
SIAM REVIEW c© 2004 Society for Industrial and Applied Mathematics
Vol. 46, No. 1, pp. 3–45

Recursive Blocked Algorithms
and Hybrid Data Structures for
Dense Matrix Library Software∗

Erik Elmroth†

Fred Gustavson‡

Isak Jonsson†

Bo Kågström†

Abstract. Matrix computations are both fundamental and ubiquitous in computational science and
its vast application areas. Along with the development of more advanced computer systems
with complex memory hierarchies, there is a continuing demand for new algorithms and
library software that efficiently utilize and adapt to new architecture features. This article
reviews and details some of the recent advances made by applying the paradigm of recursion
to dense matrix computations on today’s memory-tiered computer systems. Recursion
allows for efficient utilization of a memory hierarchy and generalizes existing fixed blocking
by introducing automatic variable blocking that has the potential of matching every level
of a deep memory hierarchy. Novel recursive blocked algorithms offer new ways to compute
factorizations such as Cholesky and QR and to solve matrix equations. In fact, the whole
gamut of existing dense linear algebra factorization is beginning to be reexamined in view
of the recursive paradigm. Use of recursion has led to using new hybrid data structures and
optimized superscalar kernels. The results we survey include new algorithms and library
software implementations for level 3 kernels, matrix factorizations, and the solution of
general systems of linear equations and several common matrix equations. The software
implementations we survey are robust and show impressive performance on today’s high
performance computing systems.

Key words. recursion, automatic variable blocking, superscalar, GEMM-based, level 3 BLAS, hybrid
data structures, superscalar kernels, SMP parallelization, library software, LAPACK,
SLICOT, ESSL, RECSY, dense linear algebra, factorizations, matrix equations

AMS subject classifications. 15-02, 15A23, 15A24, 65F05, 65F15, 65F20, 65F35, 68M20, 68W10

DOI. 10.1137/S0036144503428693

1. Introduction.

1.1. The Significance of Linear Algebra Software. One of the first uses of digi-
tal computers, more than 50 years ago, was to solve linear systems, and linear algebra
software has played a central role in computing ever since. The preface of the pioneer-
ing 1971 Wilkinson and Reinsch book of Algol codes [101] notes that “. . .algorithms

∗Received by the editors May 23, 2003; accepted for publication (in revised form) January 9, 2004;
published electronically February 2, 2004. This work was supported by the Swedish Research Council
under grants TFR 98-604 and VR 621-2001-3284, and by the Swedish Foundation for Strategic
Research (SSF) under grant A3 02:128.

http://www.siam.org/journals/sirev/46-1/42869.html
†Department of Computing Science and HPC2N, Ume̊a University, S-901 87 Ume̊a, Sweden

(elmroth@cs.umu.se, isak@cs.umu.se, bokg@cs.umu.se).
‡IBM T. J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598 (fg2@us.

ibm.com).

3

4 E. ELMROTH, F. GUSTAVSON, I. JONSSON, AND B. KA
◦
GSTRÖM

[of linear algebra] are perhaps the most widely used in numerical analysis . . . ”; it also
observes, with great prescience, that “. . .preparation of a fully tested set of algorithms
is a far greater task than had been anticipated.”

The early work of many researchers (see, e.g., [31, 39, 92]) established the robust-
ness and stability of fundamental matrix techniques, including Cholesky, LU, and QR
factorizations and related algorithms. The next step was the time-consuming produc-
tion of high-quality linear algebra software libraries such as LINPACK [13] and EIS-
PACK [91]. By any measure, these libraries and their descendants have been extremely
successful. In addition to their presence at the heart of MATLAB [76], LINPACK and
EISPACK have each been requested more than three million times, and LAPACK ([4];
see section 1.2) has been requested more than twenty million times, from the online
software repository NETLIB (see www.netlib.org/master counts2.html).

The prevalence of linear algebraic computations in scientific, engineering, medical,
and business applications remains striking today. The worldwide publicity in 2002
about the Japanese Earth Simulator, as of 2004 still the world’s fastest computer, cited
its achievement of 35.6 teraflops (35.6× 1012 floating-point operations per second) in
solving a dense square linear system Ax = b of size 1,041,216 using the LINPACK
benchmark [96]. Matrix computations are ubiquitous—for instance, in modeling and
simulation of problems ranging from galaxies to the nanoscale, and in real-time airline
scheduling and medical imaging.

Although the importance of linear algebra is evident, it might appear that there
is very little new to be said about linear algebra software, especially given the relative
mathematical simplicity of standard algorithms such as Gaussian elimination. How-
ever, this is not at all the case, largely because of continuing advances in computer
hardware that dramatically affect the performance of even the most basic linear al-
gebraic computations. As long ago as 1976, it was observed that decisions made by
the compiler could degrade the speed of a “simple” triangular solve [78]. As we shall
discuss, maximum performance on high-end computers can be achieved only if careful
attention is paid to the algorithm as well as to the hardware and the compiler. An ad-
ditional complication is that algorithmic adaptations should be, as much as possible,
automatic, rather than requiring ab initio implementation for every new architecture.

Many complexities arise from nonobvious and often unpredictable interactions
between the compute engine (the processors) and the data upon which they perform
calculations. Today’s computers have extremely fast processors, but memory access
speeds are relatively slow. Thus the performance of algorithms is frequently limited
by the need to move large amounts of data between memory and the processor. This
problem is particularly acute in dense matrix computations where algorithms such as
factorization require repeatedly sweeping through all elements of the matrix. As a
result, features of computer hardware have profoundly influenced the implementation
as well as the abstract description of matrix algorithms.

1.2. A Short History of Linear Algebra Software and Computer Hardware.
To retain portability and efficiency across diverse and changing platforms, in the late
1970s the major developers of linear algebra software made a crucial decision: to
express matrix algorithms in terms of basic operations of specified functionality. This
concept—usually called the BLAS (Basic Linear Algebra Subprograms) [74]—allows
definition of machine-independent algorithms at the highest level of abstraction as
well as inclusion of efficient code, tailored to the hardware, in the inner loops of any
particular implementation. The earliest BLAS, called “level 1,” involve vector-scalar
and vector-vector operations, such as dot product and “AXPY” (y ← y + αx, where

RECURSIVE BLOCKED ALGORITHMS 5

x and y are vectors and α is a scalar). On a computer of this era, the time needed
to access any element in memory was more or less the same, which meant that the
operation (flop) count was an accurate estimate of performance.

Through the 1980s and into the early 1990s, the most powerful computers, such
as those built by Cray Research, were based on vector architectures in which the same
operation is simultaneously performed on every element of a vector. This structure
was exploited in linear algebra software by emphasizing matrix-vector operations,
called “level 2” BLAS, such as “GEMV” (y ← βy + αAx, where A is a matrix and α
and β are scalars) [23].

A second, deeply influential development in computer architecture was cache
memory, a small fast memory holding recently accessed data. Cache memory is a
great benefit for calculations characterized by locality, in which many (fast) compu-
tations are performed on the same data, thereby avoiding (slow) data accesses. With
cache memory, speed depends on having the needed data in the cache; if a program
requires data not in the cache, an undesirable cache miss occurs. During the late
1980s and into the 1990s, architectural complexity increased as hierarchical memory
systems were introduced, featuring multiple levels of cache storage with varying sizes
and access speeds.

Obtaining good performance with such systems required recasting linear algebra
algorithms as much as possible in terms of operations on blocks (submatrices), thereby
reducing the probability of cache misses. (More generally, “blocking” refers to creating
groups of related data elements with the property that calculations are performed on
the entire group.) The linear algebra community established a forum to define the
associated “level 3” BLAS [22, 21], which specify matrix-matrix operations, such as
“GEMM” (general matrix multiply and add),

(1.1) C ← βC + αAB,

where A, B, and C are (sub)matrices; e.g., see section 3 in [36]. The algorithms in
LINPACK and EISPACK were then rewritten with level 1, 2, and 3 BLAS, assuming
that computer manufacturers would produce their own high-performance BLAS. The
resulting LAPACK library [4] provided new functionality and also included new and
improved algorithms such as divide-and-conquer methods for symmetric eigenvalue
computations [17, 4]. Like its predecessors, LAPACK is based on a modular design
intended to produce portability, robustness, and good performance through use of the
BLAS (see, e.g., [25]).

But this is not the end of the story. In the last decade memory hierarchies have
become much deeper (i.e., they contain more levels with more varied properties);
consequently the overall performance of LAPACK and the level 3 BLAS has tended
to degrade relative to peak calculation speed. And this brings us to one of our main
themes: recursive blocked algorithms.

1.3. Hierarchical Blocking: Motivation and Implications. As already observed,
a key to efficient matrix computations on hierarchical memory machines is blocking,
or grouping of the matrix elements. We shall show later that significant speedups can
result from new blocking strategies, but first we present some general principles and
an introductory discussion of blocking.

1.3.1. Two Principles. The linear algebra software considered in this paper relies
on the following two ideas.

6 E. ELMROTH, F. GUSTAVSON, I. JONSSON, AND B. KA
◦
GSTRÖM

Fig. 1.1 The fundamental AHC triangle overlaid with a matrix of blocks in recursive block row
(Z-Morton) ordering [46, 102].

Recursion. Recursion, exemplified by calculation of n!, is a fundamental con-
cept for expressing algorithms in computer science. Although recursive algorithm
descriptions are typically more elegant and concise than those couched in iterative
and conditional loops, software based on recursion was condemned for many years
because compilers could not deal efficiently with the overhead of recursive function
calls. However, this situation is changing; modern compilers can handle recursion,
and today’s programming languages (even Fortran!) allow recursive subprograms.
A central theme of this paper is the value of recursion as a general technique for
producing dense linear algebra software.

The algorithms-hardware-compilers triangle. As mentioned in section 1.1, it
has been observed for a long time that performance of an implemented algorithm
depends not only on the computational steps but also on the compiler and hardware;
some related work is reviewed in section 7. We find it helpful to think of the “fun-
damental triangle” shown in Figure 1.1, which conveys the tight connections needed
among algorithms, hardware, and compilers. Formal recognition of the elements in
Figure 1.1 was an essential ingredient in the “algorithms and architecture approach”
[1], which matches algorithms to architecture, and vice versa. This approach was used
to produce software in the Engineering and Scientific Subroutine Library (ESSL) [56]
and the GEMM-based level 3 BLAS project [66, 67]. In the latter, all level 3 BLAS op-
erations were rewritten as GEMM operations (see (1.1)) combined with level 2 BLAS,
so that only a highly optimized GEMM kernel was needed to produce all other level 3
BLAS “for free.”

The algorithms and architecture approach was the precursor of much of the au-
thors’ work on recursion and new data structures for linear algebra software. The same
approach is, of course, a principal guideline in compiler technology. The idea of block-
ing features in the influential 1991 papers by Wolf and Lam [103] and Lam, Rothberg,
and Wolf [73]; see the discussion in section 7. Some of the results described in this
paper have already had impact on the compiler community, e.g., regarding compiler
blockability [14] and automatic generation of recursive blocked codes [2, 104].

RECURSIVE BLOCKED ALGORITHMS 7

1.3.2. Why Blocking Matters. The importance of blocking in high-performance
linear algebra software follows from the algorithms-compilers-hardware triangle of
Figure 1.1: matrix elements should be grouped to match the structure of a hierarchical
memory machine, which we now sketch.

At the top of a computer memory hierarchy are the registers where all computa-
tions (floating point, integer, and logical) take place; these have the shortest access
times but the smallest storage capacities. Between the registers and main memory,
there are one or more levels of cache memory with slower access time and increasing
size. Closest to the registers is the first-level cache memory (L1 cache), the fastest but
smallest; next are the second-level (L2) and possibly third-level (L3) cache memories.
Below main memory are levels of secondary storage with larger capacity but slower
access speed, such as disk and tape.

Different levels in the memory hierarchy display vastly different access times. For
example, register and L1 cache access speeds are typically on the order of nanoseconds,
whereas disk access speeds are in milliseconds—a difference of 106. Furthermore,
access time changes by a factor of five or ten between each level. Thus the ideal for
such a system is to perform as many calculations as possible on data that resides in
the fastest cache. The storage capacity of each level also varies greatly. Registers
may hold up to a few kilobytes of data, L1 cache up to a few hundred kilobytes, the
highest-level cache up to a few megabytes (106 bytes), while today’s main memory
can hold several gigabytes (109 bytes).

1.3.3. Blocking Strategies. Various strategies are known for blocking data in or-
der to exploit a hierarchical memory structure. The classical way is explicit multilevel
blocking, where each index/loop set matches a specific level of the memory hierarchy.
This requires a detailed knowledge of the architecture and (usually) a separate block-
ing parameter for each level. Register blocking and cache blocking refer to variants of
this idea designed for efficient reuse of, respectively, data in the registers and one or
more levels of cache.

The memory of most computers is laid out in blocks of fixed size, called pages. At
any instant of computer time there is a set of “fast” pages, sometimes called the work-
ing set, which reside in the translation look-aside buffer (TLB). The term TLB blocking
means a strategy designed so that memory is mostly accessed in the working set.

In contrast to these approaches, recursive blocking, which combines recursion and
blocking, leads to an automatic variable blocking with the potential for matching the
memory hierarchies of today’s high-performance computing systems. Recursive block-
ing means that “traditional” recursion is to terminate when the size of the controlling
recursion blocking parameter becomes smaller than some predefined value. This as-
sures that all leaf computations in the recursion tree will usually be a substantial
level 3 (matrix-matrix) computation. Let us illustrate with a simple matrix addition
C = A+B, where all matrices are n×n, n is an even number, and the blocking param-
eter is n/2. By first splitting the matrix add operation in the row dimension and then
splitting in the column dimension, we get four leaf subtasks (red nodes in Figure 1.2)
each corresponding to a level 3 operation Cij = Aij +Bij with all square submatrices
(or blocks) of size n/2 × n/2. In this case, the four leaf subtasks can be performed
independently, e.g., using different processors on a shared memory computer system,
and the global result is obtained simultaneously since this problem involves only a
“divide” phase. But as we will see for more complicated and nonregular matrix opera-
tions, we may have to “glue” results from all nodes, including leaf, together using some
additional computations. Different problems lead to different dependencies between

8 E. ELMROTH, F. GUSTAVSON, I. JONSSON, AND B. KA
◦
GSTRÖM

Fig. 1.2 Recursion tree illustrating the original problem (blue root node), and two levels of recur-
sive blocking resulting in smaller subtasks (two green intermediate nodes and four red leaf
nodes).

the nodes in the recursion tree, and together they define the so-called conquer phase
in the recursion. Since the leaf nodes are usually designed to do level 3 operations,
this combination of recursion and blocking reduces the overhead cost of recursion to
a tiny and acceptable level. However, knowledge of the L1 cache size is required to
select an appropriate block size for a given platform. The block size is chosen so that
submatrices associated with a leaf computation fit in L1 cache. The recursive blocked
algorithms are expressed in divide-and-conquer style, and most of the computations
are performed usually in GEMM operations of variable-sized squarish blocks. These
operations can execute practically at the peak obtainable rate. The recursive blocking
leads to algorithms with fewer tuning parameters than their standard counterparts.
This will all be illustrated throughout the paper.

In our simple example, we have chosen the blocking parameter to be a function
of n. Ideally, one would like to terminate the recursion when the submatrix operands
of addition fit comfortably into the L1 cache. Then the recursive blocked matrix add
algorithm becomes more general. It works for any n, and as n increases the number
of nodes in the recursion tree increases. In more complicated examples, computations
are also performed at the intermediate nodes. Suppose that the L2 cache is two times
the size of the L1 cache and that some computation is performed on the green nodes
in Figure 1.2 on rectangular matrices of size n × n/2. The operands now fit into L2
cache, and therefore these computations are automatically blocked for the L2 cache.
In this example, the recursive blocked algorithm is, and not only potentially, blocked
for the L2 cache.

In general, for large n the number of levels in the recursion tree will exceed the
number of levels of the memory hierarchy. Due to the recursive blocking each level
holds submatrices of smaller and smaller sizes. At some level the submatrices are
small enough to fit into a certain level of the memory hierarchy. This is what we
mean by saying that the recursive blocked algorithms have the potential to fit every
level of a deep memory hierarchy, including registers, cache memories, main memory,
and secondary storage.

Recursive blocked algorithms mainly improve on the temporal locality, which
means that blocks (submatrices) which recently have been accessed will most likely
be referenced soon again. For many of our algorithms the use of the recursive block-

RECURSIVE BLOCKED ALGORITHMS 9

ing technique together with new optimized so-called superscalar kernels (defined in
section 2.1) is enough to reach near to optimal performance. The recursive blocking
provides efficient cache and TLB blocking, and the optimized kernels make use of ef-
ficient register blocking. For some problems, we can further increase the performance
by explicitly improving on the spatial locality as well. The goal is now to match
the algorithm and the data structure so that blocks (submatrices) near the recently
accessed blocks will also be referenced soon. In other words, the storing of matrix
blocks in memory should match the data reference pattern of the blocks, and thereby
as much as possible minimize data transfers in the memory hierarchy. We use the
divide-and-conquer heuristics leading to hybrid data structures that store the blocks
recursively. Ultimately, we want to reuse the data as much as possible at each level
of the memory hierarchy and thereby minimize the cost.

Similar ideas have been used in related areas by several research groups. As an
example, the MIT group headed by Leiserson developed “cache oblivious algorithms”
that use recursive layouts and algorithms for automatic data locality for complicated
memory hierarchies. Their 1999 FOCS paper addressed sorting, FFT, and matrix
transpose [35]. Frigo and Johnson of the MIT group were awarded the third Wilkinson
Prize for Numerical Software for their winning work FFTW [34, 33], where these ideas
have been most fruitfully applied. FFTW is a library for the efficient computation of
the discrete Fourier transform of real and complex data.

Hierarchical data structures like trees have been around for a long time (see
Samet [87]). An early example of a recursive data structure in a numerical algorithm
is the use of quadtrees and octtrees in N-body simulations. Salmon, Warren, and
Winckelmans used these hierarchical data structures when implementing the Barnes–
Hut method [7] to achieve data locality in a distributed memory setting [86, 85].

1.4. Preview of Results. This paper gives an overview of recent progress in using
recursion as a general technique for producing dense linear algebra software that
is efficient on today’s memory-tiered computers. In addition to general ideas and
techniques, we present detailed case studies of matrix computations. Some of the
main points are the following:

• Recursion creates new algorithms for linear algebra software.
• Recursion can be used to express dense linear algebra algorithms entirely in
terms of level 3 BLAS like matrix-matrix operations.
• Recursion introduces an automatic variable blocking that targets every level
of a deep memory hierarchy.
• Recursive blocking can also be used to define data formats for storing block-
partitioned matrices. These formats generalize standard matrix formats for
general matrices, and generalize both standard packed and full matrix formats
for triangular and symmetric matrices.

In addition, we describe new algorithms and library software for level 3 BLAS,
matrix factorizations, and the solution of general linear systems and common ma-
trix equations. The associated software is robust and displays excellent performance
on a variety of high-performance platforms. Table 1.1 summarizes the architecture
characteristics of the machines considered, including the processor cycle time, the-
oretical peak performance, sizes of L1 and L2 cache memories, and the number of
entries in the TLB. The last column shows the BLAS routines used in our numerical
tests. All algorithms and comparisons on a given architecture use the same standard
nonrecursive BLAS implementations, except in section 2.3, where we discuss different
implementations of GEMM.

10 E. ELMROTH, F. GUSTAVSON, I. JONSSON, AND B. KA
◦
GSTRÖM

Table 1.1 Architecture characteristics and BLAS library summary.

Architecture Speed Peak perf. L1 cache L2 cache TLB BLAS
platform (MHz) (Mflops/s) (data, kB) (shared, kB) (entries) used

IBM PowerPC 604 112 224 16 512 128 ESSL [57]
IBM PowerPC 604e 332 664 32 256 128 ESSL
IBM Power2 120 480 128 — 512 ESSL
IBM Power2 160 640 128 — 512 ESSL
IBM Power3 200 800 64 4096 256 ESSL
IBM Power3 375 1500 64 4096 256 ESSL
Intel Pentium III 550 550 16 512 32 ATLAS [100]
MIPS R10000 195 390 32 4096 64 SCSL [89]

Many of the sample performance results to be shown later are close to (i.e., within
50% to 90% of) the peak attainable performance of the machines for large enough
problems, showing the effectiveness of the techniques described. Park, Hong, and
Prasanna [77] have recently provided further support concerning minimizing L1 and
L2 cache and TLB misses.

1.5. Organization of This Paper. Section 2 introduces recursive blocked algo-
rithms, starting with basic recursive blocked splittings and templates for some level 3
BLAS and matrix factorizations. Section 2.2 gives a survey of recursive blocked data
structures, including rectangular and triangular data formats. In section 2.3, some
performance results of the GEMM operation are presented that illustrate the potential
of combining recursive blocking and hybrid data structures.

In section 3, a recursive blocked Cholesky factorization using packed recursive
blocked data storage is discussed. Section 4 presents a survey of recursive blocked
algorithms for the QR factorization (see section 4.1) and for solving general linear sys-
tems AX = B. In section 4.2, both the solution of over- and underdetermined linear
systems are considered. Section 5 is devoted to a survey of recent work on recursive
blocked solvers for triangular matrix equations and related condition estimation prob-
lems. One-sided and coupled Sylvester-type matrix equations are discussed in section
5.1. Two-sided and generalized Sylvester and Lyapunov matrix equations are treated
in section 5.2. In section 5.3, the use of matrix equation solvers in condition estima-
tion (Sep-estimation) is discussed. In sections 4 and 5, recursive blocked algorithms
are applied to data stored in standard data layout. Here, only marginal additional
gain in speed has been observed when the matrices are stored in a recursive blocked
data format [75, 59].

Section 6 discusses the use of blocked standard algorithms with hybrid blocked
data formats to manage deep memory hierarchies. The presentation and discussion
of related and complementary work continues in section 7. In section 7.1, the topic
is related work on recursive algorithms, hybrid data structures, and library software
implementations. Section 7.2 briefly presents and discusses complementary work that
automatically generates software, as well as some related compiler work. Finally, in
section 8, we give some concluding remarks.

2. RecursiveBlockedTemplates andHybridData Structures. Here, we present
the general ideas and techniques that later will be illustrated by case studies in sec-
tions 3.3 and 4–7.

RECURSIVE BLOCKED ALGORITHMS 11

[
C11 C12
C21 C22

]
+
[
A11 A12
A21 A22

] [
B11 B12
B21 B22

]

=

[
C11 C12

]
+
[
A11 A12

] [B11 B12
B21 B22

]

[
C21 C22

]
+
[
A21 A22

] [B11 B12
B21 B22

]

=
[[

C11
C21

]
+
[
A11 A12
A21 A22

] [
B11
B21

]
,

[
C12
C22

]
+
[
A11 A12
A21 A22

] [
B12
B22

]]

=
[
C11 C12
C21 C22

]
+
[
A11
A21

] [
B11 B12

]
+
[
A12
A22

] [
B21 B22

]

Fig. 2.1 Splitting the matrix multiplication on the (m,n, k) dimensions (top), and the m, n, and k
dimensions, respectively. The resulting GEMM suboperations are shown for the m, n, and
k splittings.

2.1. Recursive Blocked Templates for Level 3 BLAS and Matrix Factoriza-
tions. We start by introducing basic recursive blocked splittings and templates for
some typical matrix operations, namely, the level 3 BLAS operations general ma-
trix multiply and add (GEMM) and triangular solve with multiple right-hand sides
(TRSM), and a generic matrix factorization. The splittings generate new smaller
subproblems (tasks) in a recursion tree. For each of these subproblems a recursive
blocked template is applied, which in turn generates new tasks, etc. Typically, the
recursion is terminated when the new problem sizes are smaller than a certain block
size, blksz, which is chosen such that at least the submatrices involved in the current
subproblem fit in the L1 cache memory. For the solution of the small-sized leaf prob-
lems of the recursion tree, we apply novel portable high-performance kernels based
on reliable (standard) algorithms.

GEMM Operation. Without loss of generality, we consider C = C +AB, which
is the no-transpose case of C ← αop(A)op(B) + βC, with α = β = 1 and, e.g., op(A)
denotes the matrix A or its transpose AT . We remark that α = −1 almost always
occurs in matrix factorization updates. Here, C is m×n, A is m× k, and B is k×n.

Since there are three problem dimensions m, n, and k that define a valid GEMM
operation, the splitting of A, B, and C can take place in one or more of them. In
Figure 2.1, we show four different splittings (out of seven possible). The topmost
corresponds to splitting in all three problem dimensions simultaneously, leading to
eight smaller GEMM operations. The other three correspond to splitting the matrix
multiplication in the m, n, and k dimensions, respectively. Splitting in the m (or n)
dimension leads to two independent GEMM operations. Splitting in the k dimension
leads to two “rank-k/2” updates, which typically could be performed as two successive
GEMM operations.

The remaining splittings correspond to splitting in two of the three problem di-
mensions (see Figure 2.2). Each of the partitionings leads to four smaller GEMM
operations.

Depending on which dimension(s) a recursive blocked splitting is performed, two,
four, or eight new subproblems are generated. The more tasks we generate in the
“divide” part, the smaller are the submatrices involved. By splitting the m, n, and k
dimensions simultaneously, we do a splitting by breadth and generate eight new tasks.

12 E. ELMROTH, F. GUSTAVSON, I. JONSSON, AND B. KA
◦
GSTRÖM

[
C11 C12

C21 C22

]
+
[
A11 A12

A21 A22

] [
B11 B12
B21 B22

]

=
[
C11 C12

C21 C22

]
+
[
A11 A12

A21 A22

] [
B11 B12

B21 B22

]

=
[
C11 C12
C21 C22

]
+
[
A11 A12
A21 A22

] [
B11 B12

B21 B22

]

Fig. 2.2 Splitting the matrix multiplication on the (m,n), (m, k), and (n, k) dimensions, respec-
tively.

Fig. 2.3 Recursion trees illustrating splitting by breadth (left) and depth (right).

On the other hand, by splitting only one of the three dimensions, two new subproblems
are generated, and we need to recursively repeat the splitting twice more to get eight
tasks of similar size as one step of the splitting by breadth. Accordingly, we call this
splitting by depth. In Figure 2.3, the recursion trees associated with splitting a task
into eight subtasks by breadth and depth, respectively, are displayed. Splitting in two
of the three dimensions can be seen as a hybrid of the two, since four new tasks in
each splitting are generated. Typically, one makes the choice of splitting to generate
“squarish” subproblems, i.e., the ratio between the number of operations made on
subblocks and the number of subblocks is maintained as high as possible. Nevertheless,
the “conquer” part in GEMM is trivial, since the submatrix additions of the results
are made implicitly (“on the fly”) by the leaf operations. The subblocks fitting in
L1 cache guarantee that there is no or only small performance differences between
different transpose arguments of the GEMM operation (AB,ATB,ABT , ATBT). For
a thorough explanation of these kernels, see [47] and [51].

Notice that if m = n = k > 1, or two of them are equal, there is a choice on
which dimension to split. Some experimental results have shown that this choice
is not significant, since different orderings affect only a few levels of the recursion
tree, and so further down the recursion tree, the impact of previous choices vanishes.
In our implementations, we have focused on square subblocks and mostly square
matrices.

RECURSIVE BLOCKED ALGORITHMS 13

Fig. 2.4 Splittings defining independent tasks (left) and dependent tasks (right). The right-hand
splitting defines a critical path of subtasks: (1), (2), (3).

TRSM Operation. First, we consider solving AX = C, where X overwrites C.
A of size m × m is upper triangular, and C and X are m × n. Depending on m
and n, there are several alternatives for doing a recursive splitting. Two of them are
illustrated below.

Case 1 (1 ≤ m ≤ n/2). Split C by columns only,

A
[
X1 X2

]
=
[
C1 C2

]
,

or, equivalently,

AX1 = C1,

AX2 = C2.

Case 2 (1 ≤ n ≤ m/2). Split A, which is assumed to be upper triangular, by rows
and columns. Since the number of right-hand sides n is much smaller than m, C is
split by rows only, [

A11 A12
A22

] [
X1
X2

]
=
[
C1
C2

]
,

or, equivalently,

A11X1 = C1 −A12X2,

A22X2 = C2.

The two splittings above are fundamental in all types of triangular solve (or
multiply) operations and illustrate that a problem is split into two subproblems with
dependent and independent tasks, respectively. In Case 1, a splitting is applied only
to C, the right-hand sides, and we obtain two similar TRSM operations that can be
solved independently and concurrently (illustrated in Figure 2.4 (left)). In Case 2, we
first have to (1) solve for X2 and (2) update the right-hand side C1 with respect to X2,
which is a GEMM operation, before (3) solving for X1. The splitting of A imposes a
critical path at the block level that any algorithm (recursive or nonrecursive) has to
respect (illustrated in Figure 2.4 (right)).

There is also a Case 3 (n/2 < m < 2n), when all matrices involved are split
by rows and columns leading to four subproblems. We refer to sections 5.1 and
5.2 for a more complete illustration of different recursive splittings applied to solving
triangular Sylvester-type matrix equations. Moreover, the other variants of the TRSM
operation (op(A)X = C or Xop(A) = C, where op(A) is A or AT , with A upper or
lower triangular) are treated similarly.

14 E. ELMROTH, F. GUSTAVSON, I. JONSSON, AND B. KA
◦
GSTRÖM

Matrix Factorization. We introduce a recursion template for a generic one-sided
matrix factorization (typified by Cholesky, LU, and QR) as follows.

Recursively factor A:
1. Partition

A ≡
[
A1 A2

]
, where A1 ≡

[
A11
A21

]
and A2 ≡

[
A12
A22

]
.

2. Recursively factor A1 (or A11).
3. Apply resulting transformations to A2 ≡

[
A12
A22

]
.

4. Recursively factor A22.

In the algorithm, the template is recursively applied to the two smaller subprob-
lems (factorizations in steps 2 and 4). As for the triangular solve operation, the
recursion template results in a splitting defining a critical path of dependent subtasks
(see Figure 2.4 (right)).

We remark that in cases when only one of the two matrix dimensions is split, as
for the QR factorization, the recursion is stopped when the overhead from recursion
exceeds the gain from using a nonrecursive algorithm (see section 4.1). When both
dimensions are split, as for the Cholesky factorization, the recursive blocking is con-
tinued until at least the submatrices involved in the current subfactorization fit in the
L1 cache memory.

We note that the apply or update operation (step 3) can be performed either by
calling recursive blocked or standard blocked algorithms/implementations of level 3
BLAS (or similar operations). In the recursive blocked algorithms presented below,
one can make use of both alternatives. By symmetry, the apply operation of step 3
works in theory also for the Cholesky factorization. In practice, however, the trans-
formations from the factorization in step 2 is applied to [A21, A22] (see section 3).

Superscalar Kernels. Each level 3 BLAS algorithm does more or less the follow-
ing: It takes the input matrix operands and performs a partitioning of these operands
into submatrices. These are usually called blocks and fit comfortably into the L1
cache. Usually these blocks are copied into contiguous storage buffers. An associated
implementation operates on these blocks and performs the BLAS operation on sub-
matrices of the partitioning. This associated program is called the kernel routine of
the level 3 BLAS.

So kernel routines are very highly performing programs working on matrix oper-
ands optimally prepared for excellent performance in L1 cache. These kernel routines
were the building blocks of ESSL BLAS. However, ESSL went further and constructed
routines for various factorization algorithms, e.g., LU = PA, LLT = A, QR =
A, etc. These then are superscalar kernels. Our work has produced designs for
new and many more superscalar kernels that are applied to the leaf nodes in the
recursion tree. Indeed, some of the superscalar kernels make use of recursion as
well [62, 63]. All superscalar kernels are written in Fortran using register and cache
blocking techniques such as loop unrolling. For each recursive blocked algorithm the
same superscalar kernels are used on all platforms. Currently, they are optimized
with a generic superscalar architecture in mind and show very good performance on
several different platforms. We remark that it would be possible to optimize these
superscalar kernels with respect to different architecture features and possibly gain
some additional performance. The generic superscalar kernels make the recursive
blocked algorithms portable across different computer systems.

RECURSIVE BLOCKED ALGORITHMS 15

2.2. Recursive Blocked Data Structures. In [46], we introduced a new set of
data formats for storing block-partitioned dense matrices. The set is a hybrid of two
addressing techniques. At the block level each submatrix is stored in the standard
column-major (or row-major) order and the size of each block is constrained so that
one or a few of them will simultaneously fit in L1 cache. Blocks stored in this fashion
are typically operands for the kernel routines. To allow for efficient utilization of
a memory hierarchy, including efficient cache reuse, the blocks themselves can be
stored recursively. Due to the regularity of dense linear algebra computations, it is in
principle enough to consider only two recursive matrix formats, namely, the rectangle
and the isosceles triangle. Some related work on recursive data layouts is mentioned
in section 7.

2.2.1. Rectangular Recursive Data Format. The metrics of a matrix A of size
m×n stored in ordinary column-major order (Fortran format) include m, n, and the
leading dimension lda. The latter is used for a proper specification of a subarray of A.
For block-partitioning of A we also use two parameters specifying the block sizes, mb
and nb, where 1 ≤ mb ≤ m and 1 ≤ nb ≤ m. A block-partitioned A consists of p · q
blocks Aij of size mb×nb, where p = �m/mb	 and q = �n/nb	. We use the convention
that the last block row and/or block column are padded with zero elements when m
and/or n are not multiples of mb and nb. However, little or no computations on
these zero elements are performed. Each submatrix Aij is stored in column-major or
row-major order. Notice that padding leads to many economies in code production,
e.g., no fix-up code is required in the kernel routines.

Now, these submatrices can be ordered in (p·q)! different ways. A recursive order-
ing (use of the Hilbert heuristic of a one-dimensional tour through a two-dimensional
object [84]) has the potential of matching the memory hierarchies of today’s high per-
formance computing systems and is therefore an effective ordering when performing
linear algebra operations on the matrix. A recursive blocked format allows for the
possibility of maintaining the two-dimensional data locality at every level of the one-
dimensional tiered memory structure, while the block row and block column orderings
only maintain data locality at a submatrix level. Irrespective of how the block sizes
are set, the block row or block column format can only automatically match one level
of the memory hierarchy, e.g., L1 cache.

The recursive block ordering is determined by always dividing the largest dimen-
sion of the rectangular submatrix. The choice when there is a tie leads to two formats:
recursive block row (RBR), always divide the row dimension; and recursive block col-
umn (RBC), always divide the column dimension. When dividing an odd number of
rows the middle row is assigned to the block at the bottom. For an odd number of
columns, the middle one is assigned to the block to the right. The reason is that the
block to the right or at the bottom may contain submatrices that are not entirely
filled, so this strategy keeps the difference in number of used elements between the
two blocks after the splitting to a minimum. Our RBR blocking is a variant of the
Z-Morton ordering [102, 15, 84]. See Figure 2.5 for examples of Z-Morton ordering.
Indeed, they are the same when the block matrix dimensions p and q both are a
power of 2, which means that all blocks are equal-sized at a fixed level of the recursive
blocking.

For illustration we consider A of size 800×480 and mb = 100, nb = 60, giving p =
q = 8; i.e., all blocks are filled with elements from A. Using a block column format, the
blocks are mapped as in the top matrix labeled (BC) of Figure 2.5. The numbers 0–63
denote contiguous blocks in memory. Using the RBR format for assigning contiguous

16 E. ELMROTH, F. GUSTAVSON, I. JONSSON, AND B. KA
◦
GSTRÖM

Fig. 2.5 The mapping of an 8 × 8 block matrix in block column (BC) order, recursive block row
(RBR) order, and recursive block column (RBC) order. The three levels of recursive split-
ting are labeled 1-2, 3-4, and 5-6.

blocks in memory, the first splitting occurs after block row four and the block numbers
0–31 are assigned to the upper part and 32–63 to the lower part, respectively. Since
the number of block columns (4) is greater than the number of block rows (2) in
the upper part, the next splitting is vertical, assigning block numbers 0–15 to the
left-hand part and 16–31 to the right-hand part. These submatrices are now square
so their row dimension is split. The complete block assignment associated with the
RBR format is displayed in the matrix labeled (RBR) of Figure 2.5. The procedure
is similar when applying the RBC assignment of contiguous blocks, except when
splitting square submatrices, which is now done by splitting the column dimension
(see the matrix labeled (RBC) of Figure 2.5). In the figure, we have also marked in
which order the recursive splittings are done for the recursive RBR and RBC formats.
For this example, the RBR and RBC orderings correspond to the Z-Morton and
the reflected-N-Morton space filling orderings, respectively. Again, see Figure 2.5,
references [102, 15, 84], and section 7.1 for more details. For arbitrary m,n,mb, and
nb, our recursive blocked orderings are combinations of these two Morton orderings.

RECURSIVE BLOCKED ALGORITHMS 17

The choice of mb and nb is crucial and closely linked to the memory hierarchy of
the target architecture. In the extreme case of mb = m,nb = n, the entire matrix is
stored in one block, which corresponds to the conventional column-major and row-
major orderings with their deficiencies like bad data locality in either the row or
the column dimension. When mb = nb = 1, this means that recursive splittings
are applied down to single elements. This results in good data locality, but the
submatrix operations become very inefficient since the kernels will only operate on
single elements. For example, register blocking is prohibited. The best choice of
mb and nb depends on the size of the L1 cache. One should strive for fitting one
or a few submatrices in L1 cache. The consequence of having bad data locality in
one dimension of the submatrix does not hinder performance, since the L1 cache
is approximately random access for data stored contiguously. Thus, we have linear
addressing in the kernels, which simplifies loop unrolling, preloading, prefetching, and
register blocking. The kernels can also feature level 3 prefetching; i.e., they can make
use of the volume-to-surface effect between the number of floating-point operations
and the number of memory accesses for level 3 BLAS operations. In principle, the
program loads the next set of operands into L1 cache while the prior set is being used
in the computations. The cost to calculate the starting address of an element block is
O(log(p · q)) (binary search in two block dimensions). However, this information may
be stored in tables, which gives greater flexibility in the placement of the blocks and
constant time addressing.

Another benefit of the tables is that the space allocated for each block, S, may
be greater than the space required; i.e., the block addresses may be padded so that
cache coherency problems may be avoided. For example, the allocation strategy may
be to let all blocks begin at a line or page boundary.

2.2.2. Triangular Recursive Data Format. Since all one-sided matrix factoriza-
tions can be expressed in terms of rectangular and isosceles triangular matrices, there
are two cases to consider. We just consider the isosceles case. For an isosceles right tri-
angle of order n, the splitting procedure resembles the rectangular case. Let nb×nb be
the size of the submatrices, giving a block-square triangular A consisting of q(q+1)/2
blocks where q = �n/nb	. Now divide the triangle into one subrectangle and two
isosceles subtriangles. For a lower triangle, the upper left triangle is assigned block
numbers 0 to
q/2�
q/2+1�/2− 1, the lower right triangle is assigned block numbers

q/2�
q/2 + 1�/2 +
q/2��q/2	 to q(q + 1)/2− 1, and the blocks inside the rectangle
will use block numbers
q/2�
q/2+1�/2 to
q/2�
q/2+1�/2+
q/2��q/2	−1. The in-
terior ordering of the blocks in the triangles are determined by applying the algorithm
recursively, and the block ordering is either RBR or RBC as in the rectangular case.

Figure 2.6 illustrates the triangular recursive blocked orderings for triangular
matrices of order 320, and block size nb = 80, giving q = 4. The diagonal blocks 0,
2, 7, and 9 are stored in the conventional full format. We use full format since it is
easier to write high-performance kernel routines using this format. The blocks in the
last block row or block column are possibly padded. The zero blocks in the upper or
lower parts, respectively, are not stored, so the space overhead is linear to the matrix
order.

From Figure 2.6 one can see that the RBR ordering of a symmetric matrix in
lower triangular storage format is equivalent to the RBC ordering of a symmetric
matrix in upper triangular storage format, and vice versa.

2.3. SomeGEMMPerformanceResults. We end the survey of recursive blocked
templates and hybrid data structures by the first case study. Some performance

18 E. ELMROTH, F. GUSTAVSON, I. JONSSON, AND B. KA
◦
GSTRÖM

Fig. 2.6 The mapping of a 4 × 4 block triangular matrix in block column (BC) order, recursive
block row (RBR) order, and recursive block column (RBC) order. Two levels of recursive
splitting are used.

results of the GEMM operation that illustrate the potential of this particular recursive
approach [46, 47] are presented and discussed.

Figure 2.7 shows the performance of an explicitly tuned two-level blocked algo-
rithm and a recursive GEMM algorithm executing on an IBM PowerPC 604. Even
though this architecture is fairly old it is interesting since it illustrates a system with a
rather complex memory hierarchy, where the use of floating-point units is much faster
than accessing the cache memories. Both routines use the same superscalar kernel
that prefetches, register preloads, does 4 × 4 unrolling, and works on 16 × 16 sub-
matrices which utilize standard row/column-major addressing on contiguous stored
blocks [46, 47]. The performance results, which are quite good, do not account for any
data copying; i.e., the blocks are initially stored in column block order and recursive
block order, respectively. The recursive algorithm performs around 7% better than
the multilevel blocked algorithm for large enough problems (500× 500), even though
the tuning is much less explicit (only L1 cache versus L1 and L2 cache tuning for the
multiblocked algorithm).

Figure 2.7 also displays ATLAS performance results for the same operations. AT-
LAS is a project on automated empirical optimization of software for linear algebra
[100] and is described further in section 7.2. The results show that the recursive
approach is asymptotically at least as good as explicit multilevel blocking and much
better than the ATLAS experimental approach for the PowerPC 604. This extreme re-
sult has not been observed on other platforms but was a motivation for further studies
in using recursion for dense linear algebra computations. At the time this study was
made, ATLAS used explicit multilevel-type blocking techniques and had difficulties
dealing with this architecture (see Table 1.1). For current algorithms used in ATLAS
we refer to the discussion in section 7.2. We remark that without architecture-based
optimizations matrix computations seldom reach 50% of the theoretical peak perfor-
mance on PowerPC 604 platforms, mainly due to the performance imbalance between
the memory system and the CPU.

The recursion task tree facilitates parallelization on shared memory machines.
One can simply divide the tree into subtrees and let different processes or threads
(lightweight processes) execute on different subtrees. Here, we use a single thread for
each processor and divide the tree into one subtree more than the number of threads.
The leftover subtree is divided among the threads when they become ready for ad-
ditional work. This way of scheduling enables good load balancing on nondedicated
machines.

RECURSIVE BLOCKED ALGORITHMS 19

0 100 200 300 400 500 600 700 800 900 1000
0

20

40

60

80

100

120

140

160

Matrix size

M
flo

ps
/s

C=C+ATB using conventional and recursive blocking

ATLAS results from [12]
Blocking by 16×16 and 160×160 and prefetching
Recursive storage and blocking, with prefetching

Fig. 2.7 Performance of two hierarchical blocking strategies: Explicit multilevel and recursive block-
ing (IBM PowerPC 604 platform).

0 100 200 300 400 500 600 700 800 900 1000
0

50

100

150

200

250

300

350

400

450

500

550

Matrix size

M
flo

ps
/s

C=C+ATB using the recursive task tree

1 thread(s)
2 thread(s)
3 thread(s)
4 thread(s)

Fig. 2.8 Scheduling the recursive blocked matrix multiply algorithm on several threads (IBM Pow-
erPC 604 platform).

Performance results for multiple threads and the recursive task tree approach are
shown in Figure 2.8 [51]. This algorithm scales well. One reason is that the recursion
task tree automatically keeps data references local to each thread.

20 E. ELMROTH, F. GUSTAVSON, I. JONSSON, AND B. KA
◦
GSTRÖM

3. Recursive Blocked Cholesky Factorization for Matrices in Packed Format.
The second case study concerns new efficient Cholesky factorization algorithms. In
[3], a new recursive packed format for Cholesky factorization was described. It is
a variant of the triangular format described in [46] and suggested in [43]. The ad-
vantage of using packed formats instead of a full format is the memory savings pos-
sible when working with large matrices. The disadvantage is that the use of high-
performance standard library routines, such as GEMM, is inhibited. This is because
level 3 implementations for packed data formats are not present in LAPACK and
some other libraries. One can combine blocking with recursion to produce a practi-
cal implementation of a new algorithm for blocked packed Cholesky. The algorithm
first transforms standard packed lower format to packed recursive lower row format.
Then, during execution, the algorithm calls only standard GEMM and level 3 kernel
routines. This method has the benefit of being transparent to the user. No extra
assumptions about the input matrix needs to be made. This is important since an
algorithm like Cholesky using a new data format would not work on previous software
implementations.

Rationale. Existing codes for the Cholesky factorization and the factorization
A = LDLT use either full storage or packed storage data format. ESSL [56] and
LAPACK [4] as well as many other libraries support both data formats so a user can
choose either for his application. For performance reasons, users today generally use
the full data format to represent the symmetric matrices. Nonetheless, saving half
the storage is an important consideration especially for those applications which will
run with packed storage and fail to run with full storage.

The idea behind recursive factorization of a symmetric matrix stored in packed
recursive format is simple: Given AP holding symmetric A in lower packed storage
mode, overwrite AP with A in the recursive packed row format. Next, execute the
new recursive level 3 Cholesky algorithm. Even when one includes the cost of convert-
ing the data from conventional packed to recursive packed format, the performance
turns out to be better than LAPACK’s level 3 routine DPOTRF for full storage
format.

3.1. Packed Recursive Blocked Data Storage and Algorithm. The new recur-
sive packed format was first presented in [3] and is based on the formats described
in section 2.2.2. An algorithm which transforms from conventional packed format
to recursive packed format can be found in [48] and [3]. The packed recursive data
format is a hybrid triangular format consisting of n− 1 full format rectangles of vary-
ing sizes and n triangles of size 1 × 1 on the diagonal. The format uses the same
amount of data storage as the ordinary packed triangular format, i.e., n(n + 1)/2.
Since the rectangles (square submatrices) are in full format it is possible to use
high-performance level 3 BLAS on these square submatrices. The difference between
the packed and the packed recursive formats is shown in Figure 3.1 for a matrix of
order 7.

Notice that the triangles are split into two triangles of sizes n1 = n/2 and n2 =
n− n1 and a rectangle of size n2 × n1 for lower format and n1 × n2 for upper format.
The elements in the upper left triangle are stored first, the elements in the rectangle
follows, and the elements in the lower right triangle are stored last. The order of
the elements in each triangle is again determined by the recursive scheme of dividing
the sides n1 and n2 by two and ordering these sets of points in the order triangle,
rectangle, triangle. The elements in the rectangle are stored in full format, either by
row or by column.

RECURSIVE BLOCKED ALGORITHMS 21

1 2 4 7 11 16 22 1 2 3 7 10 13 16
3 5 8 12 17 23 4 5 8 11 14 17

6 9 13 18 24 6 9 12 15 18
10 14 19 25 19 20 22 24

15 20 26 21 23 25
21 27 26 27

28 28
Packed upper Packed recursive upper

Fig. 3.1 Memory indices for 7× 7 upper triangular matrix stored in traditional packed format and
recursive packed format.

The recursive formulation of the algorithm is straightforwardly derived from the
block factorization of a positive definite matrix A,

A ≡
[
A11 AT21
A21 A22

]
= LLT ≡

[
L11 0
L21 L22

] [
LT11 LT21
0 L22

]
,

which consists of two Cholesky factorizations (3.1), (3.4), one triangular system solve
with multiple right-hand sides (3.2), and one symmetric rank-k update (3.3),

A11 = L11L
T
11,(3.1)

L21L
T
11 = A21,(3.2)
Ã22 = A22 − L21L

T
21,(3.3)

Ã22 = L22L
T
22.(3.4)

These equations build the recursive template for the recursive Cholesky factorization.
After recursively solving for L11, a recursive implementation of TRSM is used to solve
for L21. Then a recursive symmetric rank-k update (SYRK) of A22 occurs before
L22 is recursively Cholesky factored. The need of the recursive TRSM and SYRK
stems from the recursive packed format. The factorization algorithm calls TRSM
and SYRK with triangular matrix operands stored in recursive packed format, and
with rectangular matrix operands stored in full format. Dividing the recursive packed
matrices in TRSM and SYRK gives rise to two recursive packed triangular matrices
and a rectangular matrix stored in full format, which becomes an argument to GEMM.

In the implementation presented in [3], recursion proceeds down to the element
level. Because of the overhead of the recursive calls, the implementation has a signif-
icant performance loss for small problems and a lesser loss for larger problems. For
large problems most of the computation is performed in high-performance GEMM
operations.

The implementation described in [48], however, combines blocking and recursion
to produce a blocked version of the recursive algorithm by only applying recursion
down to a fixed block size less than blksz. To solve leaf problems of size at least one
less than blksz, algorithmic techniques, such as register and L1 cache blocking [46],
are used to produce optimized unrolled superscalar kernel routines. These techniques
are used both by the Cholesky factorization routine and the recursive TRSM and
SYRK routines.

By providing these superscalar kernel routines, the procedure call overhead for
small problems is significantly decreased. Also, one can overcome the overhead of the

22 E. ELMROTH, F. GUSTAVSON, I. JONSSON, AND B. KA
◦
GSTRÖM

0 100 200 300 400 500 600 700 800 900 1000
0

50

100

150

200

250

300

350

400

450

n

M
flo

ps
/s

Factorization on IBM POWER2

BC, without data transformation
BC, including time for data transformation
LAPACK DPOTRF
LAPACK DPPTRF

0 100 200 300 400 500 600 700 800 900 1000
0

100

200

300

400

500

600

700

n

M
flo

ps
/s

Factorization on IBM POWER3

BC, without data transformation
BC, including time for data transformation
LAPACK DPOTRF
LAPACK DPPTRF

Fig. 3.2 The performance for Cholesky factorization on the 120 MHz IBM Power2 (left) and 200
MHz Power3 (right).

nonlinear addressing of the recursive data format. The operands of the kernel routines
for factorization, triangular solve, and symmetric rank-k update are stored in recursive
packed format. The two latter use mixed format, where some operands are in full
format. In this implementation, two types of kernel routines have been considered.
The difference is how they deal with the nonlinear addressing of the packed recursive
triangles. The first one is called a mapping kernel, and this technique is used for the
Cholesky factorization kernel. Recall that this kernel operates solely on a triangular
matrix, which is stored in packed recursive lower format. The ratio of the number of
triangular matrix accesses to the number of operations is small, so the performance
loss of copying the triangle to a full matrix in order to simplify addressing is not
feasible. Instead, an address map of the elements’ structure in memory is constructed
in advance. Now, for every problem size n, there will only be two kernel problem
sizes, so only two maps need to be generated, one for problem sizes ni+1 and one for
problem sizes ni, where ni < blksz. These maps are initialized before the recursive
Cholesky algorithm starts.

For the TRSM and SYRK kernels, more floating-point operations are performed,
which reduce the ratio of the number of accesses to the number of operations. This
suggests that it could be beneficial to copy the triangle to a buffer, and thereby store
the triangle in full array format. In fact, since the number of operations depends
on the size of the rectangular operand as well, one can use this size as a threshold.
Therefore, if the rectangle is large enough, the triangle is copied to a buffer.

Performance. The use of recursive blocking ensures that the good performance
can be maintained also for small problems. Results for both large and small problems
for various machines are found in [48] and [3]. The performance of the recursive
algorithm, called BC, on a typical RISC processor (Power3) is about 5% better than
full storage LAPACK routine DPOTRF for large problems, and much better than
DPOTRF for small problems, because of the superscalar kernels described partly
here and in [48]. See Figure 3.2 for details. The recursive algorithm is much faster (2
to 3.5 times) than the LAPACK routine DPPTRF, which operates on packed storage
and hence cannot benefit from a level 3 algorithm. In these tests, the ESSL BLAS
(nonrecursive implementations) are used in all four routines. For each algorithm, the
best block size has been chosen. For DPOTRF this is nb = 64. For BC, blksz = 32

RECURSIVE BLOCKED ALGORITHMS 23

is used as the recursion stopping criteria, implying that the blocksize nb for the leaf
problems satisfies 16 ≤ nb < 32.

For smaller matrices (below n = 100), the observed speedup is a combination of
the kernels and the ability to use level 3 kernel routines. Therefore, this is an example
of recursive blocking. For larger matrices, the cause of the good performance is due
to better memory access patterns and the level 3 BLAS, which are unavailable to the
standard packed routine. This is also shown in [3]. The reason that DPOTRF does
poorly for say n ≤ 200 is that the factorization part of DPOTRF is done by the level
2 algorithm DPOTF2.

The recursive algorithm for Cholesky factorization has three attractive features.
First, it uses minimal storage. Second, it attains level 3 performance due to mostly
calling matrix-matrix multiplication routines during execution. The new algorithm,
curve number 3, outperforms the standard LAPACK routines DPPTRF and DPOTRF.
Finally, the new code is portable so existing codes can use the new algorithm. A vari-
ant of the algorithm presented here is part of the IBM ESSL [56].

4. Recursive Blocked QR Factorization and Linear Systems. The third case
study concerns new efficient algorithms based on recursion for computing the QR
factorization of a full rank matrix and solving over- and underdetermined systems
of equations. In this section, recursive blocking is combined with matrices stored in
standard data format.

4.1. QR Factorization. The recursive algorithms for the QR factorization de-
scribed in [27, 28] have led to highly efficient library software [30], available in ESSL
[56]. The algorithm computes the factorization A = QR, using Householder transfor-
mations I− τuuT , where u is a Householder vector and τ is a scalar. The matrix A is
m×n, Q is orthogonal m×m, and R is m×n upper triangular. In practice, Q is not
explicitly formed. If requested, Q can be formed from Householder transformations
using the storage-efficient compact WY representation Q = I−Y TY T [10, 88]. Here,
Y is m×n upper trapezoidal, containing n Householder vectors, and T is n×n upper
triangular.

If the number of Householder transformations is large, matrix operations involving
Q are normally performed as series of operations with Q1, Q2, . . . , Qk, where Q =
Q1Q2 · · ·Qk and Qi = I − YiTiY Ti . The reason is that the overhead cost associated
with forming the matrix T is much larger than the cost of computing all the Ti’s.
This issue is further discussed below.

Recursive Algorithm. The basic algorithm, obtained by applying the recursive
matrix factorization template (see section 2.1), performs a matrix splitting on the
column dimension followed by three matrix computations. That is, A is partitioned
as

(4.1) A =
[
A11 A12
A21 A22

]
,

and the left part is factorized by a recursive call

(4.2) Q1

[
R11
0

]
=
[
A11
A21

]
.

The right part is updated with respect to the first factorization,

(4.3)
[
R12

Ã22

]
←− QT1

[
A12
A22

]
,

24 E. ELMROTH, F. GUSTAVSON, I. JONSSON, AND B. KA
◦
GSTRÖM

and, finally, Ã22 is recursively factorized, Q̃2R22 = Ã22. The result is

(4.4) R =
[
R11 R12
0 R22

]
and Q = Q1Q2, where Q2 =

[
I 0
0 Q̃2

]
.

In the basic algorithm, the recursion stops when the matrix to be factorized is a
single column, and a Householder transformation [39] is applied to that column. In
the implementation presented in [30], the recursion is stopped at n ≤ blksz = 4, and
then these columns are factorized using a kernel routine. The kernel factorization
is performed as a direct computation, thereby significantly reducing the software
overhead otherwise required by using pure recursion.

We remark that in order to efficiently perform the update (the multiplication
with QT1), we need to form the compact WY representation Q1 = I − Y1T1Y

T
1 . This

makes it possible to express the update phase in the above algorithm in terms of
level 3 operations without explicitly forming Q. In the above algorithm, this requires
a recursive expression for forming the matrix Q in the compact WY format, i.e., to
make it possible to combine one pair of compact WY expressions in each step of
the recursion. It turns out that this process itself leads to a level 3 algorithm, with
potential for better utilization of the memory hierarchy than the traditional level 2
algorithm for forming the compact WY representation.

Given Q1 = I − Y1T1Y
T
1 and Q2 = I − Y2T2Y

T
2 , we need to compute Y and T in

order to represent Q = I − Y TY T . No flops are required to form Y =
[
Y1 Y2

]
.

By substituting Q1 = I − Y1T1Y
T
1 and Q2 = I − Y2T2Y

T
2 into (4.4), we have

(4.5) T =
[
T1 −T1(Y T1 Y2)T2
0 T2

]
.

Matrix Splitting Decisions. Compared to a level 2 algorithm, a block algorithm
based on the compactWY representation forQ performs additional flops. The number
of extra flops grows cubically with the number of Householder transformations being
aggregated, so therefore the computation of large T -matrices should be avoided [28].
In the recursive algorithm, this is accomplished by an appropriate matrix splitting.
When n is large, the left part of A is chosen to have nb columns, where nb acts as a
blocking parameter. For n < nb, the left part of A is chosen to have
n/2� columns.
Then T is only computed corresponding to the maximum nb columns wide left block
of A and blocks inside the left block, since these are the only T -matrices that are
needed in the updates. By doing so, T of size larger than nb× nb is never formed.

The effect of the blocking parameter is that the algorithm traverses the n-dimen-
sion with a fixed block size nb. Within each such block, the block size is recursively
halved. Compared to the corresponding LAPACK algorithm, our blocking parameter
imposes the same blocking as the level 3 algorithm DGEQRF, but when DGEQRF
calls a level 2 routine for factorizing a block column, the recursive algorithm continues
to perform level 3 operations on smaller and smaller blocks (tall narrow matrices). It
follows that the features of our algorithm could be obtained in DGEQRF by replacing
two calls to level 2 algorithms by a single call to the recursive algorithm. However, by
using a blocking parameter in the recursive algorithm, there is no need for an extra
routine to perform that outer blocking. See page 946 of [29] for details.

Performance. Figure 4.1 presents performance results of the recursive algorithm
RGEQRF in relation to the LAPACK routine DGEQRF on a 200 MHz IBM Power3
processor, originally presented in [30]. The graph on the left-hand side shows the

RECURSIVE BLOCKED ALGORITHMS 25

0 200 400 600 800 1000 1200 1400 1600 1800 2000
200

250

300

350

400

450

500

550

600

650

 RGEQRF

 DGEQRF

m = n

M
flo

ps
/s

Uniprocessor performance on a 200 MHz IBM POWER3 node

200 400 600 800 1000 1200 1400 1600 1800 2000
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

 n=50
 n=100

 n=150

 n=200
 n=250
 n=300

m

R
at

io

Performance ratio RGEQRF/DGEQRF on 200 MHz IBM POWER3 node

Fig. 4.1 Performance results in Mflops/s for square matrices (left) and performance ratio for tall,
thin matrices (right) for the recursive algorithm RGEQRF and DGEQRF of LAPACK on
the 200 MHz IBM Power3.

performance in Mflops/s for both routines. RGEQRF clearly outperforms DGEQRF
for all cases tested, and its performance exceeds 600 Mflops/s for square matrices of
size at least 1000. The right-hand side shows the performance ratio of RGEQRF to
DGEQRF for tall, thin matrices with m = 200, . . . , 2000 and n = 50, . . . , 300. For all
cases tested, it outperforms DGEQRF by between 10% and a factor of 2.

Please note that this performance was obtained using a combination of a recursive
algorithm and an optimized kernel routine for factorizing matrices of size m × 4.
However, [28] presents results for the same algorithm using recursion down to a single
column (instead of using an optimized kernel). The use of recursion down to a single
column increases the overhead, but the results are still of interest in order to illustrate
the effect of the recursion alone. Also this algorithm outperforms LAPACK by around
20% for large matrices and is faster than LAPACK for all square matrices larger than
300 on the 120 MHz IBM Power2 processor. For tall, thin matrices, e.g., with n ≤ 150,
the recursive algorithm is faster for all m > 200. Clearly, the recursion leads to an
algorithm that outperforms LAPACK for most problems even though an optimized
kernel may be needed to compensate for the extra overhead for small problems.

The results presented for the IBM PowerPC 604e in [28] show even more remark-
able gains for the recursive algorithm without the optimized kernel. Here, the gain
over LAPACK is around 10 to 30% for square matrices and is larger than that for
tall, thin matrices. In extreme cases on the PowerPC 604e, we observe performance
differences of up to a factor of 2.7 compared to LAPACK DGEQRF. The fact that the
new algorithm gains more on the PowerPC 604e processor can be explained by that
system’s less efficient memory hierarchy, thereby making it more sensitive to memory
reference patterns.

A parallel implementation on a four-way SMP PowerPC 604e system shows nearly
ideal parallel speedups up to 1.97, 2.9, and 3.97 on two, three, and four processors,
respectively [27, 28].

4.2. Solving Over- and Underdetermined Linear Systems. The algorithms of
section 4.1 show how various level 2 and level 3 algorithms can be successfully replaced
by recursive level 3 algorithms. The recursive techniques can also be applied to
problems that normally are solved by a sequence of calls to different level 3 algorithms.

26 E. ELMROTH, F. GUSTAVSON, I. JONSSON, AND B. KA
◦
GSTRÖM

X = RGELS(A,B,nb)
If n ≤ nb

1. Factor A = Q [R0] ; B̃ ← QTB; solve RX = B̃(1 : n, :)
else

2. Let A=
[
A1 A2

]
; B=

[
B1
B2

]
with nb cols in A1, nb rows in B1

3. Factor A1 = Q1
[
R11

0

]

4. Set
[
R12 B̃1
A22 B̃2

]
← QT1

[
A2 B

]

5. X2 = RGELS(A22, B̃2,nb)
6. Solve R11X1 = B̃1 −R12X2; return X =

[
X1
X2

]
endif

Fig. 4.2 Recursive least squares RGELS algorithm for computing the solution to AX = B, where
A is m× n (m ≥ n).

Given an m×n matrix A with full row or column rank, and matrices X and B, both
with nrhs columns, [29] considers the four problems solved by the LAPACK routine
DGELS, namely, to compute the following:

1. linear least squares solution to min ‖AX −B‖F (m ≥ n);
2. linear least squares solution to min ‖ATX −B‖F (m < n);
3. minimum norm solution to min ‖ATX −B‖F (m ≥ n);
4. minimum norm solution to min ‖AX −B‖F (m < n).

In the LAPACK DGELS, these four problems are solved by first factorizing A
into QR (or LQ). Then for the least squares solution, QT (or Q) is applied to B and
a triangular system is solved. For the minimum norm solution, a triangular system is
solved before Q (or QT) is applied to that solution.

The algorithms of [29] recursively reduce an over- or underdetermined problem
to smaller and smaller sizes. Instead of, for example, first factorizing the complete
matrix A, second updating the whole of B, and third performing a large triangular
solve, these three operations are interleaved for each block of the matrix. This in
turn leads to data reuse in the memory hierarchy among these operations. The QR
factorization that is performed on block columns of A or AT can be done using either
a recursive or a standard algorithm, though we recommend the recursive algorithm
for better performance.

In the following, we focus on problem 1 and only briefly comment on the other
three problems. For further information, see [29].

Recursive Algorithm for Problem 1. The recursive algorithm for solving prob-
lem 1 is presented in Figure 4.2. It first partitions A in two parts over the column
dimension and performs a QR factorization on A1. Then A2 and the whole of B is
updated with respect to that factorization. A recursive call is made for solving a
reduced-size least squares problem. Given that solution, a part of B is updated and
the final part of the solution is computed. The stopping criteria is as follows: If A
has no more than nb columns, then it is QR factorized and the corresponding part of
the least squares problem is solved.

In practice, X overwrites the input B, Q is implicitly represented as I − Y TY T ,
and A is overwritten by R and Y . Similarly to the QR factorization, we reduce the
amount of extra flops imposed by the compact WY representation for Q by splitting
A with maximum nb columns in A1.

RECURSIVE BLOCKED ALGORITHMS 27

0 200 400 600 800 1000 1200 1400 1600 1800 2000
1

1.2

1.4

1.6

1.8

2

2.2

 n = 50

 n = 100

 n = 150

 n = 200

 n = 250

 n = 300

m

R
at

io

Performance ratio RGELS/DGELS on 160 MHz IBM POWER2: "L", "N", nrhs = 1

0 200 400 600 800 1000 1200 1400 1600 1800 2000
1

1.5

2

2.5

3

3.5

4

4.5

5
 nrhs = 1

 nrhs = 51

 nrhs = 101

 nrhs = 151

 nrhs = 201
 nrhs = 251

n

R
at

io

Performance ratio RGELS/DGELS on 160 MHz IBM POWER2: "M", "N", m = 50

Fig. 4.3 Performance ratio of RGELS to DGELS for computing the least squares solution with one
right-hand side and varying m and n (left) and the minimum norm solution with m = 50
and varying n and number of right-hand sides (right) on the 160 MHz IBM Power2.

Recursive Algorithms for Problems 2–4. The recursive algorithm for solving
problem 3 is written in the same spirit. It also performs a recursion over the n-
dimension, and for each recursive step it performs a QR factorization of a block of A,
a triangular solve, updates with Q and QT , and a recursive call.

Problems 2 and 4 are traditionally, e.g., in LAPACK, solved using an LQ factor-
ization of A. For A stored in column-major order, this implies that a Householder
transformation is computed for each row of A. For each element, today’s processors
will transfer one cache line of elements (e.g., 16 elements), of which all but one are
not immediately needed, nor can they be subsequently used if n is large. This causes
severe cache thrashing and an approximate factor of two performance loss over using
a QR approach.

The remedy is both simple and efficient. We perform an explicit transposition
of A, turning problems 2 and 4 into problems 1 and 3, respectively, for which we
already have efficient algorithms. This approach gives two advantages: the amount
of code is reduced by a factor of two and the performance improvement over LA-
PACK is increased by an additional factor of two. In order to produce the same
output as LAPACK DGELS, the factorized AT is again transposed so that on output
A = LQ.

Performance. An extensive performance evaluation for an early version of this
routine is presented in [29]. It includes results for all four problems solved by RGELS.
For each of these, results are presented for varying m, n, and nrhs. The new routine
RGELS outperforms the LAPACK DGELS for all cases tested, and in extreme cases
by up to a factor of five.

For illustration, we present some results in Figure 4.3, which show the performance
ratio between RGELS and DGELS. The left-hand graph shows the performance for
solving problem 1 with nrhs = 1 for varying m and n. The right-hand graph shows
the performance for solving problem 4 with m = 50 for varying n and nrhs.

5. Recursive Blocked Solvers for Triangular Matrix Equations and Condition
Estimation. The fourth case study concerns the successful application of recursive
blocking to the solution of triangular matrix equations. In [60, 61, 62, 63], novel
recursive blocked algorithms for solving one-sided and two-sided Sylvester-type matrix

28 E. ELMROTH, F. GUSTAVSON, I. JONSSON, AND B. KA
◦
GSTRÖM

Table 5.1 One-sided (top) and two-sided (bottom) matrix equations.

Name Matrix equation Acronym
Standard Sylvester (CT) AX −XB = C SYCT
Standard Lyapunov (CT) AX +XAT = C LYCT
Generalized coupled Sylvester (AX − Y B,DX − Y E) = (C,F) GCSY
Standard Sylvester (DT) AXBT −X = C SYDT
Standard Lyapunov (DT) AXAT −X = C LYDT
Generalized Sylvester AXBT − CXDT = E GSYL
Generalized Lyapunov (CT) AXET + EXAT = C GLYCT
Generalized Lyapunov (DT) AXAT − EXET = C GLYDT

equations are presented. In this section, recursive blocking is combined with matrices
stored in standard data format.

The classification in one-sided and two-sided matrix equations distinguishes the
type of matrix product terms that appear and the way updates are performed in
the recursive blocked algorithms. One-sided matrix equations include terms where
the solution is only involved in matrix products of two matrices, e.g., op(A)X or
Xop(A), where op(A) can be A or AT . Examples include the continuous-time
standard Sylvester and Lyapunov equations, and the generalized coupled Sylvester
(GCSY) equation. Two-sided matrix equations include matrix product terms of type
op(A)Xop(B), and examples are the discrete-time standard and generalized Sylvester
and Lyapunov equations. Table 5.1 gives a summary of the one-sided and two-sided
matrix equations considered in [62, 63] together with their individual acronyms, where
we use the abbreviations CT and DT for continuous-time and discrete-time, respec-
tively. Triangular matrix equations appear naturally in different condition estimation
problems for matrix equations and various eigenspace computations, and as reduced
systems in standard algorithms. Related applications include block-diagonalization
of matrices and matrix pairs [6, 19, 69, 4], computation of functions of matrices [62],
the direct reordering of eigenvalues in the real (generalized) Schur form [4, 69], and
the computation of additive decompositions of a (generalized) transfer function [71].

There is a quite extensive literature on the solution of matrix equations, and
we refer to the following selection of fundamental papers [8, 38, 50, 16, 72, 37, 70,
79] that all present reliable algorithms. These standard methods are variants or
generalizations of the Bartels–Stewart method [8]. The new recursive research focus is
on the solution of the one-sided and two-sided triangular counterparts, which typically
are obtained after an initial transformation of matrices (or regular matrix pairs) to
Schur (or generalized Schur) form. Reliable and efficient algorithms for the reduction
step can be found in LAPACK [4] and in [11, 12] for the standard case and [18] for
the generalized case, where a blocked variant of the QZ method is presented.

In the recent new work, for each matrix equation, splittings are defined which in
turn lead to a few smaller problems to be solved. These recursive splittings are applied
to all “half-sized” triangular matrix equations and so on. We terminate the recursion
when the new problem sizes (m and/or n) are smaller than a certain block size,
blksz. Our approach guides us to choose blksz such that at least a few submatrices
involved in the current matrix equation fit in the first-level cache memory. However,
in practice, we use a fixed blksz = 4, which in principle makes the implementations
architecture-independent.

The recursive blocked algorithms allow sliding splittings, with the splitting points
varying between the second and the penultimate rows and/or columns. By not split-

RECURSIVE BLOCKED ALGORITHMS 29

ting in the middle, the algorithms exhibit different memory access patterns and non-
square updates, which in general degrade the performance. In the extreme cases we
obtain the standard algorithms.

5.1. One-Sided and Coupled Sylvester-Type Matrix Equations. We start by
reviewing recursive blocked algorithms for the real continuous-time Sylvester (SYCT)
matrix equation:

(5.1) AX −XB = C.

In (5.1), A has size m×m, B has size n× n, and both are upper triangular or upper
quasi-triangular, i.e., in real Schur form. The right-hand side C and the solutionX are
of size m×n and, typically, the solution overwrites the right-hand side (C ← X). The
SYCT equation (5.1) has a unique solution if and only if A and B have no eigenvalue
in common or, equivalently, Sep[SYCT] �= 0. (For a definition of the Sep-function see
section 5.3.)

Depending on the sizes ofm and n, three alternatives for doing a recursive splitting
are considered. In Case 1 (1 ≤ n ≤ m/2), A is split by rows and columns, and C by
rows only. Similarly, in Case 2 (1 ≤ m ≤ n/2), B is split by rows and columns, and
C by columns only. Finally, in Case 3 (n/2 < m < 2n) both rows and columns of the
matrices A, B, and C are split:
[
A11 A12

A22

] [
X11 X12
X21 X22

]
−
[
X11 X12
X21 X22

] [
B11 B12

B22

]
=
[
C11 C12
C21 C22

]
.

This recursive splitting results in the following four triangular SYCT equations:

A11X11 −X11B11 = C11 −A12X21,

A11X12 −X12B22 = C12 −A12X22 +X11B12,

A22X21 −X21B11 = C21,

A22X22 −X22B22 = C22 +X21B12.

Conceptually, we start by solving for X21 in the third equation. After updating
C11 and C22 with respect to X21, one can solve for X11 and X22. Both updates
and the triangular Sylvester solves are independent operations and can be executed
concurrently. Finally, one updates C12 with respect to X11 and X22 and solves for
X12. In practice, all four subsystems are solved using the recursive blocked algorithm.

Note that the three cases above are straightforward generalizations of the cases
considered for the TRSM operation in section 2.1. However, for SYCT all three cases
have a critical path at the block level that controls the ordering of the computations.
If a splitting point (m/2 or n/2) appears at a 2 × 2 diagonal block, the matrices
are split just below this diagonal block. We remark that the issue of 2 × 2 diagonal
blocks corresponding to conjugate eigenvalue pairs would infer extra overhead if the
a recursive data layout for matrices is used, and therefore a standard data layout is
to be preferred [59].

In the discussion above, we have assumed that both A and B are upper trian-
gular (or quasi-triangular). However, it is straightforward to derive similar recursive
splittings for the triangular SYCT, where each of A and B can be in either upper or
lower Schur form.

Similar recursive splittings for the triangular LYCT and GCSY equations are
presented in [62], where important implementation issues are also discussed. These

30 E. ELMROTH, F. GUSTAVSON, I. JONSSON, AND B. KA
◦
GSTRÖM

0 500 1000 1500 2000 2500
0

200

400

600

800

1000

1200

m=n

M
flo

ps
/s

ec
on

d

Triangular generalized coupled Sylvester on IBM PowerPC 604e.

A. LAPACK DTGSYL
B. rtrgcsy w/ new kernel
C. rtrgcsy w/ SMP BLAS
D. rtrgcsy w/ SMP and recursive //
E. Explicit // w/ SMP BLAS and new kernel
F. LAPACK DTGSYL w/ SMP BLAS

0 500 1000 1500 2000 2500
0

100

200

300

400

500

600

m=n

M
flo

ps
/s

ec
on

d

Triangular generalized coupled Sylvester on Intel Pentium III.

A. LAPACK DTGSYL
B. rtrgcsy w/ new kernel
C. rtrgcsy w/ SMP BLAS
D. rtrgcsy w/ SMP BLAS and recursive //
G. Explicit // w/ SMP BLAS and LAPACK kernel

Fig. 5.1 Performance results for the generalized coupled Sylvester equation (m = n) on an IBM
PowerPC 604e (left) and an Intel Pentium III (right).

include the impact of kernel solvers to the overall performance of the matrix equation
solver, the design of superscalar kernels for solving small-sized matrix equations, and
when to terminate the recursion. Moreover, different aspects regarding the choice of
BLAS implementations and how to implement shared memory parallelism are dis-
cussed.

Due to the “one-sidedness” of the matrix equations, all updates with respect to
the solution of subproblems in the recursion(s) are GEMM operations C ← βC +
αop(A)op(B). Using the GEMM-based approach, some of them can be reorga-
nized in efficient symmetric rank-2k (SYR2K) operations [22, 21, 66, 67]. For details
see [62].

Performance. This subsection ends by presenting some performance results for
the GCSY equation. The choice of the GCSY equation was predicated since a good
implementation of a level 3 explicit blocked algorithm exists [70, 69] and thereby makes
the comparison as challenging and demanding as possible. In Figure 5.1, performance
graphs for different algorithms and implementations, executed on IBM PowerPC 604e
and Intel Pentium III processor–based systems, are displayed [62]. In total, seven dif-
ferent implementations are compared. Two graphs are the LAPACK DTGSYL (A)
and a parallel variant which uses SMP BLAS (F). The LAPACK DTGSYL is an
explicitly blocked level 3 algorithm based on a generalization of the Bartels–Stewart
algorithm [70, 72]. Three graphs are the sequential recursive blocked rtrgcsy (B) and
two parallel variants (C and D). C utilizes implicit data parallelism in the GEMM-

RECURSIVE BLOCKED ALGORITHMS 31

updates by linking to an SMP-aware implementation of BLAS. The routine D also
solves subsystems concurrently and thereby makes use of task parallelism in the re-
cursion tree. The last two (E and G) are new explicitly parallelized implementations
of a standard blocked method [70, 81, 80].

Since the LAPACK DTGSYL is mainly a level 3 routine, its performance increases
with increasing problem sizes and levels out because only one level of blocking is
employed. Nonetheless rtrgcsy shows over a 5-fold speedup with respect to LAPACK
DTGSYL and an additional speedup up to 3.2 on a four processor PowerPC 604e
node for large enough problems. The corresponding results on a two-processor Intel
Pentium III show up to 2.6-fold speedup with respect to LAPACK DTRSYL and
additionally up to an 1.6-fold speedup on two processors. Comparisons have also been
done with rectangular matrices. For the case m = 10n, the recursive implementations
are twice as fast as LAPACK for problem size (m,n) = (1000, 100). By using SMP
versions, an extra speedup of 2.5 is achieved on the IBM PowerPC 604e, where for
larger problems even better results occur [62].

For additional results and discussion we refer to [62]. Notably, the recursive
blocked implementation rtrsyct shows between a 2-fold to a 35-fold speedup with
respect to LAPACK DTRSYL and an additional speedup up to 2.8 on a four processor
PowerPC 604e node for large enough problems. The LAPACK DTRSYL implements
an explicit Bartels–Stewart solver and is mainly a level 2 routine, which explains its
relatively poor performance behavior.

5.2. Two-Sided and Generalized Sylvester and Lyapunov Matrix Equations.
Some of the matrix equations in Figure 5.1 can be seen as special cases of other
formulations. In practice, this study treats all matrix equations separately, since
either these equivalences include matrix inversion (when transforming a generalized
matrix equation to a standard counterpart) or the matrix equations have symmetry
structure that we want to take advantage of in the algorithms.

To illustrate such a case consider the real generalized discrete-time Lyapunov
(GLYDT) matrix equation

(5.2) AXAT − EXET = C,

where A and E of size n×n are upper quasi-triangular and upper triangular, respec-
tively. In other words, (A,E) is in generalized Schur form. If C is symmetric, then
X is symmetric as well. Mathematically, GLYDT is as a special case of GSYL (with
A = B and C = D).

The GLYDT equation (5.2) has a unique symmetric solution if and only if C = CT

and the eigenvalues λi of A−λE satisfy λiλj �= 1 for all i and j (with the convention
that 0 · ∞ = 1), or, equivalently, Sep[GLYDT] �= 0. (For a definition of the Sep-
function see section 5.3.) If C is (semi)definite and |λi(A− λE)| < 1 for all i, then a
unique (semi)definite solution exists [79].

Since all matrices are square, the recursive splitting is done on both the rows and
columns of A, E, and C [63]:

[
A11 A12

A22

] [
X11 X12
X21 X22

] [
AT11
AT12 AT22

]

−
[
E11 E12

E22

] [
X11 X12
X21 X22

] [
ET11
ET12 ET22

]
=
[
C11 C12
C21 C22

]
.

32 E. ELMROTH, F. GUSTAVSON, I. JONSSON, AND B. KA
◦
GSTRÖM

Since X21 = XT
12, the recursive splitting results in three triangular GLYDT equations:

A11X11A
T
11 − E11X11E

T
11 = C11 −A12X

T
12A

T
11 − (A11X12 +A12X22)AT12

+ E12X
T
12E

T
11 + (E11X12 + E12X22)ET12,

A11X12A
T
22 − E11X12E

T
22 = C12 −A12X22A

T
22 + E12X22E

T
22,

A22X22A
T
22 − E22X22E

T
22 = C22.

We start by solving for X22 in the third equation. After updating C12 with respect to
X22, we can solve for X12. Finally, after updating C11 with respect to X12 and X22,
we solve for X11.

Four of the two-sided matrix product updates of C11 can be expressed as two
SYR2K operations,

C11 = C11 − (A11X12)AT12 −A12(A11X12)T ,
C11 = C11 + (E11X12)ET12 + E12(E11X12)T ,

where A11X12 and E11X12 are triangular matrix multiply (TRMM) operations. The
GEMM-rich updates

C11 = C11 −A12X22A
T
12 and C11 = C11 + E12X22E

T
12

with C11 = CT11 and X22 = XT
22 can be performed efficiently (see the SLICOT

MB01RD subroutine [90]).

Performance. In contrast to the one-sided matrix equations, the recursive blocked
algorithms for the two-sided matrix equations require extra workspace and execute
more flops compared to the standard elementwise algorithms. The extra workspace is
needed in the evaluation of the two-sided matrix multiplications of type op(A)Xop(B).
Despite the quite large flops penalties of the recursive blocked algorithms [63], they
outperform the standard algorithms for large enough problems (obtaining tenfold
speedups and more). For example, solving discrete-time Sylvester and Lyapunov
equations with coefficient matrices of size 2000 × 2000 takes around one hour using
the current routines in the SLICOT library [90], while the corresponding solution
times of the new recursive blocked algorithms are less than one minute. This fact is
mainly due to the difference in their data reference patterns, i.e., the order in which
they access data and how many times the data is moved in the memory hierarchy of
the target computer system. Clearly, the cost of redundant memory transfers can be
devastating to the algorithm performance.

As for the one-sided matrix equations [62], we have developed new high-perfor-
mance superscalar kernels for solving the remaining small-sized triangular matrix
equations and lightweight GEMM operations, which implies that a larger part of the
total execution time is spent in higher performing GEMM operations. Also for the
two-sided matrix equations one can terminate the recursion with blksz = 4 without
degrading performance. Moreover, recursive blocking allows the development of op-
timized two-sided matrix product kernels that take any symmetry properties as well
as any triangular or trapezoidal structure of the matrices into account. These effi-
ciencies allow one to maximize the performance of these two-sided matrix product
operations, e.g., AXBT . See [63] for more information about implementation issues
and performance results of the two-sided recursive blocked algorithms.

RECURSIVE BLOCKED ALGORITHMS 33

Table 5.2 Sep-functions associated with one-sided (top) and two-sided (bottom) matrix equations.

Z-matrix Sep-function = σmin(Z)
ZSYCT = In ⊗A−BT ⊗ Im inf‖X‖F=1 ‖AX −XB‖F
ZLYCT = In ⊗A+A⊗ In inf‖X‖F=1 ‖AX −X(−AT)‖F
ZGCSY =

[
In ⊗A −BT ⊗ Im
In ⊗D −ET ⊗ Im

]
inf‖(X,Y)‖F=1 ‖(AX − Y B,DX − Y E)‖F

ZSYDT = B ⊗A− In ⊗ Im inf‖X‖F=1 ‖AXBT −X‖F
ZLYDT = A⊗A− In ⊗ In inf‖X‖F=1 ‖AXAT −X‖F
ZGSYL = B ⊗A−D ⊗ C inf‖X‖F=1 ‖AXBT − CXDT ‖F
ZGLYCT = E ⊗A+A⊗ E inf‖X‖F=1 ‖AXET − EX(−AT)‖F
ZGLYDT = A⊗A− E ⊗ E inf‖X‖F=1 ‖AXAT − EXET ‖F

5.3. Matrix Equation Solvers in Condition Estimation. All linear matrix equa-
tions can be written as a linear system of equations Zx = c, where Z is a Kronecker
product matrix representation of the associated Sylvester-type operator, and the so-
lution x and the right-hand side c are represented in vec(·) notation. vec(X) denotes
a column vector with the columns of X stacked on top of each other. The Z-matrices
associated with the matrix equations of Table 5.1 are listed in Table 5.2 (left part).

An important quantity in the perturbation theory for Sylvester-type equations is
the separation between two matrices [93], defined as

Sep[A,B] = inf
‖X‖F=1

‖AX −XB‖F = σmin(ZSYCT),

where σmin(ZSYCT) ≥ 0 is the smallest singular value of ZSYCT. A review of some of
its characteristics is in order: Sep[A,B] = 0 if and only if A and B have a common
eigenvalue; Sep[A,B] is small if there is small perturbation of A or B that makes
them have a common eigenvalue. The Sep-function may be much smaller than the
minimum distance between the eigenvalues of A and B. The Sep-functions associated
with the matrix equations of Table 5.1 are listed in Table 5.2 (right part), which
all can be expressed as σmin(Z), where Z corresponds to the Kronecker product
matrix representation of the associated Sylvester-type operator. Indeed, the matrix
equations considered have a unique solution if and only if the associated Sep-functions
are nonzero, i.e., σmin(Z) > 0.

Computing σmin(ZSYCT) is typically an O(m3n3) operation, which is imprac-
tical already for moderate values on m and n. In [68], it is shown how reliable
Sep[SYCT]−1-estimates can be computed to the cost O(mn2 +m2n) by solving tri-
angular matrix equations:

‖x‖2
‖c‖2

=
‖X‖F
‖C‖F

≤ ‖Z−1
SYCT‖2 =

1
σmin(ZSYCT)

= Sep−1.

The right-hand side C is chosen such that the lower bound gets as large as possible.
This leads to a Frobenius-norm–based estimate. For computation of 1-norm–based
estimates see [49, 52, 68]. Reliable estimates of Sep[GCSY] (the separation between
two matrix pairs [93]) are presented and discussed in [70, 69, 72]. The same tech-
niques can be used for estimating all the Sep-functions of Table 5.2. The underlying
perturbation theory for these Sylvester-type equations is presented in [53, 65, 54].

Performance for Unreduced Matrix Equations with Optional Condition Esti-
mation. We end this subsection by presenting some performance results that show

34 E. ELMROTH, F. GUSTAVSON, I. JONSSON, AND B. KA
◦
GSTRÖM

Table 5.3 Timings for solving unreduced two-sided matrix equations (GLYDT) with optional con-
dition estimation. (Job = X, compute solution only; Job = X + Sep, compute solution
and Sep-estimation.) Results from 375 MHz IBM Power3.

(a)

SG03AD using SG03AX SG03AD using rtrglydt
n Total time Solver part Total time Solver part Speedup Job

50 0.0277 49.9 % 0.0185 20.1 % 1.50 X
100 0.180 51.2 % 0.0967 9.0 % 1.86 X
250 2.89 46.8 % 1.62 4.7 % 1.79 X
500 59.0 42.3 % 34.5 1.5 % 1.71 X
750 303.4 42.0 % 177.5 0.9 % 1.71 X

1000 646.6 44.6 % 361.8 1.0 % 1.79 X

50 0.117 87.6 % 0.0263 45.6 % 4.44 X+Sep
100 0.709 87.3 % 0.152 40.6 % 4.68 X+Sep
250 9.98 84.5 % 2.08 25.4 % 4.81 X+Sep
500 178.6 80.9 % 37.8 9.4 % 4.73 X+Sep
750 924.1 80.9 % 184.4 4.5 % 5.01 X+Sep

1000 2076.6 82.7 % 391.8 8.4 % 5.30 X+Sep

(b)

SG03AD using SG03AX SG03AD using rtrglydt
n Total time Solver part Total time Solver part Speedup Job

50 0.0306 44.7 % 0.019 11.2 % 1.61 X
100 0.213 43.2 % 0.129 6.5 % 1.65 X
250 3.18 42.5 % 1.90 3.9 % 1.67 X
500 41.8 59.7 % 17.3 2.9 % 2.41 X
750 187.1 68.2 % 61.1 2.7 % 3.06 X

1000 428.9 67.2 % 144.1 2.5 % 2.98 X

50 0.120 85.4 % 0.0285 39.1 % 4.19 X+Sep
100 0.741 83.5 % 0.166 26.2 % 4.47 X+Sep
250 10.3 82.1 % 2.69 31.0 % 3.83 X+Sep
500 161.3 89.5 % 20.0 15.3 % 8.06 X+Sep
750 807.7 92.6 % 67.9 12.1 % 11.89 X+Sep

1000 1857.4 92.4 % 174.0 18.9 % 10.68 X+Sep

the impact of the choice of triangular matrix equation solver on both the time to solve
unreduced matrix equations and the time to compute an estimate of the associated
Sep-function. Although the transformation of an unreduced matrix equation to a tri-
angular counterpart and the backtransformation of the solution are normally at least
as costly operations (measured in flops) as the triangular solve, the impact of using
our recursive triangular solvers can be substantial.

For illustration, the SLICOT routine SG03AD which solves unreduced GLYDT
equations with an option to compute an estimate of the separation Sep[GLYDT]
= σmin(ZGLYDT) can be used. In Table 5.3a, timings for the SG03AD routine are
displayed for problem sizes ranging from 50 to 1000 using two different triangular
matrix equation solvers [63]. These solvers are called SG03AX in SLICOT; they
implement a variant of the Bartels–Stewart method by calling BLAS [79], and the
recursive blocked rtrglydt algorithm [63]. In the second column, the total times for
solving an unreduced system with SG03AX as the triangular solver are displayed. This
includes the time for the generalized Schur factorization and the backtransformation
of the solution. In the fourth and fifth columns, similar results are displayed when
SG03AX is replaced by the rtrglydt routine. We see up to a factor 1.9 speedup for the
problem sizes considered. The numbers in the lower part of Table 5.3a also include
the time for computing a 1-norm–based estimate for Sep[GLYDT]. The condition

RECURSIVE BLOCKED ALGORITHMS 35

A ∼

1 11 21 31 41 51 61
2 12 22 32 42 52 62
3 13 23 33 43 53 63
4 14 24 34 44 54 64
5 15 25 35 45 55 65
6 16 26 36 46 56 66
7 17 27 37 47 57 67
8 18 28 38 48 58 68
9 19 29 39 49 59 69

10 20 30 40 50 60 70

∼

1 5 9 13 49 53 57 ∗
2 6 10 14 50 54 58 ∗
3 7 11 15 51 55 59 ∗
4 8 12 16 52 56 60 ∗

17 21 25 29 65 69 73 ∗
18 22 26 30 66 70 74 ∗
19 23 27 31 67 71 75 ∗
20 24 28 32 68 72 76 ∗
33 37 41 45 81 85 89 ∗
34 38 42 46 82 86 90 ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

(BC)

Fig. 6.1 Square block column (BC) data format for matrix A of size 10×7, blksz = 4. The number
in location (i, j) is a(i, j)’s storage position in A.

estimation process includes repeated calls (typically five) to the generalized triangular
solver, and as expected we see a four- to fivefold speedup when using the new recursive
solver.

In Table 5.3b [63], the corresponding results are displayed when we have replaced
the LAPACK routines DGGHRD and DHGEQZ by Dackland–K̊agström’s blocked
Hessenberg-triangular reduction and QZ algorithms [18] for transforming the regular
pair (A,E) to generalized Schur form. For large enough problems, these algorithms
give another factor of two speedup.

6. Blocked Standard Algorithms andHybrid Data Formats. The previous sec-
tions have shown the generality and the strength of the recursive approach for de-
veloping efficient and robust algorithms and library software for dense linear algebra
computations. However, other techniques that follow the algorithms and architecture
approach can also be very useful. By changing the data format, and by implementing
kernel routines which are optimal when using this new data format, very high per-
formance can be achieved (see section 2). This section briefly illustrates the use of
square blocked data formats combined with standard (nonrecursive) algorithms.

Matrices stored in block format are split in rectangular or square blocks, where
each block is stored either in row or column order. In Figure 6.1, the layout of
individual elements in memory is displayed when padding is used for the last block
row and column.

Now, to obtain a blocked standard algorithm the scalar operations in a point-
wise algorithm are replaced by calls to kernel routines for the submatrices. There are
several ways to store and reference the blocks. One is to use pointers to reference
blocks [75]. Another is to use three- or four-dimensional arrays [45, 44]. The latter
provides a straightforward way to address the blocks in Fortran programs, as easy as
addressing scalars in textbook elementwise algorithms. When the scalar algorithm
uses a fused multiply and add, the block algorithms use a GEMM kernel. Similarly,
a scalar division or multiply translates into a TRSM or TRMM kernel, respectively.

We remark that our hybrid data formats, in general, eliminate excessive data
copying. Such copyings are necessitated when TLB (translation look-aside buffer,
contains cross-references between the virtual and real addresses) and/or cache utiliza-
tion is poor due to bad leading dimensions and large access strides in the operands.
The copying is eliminated by use of the hybrid data formats, as the blocks of the
operands are already contiguous and fit into L1 cache.

The standard or packed blocked formats are also applicable to triangular arrays.
The main benefit of these formats is that they also allow for level 3 performance while

36 E. ELMROTH, F. GUSTAVSON, I. JONSSON, AND B. KA
◦
GSTRÖM

using about half the storage of the full array cases (see also section 3). Implementation
details and performance results are given in [45, 44]. The good performance of the
square blocked algorithms is yet another example of the importance of matching the
algorithm with the data format. However, the square blocked algorithms give only
one level of cache blocking. For some processors, this can be enough, though. Even so,
it is possible to explicitly block on top of a square block format for higher levels of the
memory hierarchy. On the other hand, the recursive blocked algorithms provide the
potential to automatically block for all levels of cache, which is especially important
for architectures with an unbalanced memory system hierarchy.

7. Related and Complementary Work. There are several other groups that
have been contributing to this new research area. In the following, but without
pretending to be complete, we give a short overview of some of these contributions
that either relate to or complement the case studies presented.

7.1. Recursive Algorithms and Hybrid Data Structures. We start by discuss-
ing some related work on recursive algorithms and hybrid data structures. Most work
concern matrix multiplication, which is a very regular operation with nice properties.
Also, it is the natural algorithm to look at. For example, the resulting GEMM sub-
operations after a block partitioning of the matrices involved can be executed in any
order. This fact makes it possible to formulate several different recursive blocked vari-
ants of the standard algorithm (see section 2.1). Moreover, we also have the recursive
algorithms of Winograd and Strassen [94, 26, 20, 56]. Nevertheless, the performance
of the GEMM operation can be highly sensitive to memory system behavior.

Recently, Chatterjee et al. [15] evaluated five recursive data layouts for two-
dimensional arrays. Four of these are different Morton variants (Z, U, X, G) and
the last one is the Hilbert layout for a space-filling curve [84]. These recursive layouts
are used in three recursive blocked algorithms for matrix multiplication (standard,
Strassen, Winograd). One of their conclusions is that recursive array layouts signif-
icantly outperform traditional array layouts for the blocked recursive standard algo-
rithm, where splitting is used in all three problem dimensions (see section 2), while
they offer little improvement for the block versions of the Strassen and Winograd al-
gorithms. Another contribution of their work is explicit expressions for the recursive
layout functions. Moreover, they claim that the overheads due to addressing these
recursive layouts are only marginal.

Valsalam and Skjellum [97] presented a conceptual framework for developing high-
performance polyalgorithmic matrix multiplication routines using hierarchical storage
formats and optimized processor-specific kernels. The hierarchical matrix format con-
sists of four levels, and their motivation for proposing such a complex data format
was to efficiently apply the Z-Morton ordering to arbitrary-sized matrices. The poly-
algorithms are based on comparative evaluations of different algorithms (standard (it-
erative); modified recursive (Frens and Wise [102]); oscillating iterative—incorporates
the two-miss feature of the modified recursive algorithm—always possible to compute
the next block product by reusing one of the three blocks and loading the other two
[102]; and Strassen’s algorithm). They show very good performance results on several
platforms. One important factor is the use of lightweight interfaces for linear algebra
kernels, which operate on blocks that fit in the L1 cache.

In [95], Toledo used a recursive approach for the LU factorization with partial
pivoting and analyzed the locality of reference in the new algorithm, showing that
the recursive blocked algorithm experiences fewer cache misses than the right-looking
algorithm.

RECURSIVE BLOCKED ALGORITHMS 37

Rabani and Toledo used our recursive QR factorization algorithm in out-of-core
implementations of the QR factorization and the singular value decomposition (SVD)
in the SOLAR software library [82]. The recursive QR factorization gives excellent
performance for very tall, thin matrices, too large to be stored in memory. If A is
m × n with m > n, the SVD is computed by an out-of-core factorization A = QR
followed by an in-core SVD of the (small) matrix R. In [83], these algorithms were
used in an orthogonalization step of an out-of-core filter diagonalization method for
electronic structure calculations. This work clearly emphasizes the recursive algo-
rithms ability to perform an efficient blocking for an arbitrary number of levels of the
memory hierarchy.

More recently, Irony, Shklarski, and Toledo also applied these techniques to de-
velop recursive multifrontal supernodal algorithms for sparse Cholesky factorization
[58]. They used the recursive algorithm both on the complete sparse problem and on
each dense matrix block. Moreover, they used our recursive blocked data structures
described in section 2.2.1 for matrix storage. Their algorithm outperformed the SGI
SCSL library software as the matrix size exceeds the L2 cache memory.

Frens and Wise [32] presented a Givens-based recursive QR factorization for
quadtree matrices in Morton-order storage. The disadvantage of Givens rotations is
that this algorithm requires significantly more flops than a Householder-based coun-
terpart, partially offsetting the increased efficiency gained by recursive blocking.

Also Dongarra, Eijkhout, and YLuszczek adopted the recursive technique to sparse
matrices, in this case sparse LU factorization without pivoting [24]. Since no pivoting
is performed, the matrix partitioning can be performed over both dimensions and
the recursive factorization call is made for the top-left block. Besides that, the main
differences from the corresponding dense algorithm are how the matrix is stored and
that calls are made to sparse BLAS instead of dense BLAS. The matrix is stored in a
hybrid recursive format. In summary, this study shows potential for recursion also for
sparse matrix factorizations, even though there is still a need for further algorithmic
improvements and understanding of when to use these algorithms.

7.2. Automated Generation of Library Software and Compiler Technology.
A complementary direction of research is the development of tools for automatic
generation of software optimized for a given architecture. The main motivation is to be
able to provide tuned library software along with the rapid development of improved
and new increasingly powerful computer systems. The knowledge and experience
gained from the research on algorithms, new data structures, and library software is
a mandatory prerequisite for successful research in this area. We briefly discuss some
recent work based on empirical techniques and heuristic optimization as well as some
compiler technology work.

The ATLAS (Automatically Tuned Linear Algebra Software) project applies
empirical techniques in order to provide portable performance [100, 5]. Typically,
a code generator is used for the GEMM kernel C = C − ATB for matrices usually
stored in square blocked format to provide the many different ways of performing
this given operation, and search scripts and timings are used to find the best way
to “unroll” for a given architecture. The first project in this vein is PHiPAC [9].
Today, ATLAS provides support for the level 3 BLAS, most of level 1–2 BLAS, and
some factorization routines. Their current implementation of the level 3 BLAS is
a recursive GEMM-based design, which builds on the GEMM-based level 3 BLAS
by K̊agström, Ling, and Van Loan [66, 67] and our blocked recursive approach
[46, 47].

38 E. ELMROTH, F. GUSTAVSON, I. JONSSON, AND B. KA
◦
GSTRÖM

ATLAS reports impressive performance results on a broad range of state-of-the-
art processors [5], although not for all. Certainly, there are instances when one does
better by using analytical tools and techniques (e.g., see [67, 97, 40]) and special ar-
chitectural features in developing efficient library software. Today, ATLAS is the
most widely used software that provides a quick-to-implement and tuned level 3
BLAS for several different architectures. This provides quick and easy access to
high-performance libraries such as LAPACK [4], SLICOT [90], etc. In this context,
we remark that the current LAPACK is heavily based on calls to BLAS libraries
with repetitive data copying. Today’s superscalar processors with deep memory hi-
erarchies tend increasingly to require optimized kernel routines with light interfaces,
with data structures requiring minimal or no data copy, as well as exploit new ar-
chitectural features such as the Intel Streaming SIMD Extensions (SSE and SSE2).
Additional related recent work by the UC Berkeley group includes statistical mod-
els for automatic performance tuning and memory hierarchy optimization for sparse
matrix kernels [98, 99].

The FLAME (Formal Linear Algebra Methods Environment) project [41, 42] de-
velops a framework that facilitates the derivation and implementation of linear algebra
algorithms on high-performance computer systems. A formal technique is applied to
systematically derive well-known algorithms and their variants for a given matrix
operation. So far, the framework has been demonstrated on a few case studies, in-
cluding LU factorization. Results are presented that show performance comparable
to an ATLAS-generated high-performance LU implementation. FLAME is an in-
teresting concept based on the derivation of loop invariants for iterative algorithm
implementations. Although FLAME can derive algorithms, there is of course no
guarantee that these are numerically stable. We remark that (semi)automatic gen-
eration of software should be based only on algorithms with proven good stability
characteristics.

Park, Hong, and Prasanna [77] have studied recursive and block standard data
layouts. They call the latter BDL (block data layout) and our recursive layout RBR is
called Morton layout of the blocks. They perform an experiment of passing through a
large n×n matrix in both the row and column directions. They show that L1 and L2
cache misses and TLB misses are minimized for any data layout for certain block sizes
when using these data layouts. Their result provides both analytic and experimental
evidence of our heuristic and experimental claims about the optimality of our data
layouts.

From a compiler technology point of view, the ultimate goal is to be able to take
an arbitrary code as input and generate optimal tuned code as output for a given lan-
guage and computer system. Locality of reference issues such as blockability have been
studied by several compiler groups during the last decade. The first is a prize-winning
paper by Wolf and Lam [103]. This work applies to loop nests not possessing com-
plicated data-dependent branches. The paper looks at matrix multiplication, SOR,
and LU without pivoting. They present a loop transformation algorithm based on two
concepts: a mathematical formulation of reuse and locality, and a loop transformation
theory that unifies the various transforms as unimodular matrix transformations. For
n = 500 matrix multiplication they get a 2.75 times performance boost using both
cache and register tiling. And for eight processors of an SGI 4D/380 using 64 × 64
cache blocks and 4×2 register blocks they get speedups of over seven. The best result
for all eight processors was about 64 Mflops/s. For n = 500 LU without pivoting
32 × 32 cache blocks (no register tiling) was best. However, the best result, again
with all eight processors, was 25 Mflops/s.

RECURSIVE BLOCKED ALGORITHMS 39

The first ESSL release for RISC workstations [55] written in Fortran featured
cache and TLB blocking and data copying to produce level 3 BLAS and dense lin-
ear algebra software that achieved about 90% of the theoretical peak performance
of the IBM Power1 for almost all matrix sizes. Similar results were modeled and
experimentally verified in [103] and [73].

Recent work on compiler blockability of dense matrix factorizations by Carr and
Lehoucq [14] used a GEMM-based approach [66, 67]. Also, compiler groups at Cornell
University and Rice University have started research on recursive blocked algorithms
and data structures.

Ahmed and Pingali [2] described compiler technology to translate iterative algo-
rithms for matrix multiplication and Cholesky factorization into block-recursive form.
They also studied the cache behavior and performance of these compiler-generated
recursive blocked codes. The results are promising but the automated generated codes
have yet to reach the levels of hand-tuned versions.

In [104], Yi, Adve, and Kennedy presented work on compiler transformations that
convert loop nests into recursive form. Compared to previous work on code transfor-
mations for improving data locality, this work has two main features. It combines the
effect of blocking at multiple levels into one single transformation and, when applied
to multiple loop nests, it unifies the blocking and loop fusion transformations.

In summary, these efforts of trying out the recursive approach in compiler technol-
ogy for dense matrix computations have given positive results that motivate further
studies. One challenge is the development of a linear algebra compiler.

8. Concluding Remarks. Recursion is a well-known concept and technique for
formulating algorithms in computing science. This survey shows that recursive al-
gorithms and related data structures apply well to the area of dense linear algebra.
Recent results are novel variably blocked algorithms and hybrid data formats for the
efficient solution of dense linear algebra problems on today’s memory-tiered systems.
Furthermore, this research has produced robust and efficient library software, which
is publicly available. The accuracy of the results computed by our recursive imple-
mentations are overall very good, the same accuracy as obtained by corresponding
LAPACK [4] and SLICOT [90] routines.

The new high-performance software implementations are based on data locality
and superscalar optimization techniques. In summary, application of the recursive
techniques has demonstrated how excellent performance can be obtained by using
the first, the first two, or all three of the following components: recursive blocked
algorithms; superscalar kernels; and hybrid data structures.

The recursive blocked algorithms improve on the temporal data locality (see sec-
tions 2, 3, 4, and 5); the hybrid data formats improve on the spatial data locality (see
sections 2 and 3) to the extent that is possible (see [77]). Each block gives optimal
temporal data locality when in L1 cache. With data copy, sometimes not necessary,
spatial data locality becomes optimal with respect to cache and TLB misses when
using a standard algorithm [77]. Moreover, portable and generic superscalar kernels
ensure that all functional units on the processor(s) are used efficiently (see sections 2,
3, 4, and 5). For the routines where hybrid data formats are used some extra work to
convert data from and to standard storage formats is required. The time needed for
the O(mn) copy work of an m× n matrix is typically between 5 to 20% for problem
sizes up to 100 and can be neglected for large-sized matrix computations. However,
it is difficult to completely characterize and understand which gains contribute to
better temporal and spatial localities, respectively, and more research on this issue

40 E. ELMROTH, F. GUSTAVSON, I. JONSSON, AND B. KA
◦
GSTRÖM

Table 8.1 Sample performance results of LAPACK expert drivers with and without RECSY routines
(375 MHz IBM Power3 platform).

n b DTRSEN
(sec)

recsyct
DTRSYL

Speedup DTGSEN
(sec)

recgcsy
DTGSYL

Speedup

100 10 6.19e-3 0.72 1.38 93.5e-3 0.53 1.89
100 50 18.4e-3 0.63 1.60 254.e-3 0.52 1.92

1000 10 2.03 0.30 3.33 4.44 0.60 1.66
1000 100 18.7 0.24 4.08 41.5 0.56 1.80
1000 500 81.7 0.12 8.38 135.7 0.49 2.05

is warranted. Nonetheless, the results from the four case studies and related work
reviewed show the strength and potential of the recursive techniques presented and
applied to dense linear algebra problems.

As mentioned, one can always get equally good results by explicit multilevel
blocking. However, this is a much more error-prone and time-consuming process,
and usually the recursive blocked approach leads to much simpler algorithms that at
most require knowledge of the L1 cache characteristics. In combination with generic
superscalar kernels, the algorithms and software are more portable.

Some software implementations are included in the IBM ESSL library [56]. For
symmetric positive definite matrices in packed format, S/DPPF and S/DPPFCD
compute the Cholesky and LDLT factorizations, respectively. Based on these fac-
torizations, S/DPPS solves a linear system and S/DPPICD computes the inverse,
determinant, and the condition number for a given matrix. For general matrices in
standard storage format, DGEQRF computes the QR factorization (also in parallel)
and DGELS computes the least squares and minimum norm solutions to over- and
underdetermined linear systems.

All software implementations of the triangular matrix equations are available in
the RECSY library [64]. It comprises a set of Fortran 90 routines, which uses recursion
and OpenMP for shared memory parallelism to solve eight different matrix equations,
including continuous-time as well as discrete-time standard and generalized Sylvester
and Lyapunov equations. Instead of using the native routines, the library also provides
wrapper routines, which overload SLICOT [90] and LAPACK [4] routines. By linking
with the library, calls to SLICOT and LAPACK Sylvester-type matrix equations
solvers will be replaced by calls to the optimized RECSY equivalents.

As an illustration of this library performance, in Table 8.1, speedups a user is likely
to see compared to LAPACK is given in a slightly larger context. Here, the LAPACK
expert drivers DTRSEN and DTGSEN, which compute the Schur and generalized
Schur forms, respectively, and the condition number of a selected invariant or deflating
subspace are shown. They are called for different matrix sizes n and sizes b of the
selected subspace. Besides condition estimation, the computations include reduction
to (generalized) Schur form, reordering of eigenvalues such that the eigenvalues of the
selected subspace appear in the (1, 1) block of the matrix (DTRSEN) or matrix pencil
(DTGSEN). It is only in the 1-norm condition estimation of the Sep-function that
calls to the LAPACK triangular Sylvester-type solvers DTRSYL (mainly a level 2
implementation) and DTGSYL (a level 3 implementation [70, 69]) are replaced by
calls to recsyct and recgcsy, respectively. For large enough n and b one will see a
speedup of eight for calling the expert drivers DTRSEN and two for DTGSEN when
using the new recursive matrix equation solvers. In conclusion, RECSY provides a
significant improvement.

RECURSIVE BLOCKED ALGORITHMS 41

We end our survey by remarking that the successful application of recursive tech-
niques to matrix computations leaves some open problems in how to apply recur-
sion to improve performance of “two-sided” linear algebra operations, such as the
reduction to (generalized) Hessenberg, symmetric tridiagonal, or bidiagonal forms.
One challenge is to see if recursion can reduce the nontrivial fraction of level 1
and level 2 operations that are currently applied to both sides of the matrix under
reduction.

Acknowledgments. This research was conducted using the resources of the High
Performance Computing Center North (HPC2N), PDC–Parallelldatorcentrum at KTH,
Stockholm, and UNI-C, Danish Technical University, Lyngby. Several people have
been instrumental to our work. Especially, we thank Per Ling, former member of the
Ume̊a team; the former Master students André Henriksson, Olov Gustavsson, and
Andreas Lindkvist; and Bjarne Andersen and Jerzy Wasniewski of UNI-C, Lyngby,
for their contributions. We are also grateful for constructive comments from James
Demmel, Randy LeVeque, Margaret Wright, and an anonymous referee, who have
improved on both the readability and the content of the final manuscript.

REFERENCES

[1] R. C. Agarwal, F. G. Gustavson, and M. Zubair, Exploiting functional parallelism of
POWER2 to design high-performance numerical algorithms, IBM J. Res. Develop., 38
(1994), pp. 563–576.

[2] N. Ahmed and K. Pingali, Automatic generation of block-recursive codes, in Euro-Par 2000
Parallel Processing, A. Bode et al., eds., Lecture Notes in Comput. Sci. 1900, Springer-
Verlag, New York, 2000, pp. 368–378.

[3] B. Andersen, F. Gustavson, and J. Waśniewski, A recursive formulation of Cholesky
factorization of a matrix in packed storage, ACM Trans. Math. Software, 27 (2001),
pp. 214–244.

[4] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz,
A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen, LAPACK Users’
Guide, 3rd ed., SIAM, Philadelphia, 1999.

[5] ATLAS, Automatically Tuned Linear Algebra Software, http://math-atlas.sourceforge.net/.
[6] Z. Bai, J. Demmel, and A. McKenney, On computing condition numbers for the nonsym-

metric eigenproblem, ACM Trans. Math. Software, 19 (1993), pp. 202–223.
[7] J. Barnes and P. Hut, A hierarchical O(nlogn) force calculation algorithm, Nature, 324

(1986), pp. 446–449.
[8] R. H. Bartels and G. W. Stewart, Solution of the equation AX+XB = C, Comm. Assoc.

Comput. Mach., 15 (1972), pp. 820–826.
[9] J. Bilmes, K. Asanovic, C.-W. Chin, and J. Demmel, Optimizing matrix multiply using

PHiPAC: A portable high-performance ANSI C methodology, in Proceedings of the In-
ternational Conference on Supercomputing, Vienna, 1997, pp. 340–347.

[10] C. Bischof and C. Van Loan, The WY representation for products of Householder matrices,
SIAM J. Sci. Statist. Comput., 8 (1987), pp. s2–s13.

[11] K. Braman, R. Byers, and R. Mathias, The multishift QR algorithm. Part I: Maintaining
well-focused shifts and level 3 performance, SIAM J. Matrix Anal. Appl., 23 (2002),
pp. 929–947.

[12] K. Braman, R. Byers, and R. Mathias, The multishift QR algorithm. Part II: Aggressive
early deflation, SIAM J. Matrix Anal. Appl., 23 (2002), pp. 948–973.

[13] J. R. Bunch, J. J. Dongarra, C. B. Moler, and G. W. Stewart, LINPACK User’s Guide,
SIAM, Philadelphia, 1979.

[14] S. Carr and R. B. Lehoucq, Compiler blockability of dense matrix factorizations, ACM
Trans. Math. Software, 23 (1997), pp. 336–361.

[15] S. Chatterjee, A. R. Lebeck, P. K. Patnala, and M. Thottethodi, Recursive array
layouts and fast matrix multiplication, IEEE Trans. Parallel Distrib. Systems, 13 (2002),
pp. 1105–1123.

[16] K.-W. E. Chu, The solution of the matrix equations AXB−CXD = E and (Y A−DZ, Y C−
BZ) = (E,F), Linear Algebra Appl., 93 (1987), pp. 93–105.

42 E. ELMROTH, F. GUSTAVSON, I. JONSSON, AND B. KA
◦
GSTRÖM

[17] J. J. M. Cuppen, A divide and conquer method for the symmetric tridiagonal eigenproblem,
Numer. Math., 36 (1981), pp. 177–195.

[18] K. Dackland and B. Kågström, Blocked algorithms and software for reduction of a
regular matrix pair to generalized Schur form, ACM Trans. Math. Software, 25 (1999),
pp. 425–454.

[19] J. Demmel and B. Kågström, Computing stable eigendecompositions of matrix pencils,
Linear Algebra Appl., 88/89 (1987), pp. 139–186.

[20] J. W. Demmel and N. J. Higham, Stability of block algorithms with fast level-3 BLAS,
ACM Trans. Math. Software, 18 (1992), pp. 274–291.

[21] J. Dongarra, J. Du Croz, I. Duff, and S. Hammarling, Algorithm 679: A set of level 3
basic linear algebra subprograms, ACM Trans. Math. Software, 16 (1990), pp. 18–28.

[22] J. Dongarra, J. Du Croz, I. Duff, and S. Hammarling, A set of level 3 basic linear
algebra subprograms, ACM Trans. Math. Software, 16 (1990), pp. 1–17.

[23] J. Dongarra, J. Du Croz, S. Hammarling, and R. J. Hanson, An extended set of Fortran
basic linear algebra subroutines, ACM Trans. Math. Software, 14 (1988), pp. 1–17.

[24] J. Dongarra, V. Eijkhout, and P. 5Luszczek, Recursive approach in sparse matrix LU
factorization, Sci. Programming, 9 (2001), pp. 51–60.

[25] J. J. Dongarra and D. W. Walker, Software libraries for linear algebra computations on
high performance computers, SIAM Rev., 37 (1995), pp. 151–180.

[26] C. G. Douglas, M. Heroux, G. Slishman, and R. M. Smith, GEMMW: A portable level 3
BLAS Winograd variant of Strassen’s matrix multiply algorithm, J. Comput. Phys., 110
(1994), pp. 1–10.

[27] E. Elmroth and F. G. Gustavson, New serial and parallel recursive QR factorization
algorithms for SMP systems, in Applied Parallel Computing: Large Scale Scientific
and Industrial Problems, B. K̊agström et al., eds., Lecture Notes in Comput. Sci. 1541,
Springer-Verlag, New York, 1998, pp. 120–128.

[28] E. Elmroth and F. G. Gustavson, Applying recursion to serial and parallel QR
factorization leads to better performance, IBM J. Res. Develop., 44 (2000), pp. 605–624.

[29] E. Elmroth and F. G. Gustavson, A faster and simpler recursive algorithm for the
LAPACK routine DGELS, BIT, 41 (2001), pp. 936–949.

[30] E. Elmroth and F. G. Gustavson, High-performance library software for QR factorization,
in Applied Parallel Computing: New Paradigms for HPC in Industry and Academia,
T. Sørvik et al., eds., Lecture Notes in Comput. Sci. 1947, Springer-Verlag, New York,
2001, pp. 53–63.

[31] G. E. Forsythe and C. B. Moler, Computer Solution of Linear Algebraic Systems,
Prentice-Hall, Englewood Cliffs, NJ, 1967.

[32] J. D. Frens and D. S. Wise, QR factorization with Morton-ordered quadtree matrices
for memory re-use and parallelism, in Proceedings of the 2003 ACM Symposium on
Principles and Practice of Parallel Programming, ACM SIGPLAN Notices, 38 (10)
(2003), pp. 144–154.

[33] M. Frigo, A fast Fourier transform compiler, in Proceedings of the 1999 ACM SIGPLAN
Conference on Programming Language Design and Implementation, ACM SIGPLAN
Notices, 34 (3) (1999), pp. 169–180.

[34] M. Frigo and S. G. Johnson, FFTW: An adaptive software architecture for the FFT, in
Proceedings of the 1998 IEEE International Conference on Acoustics Speech and Signal
Processing, Vol. 3, IEEE Press, 1998, pp. 1381–1384.

[35] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran, Cache-oblivious
algorithms, in Proceedings of the 40th Annual IEEE Symposium on Foundations of
Computer Science, New York, 1999, IEEE Computer Society, Los Alamitos, CA, 1999.

[36] K. A Gallivan, R. J. Plemmons, and A. H. Sameh, Parallel algorithms for dense linear
algebra computations, SIAM Rev., 32 (1990), pp. 54–135.

[37] J. D. Gardiner, A. L. Laub, J. A. Amato, and C. B. Moler, Solution of the Sylvester ma-
trix equation AXBT +CXDT = E, ACM Trans. Math. Software, 18 (1992), pp. 223–231.

[38] G. Golub, S. Nash, and C. Van Loan, A Hessenberg-Schur method for the matrix problem
AX +XB = C, IEEE Trans. Automat. Control, AC-24 (1979), pp. 909–913.

[39] G. Golub and C. Van Loan, Matrix Computations, 3rd ed., Johns Hopkins University
Press, Baltimore, MD, 1996.

[40] K. Goto and R. van de Geijn, On Reducing TLB Misses in Matrix Multiplication,
Technical Report TR-2002-55, FLAME Working Note 9, Department of Computer
Sciences, University of Texas at Austin, 2002.

[41] J. Gunnels, F. G. Gustavson, G. Henry, and R. van de Geijn, Formal linear algebra
methods environment (FLAME), ACM Trans. Math. Software, 27 (2001), pp. 422–455.

RECURSIVE BLOCKED ALGORITHMS 43

[42] J. A. Gunnels, D. S. Katz, E. S. Quintana-Orti, and R. van de Geijn, Fault-Tolerant
High-Performance Matrix-Matrix Multiplication, FLAME Technical Report TR-2000-34,
Working Note 2, Department of Computing Sciences, University of Texas at Austin, 2000.

[43] F. G. Gustavson, Recursion leads to automatic variable blocking for dense linear-algebra
algorithms, IBM J. Res. Develop., 41 (1997), pp. 737–755.

[44] F. G. Gustavson, New generalized data structures for matrices lead to a variety of high
performance algorithms, in The Architectures for Scientific Software, R. F. Boisvert and
P. T. P. Tang, eds., IFIP Conference Proceedings 188, Kluwer Academic, Dordrecht, The
Netherlands, pp. 211–234.

[45] F. G. Gustavson, High-performance linear algebra algorithms using new generalized data
structures for matrices, IBM J. Res. Develop., 47 (2003), pp. 31–554.

[46] F. G. Gustavson, A. Henriksson, I. Jonsson, B. Kågström, and P. Ling, Recursive
blocked data formats and BLAS’s for dense linear algebra algorithms, in Applied Parallel
Computing: Large Scale Scientific and Industrial Problems, B. K̊agström et al., eds.,
Lecture Notes in Comput. Sci. 1541, Springer-Verlag, New York, 1998, pp. 195–206.

[47] F. G. Gustavson, A. Henriksson, I. Jonsson, B. Kågström, and P. Ling, Superscalar
GEMM-based level 3 BLAS—The on-going evolution of a portable and high-performance
library, in Applied Parallel Computing: Large Scale Scientific and Industrial Problems,
B. K̊agström et al., eds., Lecture Notes in Comput. Sci. 1541, Springer-Verlag, New
York, 1998, pp. 207–215.

[48] F. G. Gustavson and I. Jonsson, Minimal-storage high-performance Cholesky factorization
via blocking and recursion, IBM J. Res. Develop., 44 (2000), pp. 823–849.

[49] W. W. Hager, Condition estimates, SIAM J. Sci. Statist. Comput., 5 (1984), pp. 311–316.
[50] S. J. Hammarling, Numerical solution of the stable, non-negative definite Lyapunov

equation, IMA J. Numer. Anal., 2 (1982), pp. 303–323.
[51] A. Henriksson and I. Jonsson, High-Performance Matrix Multiplication on the IBM SP

High Node, Master’s thesis, UMNAD-98.235, Department of Computing Science, Ume̊a
University, Ume̊a, Sweden, 1998.

[52] N. J. Higham, Fortran codes for estimating the one-norm of a real or complex matrix with
applications to condition estimation, ACM Trans. Math. Software, 14 (1988), pp. 381–396.

[53] N. J. Higham, Perturbation theory and backward error for AX −XB = C, BIT, 33 (1993),
pp. 124–136.

[54] N. J. Higham, Accuracy and Stability of Numerical Algorithms, SIAM, Philadelphia, 1996.
[55] IBM, Engineering and Scientific Subroutine Library, Guide and Reference, 1990.
[56] IBM, Engineering and Scientific Subroutine Library, Guide and Reference, Ver. 3, Rel. 1,

1998.
[57] IBM, Engineering and Scientific Subroutine Library, Guide and Reference, Ver. 3, Rel. 3,

2001.
[58] D. Irony, G. Shklarski, and S. Toledo, Parallel and fully recursive multifrontal supernodal

sparse Cholesky, in Computational Science - ICCS 2002, P. Sloot et al., eds., Lecture
Notes in Comput. Sci. 2330, Springer-Verlag, Berlin, 2002, pp. 335–344.

[59] I. Jonsson, Analysis of Processor and Memory Utilization of Recursive Algorithms for
Sylvester-Type Matrix Equations Using Performance Monitoring, Technical Report
UMINF-03.16, Department of Computing Science, Ume̊a University, Ume̊a, Sweden, 2003.

[60] I. Jonsson and B. Kågström, Parallel triangular Sylvester-type matrix equation solvers for
SMP systems using recursive blocking, in Applied Parallel Computing: New Paradigms
for HPC Industry and Academia, T. Sørvik et al., eds., Lecture Notes in Comput.
Sci. 1947, Springer-Verlag, New York, 2001, pp. 64–73.

[61] I. Jonsson and B. Kågström, Parallel two-sided Sylvester-type matrix equation solvers
for SMP systems using recursive blocking, in Applied Parallel Computing: Advanced
Scientific Computing, J. Fagerhom et al., eds., Lecture Notes in Comput. Sci. 2367,
Springer-Verlag, New York, 2002, pp. 297–306.

[62] I. Jonsson and B. Kågström, Recursive blocked algorithms for solving triangular systems—
Part I: One-sided and coupled Sylvester-type matrix equations, ACM Trans. Math.
Software, 28 (2002), pp. 392–415.

[63] I. Jonsson and B. Kågström, Recursive blocked algorithms for solving triangular systems—
Part II: Two-sided and generalized Sylvester and Lyapunov equations, ACM Trans.
Math. Software, 28 (2002), pp. 416–435.

[64] I. Jonsson and B. Kågström, RECSY—A High Performance Library for Sylvester-Type
Matrix Equations, http://www.cs.umu.se/research/parallel/recsy, 2003.

[65] B. Kågström, A perturbation analysis of the generalized Sylvester equation
(AR− LB,DR− LE) = (C,F), SIAM J. Matrix Anal. Appl., 15 (1994), pp. 1045–1060.

44 E. ELMROTH, F. GUSTAVSON, I. JONSSON, AND B. KA
◦
GSTRÖM

[66] B. Kågström, P. Ling, and C. Van Loan, GEMM-based level 3 BLAS: High-performance
model implementations and performance evaluation benchmark, ACM Trans. Math.
Software, 24 (1998), pp. 268–302.

[67] B. Kågström, P. Ling, and C. Van Loan, Algorithm 784: GEMM-based level 3 BLAS:
Portability and optimization issues, ACM Trans. Math. Software, 24 (1998), pp. 303–316.

[68] B. Kågström and P. Poromaa, Distributed and shared memory block algorithms for the
triangular Sylvester equation with sep−1 estimators, SIAM J. Matrix Anal. Appl., 13
(1992), pp. 90–101.

[69] B. Kågström and P. Poromaa, Computing eigenspaces with specified eigenvalues of a
regular matrix pair (A,B) and condition estimation: Theory, algorithms and software,
Numer. Algorithms, 12 (1996), pp. 369–407.

[70] B. Kågström and P. Poromaa, LAPACK–style algorithms and software for solving the
generalized Sylvester equation and estimating the separation between regular matrix
pairs, ACM Trans. Math. Software, 22 (1996), pp. 78–103.

[71] B. Kågström and P. Van Dooren, A generalized state-space approach for the additive
decomposition of a transfer matrix, Internat. J. Numer. Linear Algebra Appl., 1 (1992),
pp. 165–181.

[72] B. Kågström and L. Westin, Generalized Schur methods with condition estimators for
solving the generalized Sylvester equation, IEEE Trans. Automat. Control, 34 (1989),
pp. 745–751.

[73] M. S. Lam, E. E. Rothberg, and M. E. Wolf, The cache performance and optimizations
of blocked algorithms, in Proceedings of the Fourth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems, 1991, pp. 63–74.

[74] C. Lawson, R. Hanson, D. Kincaid, and F. Krogh, Basic linear algebra subprograms for
Fortran usage, ACM Trans. Math. Software, 5 (1979), pp. 308–323.

[75] A. Lindkvist, High-Performance Recursive BLAS Kernels Using New Data Formats for the
QR Factorization, Master’s thesis, UMNAD-235.00, Department of Computing Science,
Ume̊a University, Ume̊a, Sweden, 2000.

[76] MathWorks, Using MATLAB, The MathWorks Inc., Natick, MA, 2002.
[77] N. Park, B. Hong, and V. K. Prasanna, Tiling, block data layout, and memory hierarchy

performance, IEEE Trans. Parallel Distrib. Systems, 14 (2003), pp. 640–654.
[78] B. N. Parlett and Y. Wang, The influence of the compiler on the cost of mathematical

software—In particular on the cost of triangular factorization, ACM Trans. Math.
Software, 1 (1975), pp. 35–46.

[79] T. Penzl, Numerical solution of generalized Lyapunov equations, Adv. Comput. Math., 8
(1998), pp. 33–48.

[80] P. Poromaa, Parallel algorithms for triangular sylvester equations: Design, scheduling and
scalability issues, in Applied Parallel Computing: Large Scale Scientific and Industrial
Problems, B. K̊agström et al., eds., Lecture Notes in Comput. Sci. 1541, Springer-Verlag,
New York, 1998, pp. 438–446.

[81] P. Poromaa, High Performance Computing: Algorithms and Library Software for Sylvester
Equations and Certain Eigenvalue Problems with Applications in Condition Estimation,
Ph.D. Thesis, UMINF-97.16, Department of Computing Science, Ume̊a University,
Ume̊a, Sweden, 1997.

[82] E. Rabani and S. Toledo, Out-of-core SVD and QR decompositions, in Proceedings of
the 10th SIAM Conference on Parallel Processing for Scientific Computing, Portsmouth,
VA, CD-ROM, SIAM, Philadelphia, 2001.

[83] E. Rabani and S. Toledo, Very large electronic structure calculations using an out-of-core
filter-diagonalization method, J. Comput. Phys., 180 (2002), pp. 256–269.

[84] H. Sagan, Space-Filling Curves, Springer-Verlag, Berlin, 1994.
[85] J. K. Salmon and M. S. Warren, Skeletons from the treecode closet, J. Comput. Phys., 111

(1994), pp. 136–155.
[86] J. K. Salmon, M. S. Warren, and G. S. Winckelmans, Fast parallel tree codes for

gravitational and fluid dynamical n-body problems, Internat. J. Supercomput. Appl., 8
(1994), pp. 129–142.

[87] H. Samet, The quadtree and related hierarchical data structures, Comput. Surveys, 16
(1984), pp. 188–260.

[88] R. Schreiber and C. Van Loan, A storage-efficient WY representation for products of
Householder transformations, SIAM J. Sci. Statist. Comput., 10 (1989), pp. 53–57.

[89] SGI, Scientific Computing Software Library (SCSL), software and documentation available
from http://www.sgi.com/software/scsl.html, 1993–2003.

RECURSIVE BLOCKED ALGORITHMS 45

[90] SLICOT, The SLICOT Library and the Numerics in Control Network (NICONET) website,
http://www.win.tue.nl/niconet/.

[91] B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow, Y. Ikebe, V. C. Klema,
and C. B. Moler, Matrix Eigensystem Routines–EISPACK Guide, Lecture Notes in
Comput. Sci. 6, Springer-Verlag, Berlin, 1976.

[92] G. W. Stewart, Matrix Algorithms. Volume I: Basic Decompositions, SIAM, Philadelphia,
1998.

[93] G. W. Stewart and J.-G. Sun, Matrix Perturbation Theory, Academic Press, New York,
1990.

[94] V. Strassen, Gaussian elimination is not optimal, Numer. Math., 13 (1969), pp. 354–356.
[95] S. Toledo, Locality of reference in LU decomposition with partial pivoting, SIAM J. Matrix

Anal. Appl., 18 (1997), pp. 1065–1081.
[96] TOP500, The Top 500 Supercomputer Sites, http://www.top500.org/.
[97] V. Valsalam and A. Skjellum, A framework for high-performance matrix multiplica-

tion based on hierarchical abstractions, algorithms and optimized low-level kernels,
Concurrency Computat. Pract. Exper., 14 (2002), pp. 805–839.

[98] R. Vuduc, J. W. Demmel, and J. A. Bilmes, Statistical models for automatic performance
tuning, in Proceedings of the International Conference on Computational Science,
Lecture Notes in Comput. Sci. 2073, Springer-Verlag, New York, 2001, pp. 117–126.

[99] R. Vuduc, A. Gyulassy, J. W. Demmel, and K. A. Yelick,Memory hierarchy optimization
and bounds for sparse ATAx, in Proceedings of the ICCS Workshop on Parallel Linear Al-
gebra, Lecture Notes in Comput. Sci. 2660, Springer-Verlag, New York, 2003, pp. 705–714.

[100] R. C. Whaley, A. Petitet, and J. Dongarra, Automated empirical optimization of
software and the ATLAS project, LAPACK Working Note 147, 2000; see also http://
sourceforge.net/projects/math-atlas/.

[101] J. H. Wilkinson and C. Reinsch, Handbook for Automatic Computation, Vol. II. Linear
Algebra, Springer-Verlag, New York, 1971.

[102] D. S. Wise, G. A. Alexander, J. D. Frens, and Y. H. Gu, Language support for Morton
order matrices, ACM SIGPLAN Notices, 36 (7) (2001), pp. 24–33.

[103] M. E. Wolf and M. S. Lam, A data locality optimizing algorithm, in Proceedings of the
ACM SIGPLAN’91 Conference on Programming Language Design and Implementation,
1991, pp. 30–44.

[104] Q. Yi, V. Adve, and K. Kennedy, Transforming loops to recursion for multi-level memory
hierarchies, ACM SIGPLAN Notices, 35 (5) (2000), pp. 169–181.

