Numerical solution of Markov chains and queueing problems

Beatrice Meini
Dipartimento di Matematica, Università di Pisa, Italy
Computational science day, Coimbra, July 23, 2004

Introduction to Markov chains

Outline

(1) Introduction to Markov chains

Markov chains of M/G/1-type

- Introduction
- A power series matrix equation
- The steady state vector

Algorithms for solving the power series matrix equation

- Functional iterations
- Cyclic reduction
- Doubling method

Outline

(1) Introduction to Markov chains
(2) Markov chains of M/G/1-type

- Introduction
- A power series matrix equation
- The steady state vector

Algorithms for solving the power series matrix equation

- Functional iterations
- Cyclic reduction
- Doubling method

Outline

(1) Introduction to Markov chains
(2) Markov chains of M/G/1-type

- Introduction
- A power series matrix equation
- The steady state vector
(3) Algorithms for solving the power series matrix equation
- Functional iterations
- Cyclic reduction
- Doubling method

Quasi-Birth-Death processes

- Introduction
- Algorithms

Outline

(1) Introduction to Markov chains
(2) Markov chains of M/G/1-type

- Introduction
- A power series matrix equation
- The steady state vector
(3) Algorithms for solving the power series matrix equation
- Functional iterations
- Cyclic reduction
- Doubling method

4 Quasi-Birth-Death processes
Tree-like stochastic processes

- Introduction
- Algorithms

Outline

(1) Introduction to Markov chains
(2) Markov chains of M/G/1-type

- Introduction
- A power series matrix equation
- The steady state vector
(3) Algorithms for solving the power series matrix equation
- Functional iterations
- Cyclic reduction
- Doubling method
(4) Quasi-Birth-Death processes
(5) Tree-like stochastic processes
- Introduction
- Algorithms

Introduction to Markov chains
Markov chains of M/G/1-type
Algorithms for solving the power series matrix equation
Quasi-Birth-Death processes
Tree-like stochastic processes

Outline

(1) Introduction to Markov chains
(2) Markov chains of M/G/1-type

- Introduction
- A power series matrix equation
- The steady state vector
(3) Algorithms for solving the power series matrix equation
- Functional iterations
- Cyclic reduction
- Doubling method
(4) Quasi-Birth-Death processes
(5) Tree-like stochastic processes
- Introduction
- Algorithms

Motivations in Markov chains

- Markov chains: valid tool for modeling problems of the real world (applied probability, queueing models, performance analysis, communication networks, population growth, economic growth, etc.)
- Source of interesting theoretical and computational problems in Numerical Linear Algebra involving either finite or infinite matrices
- Source of very nice structured matrices: almost block Toeplitz, generalized block Hessenberg, multilevel structures.
- People from numerical linear algebra can provide useful tools to the community of applied probabilists and engineers for Unviessini ilisa solving related problems

Bibliography

- M.F. Neuts, Structured Stochastic Matrices of M/G/1 Type and Their Applications, Marcel Dekker, New York, 1989.
- G. Latouche, V. Ramaswami, Introduction to matrix analytic methods in stochastic modeling, ASA-SIAM Series on Statistics and Applied Probability. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2000.
- G. W. Stewart, Introduction to the numerical solution of Markov chains, Princeton University Press, Princeton, New Jersey, 1994.
- D.A. Bini, G. Latouche, B. Meini, Numerical Methods for Structured Markov Chains, Oxford University Press, 2005 (in press)

Announcement

> The Fifth International Conference on Matrix Analytic Methods on Stochastic Models (MAM5)
> Pisa (Italy), June 21-24, 2005
> www.dm.unipi.it/~mam5
> Deadline for paper submission: October 2004

Introduction to Markov chains

Definition (Stochastic process)

A stochastic process is a family $\left\{X_{t} \in E: \quad t \in T\right\}$ where

- X_{t} : random variables
- E : state space (denumerable) (e.g. $E=\mathbb{N}$)
- T : time space (denumerable) (e.g. $T=\mathbb{N}$)

Definition (Markov chain)

A Markov chain is a stochastic process $\left\{X_{n}\right\}_{n \in T}$ such that

Introduction to Markov chains
Markov chains of M/G/1-type

Introduction to Markov chains

Definition (Stochastic process)

A stochastic process is a family $\left\{X_{t} \in E: \quad t \in T\right\}$ where

- X_{t} : random variables
- E : state space (denumerable) (e.g. $E=\mathbb{N}$)
- T : time space (denumerable) (e.g. $T=\mathbb{N}$)

Definition (Markov chain)

A Markov chain is a stochastic process $\left\{X_{n}\right\}_{n \in T}$ such that

$$
\begin{aligned}
& \mathrm{P}\left[X_{n+1}=i \mid X_{0}=j_{0}, X_{1}=j_{1}, \ldots, X_{n}=j_{n}\right]= \\
& \mathrm{P}\left[X_{n+1}=i \mid X_{n}=j_{n}\right]
\end{aligned}
$$

- The state X_{n+1} of the system at time $n+1$ depends only on the state X_{n} at time n. It does not depend on the past history of the system

- The state X_{n+1} of the system at time $n+1$ depends only on the state X_{n} at time n. It does not depend on the past history of the system
- Homogeneity assumption:

$$
\mathrm{P}\left[X_{n+1}=i \mid X_{n}=j\right]=\mathrm{P}\left[X_{1}=i \mid X_{0}=j\right] \quad \forall n
$$

- The state X_{n+1} of the system at time $n+1$ depends only on the state X_{n} at time n. It does not depend on the past history of the system
- Homogeneity assumption:
$\mathrm{P}\left[X_{n+1}=i \mid X_{n}=j\right]=\mathrm{P}\left[X_{1}=i \mid X_{0}=j\right] \quad \forall n$
- Transition matrix of the Markov chain

$$
P=\left(p_{i, j}\right)_{i, j \in T}, \quad p_{i, j}=\mathrm{P}\left[X_{1}=j \mid X_{0}=i\right] .
$$

- P is row-stochastic: $p_{i, j} \geq 0, \sum_{j \in T} p_{i, j}=1$
- The state X_{n+1} of the system at time $n+1$ depends only on the state X_{n} at time n. It does not depend on the past history of the system
- Homogeneity assumption:

$$
\mathrm{P}\left[X_{n+1}=i \mid X_{n}=j\right]=\mathrm{P}\left[X_{1}=i \mid X_{0}=j\right] \quad \forall n
$$

- Transition matrix of the Markov chain

$$
P=\left(p_{i, j}\right)_{i, j \in T}, \quad p_{i, j}=\mathrm{P}\left[X_{1}=j \mid X_{0}=i\right] .
$$

- P is row-stochastic: $p_{i, j} \geq 0, \sum_{j \in T} p_{i, j}=1$.

Status of the system

- Let $\mathbf{x}^{(n)}=\left(x_{i}^{(n)}\right)$, where

$$
x_{i}^{(n)}=\mathrm{P}\left[X_{n}=i\right], \quad i=0,1,2, \cdots
$$

$\mathbf{x}^{(n)}$ describes the status of the system at time n (say, probability that at time n there are n customers in the queue)

- From the composition lows of probability it follows that

Status of the system

- Let $\mathbf{x}^{(n)}=\left(x_{i}^{(n)}\right)$, where

$$
x_{i}^{(n)}=\mathrm{P}\left[X_{n}=i\right], \quad i=0,1,2, \cdots
$$

$\mathbf{x}^{(n)}$ describes the status of the system at time n (say, probability that at time n there are n customers in the queue)

- From the composition lows of probability it follows that

$$
\begin{aligned}
& x_{i}^{(n)} \geq 0 \\
& \left\|\mathbf{x}^{(n)}\right\|_{1}=\sum_{i=0}^{\infty} x_{i}^{(n)}=1 \\
& \mathbf{x}^{(n+1) T}=\mathbf{x}^{(n) T} P
\end{aligned}
$$

- Great interest for $\pi=\lim _{n} x^{(n)}$ (if it exists): π represents the asymptotic behaviour of the system as the time grows.

Status of the system

- Let $\mathbf{x}^{(n)}=\left(x_{i}^{(n)}\right)$, where

$$
x_{i}^{(n)}=\mathrm{P}\left[X_{n}=i\right], \quad i=0,1,2, \cdots
$$

$\mathbf{x}^{(n)}$ describes the status of the system at time n (say, probability that at time n there are n customers in the queue)

- From the composition lows of probability it follows that

$$
\begin{aligned}
& x_{i}^{(n)} \geq 0 \\
& \left\|\mathbf{x}^{(n)}\right\|_{1}=\sum_{i=0}^{\infty} x_{i}^{(n)}=1 \\
& \mathbf{x}^{(n+1) T}=\mathbf{x}^{(n) T} P
\end{aligned}
$$

- Great interest for $\boldsymbol{\pi}=\lim _{n} \mathbf{x}^{(n)}$ (if it exists): $\boldsymbol{\pi}$ represents the asymptotic behaviour of the system as the time grows.

Classification of the states

- A state i is called recurrent if, once the Markov chain has visited state i, it will return to it over and over again.

- A state i is positive recurrent if the expected return time to state i is finite;

Classification of the states

- A state i is called recurrent if, once the Markov chain has visited state i, it will return to it over and over again.
- A state i is positive recurrent if the expected return time to state i is finite;
- it is null recurrent if the expected return time is infinite.
- A state i is called transient if it is not recurrent.

Classification of the states

- A state i is called recurrent if, once the Markov chain has visited state i, it will return to it over and over again.
- A state i is positive recurrent if the expected return time to state i is finite;
- it is null recurrent if the expected return time is infinite.
- A state i is called transient if it is not recurrent.

Classification of the states

- A state i is called recurrent if, once the Markov chain has visited state i, it will return to it over and over again.
- A state i is positive recurrent if the expected return time to state i is finite;
- it is null recurrent if the expected return time is infinite.
- A state i is called transient if it is not recurrent.
- A state i has periodicity $\delta>1$ if $\mathrm{P}\left[X_{n}=i \mid X_{0}=i\right]>0$ only if $n=0 \bmod \delta$.

Classification of the states

- A state i is called recurrent if, once the Markov chain has visited state i, it will return to it over and over again.
- A state i is positive recurrent if the expected return time to state i is finite;
- it is null recurrent if the expected return time is infinite.
- A state i is called transient if it is not recurrent.
- A state i has periodicity $\delta>1$ if $\mathrm{P}\left[X_{n}=i \mid X_{0}=i\right]>0$ only if $n=0 \bmod \delta$.

If P is irreducible then all the states are transient, or positive
recurrent, or null recurrent.

Classification of the states

- A state i is called recurrent if, once the Markov chain has visited state i, it will return to it over and over again.
- A state i is positive recurrent if the expected return time to state i is finite;
- it is null recurrent if the expected return time is infinite.
- A state i is called transient if it is not recurrent.
- A state i has periodicity $\delta>1$ if $\mathrm{P}\left[X_{n}=i \mid X_{0}=i\right]>0$ only if $n=0 \bmod \delta$.

If P is irreducible then all the states are transient, or positive recurrent, or null recurrent.

Positive recurrence

Theorem

Assume that the Markov chain is irreducible. The states are positive recurrent if and only if there exists a strictly positive invariant probability vector, that is, a vector $\boldsymbol{\pi}=\left(\pi_{i}\right)$ such that $\pi_{i}>0$ for all i, with

$$
\pi^{T} P=\pi^{T} \quad \text { and } \quad \sum_{i} \pi_{i}=1
$$

In that case, if the Markov chain is non-periodic, then
$\lim _{n \rightarrow+\infty} \mathrm{P}\left[X_{n}=j \mid X_{0}=i\right]=\pi_{j}$ for all j, independently of i, and π is called steady state vector.

The finite case

For finite matrices the Perron-Frobenius theorem allows to easily give conditions for positive recurrence:

Theorem (Perron-Frobenius)

If $A=\left(a_{i, j}\right) \in \mathbb{R}^{n \times n}, a_{i, j} \geq 0$ and irreducible then

The finite case

For finite matrices the Perron-Frobenius theorem allows to easily give conditions for positive recurrence:

Theorem (Perron-Frobenius)

If $A=\left(a_{i, j}\right) \in \mathbb{R}^{n \times n}, a_{i, j} \geq 0$ and irreducible then

- $\rho(A)>0$.
- $\rho(A)>0$ is a simple eigenvalue.
- If A is non-periodic, then any other eigenvalue λ of A is such that $|\lambda|<\rho(A)$.
- There exist unique (up to scaling) positive vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$ such that $A \mathbf{x}=\rho(A) \mathbf{x}, \mathbf{y}^{T} A=\rho(A) \mathbf{y}^{T}$.

Therefore a finite irreducible Markov chain is positive recurrent

The finite case

For finite matrices the Perron-Frobenius theorem allows to easily give conditions for positive recurrence:

Theorem (Perron-Frobenius)

If $A=\left(a_{i, j}\right) \in \mathbb{R}^{n \times n}, a_{i, j} \geq 0$ and irreducible then

- $\rho(A)>0$.
- $\rho(A)>0$ is a simple eigenvalue.
- If A is non-periodic, then any other eigenvalue λ of A is such that $|\lambda|<\rho(A)$.
- There exist unique (up to scaling) positive vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$ such that $A \mathbf{x}=\rho(A) \mathbf{x}, \mathbf{y}^{\top} A=\rho(A) \mathbf{y}^{\top}$.

Therefore a finite irreducible Markov chain is positive recurrent

The infinite case

Let us assume that $P=\left(p_{i, j}\right)_{i, j \in \mathbb{N}}$ is semi-infinite.
If P is stochastic, the irreducibility of P does not guarantee the existence of a vector $\pi>0$ such that

$$
\boldsymbol{\pi}^{T}=\boldsymbol{\pi}^{T} P, \quad\|\boldsymbol{\pi}\|_{1}=1
$$

Example

For the stochastic irreducible matrix

$$
P=\left[\begin{array}{ccccc}
0 & 1 & & & 0 \\
1 / 2 & 0 & 1 / 2 & & \\
& 1 / 2 & 0 & 1 / 2 & \\
0 & & \ddots & \ddots & \ddots
\end{array}\right]
$$

one has $\boldsymbol{\pi}^{T}=\boldsymbol{\pi}^{T} P$ with $\boldsymbol{\pi}^{T}=(1 / 2,1,1,1, \ldots)$

Introduction to Markov chains

Outline

(1) Introduction to Markov chains
(2) Markov chains of M/G/1-type

- Introduction
- A power series matrix equation
- The steady state vector
(3) Algorithms for solving the power series matrix equation
- Functional iterations
- Cyclic reduction
- Doubling method

4 Quasi-Birth-Death processes
(5) Tree-like stochastic processes

- Introduction
- Algorithms

Introduction to Markov chains

A simple queueing problem

- One server which attends to one customer at a time, in order of their arrivals.
- Time is discretized into intervals of fixed length.
- A random number of customers joins the system during each interval.
- Customers are indefinitely patient!

Introduction to Markov chains

A simple queueing problem

- Define:
- α_{n} : the number of new arrivals in $(n-1, n)$;
- X_{n} : the number of customers in the system at time n.
- Then

Introduction to Markov chains

A simple queueing problem

- Define:
- α_{n} : the number of new arrivals in $(n-1, n)$;
- X_{n} : the number of customers in the system at time n.
- Then

$$
X_{n+1}= \begin{cases}X_{n}+\alpha_{n+1}-1 & \text { if } X_{n}+\alpha_{n+1} \geq 1 \\ 0 & \text { if } X_{n}+\alpha_{n+1}=0\end{cases}
$$

- If $\left\{\alpha_{n}\right\}$ are independent random variables, then $\left\{X_{n}\right\}$ is a Markov chain with space state \mathbb{N}.
- If in addition the α_{n} 's are identically distributed, then

Introduction to Markov chains

A simple queueing problem

- Define:
- α_{n} : the number of new arrivals in $(n-1, n)$;
- X_{n} : the number of customers in the system at time n.
- Then

$$
X_{n+1}= \begin{cases}X_{n}+\alpha_{n+1}-1 & \text { if } X_{n}+\alpha_{n+1} \geq 1 \\ 0 & \text { if } X_{n}+\alpha_{n+1}=0\end{cases}
$$

- If $\left\{\alpha_{n}\right\}$ are independent random variables, then $\left\{X_{n}\right\}$ is a Markov chain with space state \mathbb{N}.
- If in addition the α_{n} 's are identically distributed, then $\left\{X_{n}\right\}$ is homogeneous.

Introduction to Markov chains

A simple queueing problem

The transition matrix $P=\left(p_{i, j}\right)_{i, j \in \mathbb{N}}$, such that

$$
p_{i, j}=\mathrm{P}\left[X_{1}=j \mid X_{0}=i\right], \quad \text { for all } i, j \text { in } \mathbb{N} .
$$

is

$$
P=\left[\begin{array}{cccc}
q_{0}+q_{1} & q_{2} & q_{3} & \cdots \\
q_{0} & q_{1} & q_{2} & \ddots \\
& q_{0} & q_{1} & \ddots \\
0 & & \ddots & \ddots
\end{array}\right]
$$

where q_{i} is the probability that i new customers join the queue Unviesmidi IPIS n during a unit time interval.

Introduction to Markov chains

Important families of Markov chains

- M/G/1-type: P is in upper block Hessenberg form, and almost block Toeplitz
- G/M/1-type: P is in lower block Hessenberg form, and almost block Toeplitz

Università di Pisa

Introduction to Markov chains

Important families of Markov chains

- M/G/1-type: P is in upper block Hessenberg form, and almost block Toeplitz
- G/M/1-type: P is in lower block Hessenberg form, and almost block Toeplitz
- QBD (Quasi-Birth-Death): P is block tridiagonal, and almost block Toeplitz

Introduction to Markov chains

Important families of Markov chains

- M/G/1-type: P is in upper block Hessenberg form, and almost block Toeplitz
- G/M/1-type: P is in lower block Hessenberg form, and almost block Toeplitz
- QBD (Quasi-Birth-Death): P is block tridiagonal, and almost block Toeplitz -
- NSF (Non-Skip-Free): P is in generalized block Hessenberg form, and almost block Toeplitz

Introduction to Markov chains

Important families of Markov chains

- M/G/1-type: P is in upper block Hessenberg form, and almost block Toeplitz
- G/M/1-type: P is in lower block Hessenberg form, and almost block Toeplitz
- QBD (Quasi-Birth-Death): P is block tridiagonal, and almost block Toeplitz -
- NSF (Non-Skip-Free): P is in generalized block Hessenberg form, and almost block Toeplitz

Introduction to Markov chains

Important families of Markov chains

- M/G/1-type: P is in upper block Hessenberg form, and almost block Toeplitz
- G/M/1-type: P is in lower block Hessenberg form, and almost block Toeplitz
- QBD (Quasi-Birth-Death): P is block tridiagonal, and almost block Toeplitz
- NSF (Non-Skip-Free): P is in generalized block Hessenberg form, and almost block Toeplitz
- Tree-like stohastic process: P has a "recursive structure"

Introduction to Markov chains

M/G/1-type Markov chains

- Introduced by M. F. Neuts in the 80 's, they model a large variety of queueing problems.
- The transition matrix is

$$
P=\left[\begin{array}{ccccc}
B_{0} & B_{1} & B_{2} & B_{3} & \ldots \\
A_{-1} & A_{0} & A_{1} & A_{2} & \ldots \\
& A_{-1} & A_{0} & A_{1} & \ddots \\
& & A_{-1} & A_{0} & \ddots \\
0 & & & \ddots & \ddots
\end{array}\right]
$$

where $A_{i-1}, B_{i} \in \mathbb{R}^{m \times m}$, for $i \geq 0$, are nonnegative such that $\sum_{i=-1}^{+\infty} A_{i}, \sum_{i=0}^{+\infty} B_{i}$, are stochastic.
P is upper block Hessenberg and is block Toeplitz except for its first block row.

Introduction to Markov chains

Positive recurrence (informal)

Intuitively, positive recurrence means that the global probability that the state changes into a "forward" state is less than the global probability of a change into a "backward" state.
In this way, the probabilities π_{i} of the stationary probability vector get smaller and smaller as long as i grows.

Example (Positive recurrent Markov chain)

$$
\begin{aligned}
& P=\left[\begin{array}{ccccc}
0 & 1 & & & 0 \\
3 / 4 & 0 & 1 / 4 & & \\
& 3 / 4 & 0 & 1 / 4 & \\
0 & & \ddots & \ddots & \ddots
\end{array}\right], \\
& \pi^{T}=\left[\frac{1}{2}, \frac{2}{3}, \frac{2}{9}, \frac{2}{27}, \ldots\right] \in L^{1}
\end{aligned}
$$

Introduction to Markov chains

Transient (informal)

Intuitively, transient means that the global probability that the state changes into a "backward" state is less than the global probability of a change into a "forward" state.

Example (Transient Markov chain)

$$
\begin{aligned}
& P=\left[\begin{array}{ccccc}
0 & 1 & & & 0 \\
1 / 4 & 0 & 3 / 4 & & \\
& 1 / 4 & 0 & 3 / 4 & \\
0 & & \ddots & \ddots & \ddots
\end{array}\right], \\
& \pi^{T}=[1,4,12,16, \ldots] \notin L^{\infty}
\end{aligned}
$$

Introduction to Markov chains

Null recurrence (informal)

Intuitively, null recurrence means that the global probability that the state changes into a "backward" state is equal to the global probability of a change into a "forward" state.

Example (Null recurrence)

$$
\begin{aligned}
& P=\left[\begin{array}{ccccc}
0 & 1 & & & 0 \\
1 / 2 & 0 & 1 / 2 & & \\
& 1 / 2 & 0 & 1 / 2 & \\
0 & & \ddots & \ddots & \ddots
\end{array}\right], \\
& \boldsymbol{\pi}^{T}=[1 / 2,1,1, \ldots] \notin L^{1}
\end{aligned}
$$

Introduction to Markov chains

Positive recurrence

- For M/G/1-type Markov chains positive recurrence is equivalent to

$$
\mathbf{b}^{T} \mathbf{a}<1
$$

where

$$
\begin{aligned}
& \mathbf{b}^{T}=\mathbf{1}^{T} \sum_{i=1}^{\infty} i A_{i-1}, \quad \mathbf{1}^{T}=(1,1, \ldots, 1), \\
& \mathbf{a}^{T}=\mathbf{a}^{T} \sum_{i=-1}^{\infty} A_{i}, \quad \mathbf{a}^{T} \mathbf{1}=1
\end{aligned}
$$

- Throughout we assume that the Markov chain is irreducible Universiridipisa and positive recurrent, therefore there exists the steady state vector $\pi>0$.

Introduction to Markov chains

Positive recurrence

- For M/G/1-type Markov chains positive recurrence is equivalent to

$$
\mathbf{b}^{T} \mathbf{a}<1
$$

where

$$
\begin{aligned}
& \mathbf{b}^{T}=\mathbf{1}^{T} \sum_{i=1}^{\infty} i A_{i-1}, \quad \mathbf{1}^{T}=(1,1, \ldots, 1) \\
& \mathbf{a}^{T}=\mathbf{a}^{T} \sum_{i=-1}^{\infty} A_{i}, \quad \mathbf{a}^{T} \mathbf{1}=1
\end{aligned}
$$

- Throughout we assume that the Markov chain is irreducible and positive recurrent, therefore there exists the steady state vector $\pi>0$.

Introduction to Markov chains

A power series matrix equation

Theorem (Neuts '98)

The matrix equation

$$
X=A_{-1}+A_{0} X+A_{1} X^{2}+A_{2} X^{3}+\cdots
$$

has a minimal component-wise solution G, among the nonnegative solutions.

Introduction to Markov chains

Some properties of G

Let $S(z)=z l-\sum_{i=-1}^{+\infty} z^{i+1} A_{i}$.
If the $M / G / 1$-type Markov chain is positive recurrent, then:

- G is row stochastic.
- $\operatorname{det} S(z)$ has exactly m zeros in the closed unit disk.
- The eigenvalues of G are the zeros of $\operatorname{det} S(z)$ in the closed unit disk.
Therefore G is the minimal solvent (Gohberg, Lancaster, Rodman

Introduction to Markov chains

Some properties of G

Let $S(z)=z l-\sum_{i=-1}^{+\infty} z^{i+1} A_{i}$.
If the $M / G / 1$-type Markov chain is positive recurrent, then:

- G is row stochastic.
- $\operatorname{det} S(z)$ has exactly m zeros in the closed unit disk.
- The eigenvalues of G are the zeros of $\operatorname{det} S(z)$ in the closed unit disk.

Therefore G is the minimal solvent (Gohberg, Lancaster, Rodman '82)

Introduction to Markov chains

Some properties of $S(z)$

- The power series $S(z)=z l-\sum_{i=-1}^{+\infty} z^{i+1} A_{i}$ belongs to the Wiener algebra $\mathcal{W}($, therefore it is analytic for $|z|<1$, continuous for $|z|=1$.
- Under some mild additional assumptions $S(z)$ is analytic for $|z|<r$, where $r>1$, and there exists a smallest modulus zero ξ of $\operatorname{det} S(z)$ such that $1<|\xi|<r$.

Introduction to Markov chains

Canonical factorization

Theorem

The function $\phi(z)=I-\sum_{i=-1}^{+\infty} z^{i} A_{i}$ has a weak canonical factorization in \mathcal{W}

$$
\phi(z)=\left(I-\sum_{i=0}^{+\infty} z^{i} U_{i}\right)\left(I-z^{-1} G\right), \quad|z|=1
$$

where:

- $U(z)=1-\sum_{i=0}^{+\infty} z^{i} U_{i}$ is analytic for $|z|<1, \operatorname{det} U(z) \neq 0$ for $|z| \leq 1 ;$

Introduction to Markov chains

Canonical factorization

Theorem

The function $\phi(z)=I-\sum_{i=-1}^{+\infty} z^{i} A_{i}$ has a weak canonical factorization in \mathcal{W}

$$
\phi(z)=\left(I-\sum_{i=0}^{+\infty} z^{i} U_{i}\right)\left(I-z^{-1} G\right), \quad|z|=1
$$

where:

- $U(z)=I-\sum_{i=0}^{+\infty} z^{i} U_{i}$ is analytic for $|z|<1, \operatorname{det} U(z) \neq 0$ for

$$
|z| \leq 1 ;
$$

- $L(z)=I-z^{-1} G$ is analytic for $|z|>1$, $\operatorname{det} L(z) \neq 0$ for

$$
|z|>1, \operatorname{det} L(1)=0 .
$$

Introduction to Markov chains

Canonical factorization

Theorem

The function $\phi(z)=I-\sum_{i=-1}^{+\infty} z^{i} A_{i}$ has a weak canonical factorization in \mathcal{W}

$$
\phi(z)=\left(I-\sum_{i=0}^{+\infty} z^{i} U_{i}\right)\left(I-z^{-1} G\right), \quad|z|=1
$$

where:

- $U(z)=I-\sum_{i=0}^{+\infty} z^{i} U_{i}$ is analytic for $|z|<1, \operatorname{det} U(z) \neq 0$ for $|z| \leq 1 ;$
- $L(z)=I-z^{-1} G$ is analytic for $|z|>1$, $\operatorname{det} L(z) \neq 0$ for $|z|>1$, $\operatorname{det} L(1)=0$.

Introduction to Markov chains

Matrix interpretation

$$
H=\left[\begin{array}{cccc}
I-A_{0} & -A_{1} & A_{2} & \cdots \\
-A_{-1} & I-A_{0} & -A_{1} & \ddots \\
& -A_{-1} & I-A_{0} & \ddots \\
0 & & \ddots & \ddots
\end{array}\right]=U L
$$

where

$$
U=\left[\begin{array}{llll}
U_{0} & U_{1} & U_{2} & \cdots \\
& U_{0} & U_{1} & \ddots \\
0 & & \ddots & \ddots
\end{array}\right], \quad L=\left[\begin{array}{cccc}
I & & & 0 \\
-G & I & & \\
& -G & I & \\
0 & & \ddots & \ddots
\end{array}\right]
$$

Introduction to Markov chains

Computing π

Consider the problem of computing $\pi=\left(\pi_{i}\right)_{i \in \mathbb{N}}, \boldsymbol{\pi}_{i} \in \mathbb{R}^{m}$, such that $\pi^{T}(I-P)=0$. i.e.,

$$
\left[\pi_{0}^{T}, \boldsymbol{\pi}_{1}^{T}, \boldsymbol{\pi}_{2}^{T}, \ldots\right]\left[\begin{array}{c|cccc}
I-B_{0} & -B_{1} & -B_{2} & -B_{3} & \ldots \\
\hline-A_{-1} & I-A_{0} & -A_{1} & -A_{2} & \cdots \\
0 & -A_{-1} & I-A_{0} & -A_{1} & \ddots \\
0 & & \ddots & \ddots & \ddots
\end{array}\right]=0
$$

Università di Pisa

Introduction to Markov chains

Computing π

Then,

$$
0=\left[\pi_{0}^{T}, \pi_{1}^{T}, \pi_{2}^{T}, \ldots\right]\left[\begin{array}{c|ccc}
I-B_{0} & -B_{1} & -B_{2} & \ldots \\
\hline-A_{-1} & & & \\
0 & & U L & \\
\vdots & & &
\end{array}\right]
$$

is equivalent to

Introduction to Markov chains

Computing π

Then,

$$
0=\left[\pi_{0}^{T}, \boldsymbol{\pi}_{1}^{T}, \boldsymbol{\pi}_{2}^{T}, \ldots\right]\left[\begin{array}{c|ccc}
I-B_{0} & -B_{1} & -B_{2} & \ldots \\
\hline-A_{-1} & & & \\
0 & & U L & \\
\vdots & & &
\end{array}\right]
$$

is equivalent to

$$
0=\left[\boldsymbol{\pi}_{0}^{T}, \boldsymbol{\pi}_{1}^{T}, \boldsymbol{\pi}_{2}^{T}, \ldots\right]\left[\begin{array}{c|ccc}
I-B_{0} & -B_{1}^{*} & -B_{2}^{*} & \ldots \\
\hline-A_{-1} & & & \\
0 & & U & \\
\vdots & & &
\end{array}\right]
$$

where

$$
\left[B_{1}^{*}, B_{2}^{*}, \ldots\right]=\left[B_{1}, B_{1}, \ldots\right] L^{-1}
$$

Introduction to Markov chains

Computing π

$$
0=\left[\pi_{0}^{T}, \boldsymbol{\pi}_{1}^{T}, \boldsymbol{\pi}_{2}^{T}, \ldots\right]\left[\begin{array}{c|cccc}
I-B_{0} & -B_{1}^{*} & -B_{2}^{*} & -B_{3}^{*} & \ldots \\
\hline-A_{-1} & U_{0} & U_{1} & U_{2} & \cdots \\
& & U_{0} & U_{1} & \ddots \\
0 & 0 & & \ddots & \ddots
\end{array}\right]
$$

The first two equations yield

$$
0=\left[\pi_{0}^{T}, \pi_{1}^{T}\right]\left[\begin{array}{cc}
I-B_{0} & -B_{1}^{*} \\
-A_{-1} & U_{0}
\end{array}\right]
$$

whence we get

$$
\pi_{0}^{T}\left(I-B_{0}-B_{1}^{*} U_{0}^{-1} A_{-1}\right)=0
$$

Introduction to Markov chains

Computing π

$$
0=\left[\pi_{0}^{T}, \boldsymbol{\pi}_{1}^{T}, \boldsymbol{\pi}_{2}^{T}, \ldots\right]\left[\begin{array}{c|cccc}
I-B_{0} & -B_{1}^{*} & -B_{2}^{*} & -B_{3}^{*} & \ldots \\
\hline-A_{-1} & U_{0} & U_{1} & U_{2} & \cdots \\
& & U_{0} & U_{1} & \ddots \\
0 & 0 & & \ddots & \ddots
\end{array}\right]
$$

From the remaining equations we obtain the block triangular block Toeplitz system

$$
\left[\boldsymbol{\pi}_{1}^{T}, \boldsymbol{\pi}_{2}^{T}, \ldots\right]\left[\begin{array}{cccc}
U_{0} & U_{1} & U_{2} & \ldots \\
& U_{0} & U_{1} & \ddots \\
0 & & \ddots & \ddots
\end{array}\right]=\boldsymbol{\pi}_{0}^{T}\left[B_{1}^{*}, B_{2}^{*}, \ldots\right]
$$

which can be solved either by means of forward substitution or by FFT-based algorithms.

Introduction to Markov chains

Ramaswami's formula ('89)

Summing up:

Ramaswami's formula

$$
\left\{\begin{array}{l}
\boldsymbol{\pi}_{0}^{T}\left(I-B_{0}-B_{1}^{*} U_{0}^{-1} A_{-1}\right)=0 \\
\boldsymbol{\pi}_{1}^{T}=\boldsymbol{\pi}_{0}^{T} B_{1}^{*} U_{0}^{-1} \\
\boldsymbol{\pi}_{2}^{T}=\left(\boldsymbol{\pi}_{0}^{T} B_{2}^{*}-\boldsymbol{\pi}_{1}^{T} U_{1}\right) U_{0}^{-1} \\
\boldsymbol{\pi}_{i}^{T}=\left(\pi_{0}^{T} B_{i}^{*}-\boldsymbol{\pi}_{1}^{T} U_{i-1}-\cdots-\pi_{i-1}^{T} U_{1}\right) U_{0}^{-1}
\end{array}\right.
$$

where

$$
\begin{aligned}
B_{i}^{*} & =\sum_{j=i}^{+\infty} B_{j} G^{j-i}, \quad i=0,1,2, \ldots \\
U_{0}^{*} & =I-\sum_{j=0}^{+\infty} A_{j} G^{j}, \quad U_{i}=\sum_{j=i}^{+\infty} A_{j} G^{j-i}, \quad i=1,2,3, \ldots
\end{aligned}
$$

Introduction to Markov chains

Computational issues

For the stochasticity of P we have $\lim _{i} B_{i}=\lim _{i} A_{i}=0$, so that in floating point computation $B_{i} \approx 0$ for $i>N$ and the infinite summations turn into finite summations

$$
B_{i}^{*}=\sum_{j=i}^{\infty} B_{j} G^{j-i} \approx \sum_{j=i}^{N} B_{j} G^{j-i}, \quad i=0,1, \ldots, N
$$

- Compute G

- Compute $B_{i}^{*}, U_{i}, i=0,1,2, \ldots$ by means of back substitution
(Horner's rule)

Università di Pisa

Introduction to Markov chains

Computational issues

For the stochasticity of P we have $\lim _{i} B_{i}=\lim _{i} A_{i}=0$, so that in floating point computation $B_{i} \approx 0$ for $i>N$ and the infinite summations turn into finite summations

$$
B_{i}^{*}=\sum_{j=i}^{\infty} B_{j} G^{j-i} \approx \sum_{j=i}^{N} B_{j} G^{j-i}, \quad i=0,1, \ldots, N
$$

- Compute G.
- Compute $B_{i}^{*}, U_{i}, i=0,1,2, \ldots$ by means of back substitution (Horner's rule) ($\mathrm{O}\left(\mathrm{Nm}^{3}\right)$ ops)

Università di Pisa

Introduction to Markov chains

Computational issues

For the stochasticity of P we have $\lim _{i} B_{i}=\lim _{i} A_{i}=0$, so that in floating point computation $B_{i} \approx 0$ for $i>N$ and the infinite summations turn into finite summations

$$
B_{i}^{*}=\sum_{j=i}^{\infty} B_{j} G^{j-i} \approx \sum_{j=i}^{N} B_{j} G^{j-i}, \quad i=0,1, \ldots, N
$$

- Compute G.
- Compute $B_{i}^{*}, U_{i}, i=0,1,2, \ldots$ by means of back substitution (Horner's rule) ($\left.\mathrm{O}\left(\mathrm{Nm}^{3}\right) \mathrm{ops}\right)$
- Compute the dominant left eigenvector π_{0} of an $m \times m$ matrix ($O\left(m^{3}\right)$ ops $)$

Introduction to Markov chains

Computational issues

For the stochasticity of P we have $\lim _{i} B_{i}=\lim _{i} A_{i}=0$, so that in floating point computation $B_{i} \approx 0$ for $i>N$ and the infinite summations turn into finite summations

$$
B_{i}^{*}=\sum_{j=i}^{\infty} B_{j} G^{j-i} \approx \sum_{j=i}^{N} B_{j} G^{j-i}, \quad i=0,1, \ldots, N
$$

- Compute G.
- Compute $B_{i}^{*}, U_{i}, i=0,1,2, \ldots$ by means of back substitution (Horner's rule) ($\mathrm{O}\left(\mathrm{Nm}^{3}\right)$ ops)
- Compute the dominant left eigenvector $\boldsymbol{\pi}_{0}$ of an $m \times m$ matrix ($O\left(m^{3}\right)$ ops)

Introduction to Markov chains

Computational issues

For the stochasticity of P we have $\lim _{i} B_{i}=\lim _{i} A_{i}=0$, so that in floating point computation $B_{i} \approx 0$ for $i>N$ and the infinite summations turn into finite summations

$$
B_{i}^{*}=\sum_{j=i}^{\infty} B_{j} G^{j-i} \approx \sum_{j=i}^{N} B_{j} G^{j-i}, \quad i=0,1, \ldots, N
$$

- Compute G.
- Compute $B_{i}^{*}, U_{i}, i=0,1,2, \ldots$ by means of back substitution (Horner's rule) ($\mathrm{O}\left(\mathrm{Nm}^{3}\right)$ ops)
- Compute the dominant left eigenvector π_{0} of an $m \times m$ matrix ($O\left(m^{3}\right)$ ops)
- Computing π_{i} for $i=1,2, \ldots, q$ by solving an $q \times q$ block triangular block Toeplitz system ($O\left(m^{3} q \log q\right.$) ops)

Introduction to Markov chains

Outline

(1) Introduction to Markov chains
(2) Markov chains of M/G/1-type

- Introduction
- A power series matrix equation
- The steady state vector
(3) Algorithms for solving the power series matrix equation - Functional iterations
- Cyclic reduction
- Doubling method
(4) Quasi-Birth-Death processes
(5) Tree-like stochastic processes

Introduction to Markov chains

Functional iterations

Natural iteration

$$
\left\{\begin{array}{l}
x_{n+1}=\sum_{i=-1}^{+\infty} A_{i} X_{n}^{i+1}, \quad n \geq 0 \\
x_{0}=0
\end{array}\right.
$$

History Several variants proposed by Neuts ('81, '89), Ramaswami ('88), Latouche ('93), Bai ('97).
Convergence Convergence analysis performed by Meini ('97), Guo ('99). Convergence is linear, and for some problems it may be extremely slow.

Introduction to Markov chains

Some fixed point iterations

Natural iteration

$$
X_{n+1}=\sum_{i=-1}^{+\infty} A_{i} X_{n}^{i+1}, \quad n \geq 0
$$

Introduction to Markov chains
Algorithms for solving the power series matrix equation
Quasi-Birth-Death processes Tree-like stochastic processes

Some fixed point iterations

Natural iteration

$$
X_{n+1}=\sum_{i=-1}^{+\infty} A_{i} X_{n}^{i+1}, \quad n \geq 0
$$

Traditional iteration

$$
X_{n+1}=\left(I-A_{0}\right)^{-1}\left(A_{-1}+\sum_{i=1}^{+\infty} A_{i} X_{n}^{i+1}\right), \quad n \geq 0
$$

Introduction to Markov chains
Algorithms for solving the power series matrix equation
Quasi-Birth-Death processes Tree-like stochastic processes

Some fixed point iterations

Natural iteration

$$
X_{n+1}=\sum_{i=-1}^{+\infty} A_{i} X_{n}^{i+1}, \quad n \geq 0
$$

Traditional iteration

$$
X_{n+1}=\left(I-A_{0}\right)^{-1}\left(A_{-1}+\sum_{i=1}^{+\infty} A_{i} X_{n}^{i+1}\right), \quad n \geq 0
$$

Iteration "based on the matrix U"

$$
X_{n+1}=\left(I-\sum_{i=0}^{+\infty} A_{i} X_{n}^{i}\right)^{-1} A_{-1}, \quad n \geq 0
$$

Introduction to Markov chains

Convergence analysis: case $X_{0}=0$

Theorem (Latouche '91)

If $X_{0}=0$ then the sequences $\left\{X_{n}^{(N)}\right\}_{n \geq 0},\left\{X_{n}^{(T)}\right\}_{n \geq 0},\left\{X_{n}^{(U)}\right\}_{n \geq 0}$ converge monotonically to the matrix G, that is $X_{n+1}-X_{n} \geq 0$ for X_{n} being any of $X_{n}^{(N)}, X_{n}^{(T)}, X_{n}^{(U)}$. Moreover, for any $n \geq 0$, it holds

$$
X_{n}^{(N)} \leq X_{n}^{(T)} \leq X_{n}^{(U)}
$$

Therefore the sequence $\left\{X_{n}^{(U)}\right\}_{n \geq 0}$ provides the best
approximation.
Has it the fastest convergence?

Introduction to Markov chains

Convergence analysis: case $X_{0}=0$

Theorem (Latouche '91)

If $X_{0}=0$ then the sequences $\left\{X_{n}^{(N)}\right\}_{n \geq 0},\left\{X_{n}^{(T)}\right\}_{n \geq 0},\left\{X_{n}^{(U)}\right\}_{n \geq 0}$ converge monotonically to the matrix G, that is $X_{n+1}-X_{n} \geq 0$ for X_{n} being any of $X_{n}^{(N)}, X_{n}^{(T)}, X_{n}^{(U)}$. Moreover, for any $n \geq 0$, it holds

$$
X_{n}^{(N)} \leq X_{n}^{(T)} \leq X_{n}^{(U)}
$$

Therefore the sequence $\left\{X_{n}^{(U)}\right\}_{n \geq 0}$ provides the best approximation.
Has it the fastest convergence?

Introduction to Markov chains

Convergence analysis: case $X_{0}=0$

Consider for simplicity the natural iteration. Define $E_{n}=G-X_{n}$ the error at step n.

Theorem

(1) $0 \leq E_{n+1} \leq E_{n}$ for any $n \geq 0$.

Introduction to Markov chains

Convergence analysis: case $X_{0}=0$

Consider for simplicity the natural iteration. Define $E_{n}=G-X_{n}$ the error at step n.

Theorem

(1) $0 \leq E_{n+1} \leq E_{n}$ for any $n \geq 0$.

Introduction to Markov chains

Convergence analysis: case $X_{0}=0$

Consider for simplicity the natural iteration.
Define $E_{n}=G-X_{n}$ the error at step n.

Theorem

(1) $0 \leq E_{n+1} \leq E_{n}$ for any $n \geq 0$.
(2) $E_{n+1} \mathbf{1}=R_{n} E_{n} 1$ where $R_{n}=\sum_{i=0}^{+\infty} \sum_{j=i}^{+\infty} A_{j} X_{n}^{j-i}$.
(3) $\left\|E_{n}\right\|_{\infty}=\mid \prod_{i=0}^{n-1} R_{i}$

Denoting $r=\lim _{n} \sqrt[n]{\left\|E_{n}\right\|}$, one has $r=\rho(R)$, where

Introduction to Markov chains

Convergence analysis: case $X_{0}=0$

Consider for simplicity the natural iteration.
Define $E_{n}=G-X_{n}$ the error at step n.

Theorem

(1) $0 \leq E_{n+1} \leq E_{n}$ for any $n \geq 0$.
(2) $E_{n+1} \mathbf{1}=R_{n} E_{n} \mathbf{1}$ where $R_{n}=\sum_{i=0}^{+\infty} \sum_{j=i}^{+\infty} A_{j} X_{n}^{j-i}$.
(3) $\left\|E_{n}\right\|_{\infty}=\left\|\prod_{i=0}^{n-1} R_{i}\right\|_{\infty}$ 。

Denoting $r=\lim _{n} \sqrt[n]{\left\|E_{n}\right\|}$, one has $r=\rho(R)$, where

Introduction to Markov chains

Convergence analysis: case $X_{0}=0$

Consider for simplicity the natural iteration.
Define $E_{n}=G-X_{n}$ the error at step n.

Theorem

(1) $0 \leq E_{n+1} \leq E_{n}$ for any $n \geq 0$.
(2) $E_{n+1} \mathbf{1}=R_{n} E_{n} 1$ where $R_{n}=\sum_{i=0}^{+\infty} \sum_{j=i}^{+\infty} A_{j} X_{n}^{j-i}$.
(3) $\left\|E_{n}\right\|_{\infty}=\left\|\prod_{i=0}^{n-1} R_{i}\right\|_{\infty}$.

Denoting $r=\lim _{n} \sqrt[n]{\left\|E_{n}\right\|}$, one has $r=\rho(R)$, where

$$
R=\lim _{n} R_{n}=\sum_{i=0}^{+\infty} \sum_{j=i}^{+\infty} A_{j} G^{j-i}
$$

Introduction to Markov chains
Algorithms for solving the power series matrix equation
Quasi-Birth-Death processes Tree-like stochastic processes

Comparison among the 3 iterations

Theorem

One has $r_{N}=\rho\left(R^{(N)}\right), r_{T}=\rho\left(R^{(T)}\right), r_{U}=\rho\left(R^{(U)}\right)$, where

$$
\begin{aligned}
& R^{(N)}=\sum_{i=0}^{+\infty} A_{i}^{*} \\
& R^{(T)}=\left(I-A_{0}\right)^{-1}\left(\sum_{i=0}^{+\infty} A_{i}^{*}-A_{0}\right) \\
& R^{(U)}=\left(I-A_{0}^{*}\right)^{-1} \sum_{i=1}^{+\infty} A_{i}^{*}
\end{aligned}
$$

and

$$
0 \leq R^{(U)} \leq R^{(T)} \leq R^{(N)}
$$

Introduction to Markov chains

Convergence analysis: case $X_{0}=1$

Consider for simplicity the natural iteration.

Theorem

Under mild irreducibility assumptions, for the convergence rate

$$
r=\lim _{n} \sqrt[n]{\left\|E_{n}\right\|}
$$

of the sequences obtained with $X_{0}=I$, we have

$$
r_{N}=\rho_{2}\left(R^{(N)}\right), \quad r_{T}=\rho_{2}\left(R^{(T)}\right), \quad r_{U}=\rho_{2}\left(R^{(U)}\right)
$$

where ρ_{2} denotes the second largest modulus eigenvalue.
Starting with $X_{0}=I$ the convergence is faster

Introduction to Markov chains
Markov chains of M/G/1-type
Algorithms for solving the power series matrix equation
Quasi-Birth-Death processes
Tree-like stochastic processes

Functional iterations

Cyclic reduction
Doubling method

Convergence for $X_{0}=0$ and $X_{0}=I$

Introduction to Markov chains

Linearization of the matrix equation

$$
\left[\begin{array}{cccc}
I-A_{0} & -A_{1} & -A_{2} & \cdots \\
-A_{-1} & I-A_{0} & -A_{1} & \ddots \\
& -A_{-1} & I-A_{0} & \ddots \\
0 & & \ddots & \ddots
\end{array}\right]\left[\begin{array}{c}
G \\
G^{2} \\
G^{3} \\
\vdots
\end{array}\right]=\left[\begin{array}{c}
A_{-1} \\
0 \\
0 \\
\vdots
\end{array}\right] .
$$

G can be interpreted by means of the solution of an infinite block Hessenberg, block Toeplitz system

Cyclic reduction: history

(2) Introduced in the late '60s by Buzbee, Golub and Nielson for solving block tridiagonal systems in the context of elliptic equations.

- Stability and convergence properties: Amodio and Mazzia ('94), Yalamov ('95), Yalamov and Pavlov ('96), etc.
- Rediscovered by Latouche and Ramaswami (Logarithmic reduction) in the context of Markov chains ('93);
- Extended to infinite block Hessenberg, block Toeplitz systems by Bini and Meini (starting from '96).

Introduction to Markov chains

The cyclic reduction algorithm

Original system:

$$
\left[\begin{array}{cccc}
I-A_{0} & -A_{1} & -A_{2} & \cdots \\
-A_{-1} & I-A_{0} & -A_{1} & \ddots \\
& -A_{-1} & I-A_{0} & \ddots \\
0 & & \ddots & \ddots
\end{array}\right]\left[\begin{array}{c}
G \\
G^{2} \\
G^{3} \\
\vdots
\end{array}\right]=\left[\begin{array}{c}
A_{-1} \\
0 \\
0 \\
\vdots
\end{array}\right]
$$

Introduction to Markov chains

The cyclic reduction algorithm

Block even-odd permutation:

$$
\left[\begin{array}{ccc|ccc}
I-A_{0} & -A_{2} & \cdots & -A_{-1} & -A_{1} & \cdots \\
& I-A_{0} & \ddots & & -A_{-1} & \ddots \\
0 & & \ddots & 0 & & \ddots \\
\hline-A_{1} & -A_{3} & \cdots & I-A_{0} & -A_{2} & \cdots \\
-A_{-1} & -A_{1} & \ddots & & I-A_{0} & \ddots \\
0 & \ddots & \ddots & 0 & & \ddots
\end{array}\right]\left[\begin{array}{c}
G^{2} \\
G^{4} \\
\vdots \\
\hline G \\
G^{3} \\
\vdots
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
\hline A_{-1} \\
0 \\
\vdots
\end{array}\right]
$$

In compact form:

$$
\left[\begin{array}{cc}
I-H_{1} & -H_{2} \\
-H_{3} & I-H_{4}
\end{array}\right]\left[\begin{array}{l}
\mathbf{g}_{-} \\
\mathbf{g}_{+}
\end{array}\right]=\left[\begin{array}{l}
0 \\
\mathbf{b}
\end{array}\right]
$$

Introduction to Markov chains

The cyclic reduction algorithm

Structure of the matrix:

$$
\left[\begin{array}{cc}
I-H_{1} & -H_{2} \\
-H_{3} & I-H_{4}
\end{array}\right]=
$$

Schur complementation:

$$
\begin{aligned}
& I-H_{4}-H_{3}\left(I-H_{1}\right)^{-1} H_{2}=\square+\square \\
& \text { - }
\end{aligned}
$$

Upper block Hessenberg matrix, block Toeplitz except for its first block row

Introduction to Markov chains

The cyclic reduction algorithm

Resulting system:

$$
\left[\begin{array}{cccc}
I-\widehat{A}_{0}^{(1)} & -\widehat{A}_{1}^{(1)} & -\widehat{A}_{2}^{(1)} & \cdots \\
-A_{-1}^{(1)} & I-A_{0}^{(1)} & -A_{1}^{(1)} & \cdots \\
& -A_{-1}^{(1)} & I-A_{0}^{(1)} & \ddots \\
0 & & \ddots & \ddots
\end{array}\right]\left[\begin{array}{c}
G \\
G^{3} \\
G^{5} \\
\vdots
\end{array}\right]=\left[\begin{array}{c}
A_{-1} \\
0 \\
0 \\
\vdots
\end{array}\right]
$$

Introduction to Markov chains

The cyclic reduction algorithm

One more step of the same procedure:

$$
\left[\begin{array}{cccc}
I-\widehat{A}_{0}^{(2)} & -\widehat{A}_{1}^{(2)} & -\widehat{A}_{2}^{(2)} & \cdots \\
-A_{-1}^{(2)} & I-A_{0}^{(2)} & -A_{1}^{(2)} & \cdots \\
& -A_{-1}^{(2)} & I-A_{0}^{(2)} & \ddots \\
0 & & \ddots & \ddots
\end{array}\right]\left[\begin{array}{c}
G \\
G^{5} \\
G^{9} \\
\vdots
\end{array}\right]=\left[\begin{array}{c}
A_{-1} \\
0 \\
0 \\
\vdots
\end{array}\right]
$$

Introduction to Markov chains

The cyclic reduction algorithm

At the n-th step:

$$
\left[\begin{array}{cccc}
I-\widehat{A}_{0}^{(n)} & -\widehat{A}_{1}^{(n)} & -\widehat{A}_{2}^{(n)} & \cdots \\
-A_{-1}^{(n)} & I-A_{0}^{(n)} & -A_{1}^{(n)} & \cdots \\
& -A_{-1}^{(n)} & I-A_{0}^{(n)} & \ddots \\
0 & & \ddots & \ddots
\end{array}\right]\left[\begin{array}{c}
G \\
G^{2^{n}+1} \\
G^{2 \cdot 2^{n}+1} \\
\vdots
\end{array}\right]=\left[\begin{array}{c}
A_{-1} \\
0 \\
0 \\
\vdots
\end{array}\right]
$$

Introduction to Markov chains

The cyclic reduction algorithm

At the limit as $n \rightarrow \infty$:

$$
\left[\begin{array}{cccc}
I-\widehat{A}_{0}^{(\infty)} & & 0 \\
-A_{-1}^{(\infty)} & I-A_{0}^{(\infty)} & & \\
& -A_{-1}^{(\infty)} & I-A_{0}^{(\infty)} & \\
0 & \ddots & \ddots
\end{array}\right]\left[\begin{array}{c}
G \\
G^{*} \\
G^{*} \\
\vdots
\end{array}\right]=\left[\begin{array}{c}
A_{-1} \\
0 \\
0 \\
\vdots
\end{array}\right]
$$

where $G^{*}=\lim _{n} G^{n}$.
Therefore $G=\left(I-\widehat{A}_{0}^{(\infty)}\right)^{-1} A_{-1}$

Introduction to Markov chains

The cyclic reduction algorithm

Functional interpretation

$$
\begin{aligned}
& A^{(n+1)}(z)=z A_{\text {odd }}^{(n)}(z)+A_{\text {even }}^{(n)}(z)\left(I-A_{\text {odd }}^{(n)}(z)\right)^{-1} A_{\text {even }}^{(n)}(z) \\
& \widehat{A}^{(n+1)}(z)=\widehat{A}_{\text {even }}^{(n)}(z)+\widehat{A}_{\text {odd }}^{(n)}(z)\left(I-A_{\text {odd }}^{(n)}(z)\right)^{-1} A_{\text {even }}^{(n)}(z)
\end{aligned}
$$

where

$$
\widehat{A}^{(n)}(z)=\sum_{i=0}^{+\infty} z^{i} \widehat{A}_{i}^{(n)}, \quad A^{(n)}(z)=\sum_{i=-1}^{+\infty} z^{i+1} A_{i}^{(n)}
$$

Introduction to Markov chains

Applicability of CR: the role of Wiener algebra

Theorem

For any $n \geq 0$ one has:
(1) $A^{(n)}(z)$ and $\widehat{A}^{(n)}(z)$ belong to \mathcal{W}_{+}.
(2) $I-A_{\mathrm{odd}}^{(n)}(z)$ is invertible for $|z| \leq 1$ and its inverse belongs to \mathcal{W}_{+}.
(3) $\phi^{(n)}(z)=I-z^{-1} A^{(n)}(z)$ has a weak canonical factorization

$$
\phi^{(n)}(z)=\left(I-\sum_{i=0}^{+\infty} z^{i} U_{i}^{(n)}\right)\left(I-z^{-1} G^{2^{n}}\right), \quad|z|=1
$$

Convergence of CR

Theorem

Let ξ be the zero of smallest modulus of $\operatorname{det} S(z)$ such that $|\xi|>1$. Then:
(1) $\left\{A^{(n)}(z)\right\}_{n} \longrightarrow A_{-1}^{(\infty)}+z A_{0}^{(\infty)}$ uniformly over any compact subset of $\{z \in \mathbb{C}: \quad|z|<\xi\}$.
(2) $\left\|A_{i}^{(n)}\right\| \leq \gamma|\xi|^{-i \cdot 2^{n}}$ and $\left\|\widehat{A}_{i}^{(n)}\right\| \leq \gamma|\xi|^{-i \cdot 2^{n}}$, for any $i \geq 1$, $n \geq 0$.
(3) $\left\|\widehat{A}_{0}^{(n)}-\widehat{A}_{0}^{(\infty)}\right\| \leq \gamma|\xi|^{-2^{n}}$ for any $n \geq 0$.
(a) $\rho\left(\widehat{A}_{0}^{(\infty)}\right) \leq \rho\left(A_{0}^{(\infty)}\right)<1$.
(5) $\left\|G-G^{(n)}\right\| \leq \gamma|\xi|^{-2^{n}}$, where $G^{(n)}=\left(I-\widehat{A}_{0}^{(n)}\right)^{-1} A_{-1}$.

Computational issues

The matrix power series $A^{(n)}(z), \widehat{A}^{(n)}(z)$ are approximated by matrix polynomials of degree at most d_{n}.

The computation of such matrix polynomials by means of evaluation/iterpolation at the roots of unity can be performed in

$$
O\left(m^{3} d_{n}+m^{2} d_{n} \log d_{n}\right)
$$

arithmetic operations

Doubling method

History Introduced by W.J. Stewart ('95) to solve general block Hessenberg systems, applied by Latouche and Stewart ('95) for computing G, improved by Bini and Meini ('98) by exploiting the Toeplitz structure of the block Hessenberg matrices.
Idea Successively solve finite block Hessenberg systems of block size which doubles at each iterative step.

Introduction to Markov chains

Doubling method

Truncation at block size n of the

$$
\left[\begin{array}{ccccc}
I-A_{0} & -A_{1} & -A_{2} & \cdots & -A_{n-1} \\
-A_{-1} & I-A_{0} & -A_{1} & \ddots & \vdots \\
& -A_{-1} & I-A_{0} & \ddots & -A_{2} \\
& & \ddots & \ddots & -A_{1} \\
0 & & & -A_{-1} & I-A_{0}
\end{array}\right]\left[\begin{array}{c}
X_{1}^{(n)} \\
X_{2}^{(n)} \\
\vdots \\
X_{n}^{(n)}
\end{array}\right]=\left[\begin{array}{c}
A_{-1} \\
0 \\
\vdots \\
0
\end{array}\right]
$$

Doubling method: convergence

Theorem

For any $n \geq 1$ one has:

- $0 \leq X_{1}^{(n)} \leq X_{1}^{(n+1)} \leq G$.
- $X_{i}^{(n)} \leq G^{i}$ for $i=1, \ldots, n$.
- For any $\epsilon>0$ there exist positive constants γ and σ such that

$$
\left\|G-X_{1}^{(n)}\right\|_{\infty} \leq \gamma(|\xi|-\epsilon)^{-n}
$$

where ξ is the zero of smallest modulus of $\operatorname{det} S(z)$ such that $|\xi|>1$.

Introduction to Markov chains

Doubling method: algorithm

The algorithm consists in successively solving systems of block size $2,4,8,16, \ldots$.

- Size doubling at each step \Longrightarrow Quadratic convergence
- Use of FFT and Toeplitz structure \Longrightarrow The $2^{n} \times 2^{n}$ block system can be solved in $O\left(m^{3} 2^{n}+m^{2} n 2^{n}\right)$ arithmetic operations.

Outline

(1) Introduction to Markov chains
(2) Markov chains of M/G/1-type

- Introduction
- A power series matrix equation
- The steady state vector
(3) Algorithms for solving the power series matrix equation
- Functional iterations
- Cyclic reduction
- Doubling method
(4) Quasi-Birth-Death processes
(5) Tree-like stochastic processes
- Introduction
- Algorithms

Quasi-Birth-Death processes

If $A_{i}=0$ for $i>1$ the $\mathrm{M} / \mathrm{G} / 1$-type Markov chain is called a Quasi-Birth-Death process (QBD).

Problem

Computation of the minimal component-wise solution G, among the nonnegative solutions, of

$$
X=A_{-1}+A_{0} X+A_{1} X^{2}
$$

Linearization of the matrix equation

$$
\left[\begin{array}{cccc}
I-A_{0} & -A_{1} & & 0 \\
-A_{-1} & I-A_{0} & -A_{1} & \\
& -A_{-1} & I-A_{0} & \ddots \\
0 & & \ddots & \ddots
\end{array}\right]\left[\begin{array}{c}
G \\
G^{2} \\
G^{3} \\
\vdots
\end{array}\right]=\left[\begin{array}{c}
A_{-1} \\
0 \\
0 \\
\vdots
\end{array}\right]
$$

G can be interpreted by means of the solution of an infinite block triangular, block Toeplitz system

Cyclic reduction for QBD's

At the n-th step

$$
\left[\begin{array}{cccc}
I-\widehat{A}_{0}^{(n)} & -A_{1}^{(n)} & & 0 \\
-A_{-1}^{(n)} & I-A_{0}^{(n)} & -A_{1}^{(n)} & \\
& -A_{-1}^{(n)} & I-A_{0}^{(n)} & \ddots \\
0 & & \ddots & \ddots
\end{array}\right]\left[\begin{array}{c}
G \\
G^{2^{n}+1} \\
G^{2 \cdot 2^{n}+1} \\
\vdots
\end{array}\right]=\left[\begin{array}{c}
A_{-1} \\
0 \\
0 \\
\vdots
\end{array}\right]
$$

Cyclic reduction for QBD's

At the limit as $n \rightarrow \infty$:

$$
\left[\begin{array}{cccc}
I-\hat{A}_{0}^{(\infty)} & & & 0 \\
-A_{-1}^{(\infty)} & I-A_{0}^{(\infty)} & & \\
& -A_{-1}^{(\infty)} & I-A_{0}^{(\infty)} & \\
0 & \ddots & \ddots
\end{array}\right]\left[\begin{array}{c}
G \\
G^{*} \\
G^{*} \\
\vdots
\end{array}\right]=\left[\begin{array}{c}
A_{-1} \\
0 \\
0 \\
\vdots
\end{array}\right]
$$

where $G^{*}=\lim _{n} G^{n}$.
Therefore $G=\left(I-\widehat{A}_{0}^{(\infty)}\right)^{-1} A_{-1}$

Cyclic reduction

Recursive (algebraic) relations

$$
\begin{aligned}
& A_{-1}^{(n+1)}=A_{-1}^{(n)} K^{(n)} A_{-1}^{(n)}, \\
& A_{0}^{(n+1)}=A_{0}^{(n)}+A_{-1}^{(n)} K^{(n)} A_{1}^{(n)}+A_{1}^{(n)} K^{(n)} A_{-1}^{(n)}, \\
& A_{1}^{(n+1)}=A_{1}^{(n)} K^{(n)} A_{1}^{(n)}, \\
& \widehat{A}_{0}^{(n+1)}=\widehat{A}_{0}^{(n)}+A_{1}^{(n)} K^{(n)} A_{-1}^{(n)}, \quad n \geq 0
\end{aligned}
$$

where $K^{(n)}=\left(I-A_{0}^{(n)}\right)^{-1}$.

Introduction to Markov chains

Outline

(1) Introduction to Markov chains
(2) Markov chains of M/G/1-type

- Introduction
- A power series matrix equation
- The steady state vector
(3) Algorithms for solving the power series matrix equation
- Functional iterations
- Cyclic reduction
- Doubling method
(4) Quasi-Birth-Death processes
(5) Tree-like stochastic processes

[^0]
Tree-like stochastic processes

Motivation Tree-Like processes are used to model certain queueing problems: single server queues with LIFO service discipline, medium access control protocol with an underlying stack structure, etc. (Latouche, Ramaswami '99)
Assumptions B, A_{i} and $D_{i}, i=1, \ldots, d$, nonnegative $m \times m$ matrices, such that B is sub-stochastic and
$B+D_{i}+A_{1}+\cdots+A_{d}, i=1, \ldots, d$, are stochastic.
We set $C=I-B$.

Tree-like stochastic processes

The generator matrix has the form

$$
Q=\left[\begin{array}{ccccc}
C_{0} & \Lambda_{1} & \Lambda_{2} & \ldots & \Lambda_{d} \\
V_{1} & W & 0 & \ldots & 0 \\
V_{2} & 0 & W & \ddots & \vdots \\
\vdots & \vdots & \ddots & \ddots & 0 \\
V_{d} & 0 & \ldots & 0 & W
\end{array}\right]
$$

where C_{0} is an $m \times m$ matrix,

Tree-like processes

The infinite matrix W is recursively defined by

$$
W=\left[\begin{array}{ccccc}
C & \Lambda_{1} & \Lambda_{2} & \ldots & \Lambda_{d} \\
V_{1} & W & 0 & \ldots & 0 \\
V_{2} & 0 & W & \ddots & \vdots \\
\vdots & \vdots & \ddots & \ddots & 0 \\
V_{d} & 0 & \ldots & 0 & W
\end{array}\right]
$$

Tree-like processes

Theorem

The matrix W can be factorized as $W=U L$, where

$$
U=\left[\begin{array}{ccccc}
S & \Lambda_{1} & \Lambda_{2} & \ldots & \Lambda_{d} \\
0 & U & 0 & \ldots & 0 \\
0 & 0 & U & \ddots & \vdots \\
\vdots & \vdots & \ddots & \ddots & 0 \\
0 & 0 & \ldots & 0 & U
\end{array}\right], \quad L=\left[\begin{array}{ccccc}
1 & 0 & 0 & \ldots & 0 \\
Y_{1} & L & 0 & \ldots & 0 \\
Y_{2} & 0 & L & \ddots & \vdots \\
\vdots & \vdots & \ddots & \ddots & 0 \\
Y_{d} & 0 & \ldots & 0 & L
\end{array}\right]
$$

and S is the minimal solution of $X+\sum_{i=1}^{d} A_{i} X^{-1} D_{i}=C$. probability vector can be computed by using the UL factorization of W.

Tree-like processes

Theorem

The matrix W can be factorized as $W=U L$, where

$$
U=\left[\begin{array}{ccccc}
S & \Lambda_{1} & \Lambda_{2} & \ldots & \Lambda_{d} \\
0 & U & 0 & \ldots & 0 \\
0 & 0 & U & \ddots & \vdots \\
\vdots & \vdots & \ddots & \ddots & 0 \\
0 & 0 & \ldots & 0 & U
\end{array}\right], \quad L=\left[\begin{array}{ccccc}
I & 0 & 0 & \ldots & 0 \\
Y_{1} & L & 0 & \ldots & 0 \\
Y_{2} & 0 & L & \ddots & \vdots \\
\vdots & \vdots & \ddots & \ddots & 0 \\
Y_{d} & 0 & \ldots & 0 & L
\end{array}\right]
$$

and S is the minimal solution of $X+\sum_{i=1}^{d} A_{i} X^{-1} D_{i}=C$.
Consequence: Once the matrix S is known, the stationary probability vector can be computed by using the UL factorization of W.

Natural fixed point iteration

The sequences

$$
\left\{\begin{array}{l}
S_{n}=C+\sum_{1 \leq i \leq d} A_{i} G_{i, n}, \\
G_{i, n+1}=\left(-S_{n}\right)^{-1} D_{i}, \quad \text { for } 1 \leq i \leq d, n \geq 0
\end{array}\right.
$$

with $G_{1,0}=\ldots=G_{d, 0}=0$, monotonically converge to S and $G_{i}=(-S)^{-1} D_{i}, i=1, \ldots, d$, respectively (Latouche and Ramaswami '99)

Introduction to Markov chains

Cyclic reduction + fixed point iteration

- Multiply

$$
S+\sum_{j=1}^{d} A_{j} S^{-1} D_{j}=C
$$

by $S^{-1} D_{i}$, for $i=1, \ldots, d$.

- Observe that $G_{i}=(-S)^{-1} D_{i}, i=1, \ldots, d$, is a solution

Introduction to Markov chains

Cyclic reduction + fixed point iteration

- Multiply

$$
S+\sum_{j=1}^{d} A_{j} S^{-1} D_{j}=C
$$

by $S^{-1} D_{i}$, for $i=1, \ldots, d$.

- Observe that $G_{i}=(-S)^{-1} D_{i}, i=1, \ldots, d$, is a solution

$$
D_{i}+\left(C+\sum_{\substack{1 \leq j \leq d \\ j \neq i}} A_{j} G_{j}\right) X+A_{i} X^{2}=0
$$

- We may prove that G_{i} is the minimal solvent.

Università di Pisa

Introduction to Markov chains

Cyclic reduction + fixed point iteration

- Multiply

$$
S+\sum_{j=1}^{d} A_{j} S^{-1} D_{j}=C
$$

by $S^{-1} D_{i}$, for $i=1, \ldots, d$.

- Observe that $G_{i}=(-S)^{-1} D_{i}, i=1, \ldots, d$, is a solution

$$
D_{i}+\left(C+\sum_{\substack{1 \leq j \leq d \\ j \neq i}} A_{j} G_{j}\right) X+A_{i} X^{2}=0
$$

- We may prove that G_{i} is the minimal solvent.

Introduction to Markov chains

Cyclic reduction + fixed point iteration

- Set $G_{1,0}=G_{2,0}=\cdots=G_{d, 0}=0$
- For $n=0,1,2$,

Introduction to Markov chains

Cyclic reduction + fixed point iteration

- Set $G_{1,0}=G_{2,0}=\cdots=G_{d, 0}=0$
- For $n=0,1,2, \ldots$
- For $i=1, \ldots, d$:
(1) define

$$
F_{i, n}=C+\sum_{1 \leq j \leq i-1} A_{j} G_{j, n}+\sum_{i+1 \leq j \leq d} A_{j} G_{j, n-1} .
$$

(2) compute, by means of cyclic reduction, the minimal solvent $G_{i, n}$ of

$$
D_{i}+F_{i, n} X+A_{i} X^{2}=0
$$

Cyclic reduction + fixed point iteration

- Set $G_{1,0}=G_{2,0}=\cdots=G_{d, 0}=0$
- For $n=0,1,2, \ldots$
- For $i=1, \ldots, d$:
(1) define

$$
F_{i, n}=C+\sum_{1 \leq j \leq i-1} A_{j} G_{j, n}+\sum_{i+1 \leq j \leq d} A_{j} G_{j, n-1}
$$

(2) compute, by means of cyclic reduction, the minimal solvent $G_{i, n}$ of

$$
D_{i}+F_{i, n} X+A_{i} X^{2}=0
$$

The sequences $\left\{G_{i, n}: n \geq 0\right\}$ monotonically converge to G_{i}, for $1 \leq i \leq d$

Newton's iteration

- Set $S_{0}=C$
- For $n=0,1,2$,

Newton's iteration

- Set $S_{0}=C$
- For $n=0,1,2, \ldots$
(1) Compute $L_{n}=S_{n}-C+\sum_{i=1}^{d} A_{i} S_{n}^{-1} D_{i}$.
(2) Compute the solution Y_{n} of

$$
\begin{equation*}
X-\sum_{i=1}^{d} A_{i} S_{n}^{-1} X S_{n}^{-1} D_{i}=L_{n} \tag{1}
\end{equation*}
$$

(3) Set $S_{n+1}=S_{n}-Y_{n}$

The sequence $\left\{S_{n}\right\}_{n}$ converges quadratically to S.
Open issues: efficient computation of the solution of (1).

Newton's iteration

- Set $S_{0}=C$
- For $n=0,1,2, \ldots$
(1) Compute $L_{n}=S_{n}-C+\sum_{i=1}^{d} A_{i} S_{n}^{-1} D_{i}$.
(2) Compute the solution Y_{n} of

$$
\begin{equation*}
X-\sum_{i=1}^{d} A_{i} S_{n}^{-1} X S_{n}^{-1} D_{i}=L_{n} \tag{1}
\end{equation*}
$$

(3) Set $S_{n+1}=S_{n}-Y_{n}$

The sequence $\left\{S_{n}\right\}_{n}$ converges quadratically to S.
Open issues: efficient computation of the solution of (1).

Introduction to Markov chains

Introduction
Algorithms

Cpu time

Wiener algebra

Definition

The Wiener algebra \mathcal{W} is the set of complex $m \times m$ matrix valued functions $A(z)=\sum_{i=-\infty}^{+\infty} z^{i} A_{i}$ such that $\sum_{i=-\infty}^{+\infty}\left|A_{i}\right|$ is finite.

Definition

The set \mathcal{W}_{+}is the subalgebra of \mathcal{W} made up by power series of the kind $\sum_{i=0}^{+\infty} z^{i} A_{i}$.

M/G/1 Markov chain

$$
\begin{aligned}
& P=\left[\begin{array}{ccccc}
B_{0} & B_{1} & B_{2} & B_{3} & \ldots \\
A_{-1} & A_{0} & A_{1} & A_{2} & \ldots \\
& A_{-1} & A_{0} & A_{1} & \ddots \\
O & & \ddots & \ddots & \ddots
\end{array}\right] \\
& A_{i}, B_{i+1} \in \mathbb{R}^{m \times m},
\end{aligned} \quad i=-1,0,1, \ldots .
$$

G/M/1 Markov chain

$$
P=\left[\begin{array}{ccccc}
B_{0} & A_{1} & & 0 & \\
B_{-1} & A_{0} & A_{1} & & \\
B_{-2} & A_{-1} & A_{0} & A_{1} & \\
\vdots & \vdots & \ddots & \ddots & \ddots
\end{array}\right]
$$

QBD Stochastic processes

$$
P=\left[\begin{array}{cccccc}
B_{0} & B_{1} & & & & 0 \\
B_{-1} & A_{0} & A_{1} & & & \\
& A_{-1} & A_{0} & A_{1} & & \\
& & A_{-1} & A_{0} & A_{1} & \\
0 & & & \ddots & \ddots & \ddots
\end{array}\right]
$$

Non-Skip-Free Stochastic processes

$$
P=\left[\begin{array}{ccccccc}
B_{0,1} & B_{0,1} & B_{0,2} & B_{0,3} & \ldots & \cdots & \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \\
B_{k-1,0} & B_{k-1,1} & B_{k-1,2} & B_{k-1,3} & \ldots & \cdots & \\
A_{-k} & A_{-k+1} & A_{-k+2} & A_{-k+3} & \ldots & \cdots & \\
& A_{-k} & A_{-k+1} & A_{-k+2} & A_{-k+3} & \ddots & \\
& & A_{-k} & A_{-k+1} & A_{-k+2} & A_{-k+3} & \ddots \\
O & & & \ddots & \ddots & \ddots & \ddots
\end{array}\right]
$$

[^0]: - Introduction
 - Algorithms

