# Sums of Squares in Combinatorial optimization

#### João Gouveia

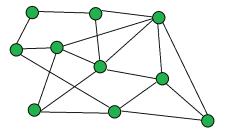
with Rekha Thomas [UW], Pablo Parrilo [MIT], Monique Laurent [CWI]

CMUC - Universidade de Coimbra

17th March 2012 - 2nd Combinatorics Day - Coimbra

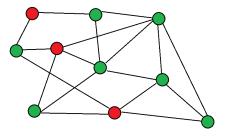
Given a graph G = (V, E) a stable set (or independent set) is a set  $S \subseteq V$  with no edge between any nodes in *S*.

Given a graph G = (V, E) a stable set (or independent set) is a set  $S \subseteq V$  with no edge between any nodes in *S*.



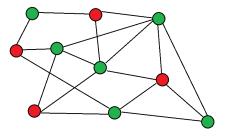
(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Given a graph G = (V, E) a stable set (or independent set) is a set  $S \subseteq V$  with no edge between any nodes in *S*.



(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Given a graph G = (V, E) a stable set (or independent set) is a set  $S \subseteq V$  with no edge between any nodes in *S*.



(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

## The Stable Set Problem

The stable set problem for *G*, given some vertex weights  $\omega$  is:

Stable Set Problem

Find a stable set S for which the cost

$$\omega(\mathcal{S}) := \sum_{\mathcal{S} \in \mathcal{S}} \omega_{\mathcal{S}}$$
 ,

is maximum.

# The Stable Set Problem

The stable set problem for *G*, given some vertex weights  $\omega$  is:

Stable Set Problem Find a stable set S for which the cost  $\omega(S) := \sum_{s \in S} \omega_s$ is maximum.

Remarks:

• For  $\omega \equiv 1$  we get  $\alpha(G)$ , the independence number of *G*;

# The Stable Set Problem

The stable set problem for *G*, given some vertex weights  $\omega$  is:

Stable Set Problem Find a stable set S for which the cost  $\omega(S) := \sum_{s \in S} \omega_s$ is maximum.

Remarks:

• For  $\omega \equiv 1$  we get  $\alpha(G)$ , the independence number of *G*;

• this problem is NP-hard in general.

Given a graph  $G = (\{1, ..., n\}, E)$  we define STAB(G), the stable set polytope of *G*, in the following way:

Given a graph  $G = (\{1, ..., n\}, E)$  we define STAB(G), the stable set polytope of *G*, in the following way:

For every stable set S ⊆ {1, ..., n} consider its characteristic vector χ<sub>S</sub> ∈ {0, 1}<sup>n</sup>;

Given a graph  $G = (\{1, ..., n\}, E)$  we define STAB(G), the stable set polytope of *G*, in the following way:

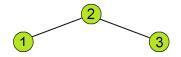
For every stable set S ⊆ {1, ..., n} consider its characteristic vector χ<sub>S</sub> ∈ {0, 1}<sup>n</sup>;

• let  $S_G \subset \{0, 1\}^n$  be the collection of all those vectors;

4 D K 4 B K 4 B K 4 B K

Given a graph  $G = (\{1, ..., n\}, E)$  we define STAB(G), the stable set polytope of *G*, in the following way:

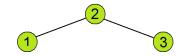
- For every stable set S ⊆ {1, ..., n} consider its characteristic vector χ<sub>S</sub> ∈ {0, 1}<sup>n</sup>;
- let  $S_G \subset \{0, 1\}^n$  be the collection of all those vectors;
- the polytope STAB(G) is then defined as the convex hull of the vectors in S<sub>G</sub>.



2

イロト イロト イヨト イヨト

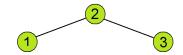




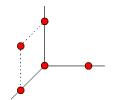
#### $S_G = \{(0,0,0), (1,0,0), (0,1,0), (0,0,1), (1,0,1)\}$

э



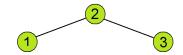


#### $S_G = \{(0,0,0), (1,0,0), (0,1,0), (0,0,1), (1,0,1)\}$

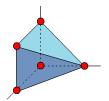


э





#### $S_G = \{(0,0,0), (1,0,0), (0,1,0), (0,0,1), (1,0,1)\}$



э

# Reformulation of the Problem

#### Stable Set Problem Reformulated

Given a graph G = ([n], E) and a weight vector  $\omega \in \mathbb{R}^n$ , solve

$$lpha(\boldsymbol{G}, \boldsymbol{\omega}) := \max_{\boldsymbol{x} \in \mathrm{STAB}(\mathrm{G})} \langle \boldsymbol{\omega}, \boldsymbol{x} \rangle$$
 .

< 回 > < 三 > < 三 >

# Reformulation of the Problem

#### Stable Set Problem Reformulated

Given a graph G = ([n], E) and a weight vector  $\omega \in \mathbb{R}^n$ , solve

$$\alpha(\boldsymbol{G},\boldsymbol{\omega}) := \max_{\boldsymbol{x} \in \mathrm{STAB}(\mathrm{G})} \langle \boldsymbol{\omega}, \boldsymbol{x} \rangle \,.$$

However, finding STAB(G) is as hard as solving the original problem.

# Reformulation of the Problem

#### Stable Set Problem Reformulated

Given a graph G = ([n], E) and a weight vector  $\omega \in \mathbb{R}^n$ , solve

$$\alpha(\boldsymbol{G},\boldsymbol{\omega}) := \max_{\boldsymbol{x} \in \mathrm{STAB}(\mathrm{G})} \langle \boldsymbol{\omega}, \boldsymbol{x} \rangle \,.$$

However, finding STAB(G) is as hard as solving the original problem.

We intend to find approximations for it.

The simplest relaxation of STAB(G) is the fractional stable set polytope of *G*, FRAC(G), the set defined by the following inequalities.

The simplest relaxation of STAB(G) is the fractional stable set polytope of *G*, FRAC(G), the set defined by the following inequalities.

•  $x_i \ge 0$  for i = 1, ..., n (non-negativity constrains);

4 D K 4 B K 4 B K 4 B K

The simplest relaxation of STAB(G) is the fractional stable set polytope of *G*, FRAC(G), the set defined by the following inequalities.

•  $x_i \ge 0$  for i = 1, ..., n (non-negativity constrains);

•  $x_i + x_j \le 1$  for all  $(i, j) \in E$  (edge constrains).

The simplest relaxation of STAB(G) is the fractional stable set polytope of *G*, FRAC(G), the set defined by the following inequalities.

•  $x_i \ge 0$  for i = 1, ..., n (non-negativity constrains);

•  $x_i + x_j \le 1$  for all  $(i, j) \in E$  (edge constrains).

It is possible to optimize over this polytope in polynomial time.

The simplest relaxation of STAB(G) is the fractional stable set polytope of *G*, FRAC(G), the set defined by the following inequalities.

•  $x_i \ge 0$  for i = 1, ..., n (non-negativity constrains);

•  $x_i + x_j \le 1$  for all  $(i, j) \in E$  (edge constrains).

It is possible to optimize over this polytope in polynomial time.

#### It is in general not a very good relaxation.

# Definition of Theta Body

#### Definition (Lovász $\sim$ 1980)

Given a graph G = ([n], E) we define its theta body, TH(G), as the set of all vectors  $x \in \mathbb{R}^n$  such that

$$\begin{bmatrix} 1 & x^t \\ x & U \end{bmatrix} \succeq 0$$

for some symmetric  $U \in \mathbb{R}^{n \times n}$  with diag(U) = x and  $U_{ij} = 0$  for all  $(i, j) \in E$ .

# Definition of Theta Body

#### Definition (Lovász $\sim$ 1980)

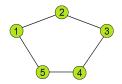
Given a graph G = ([n], E) we define its theta body, TH(G), as the set of all vectors  $x \in \mathbb{R}^n$  such that

$$\begin{bmatrix} 1 & x^t \\ x & U \end{bmatrix} \succeq 0$$

for some symmetric  $U \in \mathbb{R}^{n \times n}$  with diag(U) = x and  $U_{ij} = 0$  for all  $(i, j) \in E$ .

#### Theorem (Lovász $\sim$ 1980)

The relaxation is tight, i.e. TH(G) = STAB(G), if and only if the graph G is perfect.



2

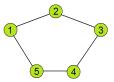
イロト イヨト イヨト イヨト



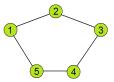
TH(*G*) is the set of  $x \in \mathbb{R}^5$  such that there exist  $y \in \mathbb{R}^5$  such that

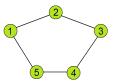
E 5 4

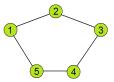
< A

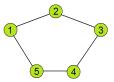


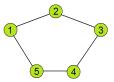


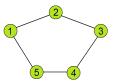


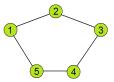


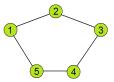


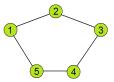


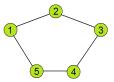


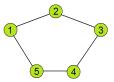


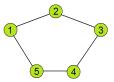


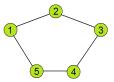












TH(*G*) is the set of  $x \in \mathbb{R}^5$  such that there exist  $y \in \mathbb{R}^5$  such that

In this case  $TH(G) \neq STAB(G)$ 

# k-Sums of Squares

Let  $I \subseteq \mathbb{R}[x]$  be an ideal.

 $f \in \mathbb{R}[x]$  is *k*-sos modulo *I* if and only if

$$f \equiv (h_1^2 + h_2^2 + ... + h_m^2) \mod l$$
,

for some polynomials  $h_1, ..., h_m$  with degree less or equal k.

# k-Sums of Squares

Let  $I \subseteq \mathbb{R}[x]$  be an ideal.

 $f \in \mathbb{R}[x]$  is *k*-sos modulo *I* if and only if

$$f \equiv (h_1^2 + h_2^2 + ... + h_m^2) \mod l$$
,

for some polynomials  $h_1, ..., h_m$  with degree less or equal k.

For any p in  $\mathcal{V}_{\mathbb{R}}(I)$  we have

$$f(p) = h_1^2(p) + ... + h_m^2(p) \ge 0,$$

so being *k*-sos modulo *I*, implies being nonnegative on  $\mathcal{V}_{\mathbb{R}}(I)$ .

# **Convex Hulls of Varieties**

We want to use this tool to approximate  $S = \mathcal{V}_{\mathbb{R}}(I)$ . Note that

**Convex Hull** 

$$\overline{\operatorname{conv}(S)} = \bigcap_{\ell \text{ linear }, \ell|_S \ge 0} \{ \mathbf{x} \in \mathbb{R}^n : \ell(\mathbf{x}) \ge 0 \}.$$

3

# **Convex Hulls of Varieties**

We want to use this tool to approximate  $S = \mathcal{V}_{\mathbb{R}}(I)$ . Note that

Convex Hull

$$\overline{\text{conv}(\mathcal{S})} = \bigcap_{\ell \text{ linear }, \ell|_{\mathcal{S}} \ge 0} \{ \mathbf{x} \in \mathbb{R}^n : \ell(\mathbf{x}) \ge 0 \}.$$

We can therefore relax it by

Theta Bodies of an ideal

$$\mathsf{TH}_d(I) = \bigcap_{\substack{\ell \text{ linear }, \ell \text{ } k \text{-sos modulo } I}} \{ \mathbf{x} \in \mathbb{R}^n : \ell(\mathbf{x}) \ge 0 \}$$

which we call the *d*-th Theta Body of *I*.

э.

< 日 > < 同 > < 回 > < 回 > < □ > <

# **Convex Hulls of Varieties**

We want to use this tool to approximate  $S = \mathcal{V}_{\mathbb{R}}(I)$ . Note that

Convex Hull

$$\overline{\text{conv}(\mathcal{S})} = \bigcap_{\ell \text{ linear }, \ell|_{\mathcal{S}} \ge 0} \{ \mathbf{x} \in \mathbb{R}^n : \ell(\mathbf{x}) \ge 0 \}.$$

We can therefore relax it by

Theta Bodies of an ideal

$$\mathsf{TH}_d(I) = \bigcap_{\substack{\ell \text{ linear }, \ell \text{ } k \text{-sos modulo } I}} \{ \mathbf{x} \in \mathbb{R}^n : \ell(\mathbf{x}) \ge 0 \}$$

which we call the *d*-th Theta Body of *I*. We have  $\overline{\text{conv}(S)} \subseteq \cdots \subseteq \text{TH}_3(I) \subseteq \text{TH}_2(I) \subseteq \text{TH}_1(I)$ .

-

### Theta body - Example

(Loading...)

TH<sub>2</sub>(*I*) for 
$$I = \langle x(x^2 + y^2) - x^4 - x^2y^2 - y^4 \rangle$$
.

J. Gouveia (UC)

SOS in Combinatorial Optimization

2nd Combinatorics Day 12 / 33

æ

イロト イヨト イヨト イヨト

### Back to Stable Sets

For a graph *G*, let  $S_G = \{\chi_S : S \text{ is stable}\}$  and  $I_G = \mathcal{I}(S_G)$ , then  $TH_k(I_G)$  is a hierarchy approximating STAB(G).

イロト イヨト イヨト イヨト

## Back to Stable Sets

For a graph *G*, let  $S_G = \{\chi_S : S \text{ is stable}\}$  and  $I_G = \mathcal{I}(S_G)$ , then  $TH_k(I_G)$  is a hierarchy approximating STAB(G).

Stable Set Ideal  $I_{G} = \left\langle x_{1}^{2} - x_{1}, x_{2}^{2} - x_{2}, \cdots, x_{n}^{2} - x_{n}, x_{i}x_{j} \mid \text{ for all } \{i, j\} \in E \right\rangle.$ 

3

## Back to Stable Sets

For a graph *G*, let  $S_G = \{\chi_S : S \text{ is stable}\}$  and  $I_G = \mathcal{I}(S_G)$ , then  $TH_k(I_G)$  is a hierarchy approximating STAB(G).

Stable Set Ideal  $I_G = \left\langle x_1^2 - x_1, x_2^2 - x_2, \cdots, x_n^2 - x_n, x_i x_j \mid \text{ for all } \{i, j\} \in E \right\rangle.$ 

This relates the new relaxations to the Lovász theta body.

#### Theorem

For any graph G,  $TH(G) = TH_1(I_G)$ .

3

イロト 不得 トイヨト イヨト

If  $H \subseteq G$  is a clique, then

$$1-\sum_{i\in H}x_i\geq 0$$

is valid on STAB(G). Is it valid on  $TH_1(I_G)$ ?

If  $H \subseteq G$  is a clique, then

$$1-\sum_{i\in H}x_i\geq 0$$

is valid on STAB(G). Is it valid on  $TH_1(I_G)$ ?

$$\left(1 - \sum_{i \in H} x_i\right)^2 = 1 - 2 \sum_{i \in H} x_i + \sum_{i \in H} x_i^2 + 2 \sum_{i \neq j \in H} x_i x_j.$$

If  $H \subseteq G$  is a clique, then

$$1-\sum_{i\in H}x_i\geq 0$$

is valid on STAB(G). Is it valid on  $TH_1(I_G)$ ?

$$\left(1 - \sum_{i \in H} x_i\right)^2 = 1 - 2\sum_{i \in H} x_i + \sum_{i \in H} x_i^2 + 2\sum_{i \neq j \in H} x_i x_j.$$

Since, modulo  $I_G$ ,  $x_i^2 = x_i$  and  $x_i x_j = 0$  for  $\{i, j\} \in E$ ,

$$1 - \sum_{i \in H} x_i \equiv \left(1 - \sum_{i \in H} x_i\right)^2 \text{ modulo } I_G$$

hence it is 1-sos and valid on  $TH_1(I_G)$ .

If  $C \subseteq G$  is a 2k + 1 cycle, then

$$k-\sum_{i\in C}x_i\geq 0$$

is valid on STAB(G). Is it valid on  $TH_2(I_G)$ ?

A B F A B F

< 17 ▶

If  $C \subseteq G$  is a 2k + 1 cycle, then

$$k-\sum_{i\in C}x_i\geq 0$$

is valid on STAB(G). Is it valid on  $TH_2(I_G)$ ?

$$p_i^2 := ((1 - x_1)(1 - x_{2i} - x_{2i+1}))^2$$

If  $C \subseteq G$  is a 2k + 1 cycle, then

$$k-\sum_{i\in C}x_i\geq 0$$

is valid on STAB(G). Is it valid on  $TH_2(I_G)$ ?

$$p_i^2 := ((1 - x_1)(1 - x_{2i} - x_{2i+1}))^2 \equiv p_i$$

If  $C \subseteq G$  is a 2k + 1 cycle, then

$$k-\sum_{i\in C}x_i\geq 0$$

is valid on STAB(G). Is it valid on  $TH_2(I_G)$ ?

$$p_i^2 := ((1-x_1)(1-x_{2i}-x_{2i+1}))^2 \equiv p_i = 1-x_1-x_{2i}-x_{2i+1}+x_1x_{2i}+x_1x_{2i+1}$$

If  $C \subseteq G$  is a 2k + 1 cycle, then

$$k-\sum_{i\in C}x_i\geq 0$$

is valid on STAB(G). Is it valid on  $TH_2(I_G)$ ?

$$p_i^2 := ((1-x_1)(1-x_{2i}-x_{2i+1}))^2 \equiv p_i = 1-x_1-x_{2i}-x_{2i+1}+x_1x_{2i}+x_1x_{2i+1}$$
$$g_i^2 := (x_1(1-x_{2i+1}-x_{2i+2}))^2$$

If  $C \subseteq G$  is a 2k + 1 cycle, then

$$k-\sum_{i\in C}x_i\geq 0$$

is valid on STAB(G). Is it valid on  $TH_2(I_G)$ ?

$$p_i^2 := ((1-x_1)(1-x_{2i}-x_{2i+1}))^2 \equiv p_i = 1-x_1-x_{2i}-x_{2i+1}+x_1x_{2i}+x_1x_{2i+1}$$
  
 $g_i^2 := (x_1(1-x_{2i+1}-x_{2i+2}))^2 \equiv g_i$ 

If  $C \subseteq G$  is a 2k + 1 cycle, then

$$k-\sum_{i\in C}x_i\geq 0$$

is valid on STAB(G). Is it valid on  $TH_2(I_G)$ ?

$$p_i^2 := ((1-x_1)(1-x_{2i}-x_{2i+1}))^2 \equiv p_i = 1-x_1-x_{2i}-x_{2i+1}+x_1x_{2i}+x_1x_{2i+1}$$
$$g_i^2 := (x_1(1-x_{2i+1}-x_{2i+2}))^2 \equiv g_i = x_1-x_1x_{2i+1}-x_1x_{2i+2}$$

If  $C \subseteq G$  is a 2k + 1 cycle, then

$$k-\sum_{i\in C}x_i\geq 0$$

is valid on STAB(G). Is it valid on  $TH_2(I_G)$ ?

$$p_i^2 := ((1-x_1)(1-x_{2i}-x_{2i+1}))^2 \equiv p_i = 1-x_1-x_{2i}-x_{2i+1}+x_1x_{2i}+x_1x_{2i+1}$$
$$g_i^2 := (x_1(1-x_{2i+1}-x_{2i+2}))^2 \equiv g_i = x_1-x_1x_{2i+1}-x_1x_{2i+2}$$

Then

$$\sum_{i=1}^{k} p_i^2 + \sum_{i=1}^{k-1} g_i^2 \equiv k - \sum_{i=1}^{2k+1} x_i \mod I_G.$$

Therefore those are valid in  $TH_2(I_G)$ .

If  $C \subseteq G$  is a 2k + 1 cycle, then

$$k-\sum_{i\in C}x_i\geq 0$$

1

is valid on STAB(G). Is it valid on  $TH_2(I_G)$ ?

$$p_i^2 := ((1-x_1)(1-x_{2i}-x_{2i+1}))^2 \equiv p_i = 1-x_1-x_{2i}-x_{2i+1}+x_1x_{2i}+x_1x_{2i+1}$$
$$g_i^2 := (x_1(1-x_{2i+1}-x_{2i+2}))^2 \equiv g_i = x_1-x_1x_{2i+1}-x_1x_{2i+2}$$

Then

$$\sum_{i=1}^{k} p_i^2 + \sum_{i=1}^{k-1} g_i^2 \equiv k - \sum_{i=1}^{2k+1} x_i \mod I_G.$$

Therefore those are valid in  $TH_2(I_G)$ .

 $TH_2(I_G) = STAB(G)$  for *h*-perfect graphs.

J. Gouveia (UC)

SOS in Combinatorial Optimization

# Further Thoughts on Stable Sets

Since G is TH<sub>1</sub>-exact if and only if it is perfect, makes sense to ask

Question Which graphs are TH<sub>2</sub>-exact?

# Further Thoughts on Stable Sets

Since G is TH<sub>1</sub>-exact if and only if it is perfect, makes sense to ask

Question Which graphs are TH<sub>2</sub>-exact?

We know for example that odd cycle and odd wheel inequalities are captured in  $TH_2(I_G)$ .

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

# Further Thoughts on Stable Sets

Since G is TH<sub>1</sub>-exact if and only if it is perfect, makes sense to ask

Question Which graphs are TH<sub>2</sub>-exact?

We know for example that odd cycle and odd wheel inequalities are captured in  $TH_2(I_G)$ . Little else has been done, which raises another interesting open question.

#### Question

Find an explicit family  $G_n$  for which  $TH_n(I_{G_n}) \neq STAB(G_n)$  for all n.

3

< 日 > < 同 > < 回 > < 回 > < □ > <

How to optimize over these bodies?

< 回 > < 回 > < 回 >

How to optimize over these bodies? The moment approach. Let

$$\mathcal{B} = \{1 = f_0, x_1 = f_1, ..., x_n = f_n, f_{n+1}, ...\}$$

be a basis of  $\mathbb{R}[x]/I$  and  $\mathcal{B}_k$  its truncation at degree *k*.

A (10) A (10)

How to optimize over these bodies? The moment approach. Let

$$\mathcal{B} = \{1 = f_0, x_1 = f_1, ..., x_n = f_n, f_{n+1}, ...\}$$

be a basis of  $\mathbb{R}[x]/I$  and  $\mathcal{B}_k$  its truncation at degree *k*.

Consider the polynomial vector  $f^k(x) = (f_i(x))_{f_i \in \mathcal{B}_k}$  then

$$(f^k(x))(f^k(x))^t = \sum_{f_i \in \mathcal{B}} A_i f_i(x)$$

for some symmetric matrices  $A_i$ .

不得る とうちょうちょ

How to optimize over these bodies? The moment approach. Let

$$\mathcal{B} = \{1 = f_0, x_1 = f_1, ..., x_n = f_n, f_{n+1}, ...\}$$

be a basis of  $\mathbb{R}[x]/I$  and  $\mathcal{B}_k$  its truncation at degree *k*.

Consider the polynomial vector  $f^k(x) = (f_i(x))_{f_i \in \mathcal{B}_k}$  then

$$(f^{k}(x))(f^{k}(x))^{t} = \sum_{f_{i} \in \mathcal{B}} A_{i}f_{i}(x)$$

for some symmetric matrices  $A_i$ . Given a vector y indexed by the elements in  $\mathcal{B}$  we define the *k*-th truncated combinatorial moment matrix of y as

$$M_{\mathcal{B},k}(y) = \sum_{f_i \in \mathcal{B}} A_i y_{f_i}.$$

3

イロト 不得 トイヨト イヨト

Combinatorial Moment Matrices - Example Let  $I = \langle x_1^2 - x_1, x_2^2 - x_2, x_3^2 - x_3 \rangle \subset \mathbb{R}[x_1, x_2, x_3],$ 

3

(日)

# Combinatorial Moment Matrices - Example Let $I = \langle x_1^2 - x_1, x_2^2 - x_2, x_3^2 - x_3 \rangle \subset \mathbb{R}[x_1, x_2, x_3]$ , pick $\mathcal{B} = \{ 1, x_1, x_2, x_3, x_1x_2, x_1x_3, x_2x_3, x_1x_2x_3 \}$

Let  $\textit{I} = \left< x_1^2 - x_1, x_2^2 - x_2, x_3^2 - x_3 \right> \subset \mathbb{R}[x_1, x_2, x_3]$ , pick

$$\mathcal{B} = \{ 1, x_1, x_2, x_3, x_1x_2, x_1x_3, x_2x_3, x_1x_2x_3 \}$$
  
$$y = (y_0, y_1, y_2, y_3, y_{12}, y_{13}, y_{23}, y_{123} ).$$

A (10) A (10)

Let  $I = \left\langle x_1^2 - x_1, x_2^2 - x_2, x_3^2 - x_3 \right\rangle \subset \mathbb{R}[x_1, x_2, x_3]$ , pick

Then  $M_{\mathcal{B}}(y)$  is given by

Let  $\textit{I} = \left< x_1^2 - x_1, x_2^2 - x_2, x_3^2 - x_3 \right> \subset \mathbb{R}[x_1, x_2, x_3]$ , pick

 $\mathcal{B} = \{ 1, x_1, x_2, x_3, x_1x_2, x_1x_3, x_2x_3, x_1x_2x_3 \}$  $y = (y_0, y_1, y_2, y_3, y_{12}, y_{13}, y_{23}, y_{123} ).$ 

Then  $M_{\mathcal{B}}(y)$  is given by



3

Let  $I = \langle x_1^2 - x_1, x_2^2 - x_2, x_3^2 - x_3 \rangle \subset \mathbb{R}[x_1, x_2, x_3]$ , pick

 $\mathcal{B} = \{ 1, x_1, x_2, x_3, x_1x_2, x_1x_3, x_2x_3, x_1x_2x_3 \}$  $y = (y_0, y_1, y_2, y_3, y_{12}, y_{13}, y_{23}, y_{123} ).$ 

Then  $M_{\mathcal{B}}(y)$  is given by

|                                             | 1                     | <i>x</i> <sub>1</sub> | <i>x</i> <sub>2</sub> | <i>x</i> 3 | <i>x</i> <sub>1</sub> <i>x</i> <sub>2</sub> | <i>x</i> <sub>1</sub> <i>x</i> <sub>3</sub> | <i>x</i> <sub>2</sub> <i>x</i> <sub>3</sub> | $x_1 x_2 x_3$ |
|---------------------------------------------|-----------------------|-----------------------|-----------------------|------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|---------------|
| 1 [                                         | <i>y</i> <sub>0</sub> |                       |                       |            |                                             |                                             |                                             | 1             |
| <i>x</i> <sub>1</sub>                       |                       |                       |                       |            |                                             |                                             |                                             |               |
| <i>x</i> <sub>2</sub>                       |                       |                       |                       |            |                                             |                                             |                                             |               |
| <i>x</i> <sub>3</sub>                       |                       |                       |                       |            |                                             |                                             |                                             |               |
| <i>x</i> <sub>1</sub> <i>x</i> <sub>2</sub> |                       |                       |                       |            |                                             |                                             |                                             |               |
| <i>x</i> <sub>1</sub> <i>x</i> <sub>3</sub> |                       |                       |                       |            |                                             |                                             |                                             |               |
| <i>x</i> <sub>2</sub> <i>x</i> <sub>3</sub> |                       |                       |                       |            |                                             |                                             |                                             |               |
| $x_1 x_2 x_3$                               | -                     |                       |                       |            |                                             |                                             |                                             |               |

Let  $I = \langle x_1^2 - x_1, x_2^2 - x_2, x_3^2 - x_3 \rangle \subset \mathbb{R}[x_1, x_2, x_3]$ , pick

 $\mathcal{B} = \{ 1, x_1, x_2, x_3, x_1x_2, x_1x_3, x_2x_3, x_1x_2x_3 \}$  $y = (y_0, y_1, y_2, y_3, y_{12}, y_{13}, y_{23}, y_{123} ).$ 

Then  $M_{\mathcal{B}}(y)$  is given by

|                                             | 1            | <i>x</i> <sub>1</sub> | <i>x</i> <sub>2</sub> | <i>X</i> 3 | <i>x</i> <sub>1</sub> <i>x</i> <sub>2</sub> | <i>x</i> <sub>1</sub> <i>x</i> <sub>3</sub> | <i>X</i> <sub>2</sub> <i>X</i> <sub>3</sub> | $x_1 x_2 x_3$ |
|---------------------------------------------|--------------|-----------------------|-----------------------|------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|---------------|
| 1                                           | Γ <i>У</i> 0 | <b>y</b> 1            |                       |            |                                             |                                             |                                             | ]             |
| <i>x</i> <sub>1</sub>                       |              |                       |                       |            |                                             |                                             |                                             |               |
| <i>x</i> <sub>2</sub>                       |              |                       |                       |            |                                             |                                             |                                             |               |
| <i>X</i> 3                                  | I            |                       |                       |            |                                             |                                             |                                             |               |
| <i>x</i> <sub>1</sub> <i>x</i> <sub>2</sub> | ]            |                       |                       |            |                                             |                                             |                                             |               |
| <i>x</i> <sub>1</sub> <i>x</i> <sub>3</sub> |              |                       |                       |            |                                             |                                             |                                             |               |
| <i>x</i> <sub>2</sub> <i>x</i> <sub>3</sub> |              |                       |                       |            |                                             |                                             |                                             |               |
| $x_1 x_2 x_3$                               | L            |                       |                       |            |                                             |                                             |                                             |               |

Let  $I = \langle x_1^2 - x_1, x_2^2 - x_2, x_3^2 - x_3 \rangle \subset \mathbb{R}[x_1, x_2, x_3]$ , pick

 $\mathcal{B} = \{ 1, x_1, x_2, x_3, x_1x_2, x_1x_3, x_2x_3, x_1x_2x_3 \}$  $y = (y_0, y_1, y_2, y_3, y_{12}, y_{13}, y_{23}, y_{123} ).$ 

Then  $M_{\mathcal{B}}(y)$  is given by

|                                             | 1            | <i>x</i> <sub>1</sub> | <i>x</i> <sub>2</sub> | <i>X</i> 3            | <i>x</i> <sub>1</sub> <i>x</i> <sub>2</sub> | <i>x</i> <sub>1</sub> <i>x</i> <sub>3</sub> | <i>x</i> <sub>2</sub> <i>x</i> <sub>3</sub> | $x_1 x_2 x_3$  |
|---------------------------------------------|--------------|-----------------------|-----------------------|-----------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|----------------|
| 1                                           | Γ <i>Y</i> 0 | <b>y</b> 1            | <b>y</b> 2            | <i>y</i> <sub>3</sub> | <b>y</b> <sub>12</sub>                      | <b>y</b> 13                                 | <b>y</b> 23                                 | <i>Y</i> 123 ] |
| <i>x</i> <sub>1</sub>                       |              |                       |                       |                       |                                             |                                             |                                             |                |
| <i>x</i> <sub>2</sub>                       |              |                       |                       |                       |                                             |                                             |                                             |                |
| <i>x</i> 3                                  |              |                       |                       |                       |                                             |                                             |                                             |                |
| <i>x</i> <sub>1</sub> <i>x</i> <sub>2</sub> |              |                       |                       |                       |                                             |                                             |                                             |                |
| <i>x</i> <sub>1</sub> <i>x</i> <sub>3</sub> |              |                       |                       |                       |                                             |                                             |                                             |                |
| <i>x</i> <sub>2</sub> <i>x</i> <sub>3</sub> |              |                       |                       |                       |                                             |                                             |                                             |                |
| $x_1 x_2 x_3$                               | L            |                       |                       |                       |                                             |                                             |                                             |                |

Let  $\textit{I} = \left< x_1^2 - x_1, x_2^2 - x_2, x_3^2 - x_3 \right> \subset \mathbb{R}[x_1, x_2, x_3]$ , pick

Then  $M_{\mathcal{B}}(y)$  is given by

|                                             | 1            | <i>X</i> <sub>1</sub> | <i>x</i> <sub>2</sub> | <i>X</i> 3 | <i>x</i> <sub>1</sub> <i>x</i> <sub>2</sub> | <i>x</i> <sub>1</sub> <i>x</i> <sub>3</sub> | <i>x</i> <sub>2</sub> <i>x</i> <sub>3</sub> | $x_1 x_2 x_3$  |
|---------------------------------------------|--------------|-----------------------|-----------------------|------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|----------------|
| 1                                           | Γ <i>Y</i> 0 | <b>y</b> 1            | <i>y</i> <sub>2</sub> | <b>y</b> 3 | <b>y</b> 12                                 | <b>y</b> 13                                 | <b>y</b> 23                                 | <i>Y</i> 123 ] |
| <i>x</i> <sub>1</sub>                       |              |                       |                       |            |                                             |                                             |                                             |                |
| <i>x</i> <sub>2</sub>                       |              |                       |                       |            |                                             |                                             |                                             |                |
| <i>X</i> 3                                  |              |                       |                       |            |                                             |                                             |                                             |                |
| <i>x</i> <sub>1</sub> <i>x</i> <sub>2</sub> |              |                       |                       |            |                                             | ?                                           |                                             |                |
| <i>x</i> <sub>1</sub> <i>x</i> <sub>3</sub> |              |                       |                       |            |                                             |                                             |                                             |                |
| <i>x</i> <sub>2</sub> <i>x</i> <sub>3</sub> |              |                       |                       |            |                                             |                                             |                                             |                |
| $x_1 x_2 x_3$                               | L            |                       |                       |            |                                             |                                             |                                             | Ţ              |

Let  $\textit{I} = \left< x_1^2 - x_1, x_2^2 - x_2, x_3^2 - x_3 \right> \subset \mathbb{R}[x_1, x_2, x_3]$ , pick

Then  $M_{\mathcal{B}}(y)$  is given by

|                                             | 1            | <i>x</i> <sub>1</sub> | <i>x</i> <sub>2</sub> | <i>x</i> 3 | <i>x</i> <sub>1</sub> <i>x</i> <sub>2</sub> | <i>x</i> <sub>1</sub> <i>x</i> <sub>3</sub> | <i>x</i> <sub>2</sub> <i>x</i> <sub>3</sub> | $x_1 x_2 x_3$  |
|---------------------------------------------|--------------|-----------------------|-----------------------|------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|----------------|
| 1                                           | Γ <i>Y</i> 0 | <b>y</b> 1            | <b>y</b> 2            | <b>y</b> 3 | <b>y</b> 12                                 | <b>y</b> 13                                 | <b>y</b> 23                                 | <b>y</b> 123 ] |
| <i>x</i> <sub>1</sub>                       |              |                       |                       |            |                                             |                                             |                                             |                |
| <i>x</i> <sub>2</sub>                       |              |                       |                       |            |                                             |                                             |                                             |                |
| <i>x</i> 3                                  |              |                       |                       |            |                                             |                                             |                                             |                |
| <i>x</i> <sub>1</sub> <i>x</i> <sub>2</sub> |              |                       |                       |            |                                             | <b>y</b> 123                                |                                             |                |
| <i>x</i> <sub>1</sub> <i>x</i> <sub>3</sub> |              |                       |                       |            |                                             |                                             |                                             |                |
| <i>x</i> <sub>2</sub> <i>x</i> <sub>3</sub> |              |                       |                       |            |                                             |                                             |                                             |                |
| $x_1 x_2 x_3$                               | L            |                       |                       |            |                                             |                                             |                                             |                |

Let  $\textit{I} = \left< x_1^2 - x_1, x_2^2 - x_2, x_3^2 - x_3 \right> \subset \mathbb{R}[x_1, x_2, x_3]$ , pick

Then  $M_{\mathcal{B}}(y)$  is given by

|                                             | 1                     | <i>x</i> <sub>1</sub> | <i>x</i> <sub>2</sub>  | <i>x</i> 3   | <i>x</i> <sub>1</sub> <i>x</i> <sub>2</sub> | <i>x</i> <sub>1</sub> <i>x</i> <sub>3</sub> | <i>x</i> <sub>2</sub> <i>x</i> <sub>3</sub> | $x_1 x_2 x_3$                          |
|---------------------------------------------|-----------------------|-----------------------|------------------------|--------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|----------------------------------------|
| 1                                           | Γ <i>У</i> 0          | <b>y</b> 1            | <i>y</i> <sub>2</sub>  | <b>y</b> 3   | <b>y</b> 12                                 | <b>y</b> 13                                 | <b>y</b> 23                                 | <b>y</b> 123 ]                         |
| <i>x</i> <sub>1</sub>                       | <i>y</i> <sub>1</sub> | <b>y</b> 1            | <b>y</b> <sub>12</sub> | <b>y</b> 13  | <b>y</b> 12                                 | <b>y</b> 13                                 | <b>y</b> 123                                | У <sub>123</sub><br>У <sub>123</sub>   |
| <i>X</i> 2                                  | <i>y</i> <sub>2</sub> | <b>y</b> 12           | <b>У</b> 2             | <b>Y</b> 23  | <b>y</b> 12                                 | <b>Y</b> 123                                | <b>y</b> 23                                 | <b>Y</b> 123                           |
| <i>X</i> 3                                  | <i>y</i> <sub>3</sub> | <b>y</b> 13           | <b>y</b> 23            | <b>y</b> 3   | <b>y</b> 123                                | <b>y</b> 13                                 | <b>Y</b> 23                                 | <i>Y</i> 123                           |
| $x_1 x_2$                                   | <i>Y</i> 12           | <b>y</b> 12           | <b>y</b> 12            | <b>y</b> 123 | <i>Y</i> 12                                 | <b>y</b> 123                                | <b>y</b> 123                                | <b>y</b> 123                           |
| <i>x</i> <sub>1</sub> <i>x</i> <sub>3</sub> | <b>y</b> 13           | <b>y</b> 13           | <b>y</b> 123           | <b>y</b> 13  | <b>y</b> 123                                | <b>y</b> 13                                 | <b>y</b> 123                                | <b>y</b> 123                           |
| <i>x</i> <sub>2</sub> <i>x</i> <sub>3</sub> | <b>y</b> 23           | <b>y</b> 123          | <b>y</b> <sub>23</sub> | <b>y</b> 23  | <b>y</b> 123                                | <b>y</b> 123                                | <b>y</b> <sub>23</sub>                      | У <sub>123</sub><br>У <sub>123</sub> 」 |
| $x_1 x_2 x_3$                               | L <i>Y</i> 123        | <b>y</b> 123          | <b>y</b> 123           | <b>y</b> 123 | <b>y</b> 123                                | <b>y</b> 123                                | <b>y</b> 123                                | <i>y</i> <sub>123</sub>                |

Let  $I = \left\langle x_1^2 - x_1, x_2^2 - x_2, x_3^2 - x_3 \right\rangle \subset \mathbb{R}[x_1, x_2, x_3]$ , pick

 $M_{\mathcal{B},1}(y)$  is given by:

|                                             | 1              | <i>x</i> <sub>1</sub>   | <i>x</i> <sub>2</sub>   | x <sub>3</sub>          | <i>x</i> <sub>1</sub> <i>x</i> <sub>2</sub> | <i>x</i> <sub>1</sub> <i>x</i> <sub>3</sub> | <i>x</i> <sub>2</sub> <i>x</i> <sub>3</sub> | $x_1 x_2 x_3$                        |
|---------------------------------------------|----------------|-------------------------|-------------------------|-------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|--------------------------------------|
| 1                                           | <b>y</b> 0     | <b>y</b> 1              | <b>y</b> 2              | <b>y</b> 3              | <b>y</b> 12                                 | <b>y</b> 13                                 | <b>y</b> 23                                 | У <sub>123</sub><br>У <sub>123</sub> |
| <i>x</i> <sub>1</sub>                       | <b>y</b> 1     | <b>y</b> 1              | <b>y</b> 12             | <b>y</b> 13             | <b>y</b> <sub>12</sub>                      | <b>y</b> 13                                 | <b>y</b> 123                                | <b>y</b> 123                         |
| <i>x</i> <sub>2</sub>                       | <b>y</b> 2     | <b>y</b> 12             | <b>y</b> 2              | <b>y</b> 23             | <b>y</b> 12                                 | <b>Y</b> 123                                | <b>Y</b> 23                                 | <b>y</b> 123                         |
| <i>x</i> 3                                  | <b>y</b> 3     | <b>y</b> 13             | <b>y</b> 23             | <b>y</b> 3              | <b>y</b> 123                                | <b>y</b> 13                                 | <b>y</b> 23                                 | <b>y</b> 123                         |
| <i>x</i> <sub>1</sub> <i>x</i> <sub>2</sub> | <i>Y</i> 12    | <b>y</b> 12             | <b>y</b> 12             | <b>y</b> 123            | <b>y</b> 12                                 | <b>y</b> 123                                | <b>y</b> 123                                | <b>y</b> 123                         |
| <i>x</i> <sub>1</sub> <i>x</i> <sub>3</sub> | <b>y</b> 13    | <b>y</b> 13             | <b>y</b> 123            | <b>y</b> 13             | <b>Y</b> 123                                | <b>y</b> 13                                 | <b>y</b> 123                                | <b>y</b> 123                         |
| <i>x</i> <sub>2</sub> <i>x</i> <sub>3</sub> | <i>Y</i> 23    | <b>y</b> 123            | <b>y</b> 23             | <b>y</b> 23             | <b>y</b> 123                                | <b>y</b> 123                                | <b>y</b> 23                                 | У <sub>123</sub><br>У <sub>123</sub> |
| $x_1 x_2 x_3$                               | L <i>Y</i> 123 | <b>y</b> <sub>123</sub> | <b>y</b> <sub>123</sub> | <i>Y</i> <sub>123</sub> | <i>Y</i> <sub>123</sub>                     | <b>y</b> <sub>123</sub>                     | <i>Y</i> <sub>123</sub>                     | <i>y</i> <sub>123</sub> ]            |

Let  $\textit{I} = \left< x_1^2 - x_1, x_2^2 - x_2, x_3^2 - x_3 \right> \subset \mathbb{R}[x_1, x_2, x_3]$ , pick

 $M_{\mathcal{B},2}(y)$  is given by:

|                                             | 1              | <i>x</i> <sub>1</sub>   | <i>x</i> <sub>2</sub>   | <i>x</i> 3   | <i>x</i> <sub>1</sub> <i>x</i> <sub>2</sub> | <i>x</i> <sub>1</sub> <i>x</i> <sub>3</sub> | <i>x</i> <sub>2</sub> <i>x</i> <sub>3</sub> | $x_1 x_2 x_3$           |
|---------------------------------------------|----------------|-------------------------|-------------------------|--------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|-------------------------|
|                                             | <b>y</b> 0     |                         |                         |              |                                             |                                             |                                             |                         |
| <i>x</i> <sub>1</sub>                       | <b>y</b> 1     | <b>y</b> 1              | <b>y</b> 12             | <b>y</b> 13  | <b>y</b> 12                                 | <b>y</b> 13                                 | <b>y</b> 123                                | <b>y</b> 123            |
| <i>x</i> <sub>2</sub>                       | <b>y</b> 2     | <b>y</b> 12             | <b>y</b> 2              | <b>y</b> 23  | <b>y</b> 12                                 | <b>y</b> 123                                | <b>y</b> 23                                 | <b>y</b> 123            |
| <i>x</i> 3                                  | <b>y</b> 3     | <b>y</b> 13             | <b>y</b> 23             | <b>y</b> 3   | <b>y</b> 123                                | <b>y</b> 13                                 | <b>y</b> 23                                 | <b>y</b> 123            |
| <i>x</i> <sub>1</sub> <i>x</i> <sub>2</sub> | <b>y</b> 12    | <b>y</b> 12             | <b>y</b> 12             | <b>y</b> 123 | <b>y</b> 12                                 | <b>y</b> 123                                | <b>y</b> 123                                | <b>y</b> 123            |
| <i>x</i> <sub>1</sub> <i>x</i> <sub>3</sub> | <b>y</b> 13    | <b>y</b> 13             | <b>y</b> 123            | <b>y</b> 13  | <b>y</b> 123                                | <b>y</b> 13                                 | <b>y</b> 123                                | <b>y</b> 123            |
| <i>x</i> <sub>2</sub> <i>x</i> <sub>3</sub> | <b>y</b> 23    | <b>y</b> 123            | <b>y</b> 23             | <b>y</b> 23  | <b>y</b> 123                                | <b>y</b> 123                                | <b>y</b> 23                                 | <b>y</b> 123            |
| $x_1 x_2 x_3$                               | L <i>Y</i> 123 | <b>y</b> <sub>123</sub> | <b>y</b> <sub>123</sub> | <b>Y</b> 123 | <i>Y</i> 123                                | <b>y</b> <sub>123</sub>                     | <b>y</b> <sub>123</sub>                     | <i>y</i> <sub>123</sub> |

## Moment relaxation

Define the convex body

$$Q_k(I) = \{y \in \mathbb{R}^{\mathcal{B}} : y_0 = 1, M_{\mathcal{B},k}(y) \succeq 0\}.$$

æ

## Moment relaxation

#### Define the convex body

$$Q_k(I) = \{ y \in \mathbb{R}^{\mathcal{B}} : y_0 = 1, M_{\mathcal{B},k}(y) \succeq 0 \}.$$

### Definition

The *k*-th moment relaxation of  $conv(\mathcal{V}_{\mathbb{R}}(I))$  is the set

$$L_k(I) = \{(y_1, ..., y_n) : y \in Q_k(I)\}.$$

< 回 > < 回 > < 回 >

## Moment relaxation

#### Define the convex body

$$Q_k(I) = \{ y \in \mathbb{R}^{\mathcal{B}} : y_0 = 1, M_{\mathcal{B},k}(y) \succeq 0 \}.$$

### Definition

The *k*-th moment relaxation of  $conv(\mathcal{V}_{\mathbb{R}}(I))$  is the set

$$L_k(I) = \{(y_1, ..., y_n) : y \in Q_k(I)\}.$$

#### Theorem

For any ideal I,  $\overline{L_k(I)} = TH_k(I)$ .

This allows us to optimize over  $TH_k(I)$  efficiently.

J. Gouveia (UC)

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

# Convergence of Theta Bodies

Theorem

If  $\mathcal{V}_{\mathbb{R}}(I)$  is finite the hierarchy converges in finitely many steps.

< 回 > < 三 > < 三 >

# Convergence of Theta Bodies

#### Theorem

If  $\mathcal{V}_{\mathbb{R}}(I)$  is finite the hierarchy converges in finitely many steps.

#### Theorem

If  $\mathcal{V}_{\mathbb{R}}(I)$  is compact the hierarchy converges.

< ロ > < 同 > < 回 > < 回 >

# Convergence of Theta Bodies

#### Theorem

If  $\mathcal{V}_{\mathbb{R}}(I)$  is finite the hierarchy converges in finitely many steps.

#### Theorem

If  $\mathcal{V}_{\mathbb{R}}(I)$  is compact the hierarchy converges.

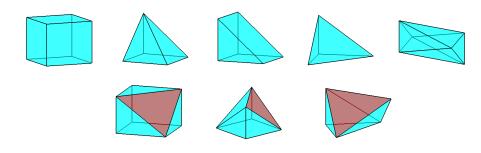
#### Theorem

If  $S \subseteq \mathbb{R}^n$  is finite and  $I = \mathcal{I}(S)$  then  $\mathsf{TH}_1(I) = \mathsf{conv}(S)$  if and only if S is the set of vertices of a 2-level polytope.

3

(日)

# Examples in $\mathbb{R}^3$



æ

イロト イヨト イヨト イヨト

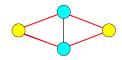
### Definition

Given a graph G = (V, E) and a partition  $V_1$ ,  $V_2$  of V the set C of edges between  $V_1$  and  $V_2$  is called a **cut**.

A (10) A (10)

#### Definition

Given a graph G = (V, E) and a partition  $V_1$ ,  $V_2$  of V the set C of edges between  $V_1$  and  $V_2$  is called a **cut**.



A (10) A (10)

#### Definition

Given a graph G = (V, E) and a partition  $V_1$ ,  $V_2$  of V the set C of edges between  $V_1$  and  $V_2$  is called a **cut**.



< 回 > < 三 > < 三 >

#### Definition

Given a graph G = (V, E) and a partition  $V_1$ ,  $V_2$  of V the set C of edges between  $V_1$  and  $V_2$  is called a **cut**.



#### The Problem

Given edge weights  $\alpha$  we want to find which cut *C* maximizes

$$\alpha(\mathcal{C}) := \sum_{\boldsymbol{e} \in \mathcal{C}} \alpha_{\boldsymbol{e}}.$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

### Definition

For each cut *C*, consider its characteristic vectors  $\chi_C \subseteq \mathbb{R}^E$ , where  $(\chi_C)_e = -1$  if  $e \in C$  and 1 otherwise.

< 回 > < 回 > < 回 >

### Definition

For each cut *C*, consider its characteristic vectors  $\chi_C \subseteq \mathbb{R}^E$ , where  $(\chi_C)_e = -1$  if  $e \in C$  and 1 otherwise. The cut polytope of *G*, CUT(*G*), is the convex hull of all these vectors.

,

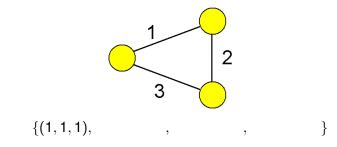
,

,

イベト イモト イモト

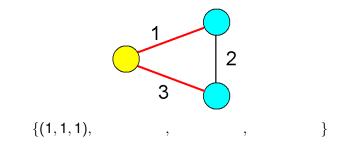
### Definition

For each cut *C*, consider its characteristic vectors  $\chi_C \subseteq \mathbb{R}^E$ , where  $(\chi_C)_e = -1$  if  $e \in C$  and 1 otherwise. The cut polytope of *G*, CUT(*G*), is the convex hull of all these vectors.



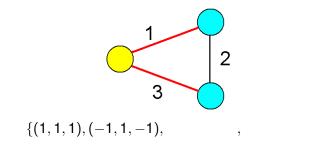
### Definition

For each cut *C*, consider its characteristic vectors  $\chi_C \subseteq \mathbb{R}^E$ , where  $(\chi_C)_e = -1$  if  $e \in C$  and 1 otherwise. The cut polytope of *G*, CUT(*G*), is the convex hull of all these vectors.



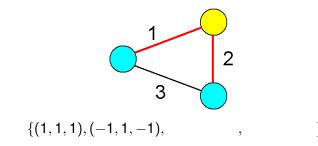
### Definition

For each cut *C*, consider its characteristic vectors  $\chi_C \subseteq \mathbb{R}^E$ , where  $(\chi_C)_e = -1$  if  $e \in C$  and 1 otherwise. The cut polytope of *G*, CUT(*G*), is the convex hull of all these vectors.



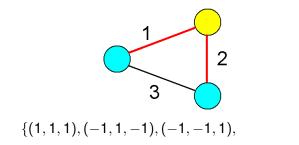
### Definition

For each cut *C*, consider its characteristic vectors  $\chi_C \subseteq \mathbb{R}^E$ , where  $(\chi_C)_e = -1$  if  $e \in C$  and 1 otherwise. The cut polytope of *G*, CUT(*G*), is the convex hull of all these vectors.



### Definition

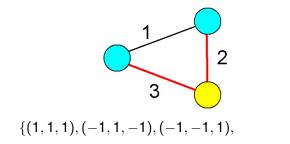
For each cut *C*, consider its characteristic vectors  $\chi_C \subseteq \mathbb{R}^E$ , where  $(\chi_C)_e = -1$  if  $e \in C$  and 1 otherwise. The cut polytope of *G*, CUT(*G*), is the convex hull of all these vectors.



周レイモレイモ

### Definition

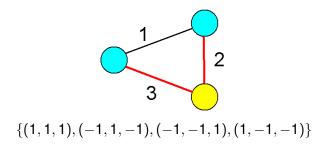
For each cut *C*, consider its characteristic vectors  $\chi_C \subseteq \mathbb{R}^E$ , where  $(\chi_C)_e = -1$  if  $e \in C$  and 1 otherwise. The cut polytope of *G*, CUT(*G*), is the convex hull of all these vectors.



周レイモレイモ

### Definition

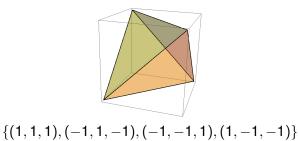
For each cut *C*, consider its characteristic vectors  $\chi_C \subseteq \mathbb{R}^E$ , where  $(\chi_C)_e = -1$  if  $e \in C$  and 1 otherwise. The cut polytope of *G*, CUT(*G*), is the convex hull of all these vectors.



A (1) > A (2) > A (2)

### Definition

For each cut *C*, consider its characteristic vectors  $\chi_C \subseteq \mathbb{R}^E$ , where  $(\chi_C)_e = -1$  if  $e \in C$  and 1 otherwise. The cut polytope of *G*, CUT(*G*), is the convex hull of all these vectors.



< 回 > < 回 > < 回 >

Our plan is to consider the vanishing ideal

$$I_{G} := \{ f \in \mathbb{R}[\mathbf{x}] : f(\chi_{C}) = 0 \text{ for all cuts of } G \},\$$

and consider its theta body relaxation.

- **A** 

Our plan is to consider the vanishing ideal

$$I_{G} := \{ f \in \mathbb{R}[\mathbf{x}] : f(\chi_{C}) = 0 \text{ for all cuts of } G \},\$$

and consider its theta body relaxation.

### LP formulation

Given a vector of weights  $\alpha \in \mathbb{R}^{E}$  solve the optimization problem

$$\operatorname{mcut}(G, \alpha) = \max_{x \in \operatorname{CUT}(G)} \frac{1}{2} \langle \alpha, \mathbf{1} - x \rangle.$$

- A TE N A TE N

< 6 k

Our plan is to consider the vanishing ideal

$$I_{G} := \{ f \in \mathbb{R}[\mathbf{x}] : f(\chi_{C}) = 0 \text{ for all cuts of } G \},\$$

and consider its theta body relaxation.

#### Theta relaxation

Given a vector of weights  $\alpha \in \mathbb{R}^{E}$  solve the optimization problem

$$mcut(G, \alpha) = max_{x \in TH_k(I_G)} \frac{1}{2} \langle \alpha, \mathbf{1} - x \rangle.$$

4 3 5 4 3

< 6 k

Our plan is to consider the vanishing ideal

$$I_{G} := \{ f \in \mathbb{R}[\mathbf{x}] : f(\chi_{C}) = 0 \text{ for all cuts of } G \},\$$

and consider its theta body relaxation.

#### Theta relaxation

Given a vector of weights  $\alpha \in \mathbb{R}^{E}$  solve the optimization problem

$$mcut(\boldsymbol{G}, \alpha) = max_{x \in TH_k(I_G)} \frac{1}{2} \langle \alpha, \mathbf{1} - x \rangle.$$

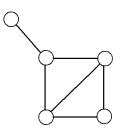
This again can be done 'efficiently' using combinatorial moment matrices.

不得る 不良る 不良る

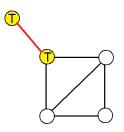
Let G = (V, E) be a graph. Given an even set  $T \subseteq V$  we define a *T*-join to be a subgraph of *G* with odd degree precisely in the vertices of *T*.

Let G = (V, E) be a graph. Given an even set  $T \subseteq V$  we define a *T*-join to be a subgraph of *G* with odd degree precisely in the vertices of *T*. Let  $d_T$  be the minimum number of edges for a *T*-join.

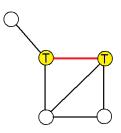
Let G = (V, E) be a graph. Given an even set  $T \subseteq V$  we define a *T*-join to be a subgraph of *G* with odd degree precisely in the vertices of *T*. Let  $d_T$  be the minimum number of edges for a *T*-join.



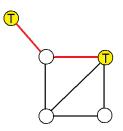
Let G = (V, E) be a graph. Given an even set  $T \subseteq V$  we define a *T*-join to be a subgraph of *G* with odd degree precisely in the vertices of *T*. Let  $d_T$  be the minimum number of edges for a *T*-join.



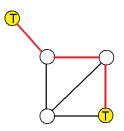
Let G = (V, E) be a graph. Given an even set  $T \subseteq V$  we define a *T*-join to be a subgraph of *G* with odd degree precisely in the vertices of *T*. Let  $d_T$  be the minimum number of edges for a *T*-join.



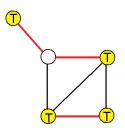
Let G = (V, E) be a graph. Given an even set  $T \subseteq V$  we define a *T*-join to be a subgraph of *G* with odd degree precisely in the vertices of *T*. Let  $d_T$  be the minimum number of edges for a *T*-join.



Let G = (V, E) be a graph. Given an even set  $T \subseteq V$  we define a *T*-join to be a subgraph of *G* with odd degree precisely in the vertices of *T*. Let  $d_T$  be the minimum number of edges for a *T*-join.



Let G = (V, E) be a graph. Given an even set  $T \subseteq V$  we define a *T*-join to be a subgraph of *G* with odd degree precisely in the vertices of *T*. Let  $d_T$  be the minimum number of edges for a *T*-join.



## The Ideal

### Theorem

If G is connected then the set

$$\{x_e^2 - 1 : e \in E\} \cup \{1 - \mathbf{x}^A : A \subseteq E, A \text{ circuit in } G\}$$

generates I<sub>G</sub>, and

$$\mathcal{B} := \{ \mathbf{x}^{\mathcal{F}_{\mathcal{T}}} : T \subseteq [n], |T| \text{ even} \}$$

is a basis for  $\mathbb{R}[\mathbf{x}]/I_G$ .

æ

## The Ideal

### Theorem

If G is connected then the set

$$\{x_e^2 - 1 : e \in E\} \cup \{1 - \mathbf{x}^A : A \subseteq E, A \text{ circuit in } G\}$$

generates I<sub>G</sub>, and

$$\mathcal{B} := \{ \mathbf{x}^{\mathcal{F}_{\mathcal{T}}} : T \subseteq [n], |T| \text{ even} \}$$

is a basis for  $\mathbb{R}[\mathbf{x}]/I_G$ .

We can identify:  $\mathcal{B}$  with the even sets  $\mathcal{T}$ .

3

# The Ideal

### Theorem

If G is connected then the set

$$\{x_e^2 - 1 : e \in E\} \cup \{1 - \mathbf{x}^A : A \subseteq E, A \text{ circuit in } G\}$$

generates I<sub>G</sub>, and

$$\mathcal{B} := \{ \mathbf{x}^{\mathcal{F}_{\mathcal{T}}} : \mathcal{T} \subseteq [n], |\mathcal{T}| \text{ even} \}$$

is a basis for  $\mathbb{R}[\mathbf{x}]/I_G$ .

We can identify:  $\mathcal{B}$  with the even sets T.  $\mathcal{B}_k$  with the set of all even  $T \subseteq V$  such that  $d_T \leq k$ .

3

### Theorem

The set  $TH_k(I_G)$  is given by

$$\left\{ \boldsymbol{y} \in \mathbb{R}^{E} : \right.$$

J. Gouveia (UC)

æ

・ロト ・ 四ト ・ ヨト ・ ヨト

### Theorem

### The set $TH_k(I_G)$ is given by

$$\left\{ \begin{array}{l} \exists M \succeq 0, \ M \in \mathbb{R}^{|\mathcal{B}_k| \times |\mathcal{B}_k|} \ \text{such that} \\ y \in \mathbb{R}^E : \end{array} \right\}.$$

æ

・ロト ・ 四ト ・ ヨト ・ ヨト

### Theorem

#### The set $TH_k(I_G)$ is given by

$$\left\{ \begin{array}{ll} \exists M \succeq 0, \ M \in \mathbb{R}^{|\mathcal{B}_k| \times |\mathcal{B}_k|} \text{ such that } \\ y \in \mathbb{R}^{\mathcal{E}} : & M_{T,T} = 1 \ \forall \ T \in \mathcal{B}_k, \end{array} \right\}$$

æ

### Theorem

#### The set $TH_k(I_G)$ is given by

$$\left\{ \begin{array}{ll} \exists M \succeq 0, \ M \in \mathbb{R}^{|\mathcal{B}_{k}| \times |\mathcal{B}_{k}|} \text{ such that } \\ y \in \mathbb{R}^{E} : & M_{T,T} = 1 \ \forall \ T \in \mathcal{B}_{k}, \\ M_{e,\emptyset} = y_{e} \ \forall e \in E \end{array} \right\}$$

æ

### Theorem

#### The set $TH_k(I_G)$ is given by

$$\begin{cases} \exists M \succeq 0, M \in \mathbb{R}^{|\mathcal{B}_k| \times |\mathcal{B}_k|} \text{ such that } \\ M_{T,T} = 1 \ \forall \ T \in \mathcal{B}_k, \\ M_{e,\emptyset} = y_e \ \forall e \in E \\ M_{T,T'} = M_{B,B'} \text{ if } T\Delta T' = B\Delta R' \end{cases}$$

J. Gouveia (UC)

SOS in Combinatorial Optimization

2nd Combinatorics Day 27 / 33

æ

・ロト ・ 四ト ・ ヨト ・ ヨト

### Cut Theta Body

Given a graph G = (V, E) the body  $TH_1(I_G)$  is the set of all  $x \in \mathbb{R}^E$  such that

$$\left[\begin{array}{cc}1 & x^t\\ x & U\end{array}\right] \succeq 0$$

for some a symmetric  $U \in \mathbb{R}^{E \times E}$  s.t.

< 回 > < 三 > < 三 >

### Cut Theta Body

Given a graph G = (V, E) the body  $TH_1(I_G)$  is the set of all  $x \in \mathbb{R}^E$  such that

$$\left[\begin{array}{cc}1 & x^{i}\\ x & U\end{array}\right] \succeq 0$$

for some a symmetric  $U \in \mathbb{R}^{E \times E}$  s.t. diag(U) = 1,

4 **A** N A **B** N A **B** N

### Cut Theta Body

Given a graph G = (V, E) the body  $TH_1(I_G)$  is the set of all  $x \in \mathbb{R}^E$  such that

 $\begin{bmatrix} 1 & x^t \\ x & U \end{bmatrix} \succeq 0$ for some a symmetric  $U \in \mathbb{R}^{E \times E}$  s.t. diag $(U) = \mathbf{1}$ , if (e, f, g) is a triangle in G,  $U_{e,f} = x_g$ ,

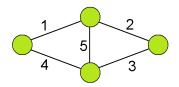
A (1) > A (2) > A (2)

### Cut Theta Body

Given a graph G = (V, E) the body  $TH_1(I_G)$  is the set of all  $x \in \mathbb{R}^E$  such that

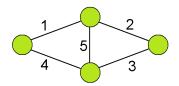
$$\begin{bmatrix} 1 & x^t \\ x & U \end{bmatrix} \succeq 0$$

for some a symmetric  $U \in \mathbb{R}^{E \times E}$  s.t. diag(U) = 1, if (e, f, g) is a triangle in G,  $U_{e,f} = x_g$ , and if  $\{e, f, g, h\}$  forms a 4-cycle  $U_{e,f} = U_{g,h}$ .



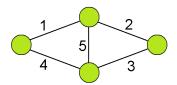
2

イロト イヨト イヨト イヨト



 $\operatorname{TH}_1(I_G)$  is the set of  $x \in \mathbb{R}^5$  such that

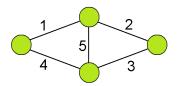
2



 $\operatorname{TH}_1(I_G)$  is the set of  $x \in \mathbb{R}^5$  such that

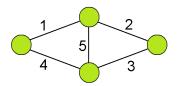


< 一型



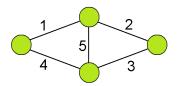
 $\operatorname{TH}_1(I_G)$  is the set of  $x \in \mathbb{R}^5$  such that

2



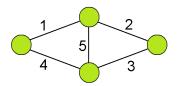
 $\operatorname{TH}_1(I_G)$  is the set of  $x \in \mathbb{R}^5$  such that

2



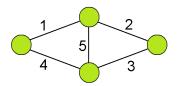
 $\operatorname{TH}_1(I_G)$  is the set of  $x \in \mathbb{R}^5$  such that

2



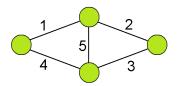
 $\operatorname{TH}_1(I_G)$  is the set of  $x \in \mathbb{R}^5$  such that

2



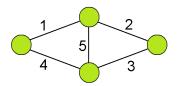
 $\operatorname{TH}_1(I_G)$  is the set of  $x \in \mathbb{R}^5$  such that

2



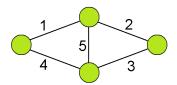
 $\operatorname{TH}_1(I_G)$  is the set of  $x \in \mathbb{R}^5$  such that

2



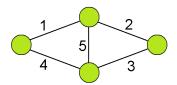
 $\operatorname{TH}_1(I_G)$  is the set of  $x \in \mathbb{R}^5$  such that

2



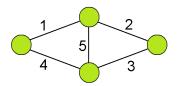
 $\operatorname{TH}_1(I_G)$  is the set of  $x \in \mathbb{R}^5$  such that

2



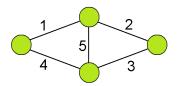
 $\operatorname{TH}_1(I_G)$  is the set of  $x \in \mathbb{R}^5$  such that

2



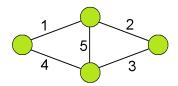
 $\operatorname{TH}_1(I_G)$  is the set of  $x \in \mathbb{R}^5$  such that

2



 $\operatorname{TH}_1(I_G)$  is the set of  $x \in \mathbb{R}^5$  such that

2



 $\operatorname{TH}_1(I_G)$  is the set of  $x \in \mathbb{R}^5$  such that

2

A (10) > A (10) > A (10)

## **Cut-Perfect Graphs**

Analogue to the stable set problem, it makes sense to have the following definition:

# **Cut-Perfect Graphs**

Analogue to the stable set problem, it makes sense to have the following definition:

Definition

We call a graph *G* cut-perfect if  $TH_1(I_G) = CUT(G)$ .

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

# **Cut-Perfect Graphs**

Analogue to the stable set problem, it makes sense to have the following definition:

#### Definition

We call a graph *G* cut-perfect if  $TH_1(I_G) = CUT(G)$ .

Using the characterization for  $TH_1$ -exact zero-dimensional ideals we get the following result, that answers a Lovász question.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

# **Cut-Perfect Graphs**

Analogue to the stable set problem, it makes sense to have the following definition:

Definition We call a graph *G* cut-perfect if  $TH_1(I_G) = CUT(G)$ .

Using the characterization for  $TH_1$ -exact zero-dimensional ideals we get the following result, that answers a Lovász question.

#### Theorem

A graph is cut-perfect if and only if it has no  $K_5$  minor and no chordless cycle of size larger than 4.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• This relaxation is related to a previous relaxation by Monique Laurent which was derived using a different construction.

< 回 > < 回 > < 回 >

- This relaxation is related to a previous relaxation by Monique Laurent which was derived using a different construction.
- A cycle  $C_n$  is only  $TH_{\lceil n/4 \rceil}$ -exact, however, all wheels are  $TH_2$ -exact.

- A TE N - A TE N

< 6 k

- This relaxation is related to a previous relaxation by Monique Laurent which was derived using a different construction.
- A cycle  $C_n$  is only  $TH_{\lceil n/4 \rceil}$ -exact, however, all wheels are  $TH_2$ -exact.
- The cycle problem can be avoided, if we add enough edges to the graph to start with.

4 **A** N A **B** N A **B** N

- This relaxation is related to a previous relaxation by Monique Laurent which was derived using a different construction.
- A cycle  $C_n$  is only  $TH_{\lceil n/4 \rceil}$ -exact, however, all wheels are  $TH_2$ -exact.
- The cycle problem can be avoided, if we add enough edges to the graph to start with.
- This technique can in theory be applied to any combinatorial problem to derive hierarchies.

< 日 > < 同 > < 回 > < 回 > < □ > <

- This relaxation is related to a previous relaxation by Monique Laurent which was derived using a different construction.
- A cycle  $C_n$  is only  $TH_{\lceil n/4 \rceil}$ -exact, however, all wheels are  $TH_2$ -exact.
- The cycle problem can be avoided, if we add enough edges to the graph to start with.
- This technique can in theory be applied to any combinatorial problem to derive hierarchies. Results may vary.

< 日 > < 同 > < 回 > < 回 > < □ > <

• This techniques seem to give tools to prove complexity results for classes of graphs. [e.g. Triangle-Cover problem]

- This techniques seem to give tools to prove complexity results for classes of graphs. [e.g. Triangle-Cover problem]
- Many questions concerning matchings are open. TH-rank, PSD-complexity...

< 口 > < 同 > < 回 > < 回 > < 回 > <

- This techniques seem to give tools to prove complexity results for classes of graphs. [e.g. Triangle-Cover problem]
- Many questions concerning matchings are open. TH-rank, PSD-complexity...
- Roles of symmetry and idempotents.

イロト イポト イラト イラト

- This techniques seem to give tools to prove complexity results for classes of graphs. [e.g. Triangle-Cover problem]
- Many questions concerning matchings are open. TH-rank, PSD-complexity...
- Roles of symmetry and idempotents.
- How general are these relaxations? How can we generate better ones?

- This techniques seem to give tools to prove complexity results for classes of graphs. [e.g. Triangle-Cover problem]
- Many questions concerning matchings are open. TH-rank, PSD-complexity...
- Roles of symmetry and idempotents.
- How general are these relaxations? How can we generate better ones?
- This connects to a rich theory of lift-and-project procedures, and of extensions of polytopes...

3



# Thank You

J. Gouveia (UC)

SOS in Combinatorial Optimization

2nd Combinatorics Day 33 / 33

æ

イロト イヨト イヨト イヨト