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Foreword

These lecture are an introduction to the analysis of ∞−harmonic func-

tions, a subject that grew mature in recent years in the field of nonlinear

partial differential equations. They correspond to the short courses I taught

at the Universidade Federal do Ceará (Fortaleza, Brazil) in the (southern

hemisphere) Summer of 2013 and at Aalto University (Helsinki, Finland) in

the (northern hemisphere) Spring of 2013. A shorter version was used for a

series of three lectures at KAUST (Thuwal, Saudi Arabia), early in 2017.

The material covered ranges from the Lipschitz extension problem to ques-

tions of existence, uniqueness and regularity for ∞−harmonic functions. A

rigorous and detailed analysis of the equivalence between being absolutely

minimising Lipschitz, enjoying comparison with cones and solving the ∞–

Laplace equation in the viscosity sense is the backbone of the set of lectures.

At the heart of the approach adopted lies the notion of comparison with

cones, which is pivotal throughout the text. The proof of the existence of

∞−harmonic functions in the case of an unbounded domain, a few regularity

results (including the Harnack inequality and the local Lipschitz continuity)

and an easy proof, due to Armstrong and Smart, of the celebrated unique-

ness theorem of Jensen complete the course.

My writing has been strongly influenced by the study of the survey papers

of Crandall [3] and Aronsson–Crandall–Juutinen [2] and I claim no original-

ity whatsoever. Having evolved from my handwritten notes upon studying

those sources, it is only natural that some of the material is reproduced

almost verbatim, including some of the problems proposed as exercises. My

sole contributions are in the level of detail of some of the proofs (the devil

is frequently there), the simplification of a few arguments and the organisa-

tion of the text. I believe the choice of the topics covered is adequate, for

example, for the final part of an introductory graduate course on nonlinear

pdes.
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I benefited enormously from the interaction with the excellent students

that attended the course in Fortaleza, Helsinki and Thuwal, and the interest-

ing discussions on the topic with many colleagues. I mention, in particular,

Diogo Gomes, Eduardo Teixeira, Juha Kinnunen, Juha Videman, Juhana

Siljander, Levon Nurbekyan, Mikko Parviainen and Tuomo Kuusi, whose

input influenced directly the writing of some of the proofs. I also had the

chance to exchange opinions with Petri Juutinen, who introduced me to

the subject back in 1999 when, as postdoc students, we shared an office at

Northwestern University, in Chicago. Any typos or inaccuracies that remain

are, of course, my full responsibility.

I warmly thank Eduardo Teixeira and Fábio Montenegro, at UFC, Juha

Kinnunen and Tuomo Kuusi, at Aalto, and Diogo Gomes, at KAUST, for the

opportunity to teach the course and the wonderful hospitality in Fortaleza,

Helsinki and Thuwal.

Coimbra, Fortaleza, Helsinki and Thuwal

Jan-May 2013 and Jan-Feb 2017

Contents

Foreword 1

1. The Lipschitz extension problem 3

2. Comparison with cones 6

3. Comparison with cones and absolutely minimising Lipschitz 8

4. The ∞−Laplacian 11

5. Comparison with cones and ∞−harmonic 13

6. Regularity 17

7. Existence 19

8. Uniqueness 24

Problems 29

References 30



3

1. The Lipschitz extension problem

We start from the very beginning, with the basic definition of Lipschitz

function.

Definition 1. Let X ⊂ Rn. A function f : X → R is Lipschitz continuous

on X, equivalently f ∈ Lip(X), if there exists a constant L ∈ [0,∞) such

that

|f(x)− f(y)| ≤ L |x− y|, ∀x, y ∈ X. (1)

Any L ∈ [0,∞) for which (1) holds is called a Lipschitz constant for f in X.

The least constant L ∈ [0,∞) for which (1) holds is denoted by Lipf (X).

If there is no L for which (1) holds, we write Lipf (X) =∞.

Let U ⊂ Rn be open and bounded and denote its boundary with ∂U . We

will be concerned with the problem of extending a Lipschitz function defined

on ∂U to U without increasing its Lipschitz constant. Since decreasing it is

out of the question, the best we can hope for is to keep it the same.

The Lipschitz Extension Problem. Given f ∈ Lip(∂U), find u ∈ Lip(U)

such that

u = f on ∂U and Lipu(U) = Lipf (∂U).

In fact, we are both extending the function and minimising the Lipschitz

constant.

If y, z ∈ ∂U and x ∈ U , then any Lipschitz extension u of f trivially

satisfies

f(z)− Lipf (∂U)|x− z| ≤ u(x) ≤ f(y) + Lipf (∂U)|x− y|

since f(z) = u(z) and f(y) = u(y). Let us show that these two bounds

belong to Lip(U).

Let z ∈ ∂U and put

Fz(x) = f(z)− Lipf (∂U)|x− z|, x ∈ U.

We then have, for any x, x̃ ∈ U ,

|Fz(x)− Fz(x̃)| =
∣∣f(z)− Lipf (∂U)|x− z| − f(z) + Lipf (∂U)|x̃− z|

∣∣
= Lipf (∂U) ||x̃− z| − |x− z||

≤ Lipf (∂U) |x̃− z − x+ z|

= Lipf (∂U) |x− x̃| .
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This means that Fz ∈ Lip(U) and that Lipf (∂U) is a Lipschitz constant

for Fz in U . Since Lipf (∂U) is independent of z it is a common Lipschitz

constant for all Fz, z ∈ ∂U .

Given y ∈ ∂U , an entirely analogous reasoning holds for

Gy(x) = f(y) + Lipf (∂U)|x− y|, x ∈ U.

Definition 2. The MacShane-Whitney extensions of f ∈ Lip(∂U) are the

functions defined in U by

MW∗(f)(x) := sup
z∈∂U

Fz(x) = sup
z∈∂U

{
f(z)− Lipf (∂U)|x− z|

}
and

MW∗(f)(x) := inf
y∈∂U

Gy(x) = inf
y∈∂U

{
f(y) + Lipf (∂U)|x− y|

}
.

Since both the infimum and the supremum of a family of Lipschitz func-

tions, with a fixed Lipschitz constant, is still Lipschitz and has, if it is finite,

the same Lipschitz constant, we conclude that bothMW∗(f) andMW∗(f)

are Lipschitz functions in U , with Lipschitz constant Lipf (∂U).

We next show that MW∗(f) = f on ∂U (the same holds, of course, for

MW∗(f)). Let x ∈ ∂U . Then

MW∗(f)(x) ≥ Fx(x) = f(x)− Lipf (∂U)|x− x| = f(x).

On the other hand, since f ∈ Lip(∂U),

f(z)− Lipf (∂U)|x− z| ≤ f(x),

for any z ∈ ∂U , and thus

MW∗(f)(x) = sup
z∈∂U

{
f(z)− Lipf (∂U)|x− z|

}
≤ f(x).

This implies that

LipMW∗(f)(U) = LipMW∗(f)(U) = Lipf (∂U).

We have just proved the following result.

Theorem 1. The MacShane-Whitney extensions, MW∗(f) and MW∗(f),

solve the Lipschitz extension problem for f ∈ Lip(∂U) and if u is any other

solution to the problem then

MW∗(f) ≤ u ≤MW∗(f) in U.
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The Lipschitz Extension Problem is then uniquely solvable if

MW∗(f) =MW∗(f) in U,

which rarely happens.

Example 1. Let n = 1 and U = (−1, 0) ∪ (0, 1). Consider f : ∂U → R
defined by f(−1) = f(0) = 0 and f(1) = 1. Then Lipf (∂U) = 1 and a

simple computation gives

MW∗(f)(x) =

 −x− 1 if −1 ≤ x ≤ −1
2

x if −1
2 ≤ x ≤ 1

and

MW∗(f)(x) =

 x+ 1 if −1 ≤ x ≤ −1
2

|x| if −1
2 ≤ x ≤ 1,

which are, of course, different functions.

This lack of uniqueness in the Lipschitz extension problem being an issue,

other features are perhaps even more relevant. We will illustrate them with

the help of the above example.

Non comparison: Take as boundary data g : ∂U → R defined by

g(−1) = 0, g(0) = 1
2 and g(1) = 1. Then Lipg(∂U) = 1

2 and we

easily see that MW∗(g) = MW∗(g), so the problem is uniquely

solvable. But we have f ≤ g and, nevertheless, neither

MW∗(f) ≤MW∗(g)

nor

MW∗(f) ≥MW∗(g)

hold.

Non stability: Let V =
(
−3

4 ,−
1
4

)
. Then MW∗(f)|∂V ≡ 1

4 and so

also

MW∗ (MW∗(f)|∂V ) ≡ 1

4
6=MW∗(f) in V.

In particular, a repeated application of the MacShane-Whitney ex-

tension decreases the local Lipschitz constant.
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Non locality: Again let V =
(
−3

4 ,−
1
4

)
; then

LipMW∗(f)(V ) = 1 6= 0 = LipMW∗(f)(∂V ).

The extension defined by

u(x) =

 0 if −1 ≤ x ≤ 0

x if 0 ≤ x ≤ 1

satisfies this property for any V ⊂⊂ U (this means V is a compact

subset of U). In a certain sense it locally varies as little as possible.

The notion of locality is embedded in the following definition that meets

the need to define a sort of canonical Lipschitz extension, which we will

eventually prove is unique.

Definition 3. A function u ∈ C(U) is absolutely minimising Lipschitz on

U , and we write u ∈ AML(U), if

Lipu(V ) = Lipu(∂V ), ∀V ⊂⊂ U. (2)

This notion is trivially local in the sense that if u ∈ AML(U) and V ⊂ U
then u ∈ AML(V ). It does not involve boundary conditions, it is a property

of continuous functions defined on open sets alone.

Still we can try to recast the Lipschitz extension problem as the following

problem: given f ∈ Lip(∂U), find u ∈ C(U) such that

u ∈ AML(U) and u = f on ∂U. (3)

It can be shown that a solution to this problem satisfies the Lipschitz ex-

tension problem.

2. Comparison with cones

We now introduce a more geometric notion, that of comparison with

cones. It will be instrumental in most of the analysis hereafter.

Definition 4. A cone with vertex x0 ∈ Rn is a function of the form

C(x) = a+ b|x− x0|, a, b ∈ R.

The height of C is a and its slope is b.
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Definition 5. For a cone C with vertex at x0, the half-line

{x0 + t(x− x0), t ≥ 0}

is the ray of C through the point x.

Lemma 1. If a set V contains two distinct points on the same ray of a cone

C with slope b, then

LipC(V ) = |b|.

Proof. Let C(x) = a+ b|x− x0|. Then, for any x, y ∈ Rn,

|C(x)− C(y)|
|x− y|

= |b|

∣∣∣|x− x0| − |y − x0|∣∣∣
|x− y|

≤ |b|,

so |b| is a Lipschitz constant for C in any set.

If w, y are distinct points on the same ray of C, we have, for a certain x∗,

y = x0 + α(x∗ − x0) and w = x0 + β(x∗ − x0), with α, β ≥ 0, α 6= β. Then

|C(y)− C(w)|
|y − w|

=
|C(x0 + α(x∗ − x0))− C(x0 + β(x∗ − x0))|
|x0 + α(x∗ − x0)− x0 − β(x∗ − x0)|

=

∣∣∣a+ b|x0 + α(x∗ − x0)− x0| − a− b|x0 + β(x∗ − x0)− x0|
∣∣∣

|α− β||x∗ − x0|

= |b| |α− β||x
∗ − x0|

|α− β||x∗ − x0|
= |b|,

and if w, y ∈ V then LipC(V ) = |b|. �

Corollary 1. Let V ⊂ Rn be non-empty and open, and C be a cone with

slope b. Then

LipC(V ) = |b|.

Moreover, if V is bounded and does not contain the vertex of C, then

LipC(∂V ) = |b|.

Definition 6. A function w ∈ C(U) enjoys comparison with cones from

above in U if, for every V ⊂⊂ U and every cone C whose vertex is not in

V ,

w ≤ C on ∂V =⇒ w ≤ C in V.

A function w enjoys comparison with cones from below if −w enjoys com-

parison with cones from above. A function w enjoys comparison with cones

if it enjoys comparison with cones from above and from below.
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Lemma 2. The following is an equivalent condition to u ∈ C(U) enjoying

comparison with cones from above in U : for every V ⊂⊂ U , b ∈ R and

z /∈ V ,

u(x)− b|x− z| ≤ max
w∈∂V

(u(w)− b|w − z|) , ∀x ∈ V.

Proof. To prove the necessity of the condition, let V ⊂⊂ U , b ∈ R and

z /∈ V . We trivially have

u(x)− b|x− z| ≤ max
w∈∂V

(u(w)− b|w − z|) , ∀x ∈ ∂V. (4)

This can be rewritten as

u(x) ≤ C(x) := max
w∈∂V

(u(w)− b|w − z|) + b|x− z|, ∀x ∈ ∂V,

for the cone C centred at z /∈ V . Since u enjoys comparison with cones from

above in U , (4) also holds for any x ∈ V .

Reciprocally, let V ⊂⊂ U and let

C(x) = a+ b|x− z|, with a, b ∈ R,

be any cone with vertex at z /∈ V such that u ≤ C on ∂V . We know that,

for every x ∈ V ,

u(x)− b|x− z| ≤ max
w∈∂V

(u(w)− b|w − z|)

⇒ u(x)− a− b|x− z| ≤ max
w∈∂V

(u(w)− a− b|w − z|)

⇒ u(x)− C(x) ≤ max
w∈∂V

(u(w)− C(w)) ≤ 0

since u ≤ C on ∂V . We conclude that also u ≤ C in V . �

3. Comparison with cones and absolutely minimising Lipschitz

One of the main results in these notes is the following equivalence between

being absolutely minimising Lipschitz and enjoying comparison with cones.

Theorem 2. A function u ∈ C(U) is absolutely minimising Lipschitz in U

if, and only if, it enjoys comparison with cones in U .

Proof. We start with the sufficiency. Suppose u enjoys comparison with

cones in U and let V ⊂⊂ U . We want to show that

Lipu(V ) = Lipu(∂V ).

Since u ∈ C(V ), we have Lipu(V ) = Lipu(V ) (see Problem 1). Then, as

∂V ⊂ V , we trivially have that Lipu(V ) ≥ Lipu(∂V ) and it remains to

prove the other inequality.
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First, observe that, for any x ∈ V ,

Lipu (∂ (V \ {x})) = Lipu(∂V ∪ {x}) = Lipu(∂V ). (5)

To see this holds we need only check that, for any y ∈ ∂V ,

|u(y)− u(x)| ≤ Lipu(∂V ) |y − x|,

which is equivalent to

u(y)− Lipu(∂V ) |x− y| ≤ u(x) ≤ u(y) + Lipu(∂V ) |x− y|. (6)

This clearly holds for any x ∈ ∂V but what we want to prove is that it holds

for x ∈ V . Let’s focus on the second inequality in (6). The right-hand side

can be regarded as the cone

C(x) = u(y) + Lipu(∂V ) |x− y|,

centred at y ∈ ∂V . Since y /∈ V and u enjoys comparison with cones from

above in U , the inequality holds in V because it holds on ∂V . To obtain the

first inequality in (6), we argue analogously, using comparison with cones

from below.

Now let x, y ∈ V . Using (5) twice, we obtain

Lipu(∂V ) = Lipu (∂ (V \ {x})) = Lipu (∂ (V \ {x, y})) .

Since x, y ∈ ∂ (V \ {x, y}) = ∂V ∪ {x, y}, we have

|u(x)− u(y)| ≤ Lipu (∂ (V \ {x, y})) |x− y| = Lipu(∂V ) |x− y|.

Thus

Lipu(V ) ≤ Lipu(∂V ).

Now the necessity. Suppose u ∈ AML(U). For V ⊂⊂ U , we have

Lipu(V ) = Lipu(∂V ).

Due to Lemma 2, we want to prove that for every b ∈ R and z /∈ V ,

u(x)− b|x− z| ≤ max
w∈∂V

(u(w)− b|w − z|) , ∀x ∈ V.

Setting

W =

{
x ∈ V : u(x)− b|x− z| > max

w∈∂V
(u(w)− b|w − z|)

}
,

the result will follow by proving that W = ∅. We will argue by contradiction.

Consider the cone

C(x) := max
w∈∂V

(u(w)− b|w − z|) + b|x− z|.



10

Then W = V ∩ (u− C)−1 ((0,∞)) is open and

u = C on ∂W. (7)

To prove this, note first that, trivially, if x ∈ ∂V then (u−C)(x) ≤ 0. Now

suppose x ∈ ∂W , with (u − C)(x) > 0. Then x /∈ ∂V , and since ∂W ⊂ V ,

x ∈ V , in which case x ∈ W , which is a contradiction since W is open.

If x ∈ ∂W , with (u − C)(x) < 0, then, since u − C ∈ C(U), there is a

neighbourhood Nx of x such that u − C < 0 in Nx. So Nx ∩W = ∅, again

a contradiction.

We then have, since u ∈ AML(U),

Lipu(W ) = Lipu(∂W ) = LipC(∂W ) = |b|,

due to Corollary 1, because z /∈W , since z /∈ V and W ⊂ V .

Take x0 ∈W . The ray of C through x0

{z + t(x0 − z), t ≥ 0}

contains a segment in W , containing x0, which meets ∂W at its endpoints.

Consider the functions

F (t) = C(z + t(x0 − z)) = a+ b|x0 − z| t, t ≥ 0,

with a = maxw∈∂V (u(w)− b|w − z|), and

G(t) = u(z + t(x0 − z)), t ≥ 0.

They coincide at the endpoints of the segment, since u = C on ∂W . Now F

is affine with slope |b||x0 − z|, while G has |b||x0 − z| as Lipschitz constant

on the segment. In fact,

|G(t1)−G(t2)|
|t1 − t2|

=
|u(z + t1(x0 − z))− u(z + t2(x0 − z))|

|t1 − t2|

≤ |b||(t1 − t2)(x0 − z)|
|t1 − t2|

= |b||x0 − z|,

because Lipu(W ) = |b| and the segment is contained in W . We conclude

that F and G are the same function on the segment and, since it contains

x0,

G(1) = u(x0) = C(x0) = F (1).

We have reached a contradiction because x0 ∈W and so u(x0) > C(x0).

The proof that u satisfies comparison with cones from below in U is

analogous and uses a lemma similar to Lemma 2. �
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4. The ∞−Laplacian

We now turn to the connection with ∞−harmonic functions.

Definition 7. The partial differential operator given, on smooth functions

ϕ, by

∆∞ϕ :=
n∑

i,j=1

ϕxiϕxjϕxixj = 〈D2ϕDϕ,Dϕ〉

is called the ∞−Laplacian.

This operator is not in divergence form so we can not (formally) integrate

by parts to define a notion of weak solution. The appropriate notion to

consider is that of viscosity solution.

Definition 8. A function w ∈ C(U) is a viscosity subsolution of ∆∞u = 0

(or a viscosity solution of ∆∞u ≥ 0 or ∞−subharmonic) in U if, for every

x̂ ∈ U and every ϕ ∈ C2(U) such that w − ϕ has a local maximum at x̂, we

have

∆∞ϕ(x̂) ≥ 0.

A function w ∈ C(U) is ∞−superharmonic in U if −w is ∞−subharmo-

nic in U . A function w ∈ C(U) is ∞−harmonic in U if it is both ∞−sub-

harmonic and ∞−superharmonic in U .

Lemma 3. If u ∈ C2(U) then u is ∞−harmonic in U if, and only if,

∆∞u = 0 in the pointwise sense.

Proof. Suppose u is ∞−harmonic. Then it is ∞−subharmonic and we take

ϕ = u in the definition. Since every point x ∈ U will then be a local ma-

ximum of u − ϕ ≡ 0, ∆∞u(x) ≥ 0, for every x ∈ U . Since also −u is

∞−subharmonic, we get in addition

∆∞(−u)(x) ≥ 0 ⇔ −∆∞u(x) ≥ 0 ⇔ ∆∞u(x) ≤ 0, ∀x ∈ U

and so ∆∞u = 0 in the pointwise sense.

Reciprocally, suppose ∆∞u = 0 in the pointwise sense and take x̂ ∈ U and

ϕ ∈ C2(U) such that u−ϕ has a local maximum at x̂. We want to prove that

∆∞ϕ(x̂) ≥ 0, thus showing that u is∞−subharmonic (the∞−superharmo-

nicity is obtained in an analogous way). We have, since u− ϕ ∈ C2(U) and

x̂ ∈ U is a local maximum,

D(u− ϕ)(x̂) = 0 ⇔ Du(x̂) = Dϕ(x̂)
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and

D2(u− ϕ)(x̂) � 0 ⇔ 〈D2u(x̂)ξ, ξ〉 ≤ 〈D2ϕ(x̂)ξ, ξ〉, ∀x ∈ Rn.

Then

∆∞ϕ(x̂) = 〈D2ϕ(x̂)Dϕ(x̂), Dϕ(x̂)〉

≥ 〈D2u(x̂)Dϕ(x̂), Dϕ(x̂)〉

= 〈D2u(x̂)Du(x̂), Du(x̂)〉

= ∆∞u(x̂)

= 0.

�

We now show that the celebrated flatland example of Aronsson

u(x, y) = x
4
3 − y

4
3

is ∞−subharmonic in R2. The proof that it is also ∞−superharmonic is

analogous.

Take any point (x0, y0) ∈ R2 and ϕ ∈ C2(R2) such that u− ϕ has a local

maximum at (x0, y0). We start by observing that, since u ∈ C1(R2),

D(u− ϕ)(x0, y0) = 0

and, consequently,

ϕx(x0, y0) = ux(x0, y0) =
4

3
x

1
3
0 (8)

and

ϕy(x0, y0) = uy(x0, y0) = −4

3
y

1
3
0 . (9)

We first exclude the case x0 = 0. If ϕ ∈ C2(R2) is such that u− ϕ has a

local maximum at (0, y0), then

(u− ϕ)(x, y0) ≤ (u− ϕ)(0, y0)

⇔ x
4
3 ≤ ϕ(x, y0)− ϕ(0, y0), (10)

for every x in a neighbourhood of 0 and this simply can not happen. In fact,

letting F (x) = ϕ(x, y0)− ϕ(0, y0), we have F (0) = 0 and also

F ′(0) = ϕx(0, y0) = ux(0, y0) = 0.

Then, by Taylor’s theorem,

lim
x→0

F (x)

x2
=
F ′′(0)

2
=
ϕxx(0, y0)

2
< +∞.
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On the other hand, if (10) would hold,

lim
x→0

F (x)

x2
≥ lim

x→0

x
4
3

x2
= lim

x→0
x−

2
3 = +∞,

a contradiction.

We next consider the case x0 6= 0 and y0 = 0. If ϕ ∈ C2(R2) is such that

u− ϕ has a local maximum at (x0, 0), then

(u− ϕ)(x, 0) ≤ (u− ϕ)(x0, 0)

⇔ x
4
3 − ϕ(x, 0) ≤ x

4
3
0 − ϕ(x0, 0), (11)

for every x in a neighbourhood of x0. This means that the function

G(x) = x
4
3 − ϕ(x, 0)

has a local maximum at the point x0. Since it is of class C2 in a neighbour-

hood of x0 (small enough that it does not contain 0), we have G′(x0) = 0

and

G′′(x0) ≤ 0 ⇔ ϕxx(x0, 0) ≥ 4

9
x
− 2

3
0 ≥ 0. (12)

Then, using (8), (9) and (12),

∆∞ϕ(x0, 0) =
(
ϕ2
xϕxx + 2ϕxϕyϕxy + ϕ2

yϕyy

)
(x0, 0)

= ϕ2
x(x0, 0)ϕxx(x0, 0) ≥ 0

as required.

Finally, if both x0 6= 0 and y0 6= 0, u is C2 in a neighbourhood of (x0, y0)

and the equation is satisfied in the pointwise sense, the calculation being

trivial.

5. Comparison with cones and ∞−harmonic

A crucial fact for∞−harmonic functions is that they can be characterised

through comparison with cones.

Theorem 3. If u ∈ C(U) is ∞−subharmonic then it enjoys comparison

with cones from above.

Proof. According to Lemma 2, we want to prove that, given V ⊂⊂ U , b ∈ R
and z /∈ V ,

u(x)− b|x− z| ≤ max
w∈∂V

(u(w)− b|w − z|) , ∀x ∈ V. (13)

Note that if G is smooth, we have

∆∞G(|x|) = G′′(|x|)
[
G′(|x|)

]2
, x 6= 0.
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Taking G(t) = bt− γt2, we have, for all x ∈ V (recall that z /∈ V ),

∆∞
(
b|x− z| − γ|x− z|2

)
= ∆∞G(|x− z|)

= G′′(|x− z|)
[
G′(|x− z|)

]2
= −2γ (b− 2γ|x− z|)2

< 0

if γ > 0 is small enough. In particular, since V is bounded, we must have,

if b > 0 (the case b ≤ 0 is trivial),

γ <
b

2 sup
x∈V
|x− z|

.

Now, since u is ∞−subharmonic in V ⊂⊂ U (due to the local character

of the notion of viscosity subsolution),

u(x)−
(
b|x− z| − γ|x− z|2

)
can not have a local maximum in V . Then

u(x)−
(
b|x− z| − γ|x− z|2

)
≤ max

w∈∂V

(
u(w)−

(
b|w − z| − γ|w − z|2

))
,

for all x ∈ V . Finally, let γ → 0 to obtain (13) and thus the result. �

Magnificently, the reciprocal also holds.

Theorem 4. If u ∈ C(U) enjoys comparison with cones from above then it

is ∞−subharmonic.

Proof. We start by observing that, for every x ∈ Br(y) ⊂⊂ U ,

u(x) ≤ u(y) + max
w∈∂Br(y)

(
u(w)− u(y)

r

)
|x− y|. (14)

The inequality clearly holds for x ∈ ∂ (Br(y) \ {y}) = ∂Br(y) ∪ {y} and,

since the right-hand side is a cone with vertex at y /∈ Br(y) \ {y}, the open

set Br(y) \ {y} ⊂⊂ U and u enjoys comparison with cones from above, it

also holds for x ∈ Br(y) \ {y}; that it holds for x = y is trivial.

Now, we rewrite (14) as

u(x)− u(y) ≤ max
w∈∂Br(y)

(u(w)− u(x))
|x− y|

r − |x− y|
. (15)

This is just algebra:

u(x) ≤ u(y) + max
w∈∂Br(y)

(
u(w)− u(y)

r

)
|x− y|

⇔ u(x) ≤ u(y) +

(
max

w∈∂Br(y)
u(w)− u(y)

)
|x− y|
r



15

⇔ u(x)− r − |x− y|
r

u(y) ≤ max
w∈∂Br(y)

u(w)
|x− y|
r

⇔ r

r − |x− y|
u(x)− u(y) ≤ max

w∈∂Br(y)
u(w)

|x− y|
r − |x− y|

⇔
(

1 +
|x− y|

r − |x− y|

)
u(x)− u(y) ≤ max

w∈∂Br(y)
u(w)

|x− y|
r − |x− y|

⇔ u(x)− u(y) ≤ max
w∈∂Br(y)

(u(w)− u(x))
|x− y|

r − |x− y|
.

We first prove the result at points of twice differentiability. If u is twice

continuously differentiable at x0, namely if there is a p ∈ Rn and a symmetric

n× n matrix X such that

u(z) = u(x0) + 〈p, z − x0〉+
1

2
〈X(z − x0), z − x0〉+ o(|z − x0|2), (16)

so that

p = Du(x0) and X = D2u(x0),

we show that

∆∞u(x0) = 〈Xp, p〉 ≥ 0.

Let x0 ∈ U be a point of twice differentiability for u. Choose

r <
1

2
dist(x0, ∂U)

and λ small enough so that, for y0 = x0 − λDu(x0), Br(y0) ⊂⊂ U and

x0 ∈ Br(y0) ⇔ |x0 − y0| ≤ r ⇔ λ ≤ r

|Du(x0)|
.

Put z = y0, in (16) to obtain, with p = Du(x0),

u(y0) = u(x0) + 〈p,−λp〉+
1

2
〈X(−λp),−λp〉+ o(| − λp|2)

⇔ u(x0)− u(y0) = λ|p|2 − 1

2
λ2〈Xp, p〉 − o(λ2|p|2).

Then, let wr,λ ∈ ∂Br(y0) be such that

u(wr,λ) = max
w∈∂Br(y0)

u(w)

and put z = wr,λ in (16) to obtain

u(wr,λ)−u(x0) = 〈p, wr,λ−x0〉+
1

2
〈X(wr,λ−x0), wr,λ−x0〉+o(|wr,λ−x0|2).

Now, choose x = x0 and y = y0 in (15) to get, after division by λ,

|p|2 − 1

2
λ〈Xp, p〉 − o(λ)

≤
(
〈p, wr,λ − x0〉+

1

2
〈X(wr,λ − x0), wr,λ − x0〉+ o((r + λ|p|)2)

)
|p|

r − λ|p|
.
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Note that

|wr,λ − x0| = |wr,λ − y0 − λp| ≤ r + λ|p|.
We now send λ ↓ 0 to get

|p|2 ≤
(〈

p,
wr − x0

r

〉
+

1

2

〈
X

(
wr − x0

r

)
, wr − x0

〉)
|p|+ |p|o(r)

≤ |p|2 +
1

2

〈
X

(
wr − x0

r

)
, wr − x0

〉
|p|+ |p|o(r), (17)

where wr ∈ ∂Br(x0) is any limit point of wr,λ and thus∣∣∣∣wr − x0r

∣∣∣∣ = 1.

Next, take r ↓ 0 in the first inequality to get, since |wr − x0| = r,

|p| ≤
〈
p, lim

r↓0

wr − x0
r

〉
≤ |p| cosα,

where α is the angle formed by p and limr↓0
wr−x0
r , which is then α = 0. It

follows that

lim
r↓0

wr − x0
r

=
p

|p|
, p 6= 0.

To conclude this part, pass to the limit as r ↓ 0 in the extremes inequality

in (17) to obtain, after dividing by r,

0 ≤ 1

2

〈
X
p

|p|
,
p

|p|

〉
|p| ⇔ 0 ≤ 〈Xp, p〉 = ∆∞u(x0).

In the general case, let x̂ ∈ U and ϕ ∈ C2(U) be such that u − ϕ has a

local maximum at x̂. Then, for y, w close to x̂,

ϕ(x̂)− ϕ(y) ≤ u(x̂)− u(y)

and

u(w)− u(x̂) ≤ ϕ(w)− ϕ(x̂).

Then

ϕ(x̂)− ϕ(y) ≤ u(x̂)− u(y)

≤ max
w∈∂Br(y)

(u(w)− u(x̂))
|x̂− y|

r − |x̂− y|

≤ max
w∈∂Br(y)

(ϕ(w)− ϕ(x̂))
|x̂− y|

r − |x̂− y|
and we have obtained (15) for the twice continuously differentiable function

ϕ. Repeating the above reasoning, we conclude that

∆∞ϕ(x̂) ≥ 0

and the proof is complete. �
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Entirely analogous results hold replacing ∞−subharmonic with ∞−su-

perharmonic and comparison with cones from above with comparison with

cones from below. We thus obtain the following result.

Theorem 5. A function u ∈ C(U) is ∞−harmonic if, and only if, it enjoys

comparison with cones.

6. Regularity

We now turn to regularity. For an open set U and x ∈ U , we introduce

the notation

d(x) := dist(x, ∂U).

Our first result is a Harnack inequality.

Lemma 4 (Harnack Inequality). Let 0 ≥ u ∈ C(U) satisfy

u(x) ≤ u(y) + max
w∈∂Br(y)

(
u(w)− u(y)

r

)
|x− y|, (18)

for x ∈ Br(y) ⊂⊂ U .

If z ∈ U and R < d(z)/4, then

sup
BR(z)

u ≤ 1

3
inf
BR(z)

u. (19)

Proof. Take arbitrary x, y ∈ BR(z). Then (18) holds for r sufficiently large.

Let r ↑ d(y) to get, using the fact that u ≤ 0,

u(x) ≤ u(y)

(
1− |x− y|

d(y)

)
. (20)

We have

d(y) ≥ 3R and |x− y| ≤ 2R

and thus, from (20), we obtain

u(x) ≤ u(y)

(
1− 2R

3R

)
=

1

3
u(y)

and the result follows. �

We now sharpen the estimate, with a direct proof of the result in [6],

where, alternatively, the proof follows from looking at the∞−Laplace equa-

tion as the limit as p→∞ of the p−Laplace equation.
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Theorem 6 (The Harnack Inequality of Lindqvist–Manfredi). Let 0 ≥ u ∈
C(U) satisfy (18). If z ∈ U and 0 < R < d(z), then

u(x) ≤ exp

(
− |x− y|
d(z)−R

)
u(y), ∀x, y ∈ BR(z). (21)

Proof. Let x, y ∈ BR(z), m ∈ N and define

xk = x+ k
y − x
m

, k = 0, 1, . . . ,m.

We have, for every k,

|xk+1 − xk| =
|x− y|
m

< d(xk+1),

for m large enough, and

d(xk+1) ≥ d(z)−R.

We can then apply (20), with x = xk and y = xk+1, to get

u(xk) ≤ u(xk+1)

(
1− |xk+1 − xk|

d(xk+1)

)
≤ u(xk+1)

(
1− |x− y|

m(d(z)−R)

)
.

Iterating, we obtain

u(x) = u(x0) ≤ u(y)

(
1− |x− y|

m(d(z)−R)

)m
,

and taking m→∞, we arrive at (21). �

This is indeed a sharper Harnack inequality when compared with (19).

For starters, it is valid for every R < d(z). Moreover, the constant is also

better: taking R = d(z)/4, we obtain

sup
BR(z)

u(x) ≤ exp

(
− d(z)/2

d(z)− d(z)/4

)
inf
BR(z)

u(y) = exp

(
−2

3

)
inf
BR(z)

u(y)

and exp
(
−2

3

)
≈ 0.5134 > 0.3333 ≈ 1

3 .

The local Lipschitz regularity for ∞−harmonic functions is now a conse-

quence of the Harnack inequality.

Theorem 7. If u ∈ C(U) is ∞−harmonic then it is locally Lipschitz and

hence differentiable almost everywhere.



19

Proof. We know u satisfies (18), since it enjoys comparison with cones from

above. Take z ∈ U , R < d(z)/4 and x, y ∈ BR(z). Assume first that u ≤ 0.

Then (20) and the Harnack inequality (19) hold, and we get

u(x)− u(y) ≤ −u(y)
|x− y|
d(y)

≤ − inf
BR(z)

u
|x− y|

3R

≤ − sup
BR(z)

u
|x− y|
R

.

If u is not non-positive, then this holds with u replaced by

v = u− sup
B4R(z)

u ≤ 0,

since v = u+ const still enjoys comparison with cones from above. We thus

obtain

u(x)− u(y) = v(x)− v(y) ≤ − sup
BR(z)

v
|x− y|
R

=

(
sup
B4R(z)

u− sup
BR(z)

u

)
|x− y|
R

and, interchanging x and y,

|u(x)− u(y)| ≤ 1

R

(
sup
B4R(z)

u− sup
BR(z)

u

)
|x− y|.

�

The best regularity result to date is due to Evans–Smart [5] and asserts

that ∞−harmonic functions are differentiable everywhere. It remains an

outstanding open problem to prove the C1 or C1,α regularity, which are

known to hold only in two-dimensions after the breakthroughs of Savin [9]

and Evans–Savin [4].

In the recent contribution [8] it is shown that the solution of the ob-

stacle problem for the ∞−Laplacian leaves a regular obstacle exactly as a

C1, 1
3−function.

7. Existence

It is now time to deal with existence. We will need the following result;

a proof is in [2].
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Lemma 5. Let F ⊂ C(U) be a family of functions that enjoy comparison

with cones from above in U . Suppose

h(x) = sup
v∈F

v(x)

is finite and locally bounded above in U . Then h ∈ C(U), and it enjoys

comparison with cones from above in U .

The existence result we present holds for U unbounded if the boundary

function f is allowed to grow at most linearly at infinity. Note that it settles

also the existence for problem (3), since u is ∞−harmonic in U if, and only

if, u ∈ AML(U).

Theorem 8. Let U ⊂ Rn be open, 0 ∈ ∂U and f ∈ C(∂U). Let A±, B± ∈ R,

A+ ≥ A− and

A−|x|+B− ≤ f(x) ≤ A+|x|+B+, ∀x ∈ ∂U. (22)

There exists u ∈ C(U) which is ∞−harmonic in U and satisfies u = f on

∂U . Moreover,

A−|x|+B− ≤ u(x) ≤ A+|x|+B+, ∀x ∈ U. (23)

The proof is an application of Perron’s method. By translation, we can

always assume 0 ∈ ∂U so this assumption is not restrictive and it is used to

simplify the notation.

We start by defining two functions h, h : Rn → R by

h(x) = sup{C(x) : C(x) = a|x− z|+ b, a < A−, z ∈ ∂U,C ≤ f on ∂U}

and

h(x) = inf{C(x) : C(x) = a|x− z|+ b, a > A+, z ∈ ∂U,C ≥ f on ∂U}

with the properties stated in the next lemma.

Lemma 6. The functions h and h are well defined and continuous. More-

over,

A−|x|+B− ≤ h(x) ≤ h(x) ≤ A+|x|+B+, ∀x ∈ Rn, (24)

h = h = f on ∂U, (25)

h enjoys comparison with cones from above and h enjoys comparison with

cones from below.
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Proof. We argue for h; analogous arguments hold for h. First observe that

any cone in the family that is used to define h is bounded below by the cone

A+|x− z|+ f(z),

and then so is h. The question is to show that the family is non-empty.

Since 0 ∈ ∂U , we may take

C(x) = (A+ + ε)|x|+B+, ε > 0

and so h is well defined. This also readily implies that h(x) ≤ A+|x|+B+.

To show that (25) holds for h, fix 0 6= z ∈ ∂U and ε > 0. By the continuity

of f , there exists δ > 0 such that

f(x) < f(z) + ε, ∀x ∈ Bδ(z) ∩ ∂U. (26)

Then choose a > max{A+, 0} such that

f(z) + ε+ aδ > max
Bδ(z)

(A+|x|+B+) (27)

and

f(z) + ε+ a|z| > B+. (28)

Define the cones

C(x) := a|x− z|+ f(z) + ε

and

C+(x) := A+|x|+B+,

and the open set

W :=
{
x ∈ Rn \Bδ(z) : C(x) < C+(x)

}
.

Since a > A+, W is bounded:

lim
|x|→∞

(
a|x− z| −A+|x|

)
= +∞.

Moreover, by (27), ∂Bδ(z) ∩W = ∅, and then C = C+ on ∂W . Since both

vertices of the cones, 0 and z, do not belong to W (to see that 0 /∈ W , use

(28)), we conclude, by Corollary 1 and the reasoning at the end of the proof

of Theorem 2, that C = C+ also in W . Thus W = ∅ and

C(x) ≥ C+(x), ∀x ∈ Rn \Bδ(z).

This and (26) implies that

C ≥ f on ∂U.

Now, C(z) = f(z) + ε and so h(z) = f(z) and (25) holds for h.
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To prove that h ≤ h, take any two cones

C(x) = a|x− z|+ b and C(x) = a|x− z|+ b

entering in the definition of h and h, respectively. Since

C ≤ f ≤ C on ∂U,

z, z ∈ ∂U

and

a > A+ ≥ A− > a,

the set where C > C is bounded, contains neither vertex and the two cones

agree on its boundary. Arguing as before, we conclude the set is empty and

so C ≤ C, which implies

h ≤ h in Rn

and (24) is proved. In particular, h and h are locally bounded and com-

parison with cones (respectively, from above and from below) follows from

Lemma 5 and its variant.

We are left to prove the continuity of h and h. First observe that h is

lower semicontinuous (as the supremum of continuous functions) and h is

upper semicontinuous (as the infimum of continuous functions) in Rn. The

continuity in U also follows from Lemma 5. Since h enjoys comparison with

cones from above, the idea is to use the Harnack Inequality (Lemma 4, which

holds for lower semicontinuous functions) as in the proof of Theorem 7.

To prove the continuity of h on ∂U , use (25) and (24) to get

f(x) ≤ lim inf
y→x

h(y) ≤ lim sup
y→x

h(y) ≤ lim sup
y→x

h(y) ≤ f(x), x ∈ ∂U.

The case of h is treated analogously. �

We need yet another lemma.

Lemma 7. Suppose u ∈ C(U) enjoys comparison with cones from above in

U but does not enjoy comparison with cones from below in U . Then, there

exists a nonempty set W ⊂⊂ U and a cone C(x) = a|x−z|+b, with z /∈W ,

such that u = C on ∂W , u < C on W and the function û defined by

û = u in U \W and û = C in W (29)

enjoys comparison with cones from above in U . Moreover, if u is Lipschitz

in U , then so is û and

Lipû(U) ≤ Lipu(U).



23

Proof. That there exist W and C satisfying the conditions of the lemma

follows from the proof of the necessity in Theorem 2, more correctly, from

its variant corresponding to comparison with cones from below.

Let’s show that û defined by (29) enjoys comparison with cones from

above in U . Suppose not; then, again from the proof of Theorem 2, there

exists a nonempty set W̃ ⊂⊂ U and a cone C̃(x) = ã|x− z̃|+ b̃, with z̃ /∈ W̃ ,

such that û = C̃ on ∂W̃ and û > C̃ in W̃ . Since u enjoys comparison with

cones from above in U and u ≤ û = C̃ on ∂W̃ , we have u ≤ C̃ also in W̃ .

This implies that W̃ ⊂W because

u ≤ C̃ < û in W̃ and u = û in U \W.

Thus, on ∂W̃ ⊂W ∪ ∂W ,

C̃ = û = C.

Since the vertices of the cones C and C̃ are outside W̃ , this implies

C̃ ≡ C ≡ û in W̃

and so W̃ = ∅, a contradiction.

Finally, since

Lipû(W ) = LipC(W ) = LipC(∂W ) = Lipu(∂W ) ≤ Lipu(U)

(note that the vertex of C is outside W ), we conclude that

Lipû(U) = max {Lipû(W ),Lipû(U \W )} ≤ Lipu(U).

�

We are now ready to prove Theorem 8.

Proof. Define

u(x) := sup
{
v(x) : h ≤ v ≤ h and v ∈ CCA(U)

}
, x ∈ U,

where, by v ∈ CCA(U) we mean that v enjoys comparison with cones from

above in U .

By Lemma 6, the set includes h so it is not empty and u is well defined;

it follows from Lemma 5 that it enjoys comparison with cones from above

in U , and, from (25), that u ∈ C(U) and u = f on ∂U .

If u enjoys comparison with cones then u is ∞−harmonic and the proof

is complete. Otherwise, u does not enjoy comparison with cones from below

and, by Lemma 7, there exists a nonempty set W ⊂⊂ U and a cone C, with

vertex outside W , such that

u = C on ∂W and u < C in W,
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and a continuous function û, enjoying comparison with cones from above,

such that

û = u in U \W and û = C in W.

It is obvious that h ≤ u ≤ û. We claim that also û ≤ h in U , which then

contradicts the definition of u.

Since h enjoys comparison with cones from below and

h ≥ C = u on ∂W,

we have h ≥ C = û also in W . Since in U \W , û = u ≤ h, the proof is

complete. �

8. Uniqueness

The uniqueness reveals the extent to which the notion of viscosity solution

is the appropriate one to deal with the∞−Laplace equation. Given any pde,

we can, of course, define any reasonable notion of solution; what makes the

difference is that, for that notion, not only existence but also uniqueness

holds.

The question of the uniqueness of ∞−harmonic functions remained open

for more than two decades, before it was settled by Jensen in [7] using

the full machinery of viscosity solutions. The proof we will next present is

much simpler and exploits the equivalence between being ∞−harmonic and

enjoying comparison with cones. It is a surprisingly easy and beautiful proof

due to Armstrong and Smart [1].

We start with some notation. Given an open and bounded subset U ⊂ Rn

and r > 0, let

Ur :=
{
x ∈ U : Br(x) ⊂ U

}
.

For u ∈ C(U) and x ∈ Ur, define

ur(x) := max
Br(x)

u and ur(x) := min
Br(x)

u,

and let

S+
r u(x) =

ur(x)− u(x)

r
and S−r u(x) =

u(x)− ur(x)

r
.

Note that both S+
r u ≥ 0 and S−r u ≥ 0.

The first result we prove is a comparison principle at the discrete level,

for the finite difference equation S−r u = S+
r u.
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Lemma 8. Assume u, v ∈ C(U) ∩ L∞(U) satisfy

S−r u(x)− S+
r u(x) ≤ 0 ≤ S−r v(x)− S+

r v(x), ∀x ∈ Ur. (30)

Then

sup
U

(u− v) = sup
U\Ur

(u− v).

Proof. Suppose the thesis does not hold, i.e.,

sup
U

(u− v) > sup
U\Ur

(u− v).

The set

E :=

{
x ∈ U : (u− v)(x) = sup

U
(u− v)

}
is then nonempty, closed and contained in Ur. Define

F :=

{
x ∈ E : u(x) = max

E
u

}
,

which is also nonempty and closed, and select a point x0 ∈ ∂F . Since u− v
attains its maximum at x0 (because x0 ∈ F = F ⊂ E), we have

S−r v(x0) ≤ S−r u(x0) ⇔ ur(x0)− vr(x0) ≤ (u− v)(x0), (31)

which holds since max(f − g) ≥ min f −min g.1

We now consider two cases.

(1) S+
r u(x0) = 0: from (30), we get

S−r u(x0) ≤ 0 ⇒ S−r u(x0) = 0

and, from (31),

S−r v(x0) ≤ 0 ⇒ S−r v(x0) = 0.

Using the other inequality in (30),

0 ≤ 0− S+
r v(x0) ⇒ S+

r v(x0) = 0.

So

max
Br(x0)

u = u(x0) = min
Br(x0)

u

and

max
Br(x0)

v = v(x0) = min
Br(x0)

v,

1In fact, max(f − g) = maxx(f(x)− g(x)) ≥ maxx (min f − g(x)) = min f −min g.
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and both u and v are constant in Br(x0). Thus Br(x0) ⊂ F ; in fact,

if y ∈ Br(x0) then, since x0 ∈ E,

(u− v)(y) = (u− v)(x0) = sup
U

(u− v) ⇒ y ∈ E;

but also

u(y) = u(x0) = max
E

u,

since x0 ∈ F ; thus y ∈ F . We conclude that x0 ∈ int(F ) and so

x0 /∈ ∂F , a contradiction.

(2) S+
r u(x0) > 0: select a point z ∈ Br(x0) such that

rS+
r u(x0) = u(z)− u(x0).

Since u(z) > u(x0) and x0 ∈ F , we see that z /∈ E. From this, we

deduce that

rS+
r v(x0) ≥ v(z)− v(x0) > u(z)− u(x0) = rS+

r u(x0). (32)

To justify the strict inequality above, observe that

(u− v)(z) ≤ (u− v)(x0) = sup
U

(u− v),

because x0 ∈ F ⊂ E, and equality does not hold since then z ∈ E.

Finally, combining (31) and (32), we get

S−r v(x0)− S+
r v(x0) < S−r u(x0)− S+

r u(x0),

which contradicts (30).

�

The next result establishes a link between the continuous and the discrete

levels, showing that solutions of the pde can be suitably modified in order

to solve the finite difference equation.

Lemma 9. If u ∈ C(U) is ∞−subharmonic in U , then

S−r u
r(x)− S+

r u
r(x) ≤ 0, ∀x ∈ U2r,

and if v ∈ C(U) is ∞−superharmonic in U , then

S−r vr(x)− S+
r vr(x) ≥ 0, ∀x ∈ U2r.

Proof. We just prove the first statement; the second one follows from the

fact that (−v)r = −vr.
Fix a point x0 ∈ U2r. Select y0 ∈ Br(x0) and z0 ∈ B2r(x0) such that

u(y0) = ur(x0) and u(z0) = u2r(x0).
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Then,

r
[
S−r u

r(x0)− S+
r u

r(x0)
]

= 2ur(x0)− (ur)r(x0)− (ur)r(x0)

≤ 2ur(x0)− u2r(x0)− u(x0)

= 2u(y0)− u(z0)− u(x0).

We next justify why the inequality holds.

(1) (ur)r(x) = u2r(x): we have

(ur)r(x) = max
z∈Br(x)

ur(z) = max
z∈Br(x)

max
y∈Br(z)

u(y)

and

u2r(x) = max
y∈B2r(x)

u(y).

• If z ∈ Br(x) and y ∈ Br(z) then y ∈ B2r(x). In fact,

|z − x| ≤ r ∧ |y − z| ≤ r

⇒ |y − x| ≤ |y − z|+ |z − x| ≤ 2r

and thus

(ur)r(x) ≤ u2r(x).

• If y ∈ B2r(x) then y ∈ Br(z), for a certain z ∈ Br(x); just take z

to be the middle point of the segment [x, y]. So, also

u2r(x) ≤ (ur)r(x).

(2) (ur)r(x) ≥ u(x): we have

(ur)r(x) = min
z∈Br(x)

ur(z) = min
z∈Br(x)

max
y∈Br(z)

u(y).

Since

max
y∈Br(z)

u(y) ≥ u(x), ∀z ∈ Br(x),

the result follows.

Now, clearly,

u(w) ≤ u(x0) +
u(z0)− u(x0)

2r
|w − x0|, ∀w ∈ ∂ (B2r(x0) \ {x0}) .

Since u enjoys comparison with cones from above, because u is ∞−subhar-

monic, the inequality also holds for every w ∈ B2r(x0) \ {x0} and, since it

holds trivially for w = x0, for every w ∈ B2r(x0).



28

Putting w = y0 and using the fact that |y0 − x0| ≤ r, we get

u(y0) ≤ u(x0) +
u(z0)− u(x0)

2r
|y0 − x0|

≤ u(x0) +
u(z0)− u(x0)

2
and then

2u(y0)− u(x0)− u(z0) ≤ 0,

and the proof is complete. �

Theorem 9 (Jensen’s Uniqueness Theorem). Let u, v ∈ C(U) be, respec-

tively, ∞−subharmonic and ∞−superharmonic. Then

max
U

(u− v) = max
∂U

(u− v).

Proof. From Lemmas 9 and 8,

sup
Ur

(ur − vr) = sup
Ur\U2r

(ur − vr), ∀r > 0.

To get the result, let r ↓ 0 and use the local uniform converge of ur and vr

to u and v, respectively. �
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Problems

(1) Let u ∈ C(U). Show that Lipu(U) = Lipu(U).

(2) Show that the infimum and the supremum of a family of Lipschitz

functions, with a fixed Lipschitz constant, is Lipschitz and has, if it

is finite, the same Lipschitz constant.

(3) Let n = 1 and U = (−2,−1) ∪ (1, 2). Consider f : ∂U → R defined

by f(−2) = 0, f(−1) = 1 and f(1) = f(2) = 1.

(a) Determine Lipf (∂U).

(b) Compute the MacShane-Whitney extensions of f to U .

(c) Choose the extension of f which is in AML(U).

(4) Consider the modulus function u(x) = |x| in Rn.

(a) Prove u is ∞−subharmonic.

(b) Give a short justification to the fact that it is not∞−harmonic.

(c) Use the definition to show the previous fact.

(5) Let n = 2, u(x) = |x| and v(x) = x1.

(a) Construct a bounded set U ⊂ R2 \ {0} such that v < u on ∂U

except at two points and u = v on the line segment joining these

two points.

(b) Conclude there is no strong comparison principle for∞−harmo-

nic functions.

(6) Show that a function u ∈ C(U) is ∞−subharmonic if, and only if,

the map

r → ur(x) = max
Br(x)

u

is convex on [0, d(x)), for every x ∈ U .

(7) (Liouville’s Theorem) Prove that if u is ∞−harmonic in Rn and u

is bounded below, then u is constant.
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