
Polynomial Optimization – Exercises

Rekha R. Thomas

September 10, 2016

Many of the exercises below are taken from the book Semidefinite Optimization and Con-
vex Algebraic Geometry edited by Greg Blekherman, Pablo Parrilo and myself. The exercise
number from the book is listed. A free pdf of this book is available at

http://www.math.washington.edu/∼thomas/booksjournals.html .
Chapters 2-4 of this book are central to this course. Some of the examples also come from
the monograph by Monique Laurent that you have a link to. Both of these sources contain
a wealth of information on this subject.

If you see errors in these exercises, please send me an email (rrthomas@uw.edu).

1 Monday Lectures

1. Let G = ([n],E) be an undirected graph where [n] = {1, . . . , n} for a positive integer
n. A set S ⊆ [n] is said to be stable or independent if for every pair i, j ∈ S, the edge
ij /∈ E. Formulate a polynomial optimization problem to find the maximum cardinality
stable set in G.

2. A cut in G is a partitioning of its vertices into two sets T and [n]/T and the size of
the cut is the number of edges that go between the two parts. Formulate a polynomial
optimization problem to find the maximum cardinality cut in G.

3. A very common problem that arises in applications is to find the closest point in a given
set from a given data point that has been observed in an experiment. For instance in
computer vision one is often interested in reconstructing a three-dimensional scene
from noisy images of the scene. The set of all true images that are possible by the
given cameras is an algebraic set which is the model and the noisy images form the
data point. If the noise model is Gaussian then the closest point to the model from
the observed noisy data point is the maximum likelihood estimate.

Another problem that is very common in applications is to find a low rank estimate of
a given matrix. Write down a polynomial optimization problem for finding the closest
(in Euclidean distance) rank one real matrix of size p×q to a given real matrix A of the
same size. Generalize to rank k. The classical Eckart-Young theorem in linear algebra
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gives a solution to this distance minimization problem. Look it up and see if you can
solve it using the model you wrote.

4. (a) Convince yourself that the psd cone Sn
+
⊂ Sn is closed, convex, pointed and full-

dimensional (solid). A cone with all these properties is called a proper cone.

Recall that a convex cone K ⊂ Rt is one in which for every x, y ∈ K, λx + µy ∈ K
for all λ,µ ≥ 0. The cone K is pointed if it does not contain any lines through
the origin, i.e., there is no x ∈K, x ≠ 0 such that −x ∈K.

(b) Prove that the rank one matrices in Sn
+

generate its extreme rays (i.e., rays that
cannot be written as a non-negative combination of other rays in Sn

+
). Recall that

a rank one matrix in Sn
+

looks like aa⊺ where a ∈ Rn.

(c) Caratheodory’s theorem from convex geometry says that every element in a cone
of dimension k can be written as a non-negative combination of at most k extreme
rays of the cone. Can you prove this theorem?

(d) Both the above exercises allow you to bound the number of rank one matrices
needed to write a psd matrix in Sn

+
as a non-negative combination. How do these

bounds compare?

5. Recall that the feasible region of a semidefinite program (SDP) is called a spectrahedron.
We may take the following to be the official definition:

Definition 1.1. A spectrahedron is a set of the form

{(x1, . . . , xm) ∈ Rm ∶ A0 +∑Aixi ⪰ 0}

where the matrices Ai ∈ S
n.

In the lecture we defined a spectrahedron as an affine slice of the psd cone. Indeed, the
matrices defined by the above set is the intersection of the psd cone Sn

+
with the affine

plane obtained by translating span(A1, . . . ,Am) by A0. If the matrices A1, . . . ,Am are
linearly independent in Sn then there is a bijection between the two versions in Rm

and Sn respectively.

(a) Prove that a spectrahedron also admits the following descriptions:

i. {X ∈ Sn
+
∶ ⟨Bj,X⟩ = bi ∀ j = 1, . . . , t}, for some symmetric matrices Bj ∈ S

n,

ii. {x ∈ Rs ∶ pj(x) ≥ 0 pj ∈ R[x1, . . . , xs], j = 1, . . . , r}

How do t, s and r relate to m and n?

(b) Using any of the above descriptions, argue that a spectrahedron is closed, convex
and basic semi-algebraic.

(c) Consider the following concrete spectrahedron:

F ∶=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

(x, y) ∈ R2 ∶

⎡
⎢
⎢
⎢
⎢
⎢
⎣

x + 1 0 y
0 2 −x − 1
y −x − 1 2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⪰ 0

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

.
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i. Express F in the two other formats mentioned above.

ii. Draw this set in the plane.

iii. What is the polynomial that defines the boundary of F? Generalize your
result to the general spectrahedron in Definition 1.1.

6. A very common example of a spectrahedron is the elliptope En defined as follows.

En ∶= {X ∈ Sn
+
∶ Xii = 1 ∀ i = 1, . . . , n}.

(a) What is the dimension of En?

(b) Use a computer to draw E3.

(c) What are the rank one psd matrices on E3? Can you see them in your picture?

(d) Find a rank two matrix on E3 that is not a convex combination of the rank one
matrices on E3.

(e) Can you model the max cut problem as an SDP over En with possibly additional
rank constraints?

7. Check that the following basic facts are true for a sos polynomial p = ∑h2j in R[x].

(a) deg(p) = 2d ⇒ deg(hj) ≤ d.

(b) p homogeneous and deg(p) = 2d ⇒ hj homogeneous and deg(hj) = d.

(c) If p̃ is the homogenization of p then p ≥ 0 (resp. sos) ⇔ p̃ ≥ 0 resp. sos.

(d) If deg(p) = d, bound the number of squares needed in the sos expression for p.
(Hint: use the Caratheodory theorem and that p sos if and only if p = [x]⊺dQ[x]d
for some Q ⪰ 0.)

8. Express 2x4 + 5y4 − x2y2 + 2x3y + 2x + 2 as a sos using the connection to psd matrices
and SDP.
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2 Tuesday Lectures

1. Prove that a univariate non-negative polynomial is always a sum of two squares. (Hint:
Make an argument about the possible real and complex roots of this polynomial and
use the identity (a2 + b2)(c2 + d2) = (ac + bd)2 + (ad − bc)2 for all a, b, c, d ∈ R.)

2. (Ex 3.35) Can you express x4 + 4x3 + 6x2 + 4x + 5 as a sum of two squares?

3. (Ex 3.54) Let p(x) = ∑
2d
k=0 ckx

k. Give an explicit SDP formulation to compute the value
of the global min of p(x). Apply your formulation to the polynomial p(x) = x4−20x2+x.

4. (Ex 3.57) Find the value of psos for the polynomial x4+y4+z4−4xyz +2x+3y+4z over
R2. Is p∗ = psos in this example?

5. (Ex 3.69) Consider the quartic form in four variables:

p(w,x, y, z) = w4 + x2y2 + x2z2 + y2z2 − 4wxyz.

(a) Show that p is not a sos.

(b) Find a multiplier that makes the product a sos.

6. Polya’s theorem states the following. Given a form f(x1, . . . , xn) that is strictly positive
on the positive orthant, i.e., whenever xi ≥ 0 and ∑xi > 0, then f can be expressed as
f =

g
h where g and h are forms with positive coefficients. In particular, we can choose

h = (x1 + x2 +⋯ + xn)r for some r.

(a) Argue the Reznick’s theorem can be seen as a generalization of Polya’s theorem.

(b) (Ex 3.70) Consider the quadratic form f(x, y) = (x − y)2 + εxy which is obviously
positive on the non-negative orthant for all ε > 0. Estimate how large the exponent
r must be, as a function of ε, for (x+ y)rf(x, y) to have only positive coefficients.

7. The Newton polytope of a polynomial p(x1, . . . , xn) is the convex hull of all the non-
negative integer vectors in Nn that appear as exponents of the monomials present in
p. We will denote it as N(p). For example, N(x2 +xy +y2) is the line segment in RR2

that is the convex hull of (2,0), (1,1), (0,2). Reznick proved the following theorem:

If p = ∑ q2j then N(qi) ⊆ N(p) for each i.

(Ex 3.97)

(a) Compute the Newton polytope of the Motzkin polynomial.

(b) Which monomials would appear in a hypothetical sos decomposition of the Motzkin
polynomial if you know the above theorem?

(c) Show by considering the coefficient of x2y2, and the above calculation, that the
Motzkin polynomial is not a sos.
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8. We now examine an engineering application of sos polynomials that arises from dy-
namical systems and control theory. For more details see Sections 2.2.1 and 3.6.2 on
the book Semidefinite Optimization and Convex Algebraic Geometry.

Suppose we are given a system of differential equations

ẋi(t) = fi(x(t)), i = 1, . . . , n

where fi are polynomials in x1, . . . , xn. This system is globally asymptotically stable
if there is an energy function V (x) = V (x1(t), . . . , xn(t)), called a Lyapunov function,
such that

V (x) > 0, (
∂V

∂x
)

⊺

f(x) < 0.

Suppose we assume that V (x) is a polynomial, then we may relax the nonnegativity
requirement above to a sos condition as follows:

V (x) is sos, − (
∂V

∂x
)

⊺

f(x) is sos.

Then we can solve for such a V by increasing the degree and using SDP.

(Ex 3.173) Consider the polynomial dynamical system

ẋ = − x + (1 + x)y

ẏ = − (1 + x)x

Find a polynomial Lyapunov function of degree four that proves global asymptotic
stability of this system.
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3 Thursday Lectures

1. Find p∗ = inf{10 − x2 − y ∶ x2 + y2 ≤ 1}. (It’s easy to do some basic calculus to
determine p∗ in this example. You can use that to check the answer you get from the
sos relaxation.)

2. Suppose we want to minimize a polynomial over an algebraic variety (given by equa-
tions) as opposed to a semialgebraic set:

p∗ = inf{p(x) ∶ g1(x) = 0, . . . , gm(x) = 0}.

(a) Write down the form of the psost problem in this case by modifying from a semi-
algebraic set to an algebraic set. What simplifications can you make?

(b) Is there a way we can write a version of psost that is indifferent to the particular
choice of equations defining the variety?

(c) (Ex 3.99) Use your method to minimize the polynomial 10 − x2 − y over the unit
circle x2 + y2 = 1.

3. (Ex 3.62) Calculate psos1 for

inf{x4 − 3x2 + 1 ∶ x3 − 4x = 1}.

4. Consider a system of polynomials {fi(x) = 0 i = 1, . . . ,m} where fi ∈ R[x].

Hilbert’s Nullstellensatz says that this system is infeasible over Cn if and only if −1
belongs to the ideal ⟨f1, . . . , fm⟩, i.e., there exists F (x) ∈ ⟨f1, . . . , fm⟩ such that −1 =

F (x).

The real Nullstellensatz says that the system is infeasible over Rn if and only if −1 is
congruent to a sos modulo the ideal ⟨f1, . . . , fm⟩, i.e., there exists F (x) ∈ ⟨f1, . . . , fm⟩

and a sos s such that −1 = s + F (x).

(Ex 3.135) Consider the set of equations:

n

∑
i=1

xi = 1, x2i = 0 ∀ i = 1, . . . , n.

(a) Check that this system is infeasible both over R and C.

(b) Give a real Nulstellensatz proof of infeasibility of this system over R.

(c) Show that every (Hilbert) Nullstellensatz proof of infeasibility must have degree
greater than of equal to n.

5. (Ex 3.132) Consider the polynomial system

x + y3 = 2, x2 + y2 = 1.
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(a) How many complex solutions does the above system have?

(b) Does the system have any real solutions? If not find a Positivstellensatz based
infeasibility certificate for this fact.

6. (Ex 3.134) Prove, using the alternative form of the Positivstellensatz, that every non-
negative polynomial is a sum of squares of rational functions. (Hint: A polynomial
p(x) ≥ 0 for all x ∈ Rn if and only if the system {(x, y) ∈ Rn ×R ∶ p(x) ≤ 0, y ⋅p(x) = 1}
is empty.)

7. (a) Compare the Putinar and Schmudgen methods to prove that x ≤ −1 and x ≤ 0 on
the unit disc with center at (1,0) in the plane.

(b) Repeat the same exercise over the compact region {(x, y) ∈ R2 ∶ x4 − x3 − y2 ≤ 0}.
It is helpful to draw the feasible region and observe its shape around the orgin
where x = 0 is tangential.

8. Suppose {g1(x) = ⋯ = gm(x) = 0} is a polynomial system with only only finitely many
complex (and hence also real) solutions. Also, assume that the ideal ⟨g1, . . . , gm⟩ is
radical (i.e., for every fk in the ideal ⟨g1, . . . , gm⟩, the polynomial f is also in the
ideal).

(a) Prove that whenever a polynomial p is nonnegative over the (real part of the)
variety, then it is in fact a sos modulo the ideal. i.e., p = sos + g where g ∈

⟨g1, . . . , gm⟩.

(b) What can you say about the convergence of the Putinar hierarchy for the real
variety defined by the gi polynomials?

(c) If gi = x2i − xi for all i = 1, . . . , n, then its variety (both over C and R) is the
discrete hypercube {0,1}n. Suppose we wanted to minimize a polynomial p over
this discrete hypercube. Is there an upper bound that depends only on n for the
number of steps needed by the Putinar hierachy to converge to p∗?
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4 Friday Lectures

In the next few exercises we see how strong duality can fail in SDPs.

1. Write down the primal and dual SDP pair using the diagram for cone LPs.

2. (Ex 2.14) Consider the (primal) SDP:

p∗ = inf {X11 ∶ X22 = 0, X11 + 2X23 = 1, X ⪰ 0} .

(a) Compute p∗ and an optimal solution for this SDP.

(b) Write down the dual of the above SDP.

(c) Compute d∗ and an optimal solution of the dual SDP if possible.

(d) What do you conclude about this primal-dual pair?

3. (Ex 2.27) Consider the SDP:

d∗ = sup {y ∶ [
0 y
y 0

] ⪯ [
1 0
0 0

]} .

(a) What is d∗? Does this problem have an optimal solution?

(b) Write the primal SDP.

(c) Compute p∗. Does the primal problem have an optimum?

In the following exercises we will explore conditions for strong duality.

4. (a) (Ex 2.30) We first note that a linear image of a closed cone may not be closed.
Consider the proper cone K = {(x, y, z) ∈ R3 ∶ y2 ≤ xz, z ≥ 0}. Show that K is a
proper cone but its projection onto the x, y plane is not closed.

(b) (Theorem 2.28) Let K ⊂ V be a proper cone and A ∶ V →W be a linear map.Then
show that the following two conditions are equivalent:

i. K ∩ ker(A) = {0},

ii. There exists y ∈W ∗ such that A∗y ∈ int(K∗).

Prove that if these conditions hold, then A(K) is closed.

(c) Closed cones allow us to find nice feasibility certificates. Suppose we want to
decide the feasibility of the system

A(x) = b, x ∈K

for a proper cone K and linear map A. If A(K) is closed then show that the
above system is infeasible if and only if there exists y such that

⟨y, b⟩ = −1, A∗y ∈K∗.
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(Hint: If we have a compact set U and a closed set W in Rn, then they are disjoint
if and only if there is a hyperplane separating them, in the sense that U lies in one
open half space of the hyperplane and W lies in the opposite closed halfspace.)

Note that if K = Rn
+
, then K is a polyhedron and A(K) is always closed and

we will get infeasibility certificates of the above type for systems of the form
Mx = b, x ≥ 0 where M is a matrix.

(d) Consider a primal cone program

p∗ = inf{⟨c, x⟩ ∶ A(x) = b, x ∈K},

where A ∶ V1 → V2 is a linear map. Define the extended map:

Â ∶ V1 → V2 ⊕R, x↦ (A(x), ⟨c, x⟩).

If Â(K) is closed and the above primal problem is feasible, then strong duality
holds, i.e., p∗ = d∗ and the primal has an optimum. Prove this theorem or see
(Barvinok Chapter IV, 7.2) for a proof.

(e) Using the above results argue that the following holds for SDPs: If D is strictly
feasible and P is feasible then p∗ = d∗ and P has an optimum. In particular, if
both the primal and dual are strictly feasible then both problems have optima
and their optimal values coincide. (Recall that strict feasibility means that there
is a positive definite matrix in the feasible region – one with all eigenvalues strictly
positive.)

5. Write down the pmom problem for minimizing the Motzkin polynomial as we did in the
lecture. Recall that

p = x41x
2
2 + x

2
1x

4
2 − 3x21x

2
2 + 1.

Can you argue that pmom = −∞? Recall that psos = −∞.
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