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Abstract

We present a polyhedral study of the complementarity knapsack problem. Tra-
ditionally, complementarity constraints are modeled by introducing auxiliary binary
variables and additional constraints, and the model is tightened by introducing strong
inequalities valid for the resulting MIP. We use an alternative approach, in which we
keep in the model only the continuous variables, and we tighten the model by intro-
ducing inequalities that define facets of the convex hull of the set of feasible solutions
in the space of the continuous variables. To obtain the facet-defining inequalities, we
extend the concepts of cover and cover inequality, commonly used in 0-1 programming,
for this problem, and we show how to sequentially lift cover inequalities. We obtain
tight bounds for the lifting coefficients, and we present two families of facet-defining
inequalities that can be derived by lifting cover inequalities. We show that unlike 0-1
knapsack polytopes, in which different facet-defining inequalities can be derived by
fixing variables at 0 or 1, and then sequentially lifting cover inequalities valid for the
projected polytope, any sequentially lifted cover inequality for the complementarity
knapsack polytope can be obtained by fixing variables at 0.

1 Introduction

Let M = {1, . . . ,m}, Ni = {1, . . . , ni}, i ∈ M , and uij ∈ <+ ∪ {∞}, j ∈ Ni, i ∈ M . The
complementarity knapsack problem (CKP) is
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max
∑

i∈M

∑
j∈Ni

cijxij∑
i∈M

∑
j∈Ni

aijxij ≤ b (1)

xijxij′ = 0, j, j′ ∈ Ni, j 6= j′, i ∈ M (2)

xij ≤ uij, j ∈ Ni, i ∈ M (3)

xij ≥ 0, j ∈ Ni, i ∈ M. (4)

CKP was first studied by Ibaraki et al. [18] who presented a branch-and-bound algorithm
and two heuristics, and called it the continuous multiple-choice knapsack problem. Ibaraki
[17] proved that CKP is NP-hard, and presented a polynomial approximation scheme for it.
Beale and Tomlin [3] studied Constraint (2), and called each set {xi1, . . . , xini

}, i ∈ M , a
special ordered set of type 1. Johnson and Padberg [19] studied the binary CKP. Constraints
(1)-(4) appear in the formulation of several problems, such as linear complementarity [6],
production scheduling [10], generalized assignment [13], capacity planning [23], etc.

In this paper we study the inequalities that define facets of the convex hull of the set
of feasible solutions of CKP. The motivation of our study is the use of these inequalities as
cuts in a branch-and-cut scheme for the general complementarity problem, in which there is
more than one knapsack constraint of the type (1).

Traditionally, (2) is modeled by introducing binary variables and additional constraints
that relate the continuous and the binary variables [7]. This approach has several compu-
tational disadvantages, including increasing the size of the problem and losing structure,
see e.g. [12]. Alternatively, Beale and Tomlin [3] suggested keeping in the model only the
continuous variables and enforcing (2) directly in the branch-and-bound algorithm through
the use of a specialized branching scheme. We follow Beale and Tomlin’s suggestion, and we
conduct our polyhedral study in the space of the continuous variables. The idea of dispensing
with the use of auxiliary binary variables to model combinatorial constraints on continuous
variables, and enforcing the combinatorial constraints directly in the enumeration algorithm,
appears also, for example, in [4, 5, 8, 10, 11, 12, 13, 18]. This idea is particularly pervasive
in constraint programming, see for example [15, 16, 24, 25], and we believe that the present
work provides means for building an effective approach that uses the strengths of both
mathematical programming and constraint programming in the context of complementarity
problems.

Let S be the set of feasible solutions of CKP. The complementarity knapsack polytope
is PS =conv(S). We denote by V (PS) the set of vertices of PS, and by d the number
of variables in the problem, i.e., d =

∑
i∈M ni. The set LPS = {x ∈ <d : x satisfies (1),

(3), and (4)} is the solution set of the LP relaxation. To simplify notation, we denote by
ij the ordered pair (i, j) and any set with one element by the element itself. We define
I = ∪i∈M(i × Ni), i.e. I is the set of indices of x. For T ⊆ I, MT = {i ∈ M : ij ∈ T for
some j ∈ Ni}.

We assume that:

1. ni ≥ 2 for some i ∈ M
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2.
∑

i∈M max{ai1, . . . , aini
} > b

3. b > 0, cij > 0, aij > 0 ∀ij ∈ I

4. aij, ij ∈ I, is scaled so that aij ≤ b and uij = 1.

If assumptions 1. and 2. do not hold, the problem is trivial. Assumption 4. can be made
without loss of generality once assumption 3. is made. If cij ≤ cij′ for some ij, ij′ ∈ I, j 6= j′,
we can fix xij = 0 when aij ≥ aij′ or cij

aij
≤ cij′

aij′
. So, we also assume that ∀i ∈ M with ni ≥ 2:

5. ci1 > · · · > cini

6. ai1 > · · · > aini

7. ci1

ai1
< · · · < cini

aini
.

We will use throughout the paper the following well-known result about the LP relaxation
of CKP:

Proposition 1 The point x∗ ∈ LPS is an optimal solution to the problem max{cx : x ∈ LPS}
only if

crs

ars

>
cuv

auv

and x∗uv > 0 ⇒ x∗rs = 1

for all rs, uv ∈ I. 2

The paper is organized as follows. In Section 2 we introduce a few simple and basic
results about the inequalities that define facets of PS. In Section 3 we extend the concepts
of cover and cover inequality, commonly used in 0-1 programming [1, 14, 21], to obtain
facet-defining inequalities for lower-dimensional projections of PS. Lifting these inequalities
leads to a family of valid inequalities that we call fundamental complementarity inequalities
(FCIs). We show that by sequentially lifting FCIs we can obtain any non-trivial sequentially
lifted cover inequality. We present tight bounds for the lifting coefficients of FCIs, and we
derive two families of facet-defining inequalities for PS that can be obtained by lifting FCIs
in a specific order. In Section 4 we show that any sequentially lifted FCI can be derived
by considering projections of PS obtained by fixing variables at 0. In Section 5 we discuss
directions for further research.
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2 Facet-Defining Inequalities

In this section we introduce a few simple and basic results about the inequalities that define
facets of PS. The following three propositions are easy to prove:

Proposition 2 PS is full-dimensional. 2

Proposition 3 If x is a vertex of LPS, then x has at most one fractional component. The
vertices of PS are the vertices of LPS that satisfy (2). 2

Proposition 4 Inequality (1) is facet-defining for PS iff
∑

i∈M−i′ ai1 + ai′ni′
≥ b ∀i′ ∈ M .

Inequality (4) is facet-defining for PS ∀ij ∈ I. For i ∈ M ,

∑
j∈Ni

xij ≤ 1 (5)

is facet-defining for PS iff aini
< b. Also, any facet-defining inequality for PS, with the

exception of (4), is of the form
∑

ij∈I αijxij ≤ β, with αij ≥ 0, ij ∈ I, and β > 0. 2

Inequality (5) cuts off every vertex of LPS that does not satisfy constraint (2), as we
show next.

Proposition 5 Let x̃ be a vertex of LPS that does not satisfy (2). Then there are inequalities
among (5) that cut off x̃.

Proof Suppose that x̃ij > 0 and x̃ij′ > 0 for some ij, ij′ ∈ I, j 6= j′. From Proposition 3, at
least one of x̃ij or x̃ij′ must be equal to 1. Thus, x̃ is cut off by (5). 2

Example 1 Let m = 5, n1 = n2 = n3 = n5 = 2, n4 = 3 and (1) be given by

(6x11 + x12) + (2x21 + x22) + (4x31 + 3x32) + (8x41 + 6x42 + x43) + (9x51 + 4x52) ≤ 13.

The point x̃ given by x̃11 = x̃12 = x̃42 = 1 and x̃21 = x̃22 = x̃31 = x̃32 = x̃41 = x̃43 = x̃51 =
x̃52 = 0 is a vertex of LPS that does not belong to PS, and is cut off by x11 + x12 ≤ 1. 2

Inequalities (1), (4), and (5) are called the trivial facet-defining inequalities of PS. In the
remainder of the paper we will discuss some non-trivial facet-defining inequalities for PS.

Given a facet-defining inequality
∑

ij∈I αijxij ≤ β, if
∑

ij∈I αijxij = β ⇒ xi′j′ = 0 for
some i′j′ ∈ I, the inequality is xi′j′ ≥ 0. Likewise, if

∑
ij∈I αijxij = β ⇒ ∑

j∈Ni′
xi′j = 1, for

some i′ ∈ M , the inequality is
∑

j∈Ni′
xi′j ≤ 1. We then have,
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Proposition 6 Let
∑

ij∈I αijxij ≤ β be a non-trivial facet-defining inequality, and {x(1), . . . ,
x(d)} a set of d affinely independent points of S that satisfy the inequality at equality. Then

for each ij ∈ I ∃r ∈ {1, . . . , d} such that x
(r)
ij > 0. Also, ∀i ∈ M ∃s ∈ {1, . . . , d} such that∑

j∈Ni
x

(s)
ij < 1. 2

We now establish a relation among the coefficients αij, ij ∈ I, of the non-trivial facet-
defining inequalities for PS.

Proposition 7 Let
∑

ij∈I αijxij ≤ β be a non-trivial facet-defining inequality for PS. For
any i ∈ M either αij = 0 ∀j ∈ Ni or αij > 0 ∀j ∈ Ni. Also, αi1 ≥ · · · ≥ αini

.

Proof Suppose that αi′j′ = 0 for some i′j′ ∈ I. Since the inequality is non-trivial, by
Proposition 6, S has a point x̃ with x̃i′j′ > 0 that satisfies the inequality at equality, i.e.,∑

i∈M−i′
∑

j∈Ni
αijx̃ij = β. However, for any j′′ ∈ Ni′ − j′, x̂ given by

x̂ij =


0 if ij = i′j′

min{1, ai′j′ x̃i′j′

ai′j′′
} if ij = i′j′′

x̃ij otherwise

belongs to S. This implies that αi′j′′ = 0.
Now, if ni′ ≥ j′′ > j′, x′ given by

x′ij =


0 if ij = i′j′

x̃i′j′ if ij = i′j′′

x̃ij otherwise

belongs to S. This implies that αi′j′ ≥ αi′j′′ . 2

3 Facet-Defining Inequalities Derived from Fundamen-

tal Complementarity Inequalities

In this section we extend the concepts of cover and cover inequality, commonly used in 0-1
programming, to complementarity programming. Unlike 0-1 programming, these cover in-
equalities are valid for LPS, and cannot be used as cuts. However, by lifting cover inequalities
with respect to a single variable, it is possible to derive a family of cuts, which we call fun-
damental complementarity inequalities (FCIs), and by lifting FCIs we can derive non-trivial
facet-defining inequalities for PS. Moreover, we show that any non-trivial sequentially lifted
cover inequality is a sequentially lifted FCI. We give tight bounds for the coefficients of se-
quentially lifted FCIs, and we present two families of facet-defining inequalities for PS that
can be obtained by sequentially lifting FCIs in a certain order.
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Definition 1 Let C = {i1j1, . . . , ikjk} ⊂ I, where i1, . . . , ik are all distinct. The set C is
called a cover if

∑
ij∈C aij > b. Given a cover C, the inequality

∑
ij∈C

aijxij ≤ b (6)

is called a cover inequality. 2

It is easy to see that

Proposition 8 Inequality (6) defines a facet of PS ∩ {x ∈ <d : xij = 0 ∀ij ∈ I − C}. 2

The sequential lifting procedure consists of applying the following lemma one variable at
a time, see [8, 22] for a proof of a more general result.

Lemma 1 Let x̃ ∈ S, L ⊂ I, and

∑
ij∈L

αijxij ≤ β (7)

be a facet-defining inequality for PS ∩ {x ∈ <d : xij = x̃ij ∀ij ∈ I − L}. Let rs ∈ I − L,

αmax
rs = min{

β −∑
ij∈L αijxij

xrs − x̃rs

: x ∈ V (PS), xij = x̃ij∀ij ∈ I − (L∪ rs) and xrs > x̃rs}, (8)

and

αmin
rs = max{

β −∑
ij∈L αijxij

xrs − x̃rs

: x ∈ V (PS), xij = x̃ij∀ij ∈ I − (L ∪ rs) and xrs < x̃rs} (9)

(when {x : x ∈ V (PS), xij = x̃ij ∀ij ∈ I−(L∪rs) and xrs > x̃rs} = ∅, αmax
rs = ∞. Likewise,

when {x :∈ V (PS), xij = x̃ij ∀ij ∈ I − (L ∪ rs) and xrs < x̃rs} = ∅, αmin
rs = −∞.) Then,

∑
ij∈L

αijxij + αrsxrs ≤ β + αrsx̃rs (10)

is a valid inequality for PS iff

αmin
rs ≤ αrs ≤ αmax

rs . (11)

If, in addition to (11), αrs ∈ {αmin
rs , αmax

rs }−{−∞,∞}, then (10) defines a facet of PS∩{x ∈
<d : xij = x̃ij ∀ij ∈ I − (L ∪ rs)}. 2
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Note that when αmin
rs > αmax

rs , it is not possible to lift (7) with respect to xrs. Also, when
{x ∈ V (PS) : xij = x̃ij ∀ij ∈ I − (L ∪ rs) and xrs > x̃rs} 6= ∅, the minimization problem
in (8) has an optimal solution, since V (PS) has a finite number of elements. Likewise, when
{x ∈ V (PS) : xij = x̃ij ∀ij ∈ I − (L ∪ rs) and xrs < x̃rs} 6= ∅, the maximization problem in
(9) has an optimal solution.

In the case of cover inequalities, all variables are initially fixed at 0. As a consequence,

αmin
rs = −∞ and −∞ < αmax

rs < ∞, and therefore it is always possible to lift cover
inequalities sequentially in any order. In principle, variables could be fixed for subsequent
lifting at any value between 0 and 1. However, as we show in Section 4, there is no loss
of generality in defining cover inequalities for projections of PS obtained by fixing variables
exclusively at 0. Thus, for the remainder of this section, variables will be fixed for subsequent
lifting at 0 only, and the lifting coefficients will be given by (8) with x̃ = 0.

Since cover inequalities are valid for LPS, they cannot be used as cuts. However, by
lifting cover inequalities with respect to a single variable, it is possible to derive a family of
inequalities that are valid for PS but not for LPS, as we show next.

Proposition 9 Let C be a cover, and suppose that

∑
ij∈C−i′j′

aij + ai′j′′ < b (12)

for some i′j′ ∈ C and j′′ ∈ Ni′ − j′. Then the inequality

∑
ij∈C

aijxij + (b−
∑

ij∈C−i′j′
aij)xi′j′′ ≤ b (13)

defines a facet of PS ∩ {x ∈ <d : xij = 0 ∀ij ∈ I − (C ∪ i′j′′)}.

Proof Inequality (13) is clearly valid when xi′j′′ = 0. If xi′j′′ > 0,∑
ij∈C

aijxij + (b−
∑

ij∈C−i′j′
aij)xi′j′′ =

∑
ij∈C−i′j′

aijxij + (b−
∑

ij∈C−i′j′
aij)xi′j′′

≤
∑

ij∈C−i′j′
aij + (b−

∑
ij∈C−i′j′

aij) = b.

Therefore (13) is valid.
Because

∑
ij∈C aij > b, PS ∩ {x ∈ <d : xij = 0 ∀ij ∈ I − C} has |C| affinely independent

points that satisfy (13) at equality. Additionally, the point x̂ given by

x̂ij =

{
1 if ij ∈ C − i′j′ or ij = i′j′′

0 otherwise

belongs to PS ∩ {x ∈ <d : xij = 0 ∀ij ∈ I − (C ∪ i′j′′)} and satisfies (13) at equality.
Therefore (13) is facet-defining. 2
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We call (13) a fundamental complementarity inequality (FCI). Proposition 9 shows that
lifting a cover inequality with respect to one variable leads to an FCI, provided that (12) is
satisfied. Note that when (12) is not satisfied then the lifting simply yields another cover
inequality. So by continuing the lifting we either get an FCI or the original inequality (1).

In Proposition 5 we showed that (5) cuts off all vertices of LPS that do not satisfy (2).
We now show that (13) cuts off all vertices of LPS ∩ {x ∈ <d : x satisfies (5)} that do not
satisfy (2).

Proposition 10 Let x̃ be a vertex of LPS ∩ {x ∈ <d : x satisfies (5)} that does not satisfy
(2). Then there is an FCI that is violated by x̃.

Proof Suppose that x̃i′j′ and x̃i′j′′ are positive for some i′j′, i′j′′ ∈ I, j′ < j′′. Because x̃ is
a vertex of LPS ∩ {x ∈ <d : x satisfies (5)}, for each positive component of x̃ there must be
an inequality among (1) and (5) satisfied at equality and such that x̃ is the unique solution
of the corresponding system of equations. Because xi′j′ and xi′j′′ appear only in (1) and in∑

j∈Ni′
xi′j ≤ 1, we have that ∑

ij∈I

aijx̃ij = b

and ∑
j∈Ni′

x̃i′j = 1.

Also, x̃ cannot have any fractional components other than x̃i′j′ and x̃i′j′′ . Let C = {ij ∈ I :
x̃ij > 0} − i′j′′. Then

∑
ij∈C

aijx̃ij + ai′j′′x̃i′j′′ =
∑

ij∈C−i′j′
aij + ai′j′x̃i′j′ + ai′j′′x̃i′j′′ = b. (14)

Because (x̃i′j′ , x̃i′j′′) must be the unique solution of the system of equations{
ai′j′xi′j′ + ai′j′′xi′j′′ = b−∑

ij∈C−i′j′ aij

xi′j′ + xi′j′′ = 1,

ai′j′ 6= ai′j′′ , and therefore, ai′j′ > ai′j′′ . This means that
∑

ij∈C aij > b. Also, note that i1j1 6=
i2j2 ⇒ i1 6= i2 ∀i1j1, i2j2 ∈ C. So C is a cover. On the other hand,

∑
ij∈C−i′j′ aij + ai′j′′ < b.

Thus, (13) is valid and it cuts off x̃. 2

Example 2 With the data of Example 1, x̃ with x̃11 = 1
5
, x̃12 = 4

5
, x̃21 = x̃32 = x̃42 = 1 and

x̃22 = x̃31 = x̃41 = x̃43 = x̃51 = x̃52 = 0 is a vertex of {x ∈ <11 : (6x11 + x12) + (2x21 +
x22) + (4x31 + 3x32) + (8x41 + 6x42 + x43) + (9x51 + 4x52) ≤ 13,

∑
j∈Ni

xij ≤ 1, i ∈ M , and
xij ≥ 0, ij ∈ I}. This point is cut off by the FCI

(6x11 + 2x12) + 2x21 + 3x32 + 6x42 ≤ 13, (15)

with C = {11, 21, 32, 42}, i′j′ = 11, and j′′ = 2. 2
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As a consequence of Proposition 10, we have that

Corollary 1 PS is given by (1), (4), and (5) iff
∑

ij∈C−i′j′ aij + ai′j′′ ≥ b for every cover C,
i′j′ ∈ C, and j′′ ∈ Ni′ − j′.

Proof If
∑

ij∈C−i′j′ aij + ai′j′′ ≥ b for every cover C, i′j′ ∈ C, and j′′ ∈ Ni′ − j′, no FCI can
be defined, and by Proposition 10, every vertex of LPS ∩ {x ∈ <d : x satisfies (5)} satisfies
(2).

Suppose now that
∑

ij∈C−i′j′ aij + ai′j′′ < b for some cover C, i′j′ ∈ C, and j′′ ∈ Ni′ − j′.
Since C is a cover and ai′j′ > ai′j′′ , x̂ given by

x̂ij =



1 if ij ∈ C − i′j′

b−ai′j′′−
∑

ij∈C−i′j′ aij

ai′j′−ai′j′′
if ij = i′j′∑

ij∈C
aij−b

ai′j′−ai′j′′
if ij = i′j′′

0 otherwise

is a vertex of LPS ∩ {x ∈ <d : x satisfies (5)} that does not satisfies (2). 2

By lifting FCIs we obtain facet-defining inequalities for PS. Moreover, we can derive
our complete theory of sequentially lifted cover inequalities from FCIs, since the following
proposition shows that we can derive any non-trivial sequentially lifted cover inequality by
sequentially lifting FCIs.

Proposition 11 Any non-trivial sequentially lifted cover inequality is a sequentially lifted
FCI.

Proof Suppose that after some iterations of the lifting procedure applied to a cover in-
equality, the current inequality is

∑
ij∈T

aijxij ≤ b (16)

(all lifting coefficients so far are aij, and xij is presently fixed at 0 ∀ij ∈ I − T .) Let
rs ∈ I − T . We lift (16) next with respect to xrs. Assume that the lifting coefficient is
αrs 6= ars (if the lifting coefficient at every iteration is equal to the corresponding knapsack
coefficient, the final lifted cover inequality is (1).) Let ji ∈ Ni be such that aiji

= max
{aij : ij ∈ T} ∀i ∈ MT . If

∑
i∈MT−r aiji

+ ars ≥ b,
∑

ij∈T aijxij + arsxrs ≤ b is facet-defining
for PS ∩ {x ∈ <d : xij = 0 ∀ij ∈ I − (T ∪ rs)}, and αrs = ars. Thus,∑

i∈MT−r

aiji
+ ars < b.

By using an argument similar to the one in the proof of Proposition 9, it follows that
αrs = b− ∑

i∈MT
aiji

. Now, let C = {iji : i ∈ MT}. The set C is clearly a cover. Now, note
that r ∈ MT (otherwise

∑
i∈MT−r aiji

+ ars > b.) Therefore,
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∑
ij∈C

aijxij + (b−
∑

i∈MC−r

aiji
)xrs ≤ b (17)

is an FCI. By using again an argument similar to the one in the proof of Proposition 9,
and the fact that arjr > b − ∑

i∈MC−r aiji
, it can be shown that the lifting coefficient of xij

∀ij ∈ T − (C ∪ rs) when lifting (17), is aij. Thus,

∑
ij∈T

aijxij + (b−
∑

i∈MT−r

aiji
)xrs ≤ b

can be derived by sequentially lifting an FCI. 2

As a result of Proposition 11, from now on, we will focus on the lifting of FCIs. We now
give tight bounds for the coefficients of the facet-defining inequalities obtained by sequentially
lifting FCIs.

Proposition 12 Let C be a cover that satisfies (12). Let
∑

ij∈I αijxij ≤ b be a facet-defining
inequality for PS obtained by lifting (13). Then

1. αij = 0 ∀i ∈ M −MC , j ∈ Ni

2. If rt ∈ C, s ∈ Nr, and s > t, ars ≤ αrs ≤ max{ars, b−
∑

ij∈C−rt aij}

3. If rt ∈ C − i′j′, s ∈ Nr, and s < t,

art ≤ αrs ≤ artmax{1, ars

b−∑
ij∈C−{i′j′,rt} aij − ai′j′′

}

4. If s ∈ Ni′ and s < j′, αi′s ≤ ai′s.

Proof Let p ∈ M −MC and q ∈ Np. Since (12) holds, x̂ given by

x̂ij =


1 if ij ∈ C − i′j′ or ij = i′j′′

min{1,
b−

∑
ij∈C−i′j′ aij−ai′j′′

apq
} if i = p and j = q

0 otherwise

belongs to S. Since

∑
ij∈C

aijx̂ij + (b−
∑

ij∈C−i′j′
aij)x̂i′j′′ = b

and x̂pq > 0, αpq = 0. This proves 1.
If s > t, ars < art. When αrs < ars,
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αrs

ars

<
art

art

=
αrt

art

. (18)

Now, ars < art and (18) imply that

z = max{
∑
ij∈I

αijxij : x ∈ PS}

has an optimal solution x̃ with x̃rs = 0, which means that if we increase the value of αrs,
and αrs remains not greater than ars, z will not increase. In other words,∑

ij∈I−rs

αijxij + (αrs + ε)xrs ≤ b

is valid for PS for ε > 0 sufficiently small, which contradicts the assumption that
∑

ij∈I αijxij ≤
b is facet-defining. This proves that αrs ≥ ars.

If ars > b−∑
ij∈C−rt aij, PS has a point x̃ with x̃rs > 0 and∑

ij∈C−rt

aijx̃ij + arsx̃rs = b.

If αrs > ars, then ∑
ij∈C−rt

aijx̃ij + αrsx̃rs > b.

Thus, ars > b−∑
ij∈C−rt aij ⇒ αrs ≤ ars.

On the other hand, if b−∑
ij∈C−rt aij ≥ ars, x′ given by

x′ij =

{
1 if ij ∈ C − rt or ij = rs
0 otherwise

belongs to S. If αrs > b−∑
ij∈C−rt aij,∑

ij∈C−rt

aijx
′
ij + αrsx

′
rs > b.

Thus, b − ∑
ij∈C−rt aij ≥ ars ⇒ αrs ≤ b − ∑

ij∈C−rt aij. This proves 2. The proofs of 3. and
4. are similar to the proof of 2. 2

Example 3 Using the data of Example 1, we start with the FCI (15). Let α22, α31, α41, α43, α51

and α52 be the lifting coefficients of x22, x31, x41, x43, x51 and x52, respectively. From 1. of
Proposition 12, α51 = α52 = 0. From 2., 1 ≤ α22 ≤ max{1,−2} = 1, and 1 ≤ α43 ≤ 2. From
3., 3 ≤ α31 ≤ 3max{1, 4

4
} = 3, and 6 ≤ α41 ≤ 6max{1, 8

7
} = 48

7
.

Lifting the inequality with respect to x41 first, α41 = 48
7
. If we now lift with respect to

x43, α43 = 2. Therefore, the following inequality is valid and facet-defining

(6x11 + 2x12) + (2x21 + x22) + (3x31 + 3x32) + (
48

7
x41 + 6x42 + 2x43) ≤ 13.

2

11



In principle, the value of xrs in an optimal solution of the lifting problem (8) can be any
number in the interval (0,1]. In some cases, however, it is possible to fix the value of xrs at
1 before solving (8), as shown in the next proposition.

Proposition 13 Let C be a cover, and suppose that

∑
ij∈L

αijxij ≤ b (19)

is a facet-defining inequality for PS∩{x ∈ <d : xij = 0 ∀ij ∈ I−L} obtained by lifting (13).
Let rs′ ∈ C, rs ∈ I −L, assume that (19) is lifted next with respect to xrs, and let αrs be its
lifting coefficient. If s > s′,

αrs = b−max{
∑
ij∈L

αijxij : x ∈ V (PS) and xrs = 1}. (20)

Proof Consider the optimization problem

max{
∑
ij∈L

αijxij + αrsxrs : x ∈ V (PS) and xrs > 0}. (21)

Clearly the optimal value of (21) is b. Note that (20) holds iff (21) has an optimal solution
with xrs = 1. Let x∗ be an optimal solution of (21). From Proposition 3, x∗ has at most one
fractional component. Suppose that x∗rs ∈ (0, 1). Let P = {ij ∈ L : x∗ij > 0}. From 2. of
Proposition 12, αrs

ars
≥ 1. Because x∗rs is the only fractional variable, by Proposition 1 there

cannot be ij ∈ P with αij

aij
< 1. If αij

aij
= 1 ∀ij ∈ P − rs, we can obtain an optimal solution

x̃ for (21) with x̃rs = 1 by introducing xrs into the knapsack first.
So suppose that P (>) = {ij ∈ P : αij

aij
> αrs

ars
} 6= ∅. Because αuv > 0 ∀uv ∈ P (>), it

follows from 1. of Proposition 12 that MP (>) ⊆ MC . For u ∈ MP (>) , let ju ∈ Nu be such that
uju ∈ C. Because αuv > auv ∀uv ∈ P (>), it follows from Proposition 12 that

∑
ij∈C−uju

aij + auv < b, (22)

and therefore that

auju > auv ∀uv ∈ P (>). (23)

Now, let pq ∈ P (>). We have that

∑
uv∈P (>)

auv + ars <
∑

uv∈P (>)

auv + ars′ =
∑

uv∈P (>)−pq

auv + apq + ars′

≤
∑

ij∈C−{pjp,rs′}
aij + apq + ars′ =

∑
ij∈C−pjp

aij + apq < b,

12



where the second inequality follows from (23), and the last inequality follows from (22).
Because

∑
uv∈P (>) auv + ars < b, (21) has an optimal solution x̂ in which x̂rs = 1. 2

When s < s′, Proposition 13 does not necessarily hold, as we show next.

Example 4 With the data of Example 1, consider the cover C = {21, 42, 51} and the FCI

2x21 + 6x42 + (9x51 + 5x52) ≤ 13. (24)

We lift (24) with respect to x41. Note that

13−max{2x21 + 6x42 + (9x51 + 5x52) : x ∈ S and x41 = 1} = 7.

However,

min{13− 2x21 + 6x42 + (9x51 + 5x52)

x41

: x ∈ S, x41 =
7

8
, x22 = x31 = x32 = x43 = 0} =

48

7
,

which is the lifting coefficient of x41. 2

We now present, in Theorems 1 and 2, two families of facet-defining inequalities for PS
that can be derived by lifting FCIs. The elements of the cover in the first family have the
highest values of aij among the indices in their special ordered sets. The elements of the
cover in the second family, with the exception of one, have the lowest values of aij among
the indices in their special ordered sets.

Theorem 1 Let C be a cover, and suppose that j = 1 ∀ij ∈ C. Assume that C satisfies
(12). Then

∑
i∈MC

ai1xi1 +
∑

i∈MC

∑
j∈Ni−1

max{aij, b−
∑

k∈MC−i

ak1}xij ≤ b (25)

is valid and facet-defining.

Proof Let x̃ ∈ S. If x̃ij = 0 ∀j ∈ Ni − 1 and i ∈ MC with max{aij, b −
∑

k∈MC−i ak1} =
b − ∑

k∈MC−i ak1, x̃ clearly satisfies (25). So suppose that x̃rs > 0 for some s ∈ Nr − 1,
r ∈ MC , and max{ars, b−

∑
k∈MC−r ak1} = b−∑

k∈MC−r ak1. Then,

∑
i∈MC

ai1x̃i1 +
∑

i∈MC

∑
j∈Ni−1

max{aij, b−
∑

k∈MC−i

ak1}x̃ij =

∑
i∈MC−r

ai1x̃i1 +
∑

i∈MC−r

∑
j∈Ni−1

max{aij, b−
∑

k∈MC−i

ak1}x̃ij + (b−
∑

k∈MC−r

ak1)x̃rs

13



≤
∑

i∈MC−r

ai1 + b−
∑

k∈MC−r

ak1 = b,

where the first equality holds because x̃rs > 0 ⇒ x̃rt = 0 ∀t ∈ Nr − s, and the inequality
follows from ai1 > max{aij, b −

∑
k∈MC−i ak1}∀j ∈ Ni − 1, i ∈ MC . This proves that (25) is

valid.
Since

∑
i∈MC

ai1 > b, S has |C| linearly independent points with xij = 0 ∀ij ∈ I − C
that satisfies (25) at equality. Now, let rs ∈ I − C be such that r ∈ M − MC . Since∑

i∈MC
ai1 + ars > b, S has a point with xrs > 0 that satisfies (25) at equality. Finally, let

uv ∈ I−C be such that u ∈ MC . Since
∑

i∈MC−u ai1 +max{auv, b−
∑

k∈MC−u ak1} ≥ b, S has
a point with xuv > 0 that satisfies (25) at equality. This proves that (25) is facet-defining.
2

Example 5 With the data of Example 1, let C = {41, 51}. Then, MC = {4, 5}, max{a42, b−∑
k∈MC−4 ak1} = 6, max{a43, b−

∑
k∈MC−4 ak1} = 4, and max{a52, b−

∑
k∈MC−5 ak1} = 5. So,

(8x41 + 6x42 + 4x43) + (9x51 + 5x52) ≤ 13

is valid and facet-defining. 2

Theorem 2 Let C be a cover that satisfies (12) with j = ni ∀i ∈ MC − i′, j′ < ni′, and
j′′ = ni′, i.e. ai′j′ +

∑
i∈MC−i′ aini

> b and
∑

i∈MC
aini

< b. Then,

∑
j∈Ni′

max{ai′j, b−
∑

k∈MC−i′
aknk

}xi′j +
∑

i∈MC−i′
aini

xini

+
∑

i∈MC−i′

∑
j∈Ni−ni

aini
max{1, aij

b−∑
k∈MC−i aknk

}xij ≤ b (26)

is valid and facet-defining.

Proof We prove the proposition by lifting the FCI

ai′j′xi′j′ + (b−
∑

k∈MC−i′
aknk

)xi′ni′
+

∑
i∈MC−i′

aini
xini

≤ b. (27)

From 1. of Proposition 12, αij = 0 ∀i ∈ M − MC . Now we lift (27) with respect to
xi′j, j ∈ Ni′ − {j′, ni′}. By using an argument similar to the one in the proof of Proposition
9, it can be shown that the lifting coefficient is given by

αi′j = max{ai′j, b−
∑

k∈MC−i′
aknk

}. (28)

14



Thus,

∑
j∈Ni′

max{ai′j, b−
∑

r∈MC−i′
arnr}xi′j +

∑
i∈MC−i′

aini
xini

≤ b (29)

is valid and facet-defining for PS ∩ {x ∈ <d : xij = 0 ∀j ∈ Ni − ni, i ∈ MC−i′}.
Next, we lift (29) with respect to xij, j ∈ Ni − ni, i ∈ MC − i′, with ij satisfying

∑
k∈MC−i

aknk
+ aij > b, (30)

and we show that the lifting coefficient is

αij =
aini

aij

b−∑
k∈MC−i

aknk

. (31)

The lifting order is the following. Let r ∈ MC − i′ be such that arnr = min{asns : s 6= i′} (in
case of a tie, break it arbitrarily). We then pick, in any order, all the variables xr1, . . . , xrnr−1

for which (30) holds. Then, we pick, in any order, the variables xt1, . . . , xtnt−1, where t ∈
MC − {i′, r} is such that atnt = min{asns : s 6= i′, r}, for which (30) holds, and so on. Let

T = C ∪ i′ni′ ∪ {ij : (27) has been lifted with respect to xij}.

Suppose that the lifting coefficient of xij is given by (31) ∀ij ∈ T such that j ∈ Ni − ni, i ∈
MC − i′, and ij satisfies (30). Let uv be such that v ∈ Nu − nu, u ∈ MC − i′, uv satisfies
(30), uv 6∈ T , and xuv is the next variable

∑
ij∈T αijxij ≤ b is lifted with respect to. The

lifting coefficient of xuv is given by

αuv =
aunuauv

b−∑
k∈MC−u aknk

(32)

if and only if

max{
∑
ij∈T

αijxij +
aunuauv

b−∑
k∈MC−u aknk

xuv : x ∈ S and xuv > 0} = b. (33)

We now prove that (32) holds by proving (33).
Consider the continuous knapsack problems (Lt), t ∈ Ni′ ,

max{
∑
ij∈T

αijxij +
aunuauv

b−∑
i∈MC−u aini

xuv :
∑
ij∈T

aijxij ≤ b, 0 ≤ xij ≤ 1, ij ∈ T,

xunu = 0, and xi′j = 0, j ∈ Ni′ − t}.

Note that αi′t
ai′t

≥ 1,
αini

aini
= 1 ∀i ∈ MC − i′,

αij

aij

=
aini

b−∑
r∈MC−i arnr

< 1

15



for all ij ∈ T with i 6= i′ and j 6= ni, and

1

auv

aunuauv

b−∑
r∈MC−u arnr

< 1. (34)

Note also that because of the lifting order, aunu ≥ aini
∀i ∈ MT − i′, and therefore

1

auv

aunuauv

b−∑
r∈MC−u arnr

≥ αij

aij

for all ij ∈ T with i 6= i′ and j 6= ni.
From Proposition 1 we can obtain an optimal solution for (Lt) by selecting xi′t to enter

the knapsack first, xini
, i ∈ MC − {i′, u}, in any order, until they are all in the knapsack

or until there is no more room in the knapsack, xuv, in case there is room in the knapsack,
and finally, if there is still room in the knapsack, xij, ij ∈ T , with i 6= i′ and j 6= ni, in
non-increasing order of αij

aij
, until the knapsack is full or all of them are included.

If ai′t +
∑

k∈MC−i′ aknk
≥ b, by (28) αi′t = ai′t, and because of (34), the optimal value of

(Lt) is no greater than b. If ai′t +
∑

k∈MC−i′ aknk
< b, (Lt) has a basic optimal solution x(t)

with x(t)
uv > 0. Also, by (28), αi′t = b − ∑

k∈MC−i′ aknk
. Because we are considering the case

where
∑

k∈MC−u aknk
+ auv > b,

∑
k∈MC−{i′,u} aknk

+ ai′t + auv > b, and x
(t)
ij = 0 ∀ij ∈ T with

i 6= i′ and j 6= ni. Also, x
(t)
ini

= x
(t)
i′t = 1 ∀i ∈ MC − {i′, u}, and

x(t)
uv =

b−∑
k∈MC−{i′,u} aknk

− ai′t

auv

.

The optimal value of (Lt) in this case is b −
ai′t−ai′ni′

b−
∑

k∈MC−u
aknk

aunu ≤ b, and it is equal to b if

and only if t = ni′ . So,

max{
∑
ij∈T

αijxij +
aunuauv

b−∑
k∈MC−u aknk

xuv : x ∈ V (PS) and xuv > 0} = b.

This shows that the lifting coefficient of xuv is given by (32).
Finally, we lift with respect to xij, j ∈ Ni − ni, i ∈ MC − i′, satisfying

∑
k∈MC−i

aknk
+ aij ≤ b.

From 3. of Proposition 12, it follows that the lifting coefficient of xij is given by αij = aini
.

2

Example 6 Using the data of Example 1, consider the FCI

x22 + 3x32 + x43 + (9x51 + 8x52) ≤ 13,

16



Let α11, α12, α31, α41, and α42 be the lifting coefficients of x11, x12, x31, x41, and x42, respec-
tively. Since 1 ∈ M −MC , α11 = α12 = 0. Also,

α21 = a22max{1, a21

b−∑
ij∈C−{51,22} aij − a52

} = 1,

α31 = a32max{1, a31

b−∑
ij∈C−{32,51} aij − a52

} = 3,

α42 = a43max{1, a42

b−∑
ij∈C−{43,51} aij − a52

} =
6

5
,

and

α41 = a43max{1, a41

b−∑
ij∈C−{43,51} aij − a52

} =
8

5
.

Therefore,

(x21 + x22) + (3x31 + 3x32) + (
8

5
x41 +

6

5
x42 + x43) + (9x51 + 8x52) ≤ 13

is valid and facet-defining. 2

4 Variable Values for Polytope Projection

The inequalities studied in Section 3 were derived by first fixing some of the variables at 0,
and then sequentially lifting the cover inequality defined by the free variables. In principle,
however, variables could be fixed for subsequent lifting at any value between 0 and 1. The
main result of this section is that there is no loss of generality in fixing variables for subsequent
lifting exclusively at 0.

Formally, consider the following more general definition of cover and cover inequality that
will be used throughout this section.

Definition 2 Let x̃ ∈ S. Let C = {i1j1, . . . , ikjk} ⊂ I, where i1, . . . , ik are all distinct, and

x̃ij = 0 ∀ij ∈ I − C with i ∈ MC . (35)

Let F0 = {ij ∈ I − C : x̃ij = 0}, F1 = {ij ∈ I − C : x̃ij = 1}, and F2 = {ij ∈ I − C : x̃ij ∈
(0, 1)}. We say that C is a cover for PS ∩ {x ∈ <d : xij = x̃ij ∀ij ∈ F0 ∪ F1 ∪ F2} iff

∑
ij∈C

aij > b−
∑

ij∈F1∪F2

aijx̃ij.

17



The inequality

∑
ij∈C

aijxij ≤ b−
∑

ij∈F1∪F2

aijx̃ij (36)

is called a cover inequality for PS ∩ {x ∈ <d : xij = x̃ij ∀ij ∈ F0 ∪ F1 ∪ F2}. 2

Note that the variables indexed by F0, F1, and F2 are fixed at 0, 1, and fractional values,
respectively. The reason for Condition (35) is that when variable xij is fixed at a positive
value, all other variables xij′ , j′ ∈ Ni − j, are automatically fixed at 0. The main result of
this section is

Theorem 3 Let

∑
ij∈I

αijxij ≤ β (37)

be a non-trivial facet-defining inequality for PS obtained by sequentially lifting (36). Then,
it is possible to obtain (37) by sequentially lifting the cover inequality

∑
ij∈C∪F1∪F2

aijxij ≤ b (38)

for PS ∩ {x ∈ <d : xij = 0 ∀ij ∈ F0} 2

Theorem 3 is the result of the following conditions:

1. the variables are continuous

2. at most one variable in each set {xi1, . . . , xini
}, i ∈ M , can be positive.

It is well known that Theorem 3 may not hold when there are binary variables. Likewise, as
we show next, Theorem 3 may not hold when Condition 2. does not hold.

Example 7 Consider the set

S = {x ∈ [0, 1]3 : 5x1 + 4x2 + 2x3 ≤ 7 and at most two variables can be positive}.

If we fix x2 = 1 and x3 = 0, we obtain

5x1 ≤ 3, (39)

which defines a facet of conv(S) ∩{x ∈ <3 : x2 = 1 and x3 = 0}. We first lift (39) with
respect to x3, and we obtain

18



5x1 + 3x3 ≤ 3 (40)

(note that because x2 = 1, at most one of x1 or x3 can be positive.) Finally, we lift (40)
with respect to x2. The lifting coefficient of x2, α2, is given by

5x1 + α2x2 + 3x3 ≤ 3 + α2. (41)

It can be shown that α2 = 5, and therefore that

5x1 + 5x2 + 3x3 ≤ 8 (42)

defines a facet of conv(S). (note that when x2 = 0, the left-hand-side of (41) is at most
8, and therefore α2 ≥ 5.) Clearly, (42) cannot be derived by lifting cover inequalities that
define facets of projections of conv(S) obtained by fixing variables exclusively at 0. 2

In the remainder of the section we will prove theorem 3.
We show next that any non-trivial sequentially lifted cover inequality is a sequentially

lifted FCI.

Proposition 14 Let C be a cover for PS ∩ {x ∈ <d : xij = x̃ij ∀ij ∈ F0 ∪ F1 ∪ F2}. Let
T ⊆ F0. Suppose that

∑
ij∈C

aijxij +
∑
ij∈T

aijxij ≤ b−
∑

ij∈F1∪F2

aijx̃ij (43)

is a facet-defining inequality for PS ∩ {x ∈ <d : xij = x̃ij ∀ij ∈ (F0 − T ) ∪ F1 ∪ F2}. Let
rs ∈ F1 ∪ F2, and lift (43) next with respect to xrs. Then, the lifting coefficient is ars.

Proof Clearly,

∑
ij∈C

aijxij +
∑
ij∈T

aijxij + arsxrs ≤ b−
∑

ij∈F1∪F2

aijx̃ij + arsx̃rs (44)

is valid for PS ∩ {x ∈ <d : xij = x̃ij ∀ij ∈ (F0 − T ) ∪ (F1 − rs) ∪ (F2 − rs)}.
Now, because (43) defines a facet of PS ∩ {x ∈ <d : xij = x̃ij ∀ij ∈ (F0 − T ) ∪ F1 ∪ F2},

(44) is satisfied at equality by |C ∪T | linearly independent points of PS∩{x ∈ <d : xij = x̃ij

∀ij ∈ (F0 − T ) ∪ (F1 − rs) ∪ (F2 − rs)} with xrs = x̃rs. Since r 6∈ MC and

∑
ij∈C

aij + ars > b−
∑

ij∈F1∪F2

aijx̃ij + arsx̃rs,

PS ∩ {x ∈ <d : xij = x̃ij ∀ij ∈ (F0 − T ) ∪ (F1 − rs) ∪ (F2 − rs)} has a point that satisfies
(43) at equality with xrs 6= x̃rs.

This proves that (43) defines a facet of PS ∩ {x ∈ <d : xij = x̃ij ∀ij ∈ (F0 − T ) ∪ (F1 −
rs) ∪ (F2 − rs)}, and therefore the lifting coefficient of xrs is ars. 2
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Let rs ∈ F1 ∪ F2, as in Proposition 14. Note that C ∪ rs is a cover for PS ∩ {x ∈ <d :
xij = x̃ij ∀ij ∈ F0 ∪ (F1 − rs)∪ (F2 − rs)}, and that (44) can be derived by lifting the cover
inequality ∑

ij∈C∪rs

aijxij ≤ b−
∑

ij∈F1∪F2

aijx̃ij + arsx̃rs.

with respect to xij, ij ∈ T .
Note also that, unless the lifting coefficient of xij is greater than aij for some ij ∈ F0, we

will obtain (1) at the end of the sequential lifting procedure. It is easy to see that Proposition
9 holds for PS ∩ {x ∈ <d : xij = x̃ij ∀ij ∈ F0 ∪ F1 ∪ F2}, C, and b−∑

ij∈F1∪F2
aij instead of

b. Therefore, as in Section 3, we only need to consider lifting FCIs, i.e.,

∑
ij∈C

aijxij + (b−
∑

ij∈F1∪F2

aij −
∑

ij∈C−i′j′
aij)xi′j′′ ≤ b−

∑
ij∈F1∪F2

aij, (45)

where i′j′ ∈ C, j′′ ∈ Ni′ − j′, and
∑

ij∈C−i′j′ aij + ai′j′′ < b−∑
ij∈F1∪F2

aij.
However, as the next proposition shows, even when we lift FCIs, the lifting coefficient of

xrs, rs ∈ F1, is ars. This means that we may as well start with the cover C ∪ F1. Since the
proof of the proposition is similar to the proof of Proposition 14, it is omitted.

Proposition 15 Let T ⊆ F0 − i′j′′. Suppose that

∑
ij∈C

aijxij + (b−
∑

ij∈F1∪F2

aij −
∑

ij∈C−i′j′
aij)xi′j′′ +

∑
ij∈T

αijxij ≤ b−
∑

ij∈F1∪F2

aij (46)

defines a facet of PS ∩ {x ∈ <d : xij = x̃ij ∀ij ∈ (F0 − (T ∪ i′j′′)) ∪ F1 ∪ F2}. Let rs ∈ F1.
Lift (46) next with respect to xrs. Then, the lifting coefficient is ars. 2

We now show that it is not possible to lift an FCI with respect to the variables xrs, rs ∈ F2,
or, as in Lemma 1, αmin

rs > αmax
rs .

Proposition 16 Let T ⊆ F0 − i′j′′, and rs ∈ F2. It is not possible to lift (46) with respect
to xrs.

Proof Let αrs be the lifting coefficient of xrs. Then,∑
ij∈C

aijxij + (b−
∑

ij∈F1∪F2

aij −
∑

ij∈C−i′j′
aij)xi′j′′ +

∑
ij∈T

αijxij + αrsxrs ≤ b−
∑

ij∈F1∪F2

aij + αrsx̃rs

for all x ∈ PS ∩ {x ∈ <d : xij = x̃ij ∀ij ∈ (F0 − (T ∪ i′j′′)) ∪ F1 ∪ (F2 − rs)}.
Let x̂ be given by

x̂ij =


1 if ij ∈ C − i′j′ or ij = i′j′′

min{1,
b−

∑
ij∈F1∪F2

aij+arsx̃rs−
∑

ij∈C−i′j′ aij−ai′j′′

ars
} if ij = rs

0 otherwise.
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Then, x̂ ∈ PS ∩ {x ∈ <d : xij = x̃ij ∀ij ∈ (F0 − (T ∪ i′j′′)) ∪ F1 ∪ (F2 − rs)}. Because
x̂rs > x̃rs, αrs = 0.

On the other hand, x∗ given by

x∗ij =


1 if ij ∈ C − i′j′

min{1,
b−

∑
ij∈F1∪F2

aij+arsx̃rs−
∑

ij∈C−i′j′ aij

ai′j′
} if ij = i′j′

0 otherwise.

belongs to PS ∩ {x ∈ <d : xij = x̃ij ∀ij ∈ (F0 − (T ∪ i′j′′)) ∪ F1 ∪ (F2 − rs)}, and therefore,
αrs > 0. Thus, (46) cannot be lifted with respect to xrs. 2

The proof of Theorem 3 follows now easily from Propositions 14-16.
Proof of Theorem 3 As a consequence of Proposition 16, (36) must be lifted with respect to
the variables xij, ij ∈ F2, before it is lifted with respect to xi′j′′ . But then, from Proposition
14, the lifting coefficient is aij. Because of that and of Proposition 15, we may as well start
with the cover C ∪ F1 ∪ F2, and with all other variables fixed exclusively at 0. 2

5 Extensions and Further Research

We are applying the results of this paper to define a branch-and-cut algorithm for quadratic
programming over a box and 0-1 unconstrained quadratic programming. Many important ap-
plications, such as portfolio optimization, can be formulated as an LP, or a convex quadratic
program, with the additional constraint that at most k out of the n variables can be positive
in a feasible solution, see [5, 9, 20]. We are currently investigating how FCIs can be used to
derive strong cuts for these problems [11].
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