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Stable Sets

Given a graph G = (V ,E) a stable set (or independent set) is a set
S ⊆ V with no edge between any nodes in S.
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The Stable Set Problem

The stable set problem for G, given some vertex weights ω is:

Stable Set Problem
Find a stable set S for which the cost

ω(S) :=
∑
s∈S

ωs

is maximum.

Remarks:
For ω ≡ 1 we get α(G), the independence number of G;

this problem is NP-hard in general.
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Stable Set Polytope

Given a graph G = ({1, ...,n},E) we define STAB(G), the stable set
polytope of G, in the following way:

For every stable set S ⊆ {1, ...,n} consider its characteristic
vector χS ∈ {0,1}n;

let SG ⊂ {0,1}n be the collection of all those vectors;

the polytope STAB(G) is then defined as the convex hull of the
vectors in SG.
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Example

SG = {(0,0,0), (1,0,0), (0,1,0), (0,0,1), (1,0,1)}
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Reformulation of the Problem

Stable Set Problem Reformulated
Given a graph G = ([n],E) and a weight vector ω ∈ Rn, solve

α(G, ω) := max
x∈STAB(G)

〈ω, x〉 .

However, finding STAB(G) is as hard as solving the original problem.

We intend to find approximations for it.
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Fractional Stable Set Polytope

The simplest relaxation of STAB(G) is the fractional stable set polytope
of G, FRAC(G), the set defined by the following inequalities.

xi ≥ 0 for i = 1, ...,n (non-negativity constrains);

xi + xj ≤ 1 for all (i , j) ∈ E (edge constrains).

It is possible to optimize over this polytope in polynomial time.

It is in general not a very good relaxation.
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Definition of Theta Body

Definition (Lovász ∼ 1980)
Given a graph G = ([n],E) we define its theta body, TH(G), as the set
of all vectors x ∈ Rn such that[

1 x t

x U

]
� 0

for some symmetric U ∈ Rn×n with diag(U) = x and U ij = 0 for all
(i , j) ∈ E .

Theorem (Lovász ∼ 1980)
The relaxation is tight, i.e. TH(G) = STAB(G), if and only if the graph G
is perfect.
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Example

TH(G) is the set of x ∈ R5 such that there exist y ∈ R5 such that

1 2 3 4 5

1
2
3
4
5



1 x1 x2 x3 x4 x5
x1 x1
x2 0 x2 0 y3 y4
x3 y1 0 x3 0 y5
x4 y2 y3 0 x4 0
x5 0 y4 y5 0 x5

 � 0

In this case TH(G) 6= STAB(G)
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k-Sums of Squares

Let I ⊆ R[x ] be an ideal.

f ∈ R[x ] is k -sos modulo I if and only if

f ≡ (h1
2 + h2

2 + ...+ hm
2) mod I,

for some polynomials h1, ...,hm with degree less or equal k .

For any p in VR(I) we have

f (p) = h1
2(p) + ...+ hm

2(p) ≥ 0,

so being k -sos modulo I, implies being nonnegative on VR(I).
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Convex Hulls of Varieties

We want to use this tool to approximate S = VR(I). Note that

Convex Hull

conv(S) =
⋂

` linear ,`|S≥0

{x ∈ Rn : `(x) ≥ 0}.

We can therefore relax it by

Theta Bodies of an ideal

THd (I) =
⋂

` linear ,` k -sos modulo I

{x ∈ Rn : `(x) ≥ 0}

which we call the d-th Theta Body of I.
We have conv(S) ⊆ · · · ⊆ TH3(I) ⊆ TH2(I) ⊆ TH1(I).

J. Gouveia (UC) SOS in Combinatorial Optimization 2nd Combinatorics Day 11 / 33



Convex Hulls of Varieties

We want to use this tool to approximate S = VR(I). Note that

Convex Hull

conv(S) =
⋂

` linear ,`|S≥0

{x ∈ Rn : `(x) ≥ 0}.

We can therefore relax it by

Theta Bodies of an ideal

THd (I) =
⋂

` linear ,` k -sos modulo I

{x ∈ Rn : `(x) ≥ 0}

which we call the d-th Theta Body of I.

We have conv(S) ⊆ · · · ⊆ TH3(I) ⊆ TH2(I) ⊆ TH1(I).

J. Gouveia (UC) SOS in Combinatorial Optimization 2nd Combinatorics Day 11 / 33



Convex Hulls of Varieties

We want to use this tool to approximate S = VR(I). Note that

Convex Hull

conv(S) =
⋂

` linear ,`|S≥0

{x ∈ Rn : `(x) ≥ 0}.

We can therefore relax it by

Theta Bodies of an ideal

THd (I) =
⋂

` linear ,` k -sos modulo I

{x ∈ Rn : `(x) ≥ 0}

which we call the d-th Theta Body of I.
We have conv(S) ⊆ · · · ⊆ TH3(I) ⊆ TH2(I) ⊆ TH1(I).

J. Gouveia (UC) SOS in Combinatorial Optimization 2nd Combinatorics Day 11 / 33



Theta body - Example

(Loading...)

TH2(I) for I =
〈
x(x2 + y2)− x4 − x2y2 − y4〉.
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Back to Stable Sets

For a graph G, let SG = {χS : S is stable} and IG = I(SG), then
THk (IG) is a hierarchy approximating STAB(G).

Stable Set Ideal
IG =

〈
x2

1 − x1, x2
2 − x2, · · · , x2

n − xn, xixj | for all {i , j} ∈ E
〉
.

This relates the new relaxations to the Lovász theta body.

Theorem
For any graph G, TH(G) = TH1(IG).
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Certificates

If H ⊆ G is a clique, then

1−
∑
i∈H

xi ≥ 0

is valid on STAB(G). Is it valid on TH1(IG)?

(
1−

∑
i∈H

xi

)2

= 1− 2
∑
i∈H

xi +
∑
i∈H

x2
i + 2

∑
i 6=j∈H

xixj .

Since, modulo IG, x2
i = xi and xixj = 0 for {i , j} ∈ E ,

1−
∑
i∈H

xi ≡

(
1−

∑
i∈H

xi

)2

modulo IG

hence it is 1-sos and valid on TH1(IG).
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Certificates - 2

If C ⊆ G is a 2k + 1 cycle, then

k −
∑
i∈C

xi ≥ 0

is valid on STAB(G). Is it valid on TH2(IG)?

p2
i := ((1−x1)(1−x2i−x2i+1))2 ≡ pi = 1−x1−x2i−x2i+1+x1x2i +x1x2i+1

g2
i := (x1(1− x2i+1 − x2i+2))2 ≡ gi = x1 − x1x2i+1 − x1x2i+2

Then
k∑

i=1

p2
i +

k−1∑
i=1

g2
i ≡ k −

2k+1∑
i=1

xi . mod IG.

Therefore those are valid in TH2(IG).

TH2(IG) = STAB(G) for h-perfect graphs.
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Further Thoughts on Stable Sets

Since G is TH1-exact if and only if it is perfect, makes sense to ask

Question
Which graphs are TH2-exact?

We know for example that odd cycle and odd wheel inequalities are
captured in TH2(IG). Little else has been done, which raises another
interesting open question.

Question
Find an explicit family Gn for which THn(IGn ) 6= STAB(Gn) for all n.
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Combinatorial Moment Matrices

How to optimize over these bodies?

The moment approach.

Let
B = {1 = f0, x1 = f1, ..., xn = fn, fn+1, ...}

be a basis of R[x ]/I and Bk its truncation at degree k .

Consider the polynomial vector f k (x) = (fi(x))fi∈Bk then

(f k (x))(f k (x))t =
∑
fi∈B

Ai fi(x)

for some symmetric matrices Ai . Given a vector y indexed by the
elements in B we define the k -th truncated combinatorial moment
matrix of y as

MB,k (y) =
∑
fi∈B

Aiyfi .
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Combinatorial Moment Matrices - Example
Let I =

〈
x2

1 − x1, x2
2 − x2, x2

3 − x3
〉
⊂ R[x1, x2, x3],

pick

B = { 1, x1, x2, x3, x1x2, x1x3, x2x3, x1x2x3 }
y = ( y0, y1, y2, y3, y12, y13, y23, y123 ).

Then MB(y) is given by

1 x1 x2 x3 x1x2 x1x3 x2x3 x1x2x3
1

x1
x2
x3

x1x2
x1x3
x2x3

x1x2x3



y0 y1 y2 y3 y12 y13 y23 y123
y1 y1 y12 y13 y12 y13 y123 y123
y2 y12 y2 y23 y12 y123 y23 y123
y3 y13 y23 y3 y123 y13 y23 y123
y12 y12 y12 y123 y12 ? y123 y123
y13 y13 y123 y13 y123 y13 y123 y123
y23 y123 y23 y23 y123 y123 y23 y123
y123 y123 y123 y123 y123 y123 y123 y123
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Combinatorial Moment Matrices - Example
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Moment relaxation

Define the convex body

Qk (I) = {y ∈ RB : y0 = 1,MB,k (y) � 0}.

Definition
The k -th moment relaxation of conv(VR(I)) is the set

Lk (I) = {(y1, ..., yn) : y ∈ Qk (I)}.

Theorem
For any ideal I, Lk (I) = THk (I).

This allows us to optimize over THk (I) efficiently.
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Convergence of Theta Bodies

Theorem
If VR(I) is finite the hierarchy converges in finitely many steps.

Theorem
If VR(I) is compact the hierarchy converges.

Theorem
If S ⊆ Rn is finite and I = I(S) then TH1(I) = conv(S) if and only if S is
the set of vertices of a 2-level polytope.
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Examples in R3
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The Max-Cut Problem

Definition
Given a graph G = (V ,E) and a partition V1,V2 of V the set C of
edges between V1 and V2 is called a cut.

The Problem
Given edge weights α we want to find which cut C maximizes

α(C) :=
∑
e∈C

αe.
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The Cut Polytope

Definition
For each cut C, consider its characteristic vectors χC ⊆ RE , where
(χC)e = −1 if e ∈ C and 1 otherwise.

The cut polytope of G, CUT(G),
is the convex hull of all these vectors.

{

(1,1,1)

,

(−1,1,−1)

,

(−1,−1,1)

,

(1,−1,−1)

}
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LP formulation and relaxation

Our plan is to consider the vanishing ideal

IG := {f ∈ R[x] : f (χC) = 0 for all cuts of G},

and consider its theta body relaxation.

LP formulation
Given a vector of weights α ∈ RE solve the optimization problem

mcut(G, α) = maxx∈CUT(G)
1
2
〈α,1− x〉 .

This again can be done ‘efficiently’ using combinatorial moment
matrices.
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T-Joins

Let G = (V ,E) be a graph. Given an even set T ⊆ V we define a
T -join to be a subgraph of G with odd degree precisely in the vertices
of T .

Let dT be the minimum number of edges for a T -join.
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The Ideal

Theorem
If G is connected then the set

{x2
e − 1 : e ∈ E)} ∪ {1− xA : A ⊆ E ,A circuit in G}

generates IG, and

B := {xFT : T ⊆ [n], |T |even}

is a basis for R[x]/IG.

We can identify:
B with the even sets T .
Bk with the set of all even T ⊆ V such that dT ≤ k .
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General Cut Theta body

Theorem
The set THk (IG) is given byy ∈ RE :

∃M � 0, M ∈ R|Bk |×|Bk | such that
MT ,T = 1 ∀ T ∈ Bk ,
Me,∅ = ye ∀e ∈ E
MT ,T ′ = MR,R′ if T ∆T ′ = R∆R′

 .
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The First Cut Theta Body

Cut Theta Body

Given a graph G = (V ,E) the body TH1(IG) is the set of all x ∈ RE

such that [
1 x t

x U

]
� 0

for some a symmetric U ∈ RE×E s.t.

diag(U) = 1, if (e, f ,g) is a
triangle in G, Ue,f = xg , and if {e, f ,g,h} forms a 4-cycle Ue,f = Ug,h.
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Example

TH1(IG) is the set of x ∈ R5 such that

0 1 2 3 4 5
0
1
2
3
4
5



1 x1 x2 x3 x4 x5
x1 1 x4
x2 y1 1
x3 y2 x5 1
x4 x5 y2 y1 1
x5 x4 x3 x2 x1 1

 � 0
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Cut-Perfect Graphs

Analogue to the stable set problem, it makes sense to have the
following definition:

Definition
We call a graph G cut-perfect if TH1(IG) = CUT(G).

Using the characterization for TH1-exact zero-dimensional ideals we
get the following result, that answers a Lovász question.

Theorem
A graph is cut-perfect if and only if it has no K5 minor and no chordless
cycle of size larger than 4.
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Some remarks

This relaxation is related to a previous relaxation by Monique
Laurent which was derived using a different construction.

A cycle Cn is only THdn/4e-exact, however, all wheels are
TH2-exact.

The cycle problem can be avoided, if we add enough edges to the
graph to start with.

This technique can in theory be applied to any combinatorial
problem to derive hierarchies.Results may vary.
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General Thoughts and Open Directions

This techniques seem to give tools to prove complexity results for
classes of graphs. [e.g. Triangle-Cover problem]

Many questions concerning matchings are open. TH-rank,
PSD-complexity...

Roles of symmetry and idempotents.

How general are these relaxations? How can we generate better
ones?

This connects to a rich theory of lift-and-project procedures, and
of extensions of polytopes...
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The End

Thank You
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