ = F([0,1, -1, 60, U; COMP, LI]).

which gives an analog characterization of the elementary functions. It is interesting that linear integration
alone gives extensions to the reals of all elementary functions, since these are all the functions that can
be computed by any practically conceivable digital device. Notice that the above results on £ can be
generalized to the levels & = £3, £4, ... of the Grzegorczyk hierarchy if we include in our model a non
linear differential operator that generates total functions [CMC02].

In recursion theory, several forms of bounded recursion are widely used, namely to obtain charac-
terization of low complexity classes [Clo99]. In bounded recursion, an a priori bound is imposed on the
function to be defined with the recursion scheme. Similarly, we can consider the following operator on
real functions:

BI (Bounded integration). Given functions fi,..., fm of arity n, g1,...,gm of arity n + 1+ m, and b
of arity n + 1, if (h1,...,hs) is the unique function that satisfies the equations h(z,y) = f(z),
Oyh(xz,y) = g(z,y,h(z,y)), and ||h(z,y)|| < b(z,y) on R"*!, then h = hy of arity n + 1 is defined.

Let’s consider the class [0,1,—1,8y, x,U; COMP, BI].® All its functions are defined everywhere since
this is true for the basic functions and its operators preserve that property. The a priori bound on the
integration operation strongly restricts this class. All functions in the class [0,1,—1, 0y, x, U; COMP, BI]
and its derivatives (for k > 1) are bounded by polynomials. Moreover, all functions computable in linear
space have extensions in that class:

3 Given an appropriate bound, the binary product h(z,y) = 2y could be easily defined with bounded integration:
h(z,0) = 0, and 8y h(z, y) = UL (x,y) = x. However, no other basic function grows as fast as the binary product,
so this needs to be included explicitly in the class.
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Proposition 14. For all k > 0, FLINSPACE C F([0,1, -1, 6y, x,U; COMP, BI)).

Proof. (Sketch) Let’s denote [0, 1, —1, 8y, x,U; COMP, BI] by By. Ritchie [Rit63] proved that the set of
integer functions computable in linear space is the function algebra [0, S, U, x; COMP, BREC], usually
denoted by &2, where BREC is bounded recursion. Tt is easy to verify that B, contains extensions to
the reals of zero, successor, projections, and binary product. Since By is closed under composition, we
just have to verify that By is closed under bounded recursion in a weak sense. But since all functions
in By have polynomials bounds, then this can be done with techniques similar to [Bra95] using bounded
integration instead of integration. Details can be found in [CamO01]. O

The Ritchie hierarchy [Rit63] is one of the first attempts to classify recursive functions in terms
of computational complexity. The Ritchie classes, which range from FLINSPACE to the elementary
functions, are the sets of functions computable in space bounded by a tower of exponentials of fixed height.
Next we describe a hierarchy of real recursive classes where the first level is [0,1, -1, 6, x, U; COMP, BI]
(see above), and the n-th level is defined by allowing n nested applications of the linear integration
operator. In each level of the hierarchy, indefinite integrals are freely used. As in the Ritchie hierarchy,
composition is restricted. In [Rit63], the arguments of each recursive function are of two possible types:
free and multiplicative. If f is multiplicative in the argument z, then f grows at most polynomially with
z. The restricted form of composition forbids composition on two free arguments. For instance, if 2% +y
is free in # and multiplicative in y, then the composition z = 2% + y with x(t) = 2¢, which is free in ¢, is
not allowed while the composition z = 2% + y with y(t) = 2¢ is. We denote this restricted composition by
RCOMP and define the following hierarchy of real recursive classes (see [Cam01] for details):

Definition 5. (The hierarchy S,) For all n > 0, S, = [Bo;RCOMP,INT,n - LI], where
By = [0,1,-1,0;, x,U; COMP, BI] for any fized integer k > 2, and where the notation n - LI means
that the operator LI can be nested up to n times.

A few remarks are in order. First, all the arguments of a function h defined with linear integration,
from any functions f, g of appropriate arities, are free. For instance, we are not allowed to compose the
exponential function with itself, since its argument is free. Second, since solutions of linear differential
equations y'(t) = g(t)y(t) are always bounded by an exponential in g and ¢, and at most n nested
applications of linear integration are allowed, then all functions in S,, have bounds of the form exp!™ (p(z)),
where p is a polynomial. Even if the composition exp(exp(z)) is not permitted, towers of exponentials
expl™ = expo...oexp can be defined in S,:

Ezample 8. (exp™ op € S,). Let ui(x,y) = explil(p(x,y)) for i = 1,...,n, where p is a polynomial.
Then, the functions u; are defined by the set of linear differential equations

Oyur = uy - Oyp OylUn = Up * Up—1 - UL - Oyp

with appropriate initial conditions. Thus u,, can be defined with up to n nested applications of LI and,
therefore, expl™ op € S,,.

Next we relate the S, hierarchy to the exponential space hierarchy (details of the proofs can be found
in [CamO01]). Consider the following set of bounding functions:

2 = {b, : N = N s.t. k> 0,b,(m) = 2™ (km) for all m}.
On one hand, S, has the following upper bound:
Proposition 15. For alln >0, S, C FgxSPACE(2["+1).

Proof. (Sketch) All functions in S,,, and its first and second derivatives, are bounded by 2[" op, where p is
some polynomial. This follows from the fact that all basic functions in S,, have such property (this is why
we restrict k in the Definition 5) and the operators of S,, preserve it. Then, using numerical techniques
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we show how to approximate a function defined by composition or bounded integration in So = Bo.
Given the bounds on the functions in Sy and their first derivative, composition can be computed in
a straightforward manner, without increasing the space bounds. The major difficulty has to do with
integration. We have to use an exponential amount of space to achieve a sufficiently good approximation.
In fact, the standard techniques for numerical integration (Euler’s method) require a number of steps
which is exponential in the bounds on the derivatives of the functions we want to approximate [Hen62].
Since the bounds for functions in Sy are polynomial, the required number of steps N in the numerical
integration is exponential. Thus all functions in Sy can be approximated in exponential space. Finally,
we follow the same approach for other levels of the S, hierarchy, where restricted composition replaces
composition, and linear integration replaces bounded integration. O

On the other hand, all functions computable in space bounded by 2(*~1] have extensions in S,,. Formally,
Proposition 16. For all n > 1, FSPACE(2(*~1) € Ay(S,).

Proof. (Sketch) As in [Rit63], we show that FSPACE(2["~1]) has a recursive definition, using restricted
composition and a restricted form of bounded recursion. The following step is to define this restricted form
of bounded recursion with bounded sums. Let’s suppose that f € FSPACE(2["1) is defined by bounded
recursion. Then, we can encode the finite sequence {f(1),..., f(n)} as an integer (using for instance prime
factorization), and replace bounded recursion by a bounded quantification over those encodings.* We use
the fact that bounded quantifiers can be defined with bounded sums and cut-off subtraction. However,
the bound on the encoding of the sequence {f(1),..., f(n)} is exponential on the bound on f. Therefore,
we need an additional level of exponentials to replace bounded recursion by bounded sums. Finally, we
know from Proposition 6 that S, is closed under bounded sums, and contains cut-off subtraction as well.

O

Unfortunately, we were not able to eliminate bounded integration from the definition of By, neither
were we able to show that FSPACE(2[M) is precisely F(S,). We believe those issues are related with
the open problem:

e,
where £2 = [0,5,U, ~; COMP,BSUM] is defined with bounded sums and is known as Skolem’s lower
elementary functions.> We consider instead the following problem:

(0,1, 1,8, +,U; COMP, INT]) £ F([0,1, —1, 6%, x, U; COMP, BI]).

At first sight, it seems that the equality above is false, since bounded integration is more general than
indefinite integrals. However, the problem only concerns the discretizations of the analog classes. One
could try to use results of the theory of differential equations to show directly that bounded integration
is reducible, up to a certain error, to a finite sequence of indefinite integrals. It is known that solutions of
general differential equations, y'(t) = f(¢,y) and y(0) = yo, can be uniformly approximated by sequences
of integrals, given some broad conditions that guarantee existence and uniqueness [Arn96,Har82]. How-
ever, that result, which is based on Picard’s successive approximations, requires a sequence of integrals
whose length increases with ¢. Since all functions in [0,1, —1, 0, x, U; COMP, BI] and its derivatives are
polynomially bounded, it might be possible to find a finite approximation for bounded integration, which
would be sufficient to approximate functions which range on the integers. Notice that the standard nu-
merical techniques (Euler’s method) to approximate the solution of y'(t) = f(t,y) and y(0) = yo require
a number of approximation steps which are exponential in the bounds on the derivative, while Picard’s
method only needs a polynomially long sequence of indefinite integrals, if the bounds on the derivatives
are polynomial.

If the equality above is true, and if Fy([0,1, —1, 8, +,U; COMP,INT])CL2, then we would obtain a
chain of inclusions that would show that £2 = £2. These remarks above establish a connection between
the theory of real recursive functions and computational complexity that would be interesting to explore.

4 We follow a known technique in recursion theory (see [Ros84]).
5 Recall that £2 = [0, S, U, x; COMP, BREC] and is precisely FLINSPACE. Notice that £? C £
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5 Final remarks

We described some results on real recursive functions and we listed some open problems and directions for
further research. We believe that recursion theory over the reals is not only an interesting area of research
by itself, but it is also related to other areas such as computational complexity, numerical analysis or
dynamical systems.

We mentioned possible links to computational complexity in the last section. It would be interesting
to look at real recursive classes related to low time complexity classes. For instance, it is unlikely that the
class in Proposition 6 is contained in 7R TIME(P), where P is the set of polynomials, since if 7R TIME(P)
is closed under INT, then #P = FPTIME [Ko91]. Therefore, schemes of integration other than the ones
we described in this paper have to be explored to find analogues to FPTIME or other low time complexity
classes.

We would like to clarify the connections between real recursive functions and dynamical systems.
It is known that the unary functions in [0,1,—1,U; COMP,]I] are precisely the solutions of equations
y' = p(y, ), where p is a polynomial [GC]. We conjecture that [0,1, —1,U; COMP, LI] corresponds to the
family of dynamical systems y' = f(y,x), where each f; is linear and depends at most on ,y1,..., ;.
Given such canonical representations of classes of real recursive functions, one could investigate their
dynamical properties.
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Abstract

Evolutionary algorithms, a broad class of optimisation algorithms inspired in the process of nat-
ural evolution, are introduced, and an artificial model of evolution is given which encompasses most
established evolutionary algorithm variants. This model is then reinterpreted in the light of multiob-
jective optimisation, and a link to decision analysis is established.

1 Introduction

Nature has been a major source of inspiration and metaphors for scientific and technical development.
It is not difficult to identify the links between the ear and the microphone, the eye and the camera, the
bat and the sonar system, the brain and artificial neural networks, and so forth. Similarly, the process of
natural evolution has inspired a growing amount of research in artificial systems, only made possible by
the increasing availability of modern computing power.

Evolutionary optimisation is a term used to describe a broad class of optimisation algorithms inspired
in the process of natural evolution. Such evolutionary algorithms (EAs) have been applied with vari-
ous degrees of success to many difficult optimisation problems in engineering and operations research,
among several other areas.

Many practical optimisation problems involve, not a single objective, but a number of possibly com-
peting objectives, or criteria. Although different objectives may usually be combined by means of ag-
gregating functions to produce a single cost measure, it is not always easy, or even appropriate, to define
such a function. In the absence of information about the relative importance of individual objectives,
the optimisation problem may still be approached, but will generally admit no unique solution. Rather,
a number of optimal solutions may exist, in the sense that each such solution may be improved with
respect to some criteria only at the expense of degradation in other criteria.

In this paper, evolutionary optimisation is introduced in the more general context of evolutionary
processes, after reviewing some relevant problem solving concepts. Then, an artificial model of evolution
is given which encompasses most established EA variants. Finally, that model is reinterpreted so as to
accommodate multiple criteria, and a link to decision analysis is established.

2 Problem solving

Evolutionary algorithms may be defined as a broad class of computational methods inspired in the pro-
cess of natural evolution, which are aimed at solving difficult problems. Before considering EAs in more
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detail, it is worth reviewing some concepts related to problem solving.

2.1 What is a problem?

Definition 1 (Abstract problem) An abstract problem Q is a binary relation on a set I of problem in-
stances and a set S of problem solutions [1].

Considering the Travelling Salesman Problem (TSP) as an example, an instance consists of a set of cities
and of the distances between them. A solution, on the other hand, consists of a sequence of cities, which
describes the order in which they should be visited. Note that this view of a problem is very general, and
that one is often interested in more restricted classes of problems.

Definition 2 (Decision problem) An abstract problem is called a decision problem if it has a yes/no
solution, i.e. S ={0,1} [1].

Definition 3 (Optimisation problem) An abstract problem is called an optimisation problem if it con-
sists of finding minimal or maximal elements [2] of a set S under a given preorder <.

Returning to the previous example, the TSP is an optimisation problem, as it consists of finding a tour of
minimum length. Here, the preorder < on S, the set of all possible tours, may be defined by referring to
the tour length as a cost function f of each city sequence x € S:

Vxp,xp €8, x1 2 & f(x1) < f(x)

Note also that, given a TSP, the problem of whether or not a tour exists which is shorter than a given
length (or than a given tour) is a decision problem. One may attempt to solve such a decision problem
by considering a candidate solution to the original optimisation problem, x € S, and verifying whether its
cost f(x) is indeed less than or equal to the given bound. If so, the decision problem is know to have an
affirmative solution. Otherwise, it remains unsolved.

In general, optimisation problems can be recast as decision problems in the way just described.

2.2 Encodings

The difficulty of a problem is inherently related to the time needed to solve it, regardless of its type. One
important issue in discussing problem difficulty is that, to be solved on a computer, an abstract problem
instance must be represented in some way.

Definition 4 (Encoding) An encoding of a set S of abstract objects is a mapping e from S to the set of
binary strings [1].

Definition 5 (Concrete problem) A problem is called a concrete problem if its instance set I is the set
of binary strings [1].

It is important to note that the time taken by a computer to solve a concrete problem my depend heavily
on the underlying encoding. Thus, complexity theory restricts itself to concrete problems, and concrete
decision problems in particular. Although complexity theory will not be discussed further here, one
should realise that if an optimisation problem can be solved quickly, then so can any associated decision
problem. Equivalently, if a decision problem is hard to solve, the related optimisation problem will also
be hard.

As it will be discussed later, encodings may play a very important role in evolutionary optimisation.
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2.3 Evolutionary algorithms as approximation algorithms

When a given optimisation problem cannot be solved exactly in an acceptable amount of time, it may
still be possible to find approximate solutions, e.g. by verifying given candidate solutions against the
best solution known to date. Indeed, EAs act as optimisers by

1. generating candidate solutions
2. evaluating them

3. using the information thus gained to generate new, possibly better, candidate solutions

Together with methods such as Tabu Search, Simulated Annealing, Stochastic Local Search, and Ant
Colony Optimisation, among others, EAs integrate a class of approximation techniques which has be-
come known as Metaheuristics.

3 Evolutionary processes

The process of natural evolution has inspired a growing amount of research in artificial systems. The
resulting class of computational methods which simulate various aspects of natural evolution became
known as Evolutionary Algorithms, having attracted interest from biology, chemistry, economics, engin-
eering and mathematics. The area emerged in the late 1960s in Europe [3, 4] and the US [5, 6], motivated
by a desire to advance the state of the art in optimisation, adaptation, and machine learning. It became
popular in the 1990s due, to a great extent, to the publication of Goldberg’s book [7], and has continued
to grow since then.

As an optimisation process, evolution has many interesting features. In particular, individuals are
selected based on how well they function, and not based on the mechanisms which account for their
functionality. Thus, they tolerate a limited understanding of how existing solutions may be improved,
allowing problems previously considered intractable to be approached.

Neo-Darwinism is currently the most widely accepted paradigm of natural evolutionary [8]. It is
based on the four essential processes of reproduction, mutation, competition and selection. Reproduction
consists of individuals being capable of generating offspring similar to themselves (either sexually or
asexually), whereas mutation accounts for replication errors during reproduction. Competition arises as
the number of individuals in a population grows in a resource-limited environment, and selection consists
of only certain individuals, through competition, actually being able to reproduce. Since offspring tend
to be similar to their parents, selection effectively shapes populations as they evolve.

3.1 Population

In the neo-Darwinian paradigm, individuals can be understood as a duality. The genetic programme, or
genotype, consists of an encoded representation of the individual at the chromosome level. Individual
traits, on the other hand, are expressed by executing, or decoding, the genotype. Expressed traits are
also called the phenotype, and usually vary as a complex non-linear function of the genotype, and of its
interaction with the environment. In particular, there are usually no one-gene one-trait relationships. A
single gene may simultaneously affect many phenotypic traits (pleiotropy) and a single phenotypic trait
may be affected by the interaction of several genes (polygeny).

In artificial evolutionary systems, however, the encodings used are usually simple and concise, and
seldom implement pleiotropy. Polygeny usually occurs, though, especially due to the lower cardinality
of the alphabets tend to be used to encode the genotype.
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3.2 Selection

Individuals are selected based on their expressed traits. Selection determines the survival of the best
individuals and, consequently, their opportunity to generate offspring. Individuals which produce more
offspring are considered fitzer than others. Indeed, in natural systems, fitness is expressed: individuals are
fit because they generate offspring. On the contrary, in artificial evolutionary systems, fitness is usually
assigned to individuals based on some criterion, e.g., the cost function which defines an optimisation
problem. This is perhaps one of the fundamental differences between natural evolution and evolutionary
optimisation. The reproductive advantage of the best individual in a population with respect to the
population’s average is known as selective pressure.

Selection may be implemented in several ways. In generational selection, individuals reproduce all
at the same time, and offspring replace the whole of the parent population, never competing with it. This
is akin to the reproductive cycle of some insects, for example, where parents die before offspring are
born. In an alternative model of selection, parents may be selected to reproduce at any time, and the
offspring they generate are inserted in the parent population and forced to compete with it (incremental
selection).

Another aspect of selection is whether it is stochastic, as it is common in natural systems, or determ-
inistic, as in animal breeding, for example. One interesting property of (stochastic) selection, which can
be observed in Nature as well as on the computer, is known as genetic drift, and consists of the tendency
finite populations exhibit to evolve towards a single type of solution even when equivalent alternatives
exist [9]. On the computer, genetic drift may be controlled in some circumstances by implementing niche
induction mechanisms [10] such as fitness sharing and crowding.

3.3 Heredity
Evolution does not arise out of selection alone. One fundamental aspect of evolution is that individual
replication is not perfect, i.e., individuals are not exactly like their parents but differ from them to a
certain extent. As reproduction occurs at the genotypic level, the basic assumptions are that:

1. Offspring are similar to their parents at the genotypic level (heredity).

2. Good individuals have similar genotypes.
On the computer, as in Nature, heredity may assume several forms:
Mutation Random alteration of only small parts of individual genotypes

Recombination Production of offspring from the genotypic material of two (or possibly more) parents

Learning Incorporation of knowledge acquired at higher levels into the an individual’s representation.
This may be seen as Lamarckian evolution, memetic evolution, or even as “genetic engineering”.

Despite the fact that there can be no evolution without variation, variation must be controlled. The basic
idea is that selection must be able to recover from any deleterious variation. The amount of variation
beyond which evolution no longer occurs is known as the error threshold [11].
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Evolutionary Algorithm:
1. Generate initial population (genotypes)
2. While not happy do
(a
b
c
d

e

(f

decode individuals (phenotypes)

~~

evaluate individuals (cost)

—~

assign reproductive ability (fitness)

select individuals based on fitness

—_~

produce offspring (genotypes)

)
)
)
)
)
)

insert offspring into the population

Figure 1: An artificial model of evolution.

3.4 Viability

Finally, it is not sufficient either for good individuals to produce many offspring, as their offspring must
be fit as well for evolution to successfully occur. Whether or not this is the case depends on the optim-
isation problem itself, on the genotypic encoding and on the variation mechanisms which manipulate it.
Electing a good combination of encoding and variation operators for a given problem continues to be
perhaps the greatest challenge in evolutionary optimiser design.

4 An artificial model of evolution

The various concepts introduced above can now be combined to produce a general artificial model of
evolution, as depicted in Figure 1.

In an evolutionary optimisation setting, the initial population is typically drawn at random from a
suitable encoding of the solution set S. Encodings commonly found in the literature include binary
strings, n-ary strings, permutations, graphs (and especially trees), and combinations of these, depending
on the problem considered.

Individual genotypes are then decoded to yield candidate solutions in (a subset of) the solution space
S. Encodings are usually such that each genotype typically decodes into a unique phenotype, although it
is possible to consider encodings where this is not always the case [12].

4.1 Evaluation and fitness assignment

Once candidate solutions in S have been obtained, individuals are evaluated based on the preorder which
defines the optimisation problem or on a cost function, if one is given. Provided that the preorder <
is such that all individuals are comparable (i.e., Va,b € S, a <X bV b = a), evaluation may consist of no
more than sorting the population and noting individual ranks.[13]). Alternatively, the cost function may
be evaluated at each individual. This is the usual single-objective optimisation case.

Evaluated solutions are then assigned a fitness value. Fitness may be assigned based on rank (rank-
ing [13]) or as a function of cost function values (scaling). Scaling is the more traditional approach. Raw
fitness is calculated as a monotonic function of the cost, offset by a certain amount, and then linearly
scaled. The first difficulty arises at this stage: whilst scaling aims to preserve the relative performance
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between different individuals, both the initial transformation and the subsequent offsetting can signific-
antly affect the fitness ultimately assigned to each individual.

With scaling, an individual much stronger than all the others may be assigned a very large fitness
and, through selection, rapidly dominate the population. Conversely, the advantage of the best individual
over the rest of the population will be minimal if most individuals perform more or less equally well, and
the search will degenerate into an aimless walk.

Ranking addresses these difficulties by eliminating any sensitivity to the scale in which the problem
is formulated. Since the best individual in the population is always assigned the same fitness, would-
be “super” individuals can never reproduce excessively. Similarly, when all individuals perform almost
equally well, the best individual is still unequivocally preferred to the rest (but this may be inappropriate
if the objective function is contaminated with noise).

Rank-based fitness assignment is characterised by the choice of rank-to-fitness mapping, which is
usually chosen to be linear or exponential. For a population of size N, ranking the best individual zero
and the worst N — 1, and representing rank by r and fitness by ¢(r), these mappings can be written as
follows:

Linear

2r
N-1’

O(r) =s—(s—1)-

where s, 1 < s <2, is the fitness desired for the best individual. The upper bound on s arises
because fitness must be non-negative for all individuals, while maintaining Z?’: ’0' (i)=N.

Exponential

(l)(l" ) = pr 8,
where s > 1 is the fitness desired for the best individual, and p is such that Zﬁ\; Bl p/ = N/s. Since
there is no upper-bound on s, the exponential mapping is somewhat more flexible than the linear.

For 1 < s <2, the main difference between linear and exponential rank-based fitness assignment is
that the exponential mapping does not penalise the worst individuals as much, at the expense of assigning
middle individuals fitness slightly less than average. As a consequence, exponential assignment generally
contributes to a more diverse search.

4.2 Selection

A number of parents are selected from the population through a sampling mechanism, which may be
deterministic or stochastic. A well-established sampling procedure is known as Stochastic Universal
Sampling [14], and may be visualised as the result of spinning a roulette wheel with slots proportional
in width to the fitness of the individuals in the population, and with multiple, equally spaced pointers
(Figure 2). Once it stops, the number of pointers over each sector must be an integer, either immediately
above or immediately below the corresponding desired number of offspring, guaranteeing minimum
deviations from the desired fitness value. The replicates obtained in this way should be shuffled before
the algorithm proceeds with recombination.
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Figure 2: Stochastic Universal Sampling

4.3 Recombination and mutation

Offspring are produced from the parents selected, by manipulating them at the genotypic level. Parents
may be recombined and/or mutated to generate offspring. A typical recombination operator for binary
and other string chromosomes is single-point crossover, whereby two individuals exchange a portion
(right or left) of their chromosomes to produce offspring, as illustrated in Figure 3. The crossover point
is selected at random. Other recombination operators commonly used with binary strings are:

Double-point crossover Two crossover points are selected instead of one [15].
Uniform crossover Each bit is exchanged independently, with a given probability [16].

Shuffle crossover The chromosomes are shuffled before single-point crossover is applied, and con-
sequently deshuffled [17].

Reduced-surrogate crossover The non-identical bits in the chromosomes are first identified, and one
of the above crossover types applied to the smaller string thus defined [15]. This has the effect of
guaranteeing the production of offspring different from their parents.

As for bit mutation (see Figure 4), it is most commonly implemented by independently flipping each bit
in the chromosome with a given probability.

4.4 Reinsertion
Finally, the offspring produced are inserted in the population, replacing:
e random members of the parental population,
o the oldest members of the parental population,
o their own parents, or
o the least fit members of the parental population.
Actual reinsertion may occur

e unconditionally,
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Figure 3: Single point crossover
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Figure 4: Bit mutation

e only if the offspring are fitter than the individuals they are to replace, or

e probabilistically, depending on whether or not the offspring are stronger than the individuals they
are to replace.

Note that, by denying some individuals the possibility of reproducing further, reinsertion has ultimately
the same effect as selection. The overall selective pressure imposed on the population is not only determ-
ined by the fitness assignment strategy, but is also affected by when and how reinsertion is performed.
In particular, always replacing the least fit individuals in the population strongly increases the effective,
as opposed to assigned, fitness differential between stronger and weaker individuals in the population.
This is because, in addition to being less likely to be selected, weaker individuals tend to die earlier,
thus participating in less selection trials than stronger ones. Reinsertion strategies which guarantee the
preservation of the best individual are known as elitist.

5 Multiobjective optimisation

Practical problems are often characterised by several non-commensurable and often competing measures
of performance, or objectives. The multiobjective optimisation problem may be stated as the problem of
simultaneously minimising the n components f;, i = 1,...,n, of a vector function f(x), with x € S, where

f(x) = (f1(x); .-, fu(x))-

The problem usually has no unique, perfect (or Utopian) solution, but may admit a set of non-dominated,
alternative solutions, known as the Pareto-optimal set [18]. Assuming a minimisation problem, domin-
ance is defined as follows:

Definition 6 (Pareto dominance) A real vector w = (uy,...,uy) is said to dominate v = (vy,...,v,) if
and only if w is partially less than v (wp< v), i.e.,

Vie{l,...,n}, u;<v; A Jie{l,...,n}: u; <v;.

Definition 7 (Pareto optimality) A solution x, € S is said to be Pareto-optimal if and only if there is no
xy € S for which v =f(xy) = (vi,...,v,) dominates u = f(x,) = (u1,...,u,).
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Figure 5: A general multiobjective evolutionary optimiser.

Pareto-optimal solutions are also called efficient, non-dominated, and non-inferior solutions. The cor-
responding objective vectors are simply called non-dominated. The set of all non-dominated vectors is
known as the non-dominated set, or the trade-off surface, of the problem.

Alternatively, the multiobjective optimisation problem may be defined by specifying the preorder in
Definition 3 as:

Vxp,xp €8, x1 2x & filx) < filx) Vie{l,...,n}.

This greatly simplifies establishing a formulation of multiobjective evolutionary algorithms.

5.1 Multiobjective evolutionary algorithms

Definition 3 is general enough that it accommodates both single and multiobjective optimisation prob-
lems. On the other hand, the artificial model of evolution presented in Figure 1 was based simply on this
definition. It is therefore clear that the main difference between a single-objective and a multiobjective
evolutionary algorithm must lie in the individual evaluation step. In particular, some elements of S may
now be incomparable and assigning a cost value to each candidate solution becomes a decision analysis
problem.

A general multiobjective evolutionary optimiser may also be seen as the result of the interaction
between between a Decision Maker (DM) and an Evolutionary Algorithm (see Figure 5). The EA gen-
erates a new set of candidate solutions according to the cost assigned to the current set of candidates
by the DM. New candidate solutions, as they are evaluated provide new trade-off information which the
DM can use to refine the current preferences. The EA sees the effect of any changes in the decision
process, which may or may not result from taking recently acquired information into account, as an en-
vironmental change. The DM block represents any cost assignment strategy, which may range from that
of an intelligent Decision Maker to a simple aggregating function approach.

Aggregating function approaches to multiobjective evolutionary optimisation, although useful and
very common in the literature, do convert multiobjective optimisation problems into a single-objective
problems, raising no particular issues as far as the EA formulation is concerned. A number of alternative
approaches, known as population-based approaches [19], typically assign different objectives to differ-
ent subsets of the population, so as to promote the emergence of good compromise solutions. Schaffer’s
pioneering work on Vector Evaluated Genetic Algorithms [20] falls in this category. A third class of ap-
proaches is based directly on the definition of Pareto-dominance, and includes most modern evolutionary
multiobjective optimisers.



Evolutionary Multi-Criterion Optimisation 70

S

Figure 6: Pareto ranking

5.2 Pareto-based approaches

In the absence of information concerning the relative importance of the objectives, an individual can only
be said to perform better than another if it dominates it. Therefore, non-dominated individuals should
be assigned the same cost [7], e.g., zero. Deciding about the cost of dominated individuals is a more
subjective matter. One alternative consists of assigning individuals a cost proportional to how many
other individuals in the population dominate them (Figure 6), which also guarantees that non-dominated
individuals are treated as desired. This is essentially the Pareto-ranking scheme proposed in [21].

Another popular Pareto-ranking scheme [7], also known as non-dominated sorting [22], consists of
removing the non-dominated individuals (still ranked zero, for ease of comparison) from contention,
finding the non-dominated individuals in the remaining population and assigning them rank 1, and so
forth, until the whole population is ranked.

Both approaches guarantee that non-dominated individuals are all ranked best, and that all individuals
are assigned better ranks than those individuals they dominate. However, the first ranking scheme does
appear to be easier to interpret and analyse mathematically [23].

5.3 Incorporating preference information

When goal and/or priority information is available for the objectives, it may become possible to dis-
criminate between some non-dominated solutions. For example, if degradation in objective components
which meet their goals does not go beyond the goal boundaries, and results in the improvement of object-
ive components which do not yet satisfy the corresponding goals, then it should be accepted. Similarly,
in a dual priority setup [23], it is only important to improve on high priority objectives (i.e., constraints)
until the corresponding goals are met, after which improvement should be sought for the remaining
objectives. These considerations have been formalised in terms of a transitive relational operator (prefer-
ability), based on Pareto-dominance, but which selectively excludes objectives according to their priority
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and to whether or not they meet their goals.

For simplicity, only one level of priority will be considered here. The full, multiple priority version
of the preferability operator is described in detail in [23]. Consider two objective vectors u and v and a
goal vector g. Also, let the smile £ and the frown * denote the components of u which meet their goals
and those which do not, respectively. Assuming minimisation, one can write

u"<g= A u >g,
where the inequalities apply componentwise. This is equivalent to
Vl'Gxu/,u,'Sg,' AN ViE’l'l\,u,'>g,'

where u; and g; represent the components of u and g, respectively. Then, u is said to be preferable to v
given g if and only if

(u’g\ p< VE\) Y {(u’“\ = V’“\) A [(vL £ gi) Y% (u& p< v&)} }

where a p< b denotes a dominates b. In other words, u will be preferable to v if and only if one of the
following is true:

1. The violating components of u dominate the corresponding components of v.

2. The violating components of u are equal to the corresponding components of v, but v violates at
least another goal.

3. The violating components of u are equal to the corresponding components of v, but u dominates v
as a whole.

Like Pareto-dominance, this relation can be used to rank the individuals in a population by one of the
methods described above.

6 Concluding remarks

In this paper, evolutionary optimisation was introduced, and an artificial model of evolution was given
which encompasses most established EA variants. That model was then reinterpreted so as to accom-
modate multiple criteria optimisation problems. In the same light, it was shown how existing preferences
may be combined with the notion of Pareto dominance by defining an alternative relation.

Much more could be said about evolutionary multi-criterion optimisation. Modern evolutionary
multi-criterion optimisers have introduced additional mechanisms in the evolutionary process, includ-
ing niche induction techniques, for maintaining diversity, and solution archiving, for preserving good
solutions in the population. As a result, it has become increasingly less clear which algorithm works
best in general, and increasing attention is being paid to experimental methodology for studying the
performance of multiobjective optimisers.

In the mean time, existing evolutionary multi-criterion optimisers have been used in a wide range
of industrial applications, making this one of the most promising research areas in evolutionary com-
puting. The reader is referred to [24] for a comprehensive text book on Evolutionary Multiobjective
Optimisation, and to [25, 26] for recent developments.
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Abstract. The grand problem of artificial intelligence (AI) as we under-
stand it is to build a learning rational agent that optimally uses its lim-
ited computational (and other) resources to maximize expected reward
in arbitrary, possibly unknown, real world environments. This problem
is not solved yet, mainly due to the very issue of resource limitation.
Still, the new millennium has brought very general, optimal algorithms
for prediction, reinforcement learning and decision making in absence of
resource limitations, and also practically feasible, optimal algorithms for
search, incremental problem solving, and inductive inference based on
Occam’s razor. Here we review them, and point out what’s missing.

1 Introduction

Remarkably, there is a theoretically optimal way of making predictions based on
observations, rooted in the early work of Solomonoff and Kolmogorov [59, 27].
The approach reflects basic principles of Occam’s razor: simple explanations of
data are preferable to complex ones.

The theory of inductive inference quantifies what simplicity really means.
Given certain very broad computability assumptions, it provides techniques for
making optimally reliable statements about future events, given the past.

Once there is an optimal, formally describable way of predicting the future,
we should be able to construct a machine that continually computes and executes
action sequences that maximize expected or predicted reward, thus solving an
ancient goal of AT research.

For many decades, however, Al researchers have not paid a lot of attention to
the theory of inductive inference. Why not? There is another reason besides the
fact that most of them have traditionally ignored theoretical computer science:
the theory has been perceived as being associated with excessive computational
costs. In fact, its most general statements refer to methods that are optimal
(in a certain asymptotic sense) but incomputable. So researchers in machine
learning and artificial intelligence have often resorted to alternative methods
that lack a strong theoretical foundation but at least seem feasible in certain
limited contexts. For example, since the early attempts at building a “General
Problem Solver” [35,42] much work has been done to develop mostly heuristic

* Based on Technical Report IDSIA-04-08 [55], January 2008, to appear in B. Goertzel
and C. Pennachin, eds.: Artificial General Intelligence, 2003.
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machine learning algorithms that solve new problems based on experience with
previous problems. Many pointers to learning by chunking, learning by macros,
hierarchical learning, learning by analogy, etc. can be found in Mitchell’s book
[33] and Kaelbling’s survey [26].

Recent years, however, have brought substantial progress in the field of com-
putable and feasible variants of optimal algorithms for prediction, search, induc-
tive inference, problem solving, decision making, and reinforcement learning in
very general environments. In what follows, I will focus on results predominantly
from my own lab at TDSTA.

Sections 3, 4, 7 relate Occam’s razor and the notion of simplicity to the
shortest algorithms for computing computable objects, and will concentrate on
recent asymptotic optimality results for universal learning machines with infinite
computational power, essentially ignoring issues of practical feasibility. With
respect to the grand problem of AI (see abstract), what is missing here is to
adapt such results to the case of limited resources, if possible.

Section 5 will then focus on computable (as opposed to noncomputable)
optimal predictors based on our recent non-traditional simplicity measure which
is mot based on the shortest but on the fastest way of describing objects, and
Section 6 will use this measure to derive non-traditional predictions concerning
the future of our universe.

Sections 8, 9, 10 will finally address quite pragmatic issues and “true” time-
optimality: given a problem and only so much limited computation time, what
is the best way of spending it on evaluating solution candidates? In particular,
Section 9 will present an optimally fast way of incrementally solving each task in
a problem sequence, given a probability distribution (the bias) on programs com-
puting solution candidates. Bias shifts are computed by program prefixes that
modify the distribution on their suffixes by reusing successful code for previous
tasks (stored in non-modifiable memory). No tested program gets more runtime
than its probability times the total search time. In illustrative experiments, ours
becomes the first general system to learn a universal solver for arbitrary n disk
Towers of Hanoi tasks (minimal solution size 2" —1). It demonstrates the advan-
tages of incremental learning by profiting from previously solved, simpler tasks
involving samples of a simple context free language. Section 10 will discuss first
ideas on how to use this approach for building universal reinforcement learners,
and mention a few important questions that are still open.

2 More Formally

What is the optimal way of predicting the future, given the past? Which is the
best way to act such as to maximize one’s future expected reward? Which is the
best way of searching for the solution to a novel problem, making optimal use
of solutions to earlier problems?

Most previous work on these old and fundamental questions has focused on
very limited settings, such as Markovian environments where the optimal next
action, given past inputs, depends on the current input only [26].
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We will concentrate on a much weaker and therefore much more general
assumption, namely, that the environment’s responses are sampled from a com-
putable probability distribution. If even this weak assumption were not true
then we could not even formally specify the environment, leave alone writing
reasonable scientific papers about it.

Let us first introduce some notation. B* denotes the set of finite sequences
over the binary alphabet B = {0,1}, B the set of infinite sequences over B,
)\ the empty string, B¥ = B* U B®. z,v, z, 2%, 22 stand for strings in B¥. If
x € B* then zxy is the concatenation of z and y (e.g., if z = 10000 and y = 1111
then zy = 100001111). For = € B*, I(z) denotes the number of bits in z, where
l(x) = 0o for z € B*®; [(A\) = 0. x,, is the prefix of z consisting of the first n
bits, if [(x) > n, and = otherwise (xg := A). log denotes the logarithm with basis
2, f, g denote functions mapping integers to integers. We write f(n) = O(g(n))
if there exist positive constants ¢,ng such that f(n) < cg(n) for all n > nyg.
For simplicity let us consider universal Turing Machines [64] (TMs) with input
alphabet B and trinary output alphabet including the symbols “0”, “1”, and “”
(blank). For efficiency reasons, the TMs should have several work tapes to avoid
potential quadratic slowdowns associated with 1-tape TMs. The remainder of
this paper assumes a fixed universal reference TM.

Now suppose bitstring x represents the data observed so far. What is its most
likely continuation y € B#? Bayes’ theorem yields

z | zy)P(zy)
P(z)

Py | z) = 2. x P(ay) W

where P(2? | z!) is the probability of 22, given knowledge of 2!, and P(z) =
[,cp: P(xz)dz is just a normalizing factor. So the most likely continuation y
is determined by P(xy), the prior probability of xy. But which prior measure
P is plausible? Occam’s razor suggests that the “simplest” y should be more
probable. But which exactly is the “correct” definition of simplicity? Sections 3
and 4 will measure the simplicity of a description by its length. Section 5 will
measure the simplicity of a description by the time required to compute the
described object.

3 Prediction Using a Universal Algorithmic Prior Based
on the Shortest Way of Describing Objects

Roughly fourty years ago Solomonoff started the theory of universal optimal
induction based on the apparently harmless simplicity assumption that P is
computable [59]. While Equation (1) makes predictions of the entire future, given
the past, Solomonoff [60] focuses just on the next bit in a sequence. Although
this provokes surprisingly nontrivial problems associated with translating the
bitwise approach to alphabets other than the binary one — this was achieved
only recently [20] — it is sufficient for obtaining essential insights. Given an
observed bitstring x, Solomonoff assumes the data are drawn according to a
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recursive measure y; that is, there is a program for a universal Turing machine
that reads z € B* and computes pu(z) and halts. He estimates the probability
of the next bit (assuming there will be one), using the remarkable, well-studied,
enumerable prior M [59, 75,60, 16, 30]

M(z) = > 27w, (2)

program prefiz p computes
output starting with =

M is universal, dominating the less general recursive measures as follows: For

all x € B,
M(z) = cpp() (3)

where ¢, is a constant depending on p but not on z. Solomonoff observed that
the conditional M-probability of a particular continuation, given previous ob-
servations, converges towards the unknown conditional p as the observation size
goes to infinity [60], and that the sum over all observation sizes of the corre-
sponding p-expected deviations is actually bounded by a constant. Hutter (on
the author’s SNF research grant “”Unification of Universal Induction and Se-
quential Decision Theory”) recently showed that the number of prediction errors
made by universal Solomonoff prediction is essentially bounded by the number
of errors made by any other predictor, including the optimal scheme based on
the true p [20].

Recent Loss Bounds for Universal Prediction. A more general recent
result is this. Assume we do know that p is in some set P of distributions. Choose
a fixed weight w, for each ¢ in P such that the wy add up to 1 (for simplicity, let
P be countable). Then construct the Bayesmix M (z) = 3__wqq(z), and predict
using M instead of the optimal but unknown p. How wrong is it to do that? The
recent work of Hutter provides general and sharp (!) loss bounds [21]:

Let LM(n) and Lp(n) be the total expected unit losses of the M-predictor
and the p-predictor, respectively, for the first n events. Then LM (n) — Lp(n)
is at most of the order of y/Lp(n). That is, M is not much worse than p. And
in general, no other predictor can do better than that! In particular, if p is
deterministic, then the M-predictor soon won’t make any errors any more.

If P contains all recursively computable distributions, then M becomes the
celebrated enumerable universal prior. That is, after decades of somewhat stag-
nating research we now have sharp loss bounds for Solomonoff’s universal induc-
tion scheme (compare recent work of Merhav and Feder [32]).

Solomonoff’s approach, however, is uncomputable. To obtain a feasible ap-
proach, reduce M to what you get if you, say, just add up weighted estimated
future finance data probabilities generated by 1000 commercial stock-market
prediction software packages. If only one of the probability distributions hap-
pens to be close to the true one (but you do not know which) you still should
get rich.

Note that the approach is much more general than what is normally done in
traditional statistical learning theory, e.g., [66], where the often quite unrealistic
assumption is that the observations are statistically independent.
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4 Super Omegas and Generalizations of Kolmogorov
Complexity & Algorithmic Probability

Our recent research generalized Solomonoff’s approach to the case of less restric-
tive nonenumerable universal priors that are still computable in the limit [49,
52].

An object X is formally describable if a finite amount of information com-
pletely describes X and only X. More to the point, X should be representable
by a possibly infinite bitstring x such that there is a finite, possibly never halting
program p that computes x and nothing but x in a way that modifies each out-
put bit at most finitely many times; that is, each finite beginning of x eventually
converges and ceases to change. This constructive notion of formal describabil-
ity is less restrictive than the traditional notion of computability [64], mainly
because we do not insist on the existence of a halting program that computes
an upper bound of the convergence time of p’s n-th output bit. Formal de-
scribability thus pushes constructivism [5, 1] to the extreme, barely avoiding the
nonconstructivism embodied by even less restrictive concepts of describability
(compare computability in the limit [17,39,15] and AQ-describability [41][30, p.
46-47)).

The traditional theory of inductive inference focuses on Turing machines
with one-way write-only output tape. This leads to the universal enumerable
Solomonoff-Levin (semi) measure. We introduced more general, nonenumerable,
but still limit-computable measures and a natural hierarchy of generalizations
of algorithmic probability and Kolmogorov complexity [49,52], suggesting that
the “true” information content of some (possibly infinite) bitstring x actually
is the size of the shortest nonhalting program that converges to « and nothing
but £ on a Turing machine that can edit its previous outputs. In fact, this
“true” content is often smaller than the traditional Kolmogorov complexity. We
showed that there are Super Omegas computable in the limit yet more random
than Chaitin’s “number of wisdom” Omega [10] (which is maximally random in
a weaker traditional sense), and that any approximable measure of z is small for
any x lacking a short description.

We also showed that there is a universal cumulatively enumerable measure of
x based on the measure of all enumerable y lexicographically greater than x. It is
more dominant yet just as limit-computable as Solomonoff’s [52]. That is, if we
are interested in limit-computable universal measures, we should prefer the novel
universal cumulatively enumerable measure over the traditional enumerable one.
If we include in our Bayesmix such limit-computable distributions we obtain
again sharp loss bounds for prediction based on the mix [49,52].

Our approach highlights differences between countable and uncountable sets.
Which are the potential consequences for physics? We argue that things such
as uncountable time and space and incomputable probabilities actually should
not play a role in explaining the world, for lack of evidence that they are re-
ally necessary [49]. Some may feel tempted to counter this line of reasoning by
pointing out that for centuries physicists have calculated with continua of real
numbers, most of them incomputable. Even quantum physicists who are ready
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to give up the assumption of a continuous universe usually do take for granted
the existence of continuous probability distributions on their discrete universes,
and Stephen Hawking explicitly said: “Although there have been suggestions that
space-time may have a discrete structure I see no reason to abandon the con-
tinuum theories that have been so successful.” Note, however, that all physicists
in fact have only manipulated discrete symbols, thus generating finite, describ-
able proofs of their results derived from enumerable axioms. That real numbers
really exist in a way transcending the finite symbol strings used by everybody
may be a figment of imagination — compare Brouwer’s constructive mathemat-
ics [5,1] and the Lowenheim-Skolem Theorem [31,58] which implies that any
first order theory with an uncountable model such as the real numbers also has
a countable model. As Kronecker put it: “Die ganze Zahl schuf der liebe Gott,
alles Ubrige ist Menschenwerk” (“God created the integers, all else is the work
of man” [6]). Kronecker greeted with scepticism Cantor’s celebrated insight [7]
about real numbers, mathematical objects Kronecker believed did not even exist.

Assuming our future lies among the few (countably many) describable fu-
tures, we can ignore uncountably many nondescribable ones, in particular, the
random ones. Adding the relatively mild assumption that the probability distri-
bution from which our universe is drawn is cumulatively enumerable provides
a theoretical justification of the prediction that the most likely continuations
of our universes are computable through short enumeration procedures. In this
sense Occam’s razor is just a natural by-product of a computability assumption!
But what about falsifiability? The pseudorandomness of our universe might be
effectively undetectable in principle, because some approximable and enumerable
patterns cannot be proven to be nonrandom in recursively bounded time.

The next sections, however, will introduce additional plausible assumptions
that do lead to computable optimal prediction procedures.

5 Computable Predictions through the Speed Prior
Based on the Fastest Way of Describing Objects

Unfortunately, while M and the more general priors of Section 4 are computable
in the limit, they are not recursive, and thus practically infeasible. This draw-
back inspired less general yet practically more feasible principles of minimum
description length (MDL) [68,40] as well as priors derived from time-bounded
restrictions [30] of Kolmogorov complexity [27,59,8]. No particular instance of
these approaches, however, is universally accepted or has a general convincing
motivation that carries beyond rather specialized application scenarios. For in-
stance, typical efficient MDL approaches require the specification of a class of
computable models of the data, say, certain types of neural networks, plus some
computable loss function expressing the coding costs of the data relative to the
model. This provokes numerous ad-hoc choices.

Our recent work [54], however, offers an alternative to the celebrated but
noncomputable algorithmic simplicity measure or Solomonoff-Levin measure dis-
cussed above [59,75,60]. We introduced a new measure (a prior on the com-
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putable objects) which is not based on the shortest but on the fastest way of
describing objects.

Let us assume that the observed data sequence is generated by a compu-
tational process, and that any possible sequence of observations is therefore
computable in the limit [49]. This assumption is stronger and more radical than
the traditional one: Solomonoff just insists that the probability of any sequence
prefix is recursively computable, but the (infinite) sequence itself may still be
generated probabilistically.

Given our starting assumption that data are deterministically generated by
a machine, it seems plausible that the machine suffers from a computational
resource problem. Since some things are much harder to compute than others,
the resource-oriented point of view suggests the following postulate.

Postulate 1 The cumulative prior probability measure of all x incomputable
within time t by any method is at most inversely proportional to t.

This postulate leads to the Speed Prior S(z), the probability that the output of
the following probabilistic algorithm starts with x [54]:

1. Toss an unbiased coin until heads is up; let ¢ denote the number of
required trials; set t := 2°.

2. If the number of steps executed so far exceeds ¢ then exit. Execute
one step; if this leads to a request for a new input bit (of the growing
self-delimiting program, e.g., [29, 30]), toss the coin to determine the bit,
and set ¢ :=t/2.

3. Go to 2.

Algorithm GUESS is very similar to a probabilistic search algorithm used in
previous work on applied inductive inference [46,48]. On several toy problems it
generalized extremely well in a way unmatchable by traditional neural network
learning algorithms.

With S comes a computable method AS for predicting optimally within e
accuracy [b4]. Consider a finite but unknown program p computing y € B*.
What if Postulate 1 holds but p is not optimally efficient, and/or computed on
a computer that differs from our reference machine? Then we effectively do not
sample beginnings y; from S but from an alternative semimeasure S’. Can we
still predict well? Yes, because the Speed Prior S dominates S’. This dominance
is all we need to apply the recent loss bounds [21]. The loss that we are expected
to receive by predicting according to AS instead of using the true but unknown
S’ does not exceed the optimal loss by much [54].
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6 Speed Prior-Based Predictions for Our Universe

“In the beginning was the code.”
FIRST SENTENCE OF THE GREAT PROGRAMMER’S BIBLE

Physicists and other inductive scientists make predictions based on observa-
tions. Astonishingly, however, few physicists are aware of the theory of optimal
inductive inference [59,27]. In fact, when talking about the very nature of their
inductive business, many physicists cite rather vague concepts such as Popper’s
falsifiability [38], instead of referring to quantitative results.

All widely accepted physical theories, however, are accepted not because they
are falsifiable—they are not—or because they match the data—many alternative
theories also match the data—but because they are simple in a certain sense. For
example, the theory of gravitation is induced from locally observable training
examples such as falling apples and movements of distant light sources, presum-
ably stars. The theory predicts that apples on distant planets in other galaxies
will fall as well. Currently nobody is able to verify or falsify this. But everybody
believes in it because this generalization step makes the theory simpler than al-
ternative theories with separate laws for apples on other planets. The same holds
for superstring theory [18] or Everett’s many world theory [13], which presently
also are neither verifiable nor falsifiable, yet offer comparatively simple explana-
tions of numerous observations. In particular, most of Everett’s postulated many
worlds will remain unobservable forever, but the assumption of their existence
simplifies the theory, thus making it more beautiful and acceptable.

In Sections 3 and 4 we have made the assumption that the probabilities
of next events, given previous events, are (limit-)computable. Here we make
a stronger assumption by adopting Zuse’s thesis [73,74], namely, that the
very universe is actually being computed deterministically, e.g., on a cellular
automaton (CA) [65,67]. Quantum physics, quantum computation [3,11,37],
Heisenberg’s uncertainty principle and Bell’s inequality [2] do not imply any
physical evidence against this possibility, e.g., [63].

But then which is our universe’s precise algorithm? The following method
[47] does compute it:

Systematically create and execute all programs for a universal computer,
such as a Turing machine or a CA; the first program is run for one
instruction every second step on average, the next for one instruction
every second of the remaining steps on average, and so on.

This method in a certain sense implements the simplest theory of everything: all
computable universes, including ours and ourselves as observers, are computed
by the very short program that generates and executes all possible programs
[47]. In nested fashion, some of these programs will execute processes that again
compute all possible universes, etc. [47]. Of course, observers in “higher-level”
universes may be completely unaware of observers or universes computed by
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nested processes, and vice versa. For example, it seems hard to track and inter-
pret the computations performed by a cup of tea.

The simple method above is more efficient than it may seem at first glance.
A bit of thought shows that it even has the optimal order of complexity. For
example, it outputs our universe history as quickly as this history’s fastest pro-
gram, save for a (possibly huge) constant slowdown factor that does not depend
on output size.

Nevertheless, some universes are fundamentally harder to compute than oth-
ers. This is reflected by the Speed Prior S discussed above (Section 5). So let
us assume that our universe’s history is sampled from S or a less dominant
prior reflecting suboptimal computation of the history. Now we can immediately
predict:

1. Our universe will not get many times older than it is now [49] — essentially,
the probability that it will last 2™ times longer than it has lasted so far is at
most 27",

2. Any apparent randomness in any physical observation must be due to
some yet unknown but fast pseudo-random generator PRG [49] which we should
try to discover. 2a. A re-examination of beta decay patterns may reveal that a
very simple, fast, but maybe not quite trivial PRG is responsible for the appar-
ently random decays of neutrons into protons, electrons and antineutrinos. 2b.
Whenever there are several possible continuations of our universe correspond-
ing to different Schrédinger wave function collapses — compare Everett’s widely
accepted many worlds hypothesis [13] — we should be more likely to end up in
one computable by a short and fast algorithm. A re-examination of split experi-
ment data involving entangled states such as the observations of spins of initially
close but soon distant particles with correlated spins might reveal unexpected,
nonobvious, nonlocal algorithmic regularity due to a fast PRG.

3. Large scale quantum computation [3] will not work well, essentially be-
cause it would require too many exponentially growing computational resources
in interfering “parallel universes” [13].

4. Any probabilistic algorithm depending on truly random inputs from the
environment will not scale well in practice.

Prediction 2 is verifiable but not necessarily falsifiable within a fixed time
interval given in advance. Still, perhaps the main reason for the current absence
of empirical evidence in this vein is that few [12] have looked for it.

In recent decades several well-known physicists have started writing about
topics of computer science, e.g., [37,11], sometimes suggesting that real world
physics might allow for computing things that are not computable traditionally.
Unimpressed by this trend, computer scientists have argued in favor of the oppo-
site: since there is no evidence that we need more than traditional computability
to explain the world, we should try to make do without this assumption, e.g.,
[73,74,14,47].
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7 Optimal Rational Decision Makers

So far we have talked about passive prediction, given the observations. Note,
however, that agents interacting with an environment can also use predictions
of the future to compute action sequences that maximize expected future re-
ward. Hutter’s recent AIXI model [22] (author’s SNF grant 61847) does exactly
this, by combining Solomonoff’s M-based universal prediction scheme with an
expectimax computation.

In cycle t action y; results in perception x; and reward r;, where all quanti-
ties may depend on the complete history. The perception z} and reward r; are
sampled from the (reactive) environmental probability distribution u. Sequential
decision theory shows how to maximize the total expected reward, called value,
if pu is known. Reinforcement learning [26] is used if x is unknown. AIXI defines
a mixture distribution £ as a weighted sum of distributions v € M, where M is
any class of distributions including the true environment pu.

It can be shown that the conditional M probability of environmental inputs
to an AIXI agent, given the agent’s earlier inputs and actions, converges with
increasing length of interaction against the true, unknown probability [22], as
long as the latter is recursively computable, analogously to the passive prediction
case.

Recent work [24] also demonstrated AIXI’s optimality in the following sense.
The Bayes-optimal policy p¢ based on the mixture ¢ is self-optimizing in the
sense that the average value converges asymptotically for all 4 € M to the
optimal value achieved by the (infeasible) Bayes-optimal policy p* which knows
4 in advance. The necessary condition that M admits self-optimizing policies is
also sufficient. No other structural assumptions are made on M. Furthermore,
p¢ is Pareto-optimal in the sense that there is no other policy yielding higher or
equal value in all environments v € M and a strictly higher value in at least one
[24].

We can modify the ATXI model such that its predictions are based on the
e-approximable Speed Prior S instead of the incomputable M. Thus we obtain
the so-called AIS model. Using Hutter’s approach [22] we can now show that
the conditional S probability of environmental inputs to an AIS agent, given the
earlier inputs and actions, converges against the true but unknown probability,
as long as the latter is dominated by S, such as the S’ above.

8 Optimal Universal Search Algorithms

In a sense, searching is less general than reinforcement learning because it does
not necessarily involve predictions of unseen data. Still, search is a central as-
pect of computer science (and any reinforcement learner needs a searcher as a
submodule—see Section 10). Surprisingly, however, many books on search algo-
rithms do not even mention the following, very simple asymptotically optimal,
“universal” algorithm for a broad class of search problems.
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Define a probability distribution P on a finite or infinite set of programs for
a given computer. P represents the searcher’s initial bias (e.g., P could be based
on program length, or on a probabilistic syntax diagram).

Method LSEARCH: Set current time limit T=1. WHILE problem not
solved DO:

Test all programs ¢ such that ¢(q), the maximal time spent on
creating and running and testing ¢, satisfies ¢t(q) < P(q) T. Set
T :=2T.

LSEARCH (for Levin Search) may be the algorithm Levin was referring to in his
2 page paper [28] which states that there is an asymptotically optimal universal
search method for problems with easily verifiable solutions, that is, solutions
whose validity can be quickly tested. Given some problem class, if some unknown
optimal program p requires f(k) steps to solve a problem instance of size k, then
LsEARCH will need at most O(P(p)f(k)) = O(f(k)) steps — the constant factor
P(p) may be huge but does not depend on k. Compare [30, p. 502-505] and [23]
and the fastest way of computing all computable universes in Section 6.

Recently Hutter developed a more complex asymptotically optimal search
algorithm for all well-defined problems, not just those with with easily verifi-
able solutions [23]. HSEARCH cleverly allocates part of the total search time for
searching the space of proofs to find provably correct candidate programs with
provable upper runtime bounds, and at any given time focuses resources on those
programs with the currently best proven time bounds. Unexpectedly, HSEARCH
manages to reduce the unknown constant slowdown factor of LSEARCH to a value
of 1 + ¢, where € is an arbitrary positive constant.

Unfortunately, however, the search in proof space introduces an unknown
additive problem class-specific constant slowdown, which again may be huge.
While additive constants generally are preferrable over multiplicative ones, both
types may make universal search methods practically infeasible.

HSEARCH and LSEARCH are nonincremental in the sense that they do not
attempt to minimize their constants by exploiting experience collected in previ-
ous searches. Our method Adaptive LSEARCH or ALS tries to overcome this [57]
— compare Solomonoff’s related ideas [61,62]. Essentially it works as follows:
whenever LSEARCH finds a program ¢ that computes a solution for the current
problem, ¢’s probability P(q) is substantially increased using a “learning rate,”
while probabilities of alternative programs decrease appropriately. Subsequent
LSEARCHes for new problems then use the adjusted P, etc. A nonuniversal vari-
ant of this approach was able to solve reinforcement learning (RL) tasks [26] in
partially observable environments unsolvable by traditional RL algorithms [71,
57].

Each LSEARCH invoked by ALS is optimal with respect to the most recent
adjustment of P. On the other hand, the modifications of P themselves are not
necessarily optimal. Recent work discussed in the next section overcomes this
drawback in a principled way.
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9 Optimal Ordered Problem Solver (OOPS)

Our recent OOPS [53,51] is a simple, general, theoretically sound, time-optimal
way of searching for a universal behavior or program that solves each problem
in a sequence of computational problems, continually organizing and managing
and reusing earlier acquired knowledge. For example, the n-th problem may be
to compute the n-th event from previous events (prediction), or to find a faster
way through a maze than the one found during the search for a solution to the
n — 1-th problem (optimization).

Let us first introduce the important concept of bias-optimality, which is a
pragmatic definition of time-optimality, as opposed to the asymptotic optimal-
ity of both LSEARCH and HSEARCH, which may be viewed as academic exercises
demonstrating that the O() notation can sometimes be practically irrelevant de-
spite its wide use in theoretical computer science. Unlike asymptotic optimality,
bias-optimality does not ignore huge constant slowdowns:

Definition 1 (B1As-OPTIMAL SEARCHERS). Given is a problem class R, a
search space C of solution candidates (where any problem r € R should have
a solution in C), a task dependent bias in form of conditional probability distri-
butions P(q | r) on the candidates g € C, and a predefined procedure that creates
and tests any given q on any r € R within time t(q,r) (typically unknown in
advance). A searcher is n-bias-optimal (n > 1) if for any mazimal total search
time Trnar > 0 it is guaranteed to solve any problem r € R if it has a solution
p € C satisfying t(p,r) < P(p | 1) Tmaz/n. It is bias-optimal if n = 1.

This definition makes intuitive sense: the most probable candidates should get
the lion’s share of the total search time, in a way that precisely reflects the initial
bias. Now we are ready to provide a general overview of the basic ingredients of
0O0PS [53,51]:

Primitives. We start with an initial set of user-defined primitive behaviors.
Primitives may be assembler-like instructions or time-consuming software, such
as, say, theorem provers, or matrix operators for neural network-like parallel
architectures, or trajectory generators for robot simulations, or state update
procedures for multiagent systems, etc. Each primitive is represented by a token.
It is essential that those primitives whose runtimes are not known in advance
can be interrupted at any time.

Task-specific prefix codes. Complex behaviors are represented by token se-
quences or programs. To solve a given task represented by task-specific program
inputs, OOPS tries to sequentially compose an appropriate complex behavior from
primitive ones, always obeying the rules of a given user-defined initial program-
ming language. Programs are grown incrementally, token by token; their begin-
nings or prefixes are immediately executed while being created; this may modify
some task-specific internal state or memory, and may transfer control back to
previously selected tokens (e.g., loops). To add a new token to some program pre-
fix, we first have to wait until the execution of the prefix so far explicitly requests
such a prolongation, by setting an appropriate signal in the internal state. Pre-
fixes that cease to request any further tokens are called self-delimiting programs
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or simply programs (programs are their own prefixes). Binary self-delimiting
programs were studied by [29] and [9] in the context of Turing machines [64]
and the theory of Kolmogorov complexity and algorithmic probability [59,27].
Oops, however, uses a more practical, not necessarily binary framework.

The program construction procedure above yields task-specific prefix codes on
program space: with any given task, programs that halt because they have found
a solution or encountered some error cannot request any more tokens. Given the
current task-specific inputs, no program can be the prefix of another one. On a
different task, however, the same program may continue to request additional
tokens. This is important for our novel approach—incrementally growing self-
delimiting programs are unnecessary for the asymptotic optimality properties of
LSEARCH and HSEARCH, but essential for OOPS.

Access to previous solutions. Let p™ denote a found prefix solving the first
n tasks. The search for p"*! may greatly profit from the information conveyed
by (or the knowledge embodied by) p',p?,...,p™ which are stored or frozen in
special nonmodifiable memory shared by all tasks, such that they are accessible
to p™*1 (this is another difference to nonincremental LSEARCH and HSEARCH).
For example, p"+! might execute a token sequence that calls p”~2 as a subpro-
gram, or that copies p”'7 into some internal modifiable task-specific memory,
then modifies the copy a bit, then applies the slightly edited copy to the current
task. In fact, since the number of frozen programs may grow to a large value,
much of the knowledge embodied by p’ may be about how to access and edit
and use older p* (i < j).

Bias. The searcher’s initial bias is embodied by initial, user-defined, task de-
pendent probability distributions on the finite or infinite search space of pos-
sible program prefixes. In the simplest case we start with a maximum entropy
distribution on the tokens, and define prefix probabilities as the products of
the probabilities of their tokens. But prefix continuation probabilities may also
depend on previous tokens in context sensitive fashion.

Self-computed suffix probabilities. In fact, we permit that any executed pre-
fix assigns a task-dependent, self-computed probability distribution to its own
possible continuations. This distribution is encoded and manipulated in task-
specific internal memory. So unlike with ALS [57] we do not use a prewired
learning scheme to update the probability distribution. Instead we leave such
updates to prefixes whose online execution modifies the probabilities of their
suffixes. By, say, invoking previously frozen code that redefines the probabil-
ity distribution on future prefix continuations, the currently tested prefix may
completely reshape the most likely paths through the search space of its own
continuations, based on experience ignored by nonincremental LSEARCH and
HSEARCH. This may introduce significant problem class-specific knowledge de-
rived from solutions to earlier tasks.

Two searches. Essentially, 00PS provides equal resources for two near-bias-
optimal searches (Def. 1) that run in parallel until p"*! is discovered and stored
in non-modifiable memory. The first is exhaustive; it systematically tests all

possible prefixes on all tasks up to n + 1. Alternative prefixes are tested on all
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current tasks in parallel while still growing; once a task is solved, we remove it
from the current set; prefixes that fail on a single task are discarded. The second
search is much more focused; it only searches for prefixes that start with p™, and
only tests them on task n + 1, which is safe, because we already know that such
prefixes solve all tasks up to n.

Bias-optimal backtracking. HSEARCH and LSEARCH assume potentially infi-
nite storage. Hence they may largely ignore questions of storage management. In
any practical system, however, we have to efficiently reuse limited storage. There-
fore, in both searches of OOPs, alternative prefix continuations are evaluated by
a novel, practical, token-oriented backtracking procedure that can deal with sev-
eral tasks in parallel, given some code bias in the form of previously found code.
The procedure always ensures near-bias-optimality (Def. 1): no candidate behav-
ior gets more time than it deserves, given the probabilistic bias. Essentially we
conduct a depth-first search in program space, where the branches of the search
tree are program prefixes, and backtracking (partial resets of partially solved
task sets and modifications of internal states and continuation probabilities) is
triggered once the sum of the runtimes of the current prefix on all current tasks
exceeds the prefix probability multiplied by the total search time so far.

In case of unknown, infinite task sequences we can typically never know
whether we already have found an optimal solver for all tasks in the sequence.
But once we unwittingly do find one, at most half of the total future run time will
be wasted on searching for alternatives. Given the initial bias and subsequent bias
shifts due to p', p?,..., no other bias-optimal searcher can expect to solve the
n+ 1-th task set substantially faster than 0OPS. A by-product of this optimality
property is that it gives us a natural and precise measure of bias and bias shifts,
conceptually related to Solomonoff’s conceptual jump size of [61,62].

Since there is no fundamental difference between domain-specific problem-
solving programs and programs that manipulate probability distributions and
thus essentially rewrite the search procedure itself, we collapse both learning and
metalearning in the same time-optimal framework.

An example initial language. For an illustrative application, we wrote an in-
terpreter for a stack-based universal programming language inspired by FORTH
[34], with initial primitives for defining and calling recursive functions, iterative
loops, arithmetic operations, and domain-specific behavior. Optimal metasearch-
ing for better search algorithms is enabled through the inclusion of bias-shifting
instructions that can modify the conditional probabilities of future search op-
tions in currently running program prefixes.

Experiments. Using the assembler-like language mentioned above, we first
teach 00OPS something about recursion, by training it to construct samples of the
simple context free language {1¥2*} (k 1’s followed by k 2’s), for k up to 30 (in
fact, the system discovers a universal solver for all k). This takes roughly 0.3 days
on a standard personal computer (PC). Thereafter, within a few additional days,
00PS demonstrates incremental knowledge transfer: it exploits aspects of its pre-
viously discovered universal 1¥2*-solver, by rewriting its search procedure such
that it more readily discovers a universal solver for all k disk Towers of Hanosi
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problems—in the experiments it solves all instances up to k = 30 (solution size
2% — 1), but it would also work for k > 30. Previous, less general reinforcement
learners and nonlearning Al planners tend to fail for much smaller instances.
Future research may focus on devising particularly compact, particularly rea-
sonable sets of initial codes with particularly broad practical applicability. It
may turn out that the most useful initial languages are not traditional program-
ming languages similar to the FORTH-like one, but instead based on a handful of
primitive instructions for massively parallel cellular automata [65,67,74,72], or
on a few nonlinear operations on matrix-like data structures such as those used
in recurrent neural network research [69,43,4]. For example, we could use the
principles of OOPS to create a non-gradient-based, near-bias-optimal variant of
Hochreiter’s successful recurrent network metalearner [19]. It should also be of
interest to study probabilistic Speed Prior-based 0OPS variants [54] and to de-
vise applications of 00Ps-like methods as components of universal reinforcement
learners (see below). In ongoing work, we are applying OOPS to the problem of
optimal trajectory planning for robotics in a realistic physics simulation. This
involves the interesting trade-off between comparatively fast program-composing
primitives or “thinking primitives” and time-consuming “action primitives”, such
as stretch-arm-until-touch-sensor-input.

10 OOPS-Based Reinforcement Learning

At any given time, a reinforcement learner [26] will try to find a policy (a strategy
for future decision making) that maximizes its expected future reward. In many
traditional reinforcement learning (RL) applications, the policy that works best
in a given set of training trials will also be optimal in future test trials [50].
Sometimes, however, it won’t. To see the difference between searching (the topic
of the previous sections) and reinforcement learning (RL), consider an agent
and two boxes. In the n-th trial the agent may open and collect the content of
exactly one box. The left box will contain 100n Swiss Francs, the right box 2"
Swiss Francs, but the agent does not know this in advance. During the first 9
trials the optimal policy is “open left box.” This is what a good searcher should
find, given the outcomes of the first 9 trials. But this policy will be suboptimal
in trial 10. A good reinforcement learner, however, should extract the underlying
regularity in the reward generation process and predict the future reward, picking
the right box in trial 10, without having seen it yet.

The first general, asymptotically optimal reinforcement learner is the recent
ATXT model [22,24] (Section 7). It is valid for a very broad class of environments
whose reactions to action sequences (control signals) are sampled from arbitrary
computable probability distributions. This means that AIXI is far more general
than traditional RL approaches. However, while AIXI clarifies the theoretical
limits of RL, it is not practically feasible, just like HSEARCH is not. ;From a
pragmatic point of view, what we are really interested in is a reinforcement
learner that makes optimal use of given, limited computational resources. In
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what follows, we will outline how to use 0OOPS-like bias-optimal methods as
components of universal yet feasible reinforcement learners.

We need two 00PS modules. The first is called the predictor or world model.
The second is an action searcher using the world model. The life of the entire
system should consist of a sequence of cycles 1, 2, ... At each cycle, a limited
amount of computation time will be available to each module. For simplicity we
assume that during each cyle the system may take exactly one action. General-
izations to actions consuming several cycles are straight-forward though. At any
given cycle, the system executes the following procedure:

1. For a time interval fixed in advance, the predictor is first trained in bias-
optimal fashion to find a better world model, that is, a program that predicts
the inputs from the environment (including the rewards, if there are any),
given a history of previous observations and actions. So the n-th task (n =
1,2,...) of the first 0OPS module is to find (if possible) a better predictor
than the best found so far.

2. Once the current cycle’s time for predictor improvement is used up, the
current world model (prediction program) found by the first 0OPS module
will be used by the second module, again in bias-optimal fashion, to search for
a future action sequence that maximizes the predicted cumulative reward (up
to some time limit). That is, the n-th task (n = 1,2, ...) of the second 00OPS
module will be to find a control program that computes a control sequence
of actions, to be fed into the program representing the current world model
(whose input predictions are successively fed back to itself in the obvious
manner), such that this control sequence leads to higher predicted reward
than the one generated by the best control program found so far.

3. Once the current cycle’s time for control program search is used up, we will
execute the current action of the best control program found in step 2. Now
we are ready for the next cycle.

The approach is reminiscent of an earlier, heuristic, non-bias-optimal RL ap-
proach based on two adaptive recurrent neural networks, one representing the
world model, the other one a controller that uses the world model to extract a
policy for maximizing expected reward [45]. The method was inspired by previ-
ous combinations of nonrecurrent, reactive world models and controllers [70, 36,
25].

At any given time, until which temporal horizon should the predictor try to
predict? In the AIXI case, the proper way of treating the temporal horizon is not
to discount it exponentially, as done in most traditional work on reinforcement
learning, but to let the future horizon grow in proportion to the learner’s lifetime
so far [24]. It remains to be seen whether this insight carries over to 0OPS-based
RL. In particular, is it possible to prove that certain OOPS-RL variants are
a near-bias-optimal way of spending a given amount of computation time on
RL problems? Or should we instead combine 00PS and Hutter’s time-bounded
AIXI(t,1) model?

We observe that the grand problem of AI (as defined in the abstract) is not
yet solved, but promising approaches along the lines above suggest themselves.
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11 Conclusion

Recent theoretical and practical advances are currently driving a renaissance in
the fields of universal learners and optimal search [56]. A new kind of Al is emerg-
ing. Does it really deserve the attribute “new,” given that its roots date back to
the 1960s, just two decades after Zuse built the first general purpose computer
in 19417 An affirmative answer seems justified, since it is the recent results on
practically feasible computable variants of the old incomputable methods that
are currently reinvigorating the long dormant field. The “new” Al is new in the
sense that it abandons the mostly heuristic or non-general approaches of the
past decades, offering methods that are both general and theoretically sound,
and provably optimal in a sense that does make sense in the real world.

We are led to claim that the future will belong to universal or near-universal
learners that are more general than traditional reinforcement learners / decision
makers depending on strong Markovian assumptions, or than learners based
on traditional statistical learning theory, which often require unrealistic i.i.d. or
Gaussian assumptions. Due to ongoing hardware advances the time has come for
optimal search in algorithm space, as opposed to the limited space of reactive
mappings embodied by traditional methods such as artificial feedforward neural
networks.

It seems safe to bet that not only computer scientists but also physicists
and other inductive scientists will start to pay more attention to the fields of
universal induction and optimal search, since their basic concepts are irresistibly
powerful and general and simple. How long will it take for these ideas to unfold
their full impact? A very naive and speculative guess driven by wishful think-
ing might be based on identifying the “greatest moments in computing history”
and extrapolating from there. Which are those “greatest moments”? Obvious
candidates are:

1. 1640: first mechanical calculator (Pascal, France).

2. Two centuries later: concept of a programmable computer (Babbage, UK).

3. One century later: first working programmable computer (Zuse, Berlin), plus
fundamental theoretical work on universal integer-based programming lan-
guages and the limits of proof and computation (Godel, Austria, reformu-
lated by Turing, UK). (The next 50 years saw many theoretical advances as
well as faster and faster switches—relays were replaced by tubes by transis-
tors by chips—but arguably this was rather predictable, incremental progress
without radical shake-up events.)

4. Half a century later: the World Wide Web (UK’s Berners-Lee, Switzerland).

This list seems to suggest that each major breakthrough tends to come twice
as fast as the previous one. Extrapolating the trend, optimists should expect
another radical change by 2015, which happens to coincide with the date when
the fastest computers will match brains in terms of raw computing power, ac-
cording to frequent estimates based on Moore’s law. The author is confident that
the coming 2015 upheaval (if any) will involve universal learning algorithms and
optimal incremental search in algorithm space—possibly laying a foundation for
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the remaining series of faster and faster additional revolutions culminating in an
“Omega point” expected around 2040.
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1 INTRODUCTION

The damage identification problem in structural analysis is usually based on the phenomenon of elastic strain wave
propagation. An excitation signal is applied and the dynamic response is examined. Many works analyses the
perturbations to the original signal due to structural damage. However the currently used methods encounter problems
with obtaining the proper solution to damage identification and the related numerical cost is considerable.

We propose an approach using Case-Based Reasoning (CBR), Self Organizing Maps (SOM) and Wavelet Transform
(WT) in order to obtain an initial diagnostic exploiting the data generated by the modeling structure and the data
acquired by the sensors once the system has started, creating an incremental database (since a new experience is
retained each time a problem has been solved) in order to use in diagnosing future situations by analogy.

2 CASE BASED REASONING

Reasoning based on experience is a powerful procedure frequently used by human beings to solve problems, both in
day-to-day life and in situations requiring more expertise. People rely on similar previous experience when they need to
solve a problem, reusing solutions without thinking about the situation so much. . In any field, when tackling problem, a
professional with many years of experience is generally considered to be more suitable than a recent graduate with
brilliant grades. Daily life continually presents opportunities to apply case based reasoning. CBR systems, instead of
being exclusively based on general knowledge of the domain of a problem or establishing associations through a set of
generalized relations among descriptors of problems and conclusions, use the specific knowledge of previous
experiences in concrete situations. To reach that goal, CBR methodology proposes the cycle of the 4 R’s (see Figure 1)
[21[4].

Retrieve the most similar cases (a new X ]

problem is grouped with other similar El “ |—|

problems saved in a case-base) e | 4 /’ R

el
Reuse the solutions proposed in the cases ‘ RELISH e RUTRIEN

to solve the problem ,
RETATH s HITAIN \ R ERSE
Revise the proposed solution (if

-
necessary) REVISH ! - REVISE !
! } '
e Ak dia

Retain the new solution as a part of a new Cadvit Iyt e
case once it has been confirmed or
validated Figure 1. Conventional CBR cycle Figure 2. Purposed CBR cycle

3 SELF ORGANIZING MAPS

Self-Organizing Maps (SOM) are the largest representation of artificial neural networks. An SOM is a classifier that can
be visualized as a two-dimensional neural network arrangement. The principle used by Kohonen [1] to develop the
self-organizing maps is based on the organization of neurons according to the features of the received stimulus. The
greatest strength of the self-organizing maps lies in the possibilities they have to model and analyze complex
experimental data vectors. The self-organizing maps are non-linear projection methods from a high-dimensional input
space to a bi-dimensional space, where it is easier to classify and visualize as vectors. The reduction in the number of
dimensions could permit the visualization of important relations between the data that would not be appreciated in any
other way.

! Research student
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4 WAVELET TRANSFORM

A wavelet transform is similar to a Fourier transform. The Fourier transform the signal is broken up or decomposed
into sine waves of various frequencies. The Wavelet transform is the procedure by which a signal is broken up in a sum
of translations (shifting) and dilations (scaling) of a function, called mother wavelet. The continuous wavelet transform
(CWT) is defined as the sum over all time of the signal multiplied by scaled, shifted versions of the wavelet function y:

C(scale, position) = Jf(t)‘P(scale, position, t)dt
The result of the CWT is many wavelet coefficients C, which are a function of scale and position (see Figure 3).
Multiplying each coefficient by the appropriately scaled and shifted wavelet yields the constituent wavelets of the
original signal.

\%4

Amplitude
Scale

Wavelet ’ | 5 ‘
Transform Time
Wavelet Analysis

Time

Figure 3. Wavelet Transform

In wavelet-based feature extraction for signal interpretation, the wavelet coefficients are grouped into clusters in an
unsupervised mode. The procedure divides the scheme of all computed wavelet coefficients into disjoint clusters U,
U, ..., U, for each of which a single robust feature u; (i = 1, 2, ..., ¢) can be computed. The so obtained feature vector
(uy, U, ..., Uc) serves as an input pattern to a signal interpretation procedure such as a neural network [3].

5 ORIGINAL CONTRIBUTION

5.1 HOW IS DAMAGE IDENTIFIED?

We propose using Case-Based Reasoning methodology in damage detection, taking advantage of experience and the
model of the structure, exploiting the data acquired by sensors in real practice and the outcomes given in known models
simulations. The goal is to use Soft Computing techniques (SOM,WT) to relate the data stored in the memory with
representative situations as cases to be used in a later diagnosis by analogy.

Bearing in mind that Case-Based Reasoning is a methodology [5], Figure 2 shows our CBR system, it has a casebase
that consists of a Self-Organizing Map. For each new case, the SOM retrieves the group of old cases with same
features. These features are extracted using Wavelet Analysis [3].

5.2 OUR APPROACH APPLIED IN A TRUSS STRUCTURE

5.2.1 Description

Figure 4 shows a cantilever truss structure to be considered. Materials and geometric specifications have previously
been assigned. The opposite sine excitation to the phase is applied to elements 36 and 38. Member 1 was chosen as the
sensor receiving the propagated wave.

1 [ 1 16 21 26 31 36
d J4 J9 4 9 4 9

2 7 12 17 22 27 32 37

10 15 0 /25 30 /35 /40

3 8 13 18 23 28 33 38

Figure 4. Cantilever Structure

5.2.2  How to build cases?

A case is defined by defect in the structure and the principal features of the elastic wave either modeled or detected by
the sensor. For example we have a case with damage in the element 13, the elastic wave is shown in Figure 5 and the
principal features in the Figure 6.



Damage Identification using Soft-computing Techniques 99

002

0.04

006 o 5 g 15 20 25 30 3 40 45 %0
o 0005 001 0ols 002 0025 0.03 0035 004 0035 005

TIME FEATURES

Figure 5. Elastic wave detected Figure 6. Principal features of the wave

5.2.3  How should the solution be retrieved?

In this way, when a new case is occurred, we don’t know the damage, but we have its principal features, The SOM
retrieve a set of old cases with most similar features, from this set we propose a solution (its damage). When this
solution is validated, it is stored like a new case into the SOM.

5.24  Outcomes presentation

In order to build the casebase, it is necessary to generate damage patterns and to obtain the elastic wave simulated or
detected by sensor. Taking into account of the structure in the previous example, we have generated cases of
simultaneous damage of 1,2,3,4 and 5 elements into casebase. So as to evaluate the approach, we have generated tests
of simultaneous damage of 1,2,3,4,5,6,7,8 and 9 elements. The following figures show the percentage of accurate
detections of each test divided by the number of detected defective elements. For example the picture with 6 defective
elements Figure 7f, we are detected 3 defectives elements from 6 (hit in 3 elements) in the 14% of the cases, and we are
detected 4 elements from 6 (hit in 4 elements) in the 39%.
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Figure 7. Accurate detections in each test
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5.2.5  Outcomes analysis

The casebase includes damages up to 5 horizontal elements, therefore up to 5 defective horizontal elements are totally
detected (100%). If there are damages too much of 5 elements, it isn’t detected completely, however the system adapts
the solution and it is able to detect up 8 and 9 defective elements, although still in low percentage.

6 CONCLUSIONS

There are several advantages to the CBR systems approach using SOM. It most closely resembles the human decision
making process. This means that it does not require a complete set of data in order to solve a problem. The knowledge
is stored in memory as separate “cases” defined only by the defect in the structure, this is important because it allows
fast construction of a knowledge base. It also allows for easier system maintenance because new cases can easily be
entered into memory and old cases can be totally revised or deleted.

The ability of the CBR system to provide a quick answer is also desirable. The system indexes important information
in the case and looks for a similar case. If there is an exact case in the knowledge base, almost instantaneously the
solution can be displayed and implemented.

It is very important to determine which are the real damages presented in the structure, coherent and logical damages.
In fact the system is able to train with a lot of cases (infinite), however in practice it is not certain, due to storage
limitations. Therefore, it is not appropriate to load the system with damages that never will happen.

The main value or innovation of this system is the exploitation of the model of the structure to pre-load the casebase.

In this way, when the system is put in operating mode, it is able to detect damages given a very good performance even
before loading any real damage in the casebase.
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Investigating the feasibility of using fuzzy
logic-based method for transients classification in
nuclear power plants

Piero Baraldi

The early identification of the causes for the onset of an unscheduled and
meaningful departure from steady state behaviour is an essential step for the
operation, control and accident management in nuclear power plants. The
basis for the identification is that different system faults and anomalies lead
to different patterns of evolution of the involved process variables. Given
the safety and economical importance of the problem, several approaches for
fault identification have been investigated and many efforts are continuously
devoted to the improvement of the results thus far obtained.

The problem of fault identification may be tackled as a problem of classi-
fication. The classes are the different faults or anomalies of the plant, while
the signals upon which the classification is based are the plant process vari-
ables. Our work has concerned the investigation of the capabilities of fuzzy
logic in this area. One of the advantages of approaching the classification
problem by fuzzy clustering is that the membership values found can serve as
a confidence measure in the classification: for example, if a vector is assigned
0.9 membership in one class and 0.05 membership in two other classes we
can be reasonably sure the class of 0.9 membership is the class to which the
vector belongs. On the other hand, if a vector is assigned 0.55 membership
in class one, 0.44 membership in class two, and 0.01 membership in class
three, then we should be hesitant to assign the vector based on these results.

The key issue is the definition of a set of fuzzy if-then rules capable of
associating the correct fault class to the various process variables transients
which may occur. To this aim, we have developed a method of supervised
training which automatically generates the proper rule corresponding to a
given transient. We consider ¢ possible transient-causing faults and suppose
that a set of L numerical input/output vector pairs (z7,q), [ = 1,...,L is
available from the plant. Each component z} of 7] is a process variable and
the corresponding ¢; is an integer denoting the particular fault that has lead
to the pattern evolution Z;. These data are used to generate a set of fuzzy
if-then rules representative of the correspondence between the input space of
T and the output space of the fault class q. Once the training is completed,
the fuzzy model is defined and one can feed it with a new input vector
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T to determine the corresponding class ¢*, i.e. the fault that has caused
the plant transient. The method developed has been successfully applied
to the classification of the causes of the transients in a steam genarator of
a Pressurized Water Reactor (PWR): based on the measured signals, the
forcing function responsible for the transient is readily classified.

The main disadvantage of the approach is the large number of rules of
the resulting model. In our case, we obtained 266 if-then rules which are
not physically interpretable so that the model is a "black box" not easily
interpretable by the plant operators.

To improve this aspect, we are investigating the feasibility of using neuro-
fuzzy systems and fuzzy clustering methods. In particular, with respect to
the latter approach we would like to partition the process variables data into
c clusters such that each cluster corresponds to one of the ¢ fault classes.

In this area we have approached our investigation by looking at the pop-
ular Fuzzy C Means (FCM) method which searches for hyper-spheres or
hyper-ellipsoidal clusters in the space of the input data. The FCM algo-
rithm finds the centers of the ¢ clusters and the degrees of membership of
each of the L training data to each cluster, by iteratively minimizing an
appropriately defined function which measures the distance, usually in an
Euclidean metric, between the L data and the centers of the ¢ clusters. The
approach, however, is limited to a well defined geometric partition of the
input data, thus depending on the metric assumed, and gives no a priori
account to the fault class to which the data belongs. In our experience, this
results in only only few of the identified clusters containing data actually
belonging to a single class, the remaining clusters containing data belonging
to more than one class. In this respect we are developing a method of data
classification in which an evolutionary algorithm is employed to search for
the optimal Mahalanobis metric on the basis of which the FCM algorithm
derives a partition of the data set which accounts also for information on the
fault class and is as close as possible to a priori known faults classification.
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1 Complex Environment and Territorial Relations Net-
work

This contribution deals with the definition of a web-intelligent system able to sup-
port social interaction in complex environment, like an Industrial District (ID).
Industrial districts, whose main character is the agglomeration of medium/small
industries, represented in the past and still represent a successful model of indus-
trial production organization, a sort of Italian way to overcome the difficulties
found by the big industry (Albino, 2002).

Several research studies have been realized dealing with ID, emphasizing the
role of spatial aggregation phenomena, able to create external economies and
competitive advantages for firms located inside the ID.

In this perspective, the local territory is able to play an important role in ID
development, connecting locale and global through a versatile integration process
(Beccatini e Rullani, 1993), which create exchanges between local knowledge cre-
ated by ID firms and knowledge in global network. Therefore, territorial contest
could be considered as an experiential contest which allows a continue renewal
of practices through innovation processes supported both by social dynamic and
interactions with contextual cultural sphere (Camagni, 1989).

The territory represents the physical infrastructure which allows the reitera-
tion of contacts among different local actors. In this perspective, both inter-firm
relations and firms-territory relations characterize the ID.

2 Relations Network and Collective Learning Process

In the current economic scenario, characterized by a growing global economic
competition among companies and countries, knowledge seems to be a relevant
comparative factor: the success is related both to learning capacities and to
capabilities to use learning process better than others.

The introduction of learning concept seems interesting because it allows to
amply explication models of performances of both individuals and organizations,
allowing to adopt knowledge as a causal factor (Calafati, 2002b).
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When dealing with complex systems, like ID, I becomes fundamental to adopt
a collective perspective in learning process, that is a learning process involving a
community of agents is needed. The collective learning concept seems be useful
to comprehend relations between changes at individual level to changes at system
level (Calafati, 2002b).

Therefore, a systemic approach is requested to analyse cognitive process in
complex system as ID. In this approach, intelligence of a human system is not
enough to create improvement condition. On one hand, obstacles to implemen-
tation of strategy and solution have to be considered. On the other, strategies
efficacy of open system depends on environmental characteristics. In this per-
spective, IDs respect complex systems peculiarity: system characteristics are not
derivable from single part characteristics (von Bertalanfly, 1969).

System concept requests to pay attention to system intelligence, that is, to
mechanisms able to control system evolution trajectory considering environment
constraints-possibilities matrix (Calafati, 2001). As complex systems, local sys-
tems evolution is governed by feedback cycles among their elements: each of
them has an own evolution dynamic (Bertuglia e Staricco, 2000).

In this perspective, agent interactions become fundamental and learning pro-
cess could e defined as a change of system relations structure (Calafati, 2002a).
Therefore, learning processes are strongly related with communication interac-
tion. In fact, the information emerged from communication improve mental
process of the agents enhancing learning process.

Using this approach it can be possible to understand the importance of phys-
ical proximity in ID. In fact, along with both shared language and shared social
relations, it facilitates agent interactions and structures information flows, influ-
encing, therefore, learning process.

Innovations in Information and Communication Technology seem particularly
interesting in our study domain because thet are involving a fundamental sys-
temic component: relation networks (Chiarversio e Micelli, 2000). In fact, ICT
tools diffusion could create a remarkable increment of both quantity and type
of interactions, between, individuals, organizations and external environment,
provoking an increment of evolution dynamics complexity of local systems.

The more relevant potentiality of ICT for local complex system, as ID, regards
its capability to greatly amply the individual relational spectrum by:

e Sustaining already existing relational network;

e Improving the creation of contacts with new interlocutors.

Technological innovation processes configure new form of communication pro-
cesses management which redesign relational system, both effective and potential
(Calafati, 2002a). They generate conditions for creation of new cooperation en-
vironment, not necessarily local (Chiarversio e Micelli, 2000).



A Fuzzy WEB System for Community Building in Complex Environment 105

3 Fuzzy Web-based System for Community Creation

This research work, moving from concepts descript in previous pages, deals with
definition of a web-base system able to facilitate interaction inside a local com-
munity, particularly Industrial District. Research focus is on improvement of
logistic in ID by improvement of communication among agents.

To improve those interactions an emarketplace can be used. It could be de-
fined as an electronic agora where a set of persons or agents can be involved in
exchanging services and information. The e-marketplaces are today primarily
focused on the matchmaking of buyers and sellers. To define the e-marketplace,
primarily the two interest communities have to be built up (sellers and providers).
To this aim, what is in specific technical literature about the creation of a coali-
tion among intelligent agents is used. A coalition is a set of agents, each one with
his own interests, who draw up a cooperation agreement to carry out a piece of
work or achieve a goal (Sheory et al., 1998). A group has to be entrusted with
a task when single agents cannot carry out sufficiently or at all the same task
(Sheory and Kraus, 1998).

The cooperation process can be divided in the following stages:

e finding someone to collaborate with;
e making contact with the selected people;

e building a common understanding: that is, the identification of a goal and
the way to reach this goal;

e coordinating activities and work plans through communication among co-
workers.

First two stages are emphasized in this research work. In this sense, the com-
munityware research field seems very interesting. In fact, the communityware
can be defined as an electronic medium that facilitates the contact with collab-
orators who have similar interests and preferences, but do not know each other
(Raisch, 2001). The communityware has to include essentially three different
functions to encourage interactions:

e knowing each other;
e sharing preferences and knowledge;
e generating consensus.

The basic idea is that multiple Internet Agents can form groups of people
who share the same interests by analyzing the individual’s interests. Resulting
clusters can be used for cooperative solution of problems.

As we stated previously, the first step to allow cooperation among unknown
agents concerns the contact facilitation, that is the individuation of agents shar-
ing same interests, and making easier the contacts among them. In order to
support this process, attributes describing the individuals are required (Raisch,
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2001). In this paper, the individuals’ attributes concern the attributes of trans-
portation demands: shipment time, destination, type of product, quantity of
product, etc.

The algorithm for the coalition formation has some attributes difficult to
define in a rigorous way. In fact, to identify the agents able to form the customers’
coalition, customers with similar requests, with regard to the shipment date and
destinations, have to be considered. The similarity concept seems to be difficult
to define using crisp values. In the real world, the human reasoning is based on
approximate values or linguistic statements instead of numeric or precise values.
Therefore, it seems appropriate to use the fuzzy logic to define the attributes
for the coalition formation process. In fact, the fuzzy logic allows performing
operation on variables defined in an approximate way and handling variables
defined in linguistic terms.

To understand better the use of fuzzy logic in implementation of the proposed
system, we focused our attention on the formation process of customers’ coalition.
The system identifies the possible coalition members comparing different requests
and finding possible similarity. In particular, in our research we refer to the Fuzzy
Clustering.

Let n be the number of customers, included in the Customers Interest Com-
munity, who expressed a request. Split now, on the basis of significant indicators
that should characterize each request, these customers into ¢ homogenous subsets
(clusters), with 2 < ¢ < n. The customers belonging to anyone of the clusters
should be similar to each other, and as dissimilar as possible from the objects of
different clusters (Zimmermann, 1991). Classical clustering algorithm, based on
bi-value logic, generate partition in which each elements belong or not to a data
class. In real world, classes of elements are fuzzy rather than crisp (Dumitrescu
et al., 2000). In this sense, ”strictly” assign an element to a cluster could be lead
to a mistake, because elements are often located between classes (Zimmermann,
1991) rather inside them.

Currently, this research work deals with definition of a process of fuzzy clus-
tering based on intra-class similarity measure able to build community of interest
in ID transportation problem.
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Abstract

A set of heuristics are used successfully in a schedulling problem within the framework of
healthcare medical services. Emphasis is given to the genetic algorithm which looks for the best
schedule problem solution.

1 Introduction

The main objective of this work is the development of an intelligent system based on genetic algorithms
to assist the planning of shifts scheduling in a local Hospital. The system will ease the current
scheduling edition acting as an advisory to prevent uncorrected distributions assignment which lead
to not enough resting periods of the health professionals and to a lack of parity concerning time and
type of service. Clearly, these reasons cause inappropriate medical service care.

The specific objectives of the developed application are:

1. To take into account the number of working hours in excess or missing of the healthcare profes-
sional;

2 To allow a generic specification of the health care service requirements;
3 To visualize all the healthcare professionals assigned to a specific day shift;

4. To propose shift schedules sought for proper parity and balanced distribution for mid and long
term;

5. To allow the adjustment of the proposed shift schedule.

2 Problem Formulation

The following parameters have to be defined:

F - Set of healthcare professionals;
D - Number of days of the schedule period;
T - Number of Shifts;

Necg; | - Healthcare needs wrt Shift t of day d;
TRD | - Number of Shifts per day;
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The problem solution can be formalized by the following variables which express each healthcare
professional assignment to the care specific needs:

X — 1 if professional f does Shift ¢ of day d
fdt = 0 otherwise

with fe F,de D,teT.
2.1 Problem Constraints

The solution admissibility is impose by the following constraints:

> Xga=Necqy  deD,teT 1)
fer

In each shift day the number of healthcare professionals have to satisfy the service needs.

ZdeD,feF X yat
#D

Each healthcare professional should fulfill the shifts specified in his working contract.

=TRD feF 2)

2.2 Objective Functions

The two objective functions to be minimized are as follows. Equation (3) is the objective function
designated hereby Disorder:

7= ZdED,fEF,tGT (Xtar x penalty(fdt)) @)
! #F X #D x #T
which corresponds to the mean of the penalties of the bad assigned shifts. The objective function
Unfairness is given by (4):

1
ZdED,tET (Ptdtd 1+mean dev(Ttryq; fEF) )
ZdeD,teT Pty

It is calculated by the weighted mean of the inverse of the dispersion resulting from the service
distribution per shift and type of day.

Zy=1-—

4)

3 Heuristics versus Optimization Method

Although we have linear constraints, the problem can be cast in the context of multiobjective nonlinear
binary programming, due to the nonlinearity of the objective functions.

Since linear methods are not adequate to solve this type of problems, other approaches seem
adequate. Therefore, an heuristic based approach was here successfully applied and it will be described
next.
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For each day (d)
Calculates Shift Pattern (d,d+5)
For all Shifts(t), from n down to 1
While needs (d,t) are not fullfilled
Select professional (f) more appropriate
Assign professional (f) to the needs (d,t)
End While
End For
End For

4 Finding the Best Solution

We claim that for this problem (i) the performance of the proposed solutions can be properly evaluated,
(ii) the problem is complex being NP complete; (iii) it has not been found yet an exact method to
determine the best solution; (iv) the problem involves a large number of variables, thus occurring the

curse of dimensionality.
For a problem with such characteristics the best approach to be used relies on Genetic Algorithms.

5 Genetic Algorithms

Genetic Algorithms (GAs) perform a stochastic global search method that mimics the metaphor of
natural biological evolution. GAs operate iteratively on a population of individuals (solutions). In each
iteration all the members are evaluated according to a fitness function. The lowest fitness individuals
are eliminated and from the crossover of the remaining ones, a new generation of solutions is created
following a mutation which is realized in a small percentage completing thus the cycle. This cycle is
repeated until a stop condition is reached (see Figure 1).
i
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Figure 1: Genetic Algorithm Schema.
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The individuals representation assumes an important role in any genetic algorithm approach In
this case, the individual, a shift scheduling, is represented by:

Xyat feF,deD;teT

The fitness of a specific solution is given the weighted sum of the objective Disorder and Unfairness.
Since we have a multiobjective problem two strategies are presented.

In order to find a solution that minimizes a weighted average of the two objective functions, the
ranking is obtained by sorting the solutions according to Z = pZ; + (1 — p)Z2,0 < p < 1.
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DISORDER

Ip ... UNFAIRNESS

Figure 2: Function Fj.

To find the best solutions, either the Disorder or the Unfairness, the ranking should be done
iteratively, capturing the trade-off between these objectives, the so-called Pareto curve (see Figure 2),
inserting the found solutions in the ranking and removing them from the initial list. The process is
repeated until any other solution can be found.

DISORDER

TINFATRNESS

Figure 3: Function Fj.

The crossover operator combines two solutions (progenitors) from the actual generation with iden-
tical fitness and it generates two solutions (descendents) recombining portions of both parents. We
take two solutions X P1 and X P2, and from a random x € D two new solutions X D1 and X D2 are
generated as follows:

XDlyg = XPlycy UXP2g>, fEF,deD,teT
Xszdt = XPlezUXP2d<Ef€F,d€D,t€T

XP, XP.
T T
Im | L] L
IH\F | |

XD1 XD2
}\ h \H\
mll Inp |
[mi I ]

Figure 4: Crossover operation.

The mutation operates randomly on the chromosomes of an individual. To allow the convergence of
an algorithm this operator is used with a low frequency. The mutation is achieved choosing randomly
two heathcare professionals fi, fo € F, two days d1,d2 € D, and two shifts ¢1,t2 € T' that verify the
following condition:

Xfldltl =1A Xf2d2t2 =1A Xfldztz =0A Xf2d1t1 =0

and changing their values, respectively.
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Xfldltl =0A szdziz =0A Xf1d2tz =1A szdltl =1

Figure 5: Mutation operation.

The evolution is associated with diversity. To achieve a good diversity on the initial population,
based on the heuristic proposed, new heuristics were derived to generate purely random solutions, or
random solutions to favoring the decreasing Disorder or to favoring the decreasing Unfairness.

6 Conclusion

The proposed approach solving a schedule shift problem base on a standard genetic algorithm was
successfully implemented. The new heuristics generated a valid good shift scheduling. The genetic
algorithm optimized the solutions found with the defined heuristics. The results show good agreement
with the needs of the medical care service as well as the personal preferences of healthcare professionals.
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Rutherford backscattering (RBS) is a non-destructive, fully quantitative,
technique for accurately determining the compositional depth profile of thin films.
The inverse RBS problem, which is to determine from the data the correspond-
ing sample structure, is however in general ill-posed. Skilled analysts use their
knowledge and experience to recognize recurring features in the data and relate
them to features in the sample structure. This is then followed by a detailed
quantitative analysis. Artificial Neural Network (ANN) have already been suces-
sufuly applied to data analysis of implantations of Ge in Si, and Er in saphire
among others. In this work we show the first results of using neural networks to
a more general problem, namely implantations of any element in any substract
under any experimental conditions. This is a very hard problem for a ANN where
we used housands of constructed spectra of samples for which the structure is
known. We used a efficient algorithm to extract features from the 512 chan-
nel spectra, thus reducing drastically the dimensionality of the data. The ANN
learns how to interpret the spectrum of a given sample, without any knowledge
of the physics involved. The ANN was then applied to experimental data from
samples of unknown structure. The quantitative results obtained were compared
with those given by traditional analysis methods, and are excellent. The major
advantage of ANNs over those other methods is that, after the time-consuming
training phase, the analysis is instantaneous, which opens the door to automated
on-line data analysis. Furthermore, the ANN was able to distinguish two differ-
ent classes of data which are experimentally difficult to analyze. This opens the
door to automated on-line optimization of the experimental conditions.

*Corresponding author: asv@isep.ipp.pt
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1 Introduction

Evolutionary algorithms (EAs) are known in many areas as a powerful and robust optimization and
searching tool. Classical EAs rely on the well-known two phases: selection and variation. Variation is
usually carried out by means of perturbation of promissing individuals (searching local neighourhoods), or
by means of combining two promising individuals together (creating offsprings which embody some char-
acteristics of both parents). However, classical EAs suffer from several problems. The linkage problem
belongs among the most severe ones. It arises in situations when the individual components of chromo-
somes are not statistically independent of each other with respect to the fitness function. There exists no
general way of EA modification that would enable the modified EA to account for the dependencies at
hand. Usually, this problem is solved by constructing special crossover and mutation types of operators
and by incorporating some problem-specific knowledge in them. The classical EA then looses its flavor
of general problem solver and quickly becomes an algorithm highly specialized to the given problem.

2 Estimation of Distribution Algorithms

Recently, a new type of EAs emerged — Estimation of Distribution Algorithms (EDAs) [1]. Some re-
searchers use names as Probabilistic Model Building Genetic Algorithms (PMBGAS), or Iterated Density
Estimation Algorithms (IDEAs), but all these names describe basically the same concept. These algo-
rithms don’t rely on the ‘genetic’ principles anymore; instead, in each generation, they build an explicit
probabilistic model of distribution of ‘good’ individuals in the search space. New individuals are created
by sampling from this distribution. The model-sample step of EDA can be thought of as a generalized
type of multiparent crossover operator. The strengths and weaknesses of a particular EDA are mainly
determined by the used probabilistic model.

2.1 Probabilistic Models for Discrete Variables

The probabilistic models differ for EDAs in discrete and continuous spaces. The first EDAs were developed
for the discrete spaces. They range from simple Univariate Marginal Density Algorithm (UMDA), which
is comparable to simple genetic algorithm, to Bayesian Optimization Algorithm (BOA) [2] which uses
Bayesian net as the underlying probabilistic model. Bayesian nets are able to encode general type of
discrete probabilistic distribution, however, their learning from data involves either sophisticated methods
for statistical dependency detection, or they are learnt by searching the space of possible Bayesian nets
(usually by a greedy algorithm).

2.2 Probabilistic Models for Continuous Variables

In continuous spaces, the situation is even more complicated. The simplest continuous EDAs (continuous
UMDAS) use models in which the joint probability density function (PDF) is factorized into a product
of marginal univariate PDFs which take various forms: empirical histograms, normal (or any other well-
known) distribution, finite mixtures of univariate Gaussians, etc. To take into account the dependencies
between variables, we have to employ more complex models like Gaussian nets (GN), which results in
Estimation of Gaussian Networks Algorithm (EGNA) [1]. GN has the power to encode general multi-
dimensional Gaussian distribution, however, very often this type of probabilistic model is not sufficient.
Then we should use even more flexible models which are empowered by (hard- or soft-) clustering, e.g.
finite mixture of multidimensional Gaussians. To be objective, one must say that these models are ca-
pable in covering various types of interactions, however, learning them is not a trivial task. It is usually
very time consuming and it must be performed using a kind of iterative learning scheme (usually by a
variant of the expectation-maximization algorithm).
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3 Marginal Models in EAs

My research is aimed at the EDAs in continuous spaces. I have examined the UMDA in continuous
domain. The individual components of promising solutions are supposed to be statistically independent
of each other. This means that the global distribution of promising solutions in the search space can be
modeled by a set of univariate marginal distributions, i.e. the global model can be factorized as

D
p(x) = [ [ pa(za), 1
a1

where the p(x) is the global multivariate density and the pg(z4)’s are the univariate marginal densities. I
compared the suitability of four different marginal probability models, namely the equi-width histogram
(HEW), equi-height histogram (HEH), max-diff histogram (HMD), and univariate mixture of Gaussians
(MOG) (for the differences of individual models, see fig. 1). For the suite of test functions, see [3].

Figure 1: Equi-width, equi-height, and max-diff histograms with 10 bins, and mixture of gaussians
with 3 components

In the experiments, I varried the population size (200, 400, 600, 800 individuals), the number of bins
for histogram models (120 and 60 bins), or the number of components for the case of MOG model (6 and
3 components). Furthermore, all models were compared to the line search heuristic [4], which is very
efficient for high-dimensional separable problems.

In each generation, new PopSize individuals were created, joined with the old population, and using
truncation selection, the population was reduced to its original size. For each of possible factor com-
bination I run the algorithm 20 times. Each run continued until the number of 50,000 evaluations was
reached. Let’s say the algorithm found the global optimum if for each variable z, the following relation
holds: |45t — 2P| < 0.1 (if the difference of the best found solution z*¢*! from the optimal solution
2Pt is lower then 0.1 in each of coordinates). In all experiments, we track three statistics:

e The number of runs in which the algorithm succeeded in finding the global optimum (NoFoundOpts).

e The average number of evaluations needed to find the global optimum computed from those runs
in which the algorithm really found the optimum (AveNoEvals).

e The average fitness of the best solution the algorithm was able to find in all 20 runs (AveBest).

The results can be found in table 1. From the experiments the following conclusion can be made:
the HEW model is the least flexible one and the behaviour of EDAs with this model is unsatisfactory
in comparison with the other models. The performance of HEH and HMD histograms was comparable.
The MOG model showed a bit worse performance, however, it used considerably less components than
the histogram models and offers other advantages over the histogram models (easy extension to mixture
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Table 1: Results of carried out experiments

of multidimensional Gaussians). Typical tracks of evolution of bin boundaries for histogram models and
component centers of MOG for one of the test functions is shown in figure 2.

Figure 2: Two Peaks function — Evolution of bin boundaries for equi-height and max-diff his-
togram models and evolution of component centers for mixture of Gaussians model.

4 Vestibulo-Ocular Reflex Analysis

The above described algorithm was succesfully applied to vestibulo-ocular reflex (VOR) signal processing.
By analyzing the VOR signal, physicians can recognize some pathologies of the vestibular organ of a
patient in a non-invasive way. The principle is simple: the patient is situated in a chair which is then
rotated in a defined way (following some reference signal — sine wave or sum of sine waves). The patient is
said to visually track some points on surrounding walls and the movements of his eyes are monitored. The
resulting eye signal must be first processed (it is distorted by the fast eye movements) to get ‘eye-filtered’
response to the reference signal. The differences in amplitudes and phases of the sine waves are the
indicators of the vestibular organ pathologies. EDA was applied in the signal processing phase in a co-
evolutionary manner, i.e. the following two parts were iteratively alternated: (1) one population searched
for the best biases of individual signal segments (when fitted to the best representant of estimated signal
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Figure 3: VOR signals and their evolution.

parameters), while (2) the other population searched for the best signal parameters (when fitted to the
best set of biases).

I compared two of the above mentioned UMDAs (HEH and HMD models) with an ordinary EA
(truncation selection, 2-point crossover, mutation with probability 0.05 by means of adding a random
value from distribution N(0,0.1)). The results are presented in fig. 3. On the left-hand side of the
picture, we can see the original signal (dotted line, not known to the EA), the signal segments before EA
started (dashed line), and the same signal segments after EA processing (solid line). We can see, that
all the segments are very precisely arranged so that they follow the original signal very closely. Both
UMDASs were much faster than the EA in the initial phase of evolution. The EA is able to discover more
accurate solution, however, the final differences are not very large — measured in residual sum of squares
(RSS), the EA reached the score of 0.44 on average, the UMDA /HMD reached 0.75, and the UMDA /HEH
reached 2.36 (solutions of these scores are almost identical when compared by human eye). In spite of
these differences, all these EAs reach much more accurate results (in terms of RSS) than conventionally
used methods based on some form of interpolation.

5 Future Work

In the near future, I would like to implement an EDA using mixture of principal component analysers
(MPCA) and test it on several artificial and practical problems (e.g. on Hough’s transformation used in
image processing, or for hidden Markov models training). The aim of these comparative studies is to find
out if it is worth to use such complex models (e.g. MPCA), in other words, if the time spent on learning
the model each generation is lower than the time the simple EA needs to find a solution of comparable
quality.
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Abstract - We are studying and experiencing approaches for adaptive on-line learning of fuzzy rules
and their application for prediction problems in the context of data mining. Takagi-Sugeno (TS) fuzzy
models are used for knowledge representation and the mechanism for on-line learning is based on
algorithms that recursively update the model structure and parameters by combining supervised and
unsupervised (hybrid) learning. The structure and parameters of the model continually evolve by
adding new rules and by modifying existing rules and parameters during the operation of the system.
The work is based on developments from the original contributions of Stephen Chiu, Plamen Angelov

and Nikola Kasabov.

Key words: Takagi-Sugeno fuzzy models, fuzzy clustering, rule-base adaptation, on-line learning.

1. Evolving Takagi-Sugeno Fuzzy Models

Takagi-Sugeno fuzzy models have recently become a powerful practical engineering tool for modelling
of complex systems. Evolving rule-based models use methods for learning models from data are based
on the idea of consecutive structure and parameter identification. Structure identification includes
estimation of the focal points of the rules (antecedent parameters) by fuzzy clustering. With fixed
antecedent parameters, the TS fuzzy model transforms into a linear model. Parameters of the linear
models associated with each of the rule antecedents are dbtained by applying the recursive least-
squares (RLS) method or the weighted recursive least-squares (wRLS) method.
For on-line learning of the TS fuzzy models it is necessary an on-line clustering method responsible for
the model structure learning. Angelov proposed a new method inspired on the subtractive clustering
algorithm that allows the recursive calculation of the informative potential of the data, which
represents a spatial proximity measure used to define the focal points of the rules. Evolving rule based
models use the information potential of the new data sample as a trigger to update the rule base.
The evolution mechanism is basically the following: If the information potential of the new data sample
is higher than the potential of the existing rules a new focal point (rule) is created. If the new focal
point is too close to a previously existing rule then the old rule is replaced by the new one. The
advantage of using the information potential instead of the distance to a certain rule centre only for
forming the rule base is that the spatial information and history are not ignored, but are part of the
decision whether to upgrade or modify the rule base.
The recursive procedure for on-line learning of evolving TS fuzzy models includes the following stages:
Stage 1: Initialization of the rule-base structure (antecedent part of the rules);
Stage 2: Reading the next data sample;

Stage 3: Recursive calculation of the potential of each new data sample;
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Stage 4: Recursive up-date of the potentials of old centres taking into account the influence of
the new data sample;

Stage 5: Possible modification or up-grade of the rule-base structure based on the potential of
the new data sample in comparison to the potential of the existing rules centres;

Stage 6: Recursive calculation of the consequence parameters;

Stage 7: Prediction of the output for the next time step.

Despite of the merits the algorithm still needs some major improvements. The conditions to modify
and upgrade the fuzzy rules are being studied more deeply since they influence the number of created
and modified rules and it is not easy to adjust the definitions for a specific problem.

Another vital issue is the on-line clustering procedure, particularly the function for recursive calculation
of the potential of each new data sample. Angelov used different functions (Cauchy type function of
first order, exponential with the summation in the exponent) for recursive calculation of the potential
but all present limitations because the local maxima of the potential do not cover all the regions of
interest. New functions or estimators from information theory need to be tested to achieve a better
placement for focal points covering not only the regions of higher density of points but also other

regions of interest (a disturbance or a new operating mode).

2. Experimental Results

The approaches and its developments were tested on a benchmark problem, the Mackey-Glass chaotic
time series prediction. The data set has been used as a benchmark example in areas d fuzzy systems,
neural networks and hybrid systems. Several models were built for different parameters of the algorithm
and particularly for the conditions necessary to create and modify the fuzzy rules. The results obtained
were compared with other methods (ESOM, EFUNN and DENFIS) and one of the conclusions is that it is
possible to obtain identical values for NDEI with a lower number of rules, i.e. more transparent models.

There are a few parameters (radii, Omega for (W)RLS) and conditions that need to be specified, which
give the flexibility to tune the search. There are several possibilities for the definitions to create and
modify fuzzy rules and different models will be obtained. It is quite difficult to define one condition that

is the best for all types of problems.

3. Conclusion

The approaches we are studying and experimenting for on-line identification of evolving Takagi-Sugeno
fuzzy models are computationally effective and despite the necessary improvements the adaptive
nature of these models, in combination with the highly transparent and compact form of fuzzy rules,

makes them a useful tool for on-line modelling.
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Abstract

Much has been said about the possibility of extra-terrestrial
life. Some state that, due to the almost impossibility of extra-terrestrial
life existence, extra-terrestrial intelligence emergence is virtually
impossible.

In this paper we state that intelligence is not only possible in
planets with any kind of life but also that, once life emerges,
intelligence is an almost inevitable consequence [1].

If we consider a universe of elements with the capability of
interacting we are in the presence of a system [2]. Using this concept
of system we can establish the optimal states, in a neighbourhood, for
which intelligence emergence is possible. It is then possible to obtain
the probability of a system to reach those optimal states.

In the end, we prove that reaching such points is actually
inevitable since they are the most probable cases because two driving
forces will imply reaching optimal states.

Such forces are the entropy maximization necessity, which is
a direct consequence of the second principle of thermodynamics, and
the relativistic information maximization [3][4][5][6][7], which will
be a measure of the system intelligence and, therefore, is used as a
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natural selection factor. The optimal states, due to the influence of
such forces, are, therefore, stable points in evolution [8][9][10].

Other principles must be taken in account. To do so is to
diminish the set of optimal solutions of any m agents, n connections
system. Such principles, such as the least energy principle [11],
applicable to the required energy to create the system, will function as
secondary forces to choose a smaller set of optimal solutions from the
set of solutions previously obtained.

Each time a new condition is added the set of optimal
solutions becomes smaller. Nevertheless it is not expected to reduce
such set to only one solution.

Complex Systems are known for having the ability to exhibit
many “unexpected behaviours” and adopt many solutions. Therefore,
our goal consists only in determining optimal states within small
neighbourhoods of possible states.

The determination of all optimal states involves many
difficulties, mainly topological, due to the huge number of possible
states [12]. Therefore a method or algorithm, able to simplify such
quest is imposed.

Our method allows the establishment of the optimal number
of interactions, considering as optimal number the one for which
thermodynamic entropy is minimal and capacity to store information
1s maximal [10][11]. Such method consists in:

1) From previous works we know the conditions and, therefore, the
rules, to obtain optimal states for any m agents, n connections system,
capable of adopting any structure.

The two most important conditions are given by:
Ns=[m.(m-1)/2]+1 (1) — Number of states
VkeN,V0<n<m.(m-1)/2: ny = k.m A ng = N1y (2) - Optimal States

2) With such knowledge we are capable to estimate the number of all
possible states of the system.
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3) We determine, according to the conditions for intelligence
emergence, the number of optimal states and, from that, its probability
of occurrence in a system with no preferential structure.

Since states are not all equally probable and establishing the
driving forces of evolution, we end by proving that the most probable
states are also the optimal ones, thereby explaining its relatively fast
emergence on Earth and predict the probable emergence anywhere
else where agents can connect themselves to create systems, provided
that simple agents can start creating any sort of interaction between
them.
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1. Introduction

The two types of neural networks most used for supervised learning problems are multilayer perceptrons
(MLPs) and radial basis function (RBF) networks. The main difference between them is that RBFs are
linear in the parameters and MLPs are not. The only way to have MLPs linear in the parameters is to
impose that the weights of the connections between input and hidden units are pre-defined and fixed
during all the process of training (in a three layer network). Also, the output units have to be a linear
combination of the hidden unit outputs. When we study a novel type of learning models, the support
vector machines, we observe that after the learning process these models have a structure similarly to
neural networks. They use a kernel function, K(X,Y), that represents the inner product between ¢(X)

and ¢(Y) where ¢(-) is a transformation of the training data to a higher dimension space. K(X,Y) allow
us to calculate the inner products between ¢(X) and @(Y) without having to know the explicitly form of
the transformation function. The most used kernel functions are:

e
K(X,Y)=e 27 1.1
K(X,Y)=tanh(k- X -Y — &) 1.2)
KX, Y)=(x-Y) (1.3)

These functions satisfy the Mercer condition [Vapnik 95] that guarantees to represent an inner product for
the transformation of the variables into a higher dimension space. In the case of (1.2) this is true only for
some values of k£ and & . A relevant difference between SVMs and neural networks is that the structure
of a SVM doesn’t have to be pre-defined but is determined during raining.

If we use the kernel (1.1) the SVM has a structure identical to a radial basis function. If the kernel used is
(1.2) we have a structure similar to a multilayer perceptron where the weights form the connections
between input and hidden units form the inner product between input training vectors. The observation of
this last structure inspired us to think in a multilayer perceptron where the weights from the connections
between input and hidden units are input training vectors. The only parameters to be estimated will be the
weights from the connections between hidden and output units. In this way we have a multilayer
perceptron that is linear in the parameters.

2. Inner product networks

An initialization method for the weights of a multilayer perceptron was proposed by [Denoeux 93] that
consists in the use of the input training vectors after one type of normalization. This initialization
procedure was motivated by the fact that if the training vectors were normalized their inner product
reflects the distance between them. Using the training vectors (after normalization) for the weights of the
connections between input and hidden units, the neural networks that we propose and will refer as Inner
Product networks presents hidden units with local influence as RBFs units, but with the ability to
influence the entire input training space has the MLPs. On the other hand, the network proposed is linear
in the parameters that we have to estimated, what can be achieve with the calculation of the pseudo-

inverse matrix. These networks have an activation function given by f(X )=tanh(k(l—X -W)),

meaning that we have a model hyper parameter, & , that we need to define.
3. Application examples

In order to test the network proposed we used two artificial problems. The first one, a regression type
problem, that we call “function detection problem”, has an input training set of 100 points uniformly
randomly chosen in the interval[—S,S] where the desired outputs where generated by
y; =5sin(x;)+0.3x,” +¢& where x; =[-5,5], and & N N(0,1) is gaussian noise, added to the generation
model function. An Inner Product network was used in order to estimate the generation model of the data.
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After calculating the weights for the connections between hidden and output units with the pseudo-
inverse matrix, we obtain the network performance by calculating the medium square error (MSE) in a
new set, the validation set, composed by 100 other points generated the same way as the training set.

In this first study of the Inner Product networks we were interested in finding out the influence of the

model hyper parameter, k, used in the activation function. We analysed the relationship between the
network performance (the MSE in the validation set) and the variation of & . In table 1 we have some of
the results obtained.

Value of k MSE in the training set MSE in the validation set
0,00001 14330 15,208
0,0001 1,611 3,689
0,001 1,611 3,688
0,01 0,856 1,023
0,1 0,841 1,1747
1,0 0,647 213990,903

Table 1 — Variation of the network performance (MSE in the training and the validation set) in function of the value used
for k.

It’s possible to observe a regularization behaviour in the value of k . For small values of k the network
doesn’t have the capability to learn the structure of the data generation model (ex: £ =0.00001), on the
other hand, for higher values of k the network presents an over learning behaviour (ex:
k =0.00001).The choice of the value of k£ becomes a critical point for the Inner Product networks. We
are convicted that the optimal value, of &, is problem dependent and we suggest to use an intensive
searching procedure with cross validation for choice criterion. Let us refer that for the “function detection
problem” the optimal value found for £ (in the sense of minimizing the MSE in the validation set) was
0.0014.

The second problem used was a classification type problem. The input data are R? values classified in
one of two classes. The frontier separating the two classes forms a double “F”. We generate 800 data
points following a uniformly randomly distribution over the [0, 3] X [0,4] rectangle. For the validation set,
another 800 points were generated using the some procedure. Several Inner Product networks were
trained for different values of k . For each case the MSE in the training and validation set were calculated
as well the classification error in both sets. In table 2 we may observe the results obtained for some values
of k.

Value of kK MSE in the training Classification error in | MSE in the validation | Classification error in
set the training set set the validation set
0,0001 0,378263 13,125% 0,375909 13,333%
0,001 0,319434 12,000% 0,316013 12,000%
0,01 0,266083 8,750% 0,291842 10,333%
0,1 0,208813 4,750% 0,238269 5,000%
1,0 0,118934 2,633% 0,145862 3,670%
5,0 0,062200 0,750% 0,561323 1,333%
10,0 0,041209 0,250% 0,300351 2,670%
15,0 0,026433 0,250% 17,203581 3,000%
20,0 0,019240 0,000% 99,613418 4,333%

Table 2 — Variation of the MSE and classification error in the training and validation set, for some values of k.
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Figure 1 — a) Training data and data generating function. b), c) and d) Function estimated by an IP network whit k=0.0014,
k=0.00001 and k= 1.0, respectively.

Figure 2 — Training data and estimated frontier between the two classes. a) k=0.001 b) k=0.01 c¢) k=5.0 and d) k=20.0



