
Solution of asymmetric traveling salesman problems
combining the volume and simplex algorithms

Ana Maria A.C. Rocha∗ Edite M.G.P. Fernandes∗

João Lúıs C. Soares†

10th December 2004

Abstract

In this paper we investigate the usage of the Lagrangian approach as a mech-
anism of speeding up the optimal basis identification in simplex methods. More
precisely, we have combined the volume algorithm (a variation of the subgradient al-
gorithm) with a simplex implementation like Cplex on a strong linear programming
formulation of the asymmetric traveling salesman problem known by extended dis-
aggregated flow formulation. We compare the efficiency of our combined approach
on a selection of test problems from the TSPLIB collection and on randomly gener-
ated instances. Numerical results also include heuristic finding of integer solutions
and results are compared against some well-known heuristic methods.

1 Introduction

Some linear programs arising from real-world applications have such a large number of
variables and/or constraints that they cannot be dealt with simplex type algorithms
or even interior point methods. While the critical aspect for interior-point methods is
memory requirements, in simplex methods it is often the initial basis choice. This paper
is part of an ongoing research project in which the authors are engaged to study the usage
of fast approximation schemes to speeding up the optimal basis identification in simplex
algorithms. Problems of particular interest are the linear programming relaxations of
difficult combinatorial optimization problems, namely, those that possess the following
characteristics: (a) are large in the number of variables and/or constraints, and (b) have
an embedding complicating characteristic that if removed makes the problem ’easy’.

The Asymmetric Traveling Salesman problem (ATSP) is a notorious NP-complete
problem that fits in this group. The ATSP is the problem of finding the cheapest tour
in a given directed graph G = (V, E) with a real cost cij associated with each arc (i, j).
Its algebraic formulation requires a large number of variables - at least O(n2), where n is
the number of nodes - and without the ’no subtours are allowed’ group of constraints the
problem becomes solvable in O(n3) operations.

∗Departamento de Produção e Sistemas, Universidade do Minho, {arocha;emgpf}@dps.uminho.pt
†Departamento de Matemática, Universidade de Coimbra, jsoares@mat.uc.pt

1

In practice, the seek of an optimal solution for the ATSP is complicated by the large
number of variables. One of its first formulations was proposed by Dantzig, Fulkerson
and Johnson (DFJ) [11] and still is the formulation of choice for state-of-art codes like
concorde [2] (in the symmetric case) and the one used in [12]. In spite of this formulation
having an exponential number of constraints (the subtour elimination constraints), its
linear programming relaxation can be solved in polynomial time by the ellipsoid algorithm.
In practice, it is often solved by constraint generation algorithms [12].

Several authors have proposed formulations for the ATSP that possess a non-exponential
number of constraints at the expense of a (non-exponential) increase in the number of
variables. This is the case with those formulations proposed in [26, 13, 9, 14] to name a
few. Surveys on formulations for the ATSP include [27, 24]. None of these linear pro-
gramming formulations dominates the DFJ formulation in strength or adequacy to the
solution by branch-and-bound methods.

The fast determination of an approximated solution to the linear programming relax-
ation of the (symmetric) TSP was initiated by Held and Karp [15, 16] through Lagrangian
relaxation. In general, using Lagrangian relaxation means minimizing a convex and piece-
wise linear function over a polyhedral set. Typically, this nondifferentiable problem is
solved by the projected subgradient algorithm. An inherent difficulty with Lagrangian
relaxation lies in the fact that, by halting the subgradient algorithm, the solution found
may be far from primal feasibility and quite often it is not clear how it may help in finding
the original optimum (integer or fractional).

Recently, a variation of the subgradient algorithm, known by volume algorithm has
proven to produce ’close-to-optimal’ solutions that are quite close to primal feasibility
[5]. Motivated by this improvement on the subgradient algorithm, we conjectured that
by first applying the volume algorithm it would be possible to jump start the solution
of the fractional ATSP by a simplex solver like Cplex. A straightforward application
of the volume algorithm on the Held and Karp dual problem would suffer from the fact
that it is not efficient to reoptimize shortest spanning trees. Thus, instead of considering
the symmetric case we considered the unsymmetric version of the Traveling Salesman
Problem for which reoptimization of the Lagrangian function is, as we shall see, efficient.

In this work we approach the solution of the fractional ATSP through applying La-
grangian relaxation on a formulation known as extended disaggregated flow formulation.
Primal and dual information obtained through the volume algorithm is used to guess a
good initial basis for Cplex. The reduced costs are also used to guide heuristic algorithms
in the search of integer solutions. Computational results were obtained for a selection of
problems from TSPLib and others were randomly generated. The article is structured
as follows. Section 2 introduces the disaggregated flow formulation. Section 3 presents
the Lagrangian problem. Section 4 recalls the volume algorithm especially adapted to
our study. Section 5 presents numerical experiments and in Section 6 we conclude and
identify potential areas of further study.

2 The extended disaggregated flow formulation

Let G = (V, E) be a directed graph with n vertices and m arcs. The set of characteristic
vectors of tours in G is a subset of the set of integer vectors x ∈ Rm that satisfy the

2

following system of equalities and inequalities

∑

(i,j)∈δ+(i)

xij = 1 (i ∈ V)

∑

(i,j)∈δ−(j)

xij = 1 (j ∈ V)

xij ≥ 0 ((i, j) ∈ E)

(1)

where δ−(j) denotes the set of incoming arcs into vertex j and δ+(i) denotes the set of
outgoing arcs from vertex i. We denote the polyhedron defined by (1) as P ASS because the
constraints define a (restricted) assignment problem. The characteristic vectors of tours
are precisely the set of integer vectors x that satisfy (1) and for which there are vectors
y2, y3, . . . , yn ∈ Rm satisfying the following system of equalities and inequalities

∑

(i,j)∈δ+(i)

yk
ij −

∑

(j,i)∈δ−(i)

yk
ji =

−1 if i = 1

0 if i 6= 1, k
1 if i = k

 (i ∈ V, k ∈ V1)

0 ≤ yk
ij ≤ xij ((i, j) ∈ E, k ∈ V1)

(2)

where V1 ≡ V \ {1}. Constraints (1) and (2) characterize a polyhedron lying in Rn×m

whose projection into the m-dimensional space of the x variables is a polyhedron denoted
P ATSP

L . It may be shown that the convex hull of characteristic vector of tours, denoted
P ATSP, satisfies P ATSP = P ATSP

L ∩ Zm and x ∈ P ATSP
L if and only if x satisfies (1) and

∑

(i,j)∈E(S)

xij ≤ |S| − 1 (S ⊆ V1) (3)

where E(S) denotes the set of arcs of the induced graph G[S]. Constraints (1) and (2) are
the extended disaggregated flow formulation of the ATSP for its interpretation in the terms
of flows. The underlying interest in using (2) instead of (3) has to do, as it will become
apparent in the next section, with the number of constraints and its matrix structure.

3 The Lagrangian problem

As it was explained in the previous section, the linear optimization problem z∗L ≡ min{cx : x ∈
P ATSP

L }, and its dual, may be formulated as follows

z∗L =

min cx
s.t. Ax = 1l

Byk = bk (k ∈ V1)
x− yk ≥ 0 (k ∈ V1)
yk ≥ 0 (k ∈ V1)
x ≥ 0

(4)

=

max w1l +
∑

k∈V1
πkbk

s.t. wA +
∑

k∈V1
ρk ≤ c

πkB − ρk ≤ 0 (k ∈ V1)
ρk ≥ 0 (k ∈ V1)

(5)

3

where A denotes the node-edge incidence matrix of the (undirected) bipartite graph G′ =
(V ×V,E), 1l is a vector of ones, B denotes the node-arc incidence matrix of the directed
graph G, and, for each k ∈ V1, bk is a vector of all zeros except for bk

1 = −1 and bk
k = 1.

Now, consider the Lagrangian problem

max
{
z (π) : π =

(
πk

) ∈ R(|V |−1)×|V |} (= z∗L) (6)

that arises from dualizing the constraints Byk = bk, k ∈ V1. Its objective function is
defined at each π = (πk) by

z(π) ≡

min cx +
∑

k∈V1
πk

(
bk −Byk

)
s.t. Ax = 1l

x− yk ≥ 0 (k ∈ V1)
yk ≥ 0 (k ∈ V1)
x ≥ 0

(7)

=

max w1l +
∑

k∈V1
πkbk

s.t. wA +
∑

k∈V1
ρk ≤ c

−ρk ≤ −πkB (k ∈ V1)
ρk ≥ 0 (k ∈ V1)

. (8)

An optimal solution in (7) can be derived from solving a single assignment problem. In
fact, for all fixed x, an optimal solution ȳ(x) = [ȳk(x)] in the y variable space is an optimal
solution of

max
∑

k∈V1

∑

(i,j)∈E

(
πk

i − πk
j

)
yk

ij

s.t. 0 ≤ yk
ij ≤ xij ((i, j) ∈ E, k ∈ V1).

(9)

An optimal solution for (9) is defined componentwise by

ȳk
ij(x) =

{
xij if πk

i − πk
j ≥ 0,

0 if πk
i − πk

j < 0.

}
((i, j) ∈ E, k ∈ V1) (10)

corresponding an optimal value of
∑

k∈V1

∑
(i,j)∈E max

(
πk

i − πk
j , 0

)
xij. Therefore, prob-

lem (7) is equivalent to the following assignment problem

min c̄x
s.t. Ax = 1l, x ≥ 0,

(11)

where c̄ is defined componentwise by c̄ij = cij−
∑

k∈V1
max

(
(πk

i − πk
j), 0

)
. More precisely,

if x̄ is an optimal solution of (11) then (x̄, ȳ), with ȳ = ȳ(x̄) defined by (10), is an optimal
solution to the minimization problem in (7). Problem (11) can be solved by, for example,
the Hungarian method in O(|V |3) operations.

Moreover, if x̄ is an optimal solution of (11) then z(π) = c̄x̄ +
∑

k∈V1

(
πk

1 − πk
k

)
, and

an optimal solution (w̄, ρ̄) of the dual in (7) is characterized by an optimal dual solution
w̄ = (ū, v̄) in (11) and by setting ρ̄k

ij = max(πk
i − πk

j , 0), for all k ∈ V1 and (i, j) ∈ E.
Note also that the vector (π, w̄, ρ̄) is dual feasible in (4) because, for each (i, j) ∈ E,

[
c−

(
w̄A +

∑

k∈V1

ρ̄k

)]

ij

= cij −
(

ūi + v̄j +
∑

k∈V1

max(πk
i − πk

j , 0)

)
= c̄ij − (ūi + v̄j) ≥ 0,

4

and, for each (i, j) ∈ E and k ∈ V1,

[
0− (

πkB − ρ̄k
)]

ij
= − (

πk
i − πk

j −max(πk
i − πk

j , 0)
)

= max(πk
j − πk

i , 0) ≥ 0.

In the next section we will recall the volume algorithm and explain how it was particularly
tuned to solving (6). The Lagrangian subproblems, to be solved in each iteration, are
restricted assignment problems whose objective function changes very little from iteration
to iteration. Hence, these subproblems can be reoptimized quite effectively.

4 The volume algorithm

Practical experience has shown that the volume algorithm produces primal solutions that
are quite close to feasibility (as well as good dual solutions). The denomination “volume”
reflects the fact that primal values come from computing the volume below the faces
of the dual problem. The direction of movement is also given by these volumes. Some
convergence properties are studied in [4]. Successful numerical experiments were carried
out on fractional set partitioning [5, 1, 6], Steiner tree problems [3], and facility location
[7]. The solving of Steiner tree and Max-cut problems through branch-and-cut where the
linear programming relaxations are solved by the volume algorithm is studied in [8].

Input: π0 ∈ R(|V |−1)×|V |.

Initialization: Solve (7) with π = π0 to obtain (x0, y0).
Compute v0 = b−By0 ∈ ∂z(π0).
Set π̄1 = π0, (x̄, ȳ) = (x0, y0), w̄ = v0, j = 1 and l = 1.

Generic Iteration j:

Step 1: For some stepsize sj > 0, compute πj = π̄l + sjw̄.
Step 2: Let (xj, yj) be an optimal solution of (7).

Compute vj = [vk,j] ∈ ∂z(πj) with vk,j = bk −Byk,j.
Step 3: For some αj ∈ [0, 1], update

(x̄, ȳ, w̄) = αj

(
xj, yj, vj

)
+ (1− αj) (x̄, ȳ, w̄) (12)

Step 4: If z(πj) > z(π̄l), then update π̄l+1 = πj and set l ← l + 1.
Step 5: Test stopping criterion. Let j ← j + 1 and go to Step 1.

Figure 1: The volume algorithm (VA)

As observed in [4], the volume algorithm formally described in Figure 1 has some
similarities with the bundle method. In particular, the idea of taking a convex combination
between the new and previous direction in each iteration aims at avoiding the typical
zig-zagging behavior of the subgradient algorithm and, in this way, accelerates solution
convergence - though this is not always observable in practice. The description leaves
open the definition of the scalars sj and αj involved in the redefinition of the primal

5

solution x̄. Our choices for these two scalars are essentially empirical and similar to the
ones used in [5]. The value of αj is chosen to force primal feasibility of (x̄, ȳ). As in [5],
we first define

αopt ≡ arg min
∥∥αvj + (1− α) w̄

∥∥2
= arg min

∑

k∈K

∥∥bk −B
(
αyk,j + (1− α) ȳk

)∥∥2
.

Then, we set an upper bound to the value of α, denoted αmax, and finally set

αj =

{
αmax/10 if αopt ≤ 0,
min(αopt, αmax) if αopt > 0.

In our numerical experiments we used the implementation of the volume algorithm avail-
able at http://www.coin-or.org (the COIN-OR webpage). Thus, some choices for the
values of the parameters are simple settings in the code. For example, αmax is configured
by setting the parameter alphainit=0.01. After a certain number of iterations (config-
ured by the parameter alphaint=80), we test the progress of the dual function z (π). If
it has increased less than 1% and if αmax is superior to a certain value (configured by the
parameter alphamin=0.0001) then αmax is multiplied by a certain quantity (configured
by the parameter alphafactor=0.5).

As most of the implementations of the subgradient method, like the one in [17], the
stepsize sj is computed by the following formula:

sj = λj
T − z(π̄l)

‖w̄‖2 (13)

with λ ∈ (0, 2] and T is a target value for the optimal value of (6). We start with a small
value for T (for example, T = z(π0)). Each time z(π̄l) is below 5% of T, the value of T
is increased by 5%. In each iteration, the setting of λ obeys to the following basic steps.
The initial value of λ is 0.1 (lambdainit=0.1) and it is updated depending on three types
of iterations: red, yellow and green.

• When z(πj) ≤ z(π̄l) the iteration is referred to as red (an improvement in the dual
value was not verified). After forty (redtestinvl=40) consecutive red iterations
(suggesting the need for a smaller stepsize) λ is multiplied by 0.67, unless λ < 0.0005,
in which case it is kept unmodified.

• When z(πj) > z(π̄l), an improvement in the dual value occurs. Hence, we compute

d = w̄ (b−Bȳ) .

If d < 0, the iteration is referred to as yellow. It means that a longer step in
the direction w̄ would lead to a smaller value for z(πj). After a sequence of two
(yellowtestinvl=2) consecutive yellow iterations we multiply λ by 1.1.

If d ≥ 0, the iteration is referred to as green. It suggests the need for a larger
stepsize. After two (greentestinvl=2) consecutive green iterations λ is multiplied
by 2 up to a maximum value of 2.

6

Upon termination the following two conditions are imposed. One is based on the checking
of the maximum number of iterations allowed

number of iterations ≤ {500, 1000, 5000, 10000}(= maxsgriters).

The other is the conjunction of two conditions:

1. the absolute maximum value of the constraints violation

‖w̄‖ ≤ 0.01 (=primal abs precision)

2. the relative or absolute difference between the lower bound z(π̄l) and the value of
primal solution cx̄

∣∣cx̄− z(π̄l)
∣∣

|z(π̄l)| ≤ 0.01(=gap rel precision)

or ∣∣cx̄− z(π̄l)
∣∣ ≤ 0.05 (=gap abs precision).

5 Computational results

This section summarizes the numerical experiments. All the codes were implemented in
C++ and all the computational tests were performed on a PC with a 2.66GHz Pentium
IV microprocessor and 512Mb of memory running RedHat Linux 8.0.

Table 1 contains some of the characteristics of the selected instances from TSPLib
library [28]. The first columns of the table identify the problem and the last columns
report the performance of the dual simplex method (dualopt) and the interior point
method (baropt), as implemented in software Cplex version 7.0 [20] with default settings,
in the solving of (4). Note that for the largest instances, the dual-simplex method is much
slower than the interior point method. The superior performance of the interior point
method was expected because of the very large number of variables and constraints for
these instances. A drastical example is instance p43, for which the interior point method
spent only 3,5% of the time spent by the dual simplex method.

Motivated by the difficulty of the dual-simplex method on identifying the optimal
basis it occurred to us the idea of using the volume algorithm to some advantage in three
aspects. First, use the solution output from the volume algorithm as a means of deriving
a good initial basis. Second, use the solution output from the volume algorithm as a
mechanism of identifying the arcs that do not participate in the integer optimal solution.
Last, use the reduced costs computed in the course of the volume algorithm, to generate
integer solutions through heuristic methods.

5.1 Solving the linear relaxation

In this subsection, we analyze the strategy of using the solution output from the vol-
ume algorithm as a means of deriving an initial basis for the dual-simplex method. We
observed that the volume algorithm has a very differentiated performance for slightly dif-
ferent values of its parameters which was not a surprise for it being an algorithm of the

7

ATSP INSTANCE
Cplex Cplex

(dualopt) (baropt)

ID |V | |E| Int. Frac. simplex Time Time
Optimal Optimal It. (sec.) (sec.)

br17 17 272 39 39.0 3055 2.2 0.4
ftv33 34 1122 1286 1286.0 24231 42.7 18.2
ftv35 36 1260 1473 1457.3 31627 76.2 23.5
ftv38 39 1482 1530 1514.3 41240 121.9 32.2
ftv44 45 1980 1613 1584.9 68004 278.9 59.1
ftv47 48 2256 1776 1748.6 100650 627.1 106.5
ftv55 56 3080 1608 1584.0 137580 1035.9 237.7
ftv64 65 4160 1839 1807.5 245467 2762.7 511.2
ftv70 71 4970 1950 1909.0 316196 3719.2 791.0
p43 43 1806 5620 5611.0 131426 2117.6 60.9
ry48p 48 2256 14422 14289.3 98816 600.2 107.0
ft53 53 2756 6905 6905.0 127702 827.1 175.2
ft70 70 4830 38673 38652.5 291086 3657.6 753.4

Table 1: ATSP instances and Cplex performance.

subgradient class. The parameter values that were used are the ones reported in Section
4. In each iteration of the volume algorithm, the assignment problem (11) is solved by
the dual-simplex method. Preliminary computational experiments enabled us to conclude
that this algorithm was faster than the network primal simplex method.

Table 2 summarizes our results. Each instance was solved twice by the dual-simplex
method, after a small and large number of iterations of algorithm VA, respectively. For the
smaller instances we chose a maximum of VA iterations of 500 and 1000; for the medium-
sized instances the choice was 1000 and 5000; and, for the larger instances, 5000 and
10000 iterations were used. The initial information supplied to Cplex is realized through
the use of the function CPXcopystart(env,lp,NULL,NULL,x,NULL,NULL,y), where env
and lp are pointers to the Cplex environment and problem, respectively, x indicates
the primal vector and y indicates the dual vector as they are output from the volume
algorithm. Cplex is left the task of identifying an initial basis.

Column 1 of Table 2 identifies the ATSP instance. Columns 2-6 report the VA results,
namely: the maximum number of iterations, the lower bound (based on dual information),
the primal objective function value at the last primal solution found; the l∞ constraint
violation value at this last solution, and, the time spent. Columns 7-8 have to do with
Cplex and are as follows: the number of simplex iterations required by the dual simplex
method and the time in seconds. The last two columns are the total time spent running
the two algorithms and the percentage of the gain in time with this combined strategy
(VA+Cplex) as compared to the execution of Cplex (dualopt) reported in Table 1. A
positive value indicates an improved performance. The registered times of all the tables
were rounded to one decimal place.

Some conclusions may be drawn. In all cases, a larger number of iterations of the
volume algorithm implies a smaller number of iterations of the dual-simplex method.
The reduction is drastic in a few cases. For example, after 5000 iterations of the VA, the

8

ATSP
VOLUME Cplex

Total Time
ID

VA L P Max. Time Simplex Time
Time Gain

It. (dual) (primal) violation (sec.) It. (sec.)
br17 500 33.5 40.4 0.00416 0.7 1208 2.3 3.0 -34.1%
br17 1000 38.3 40.1 0.00237 1.4 1208 2.4 3.8 -70.5%
ftv33 500 1246.2 1304.1 0.04462 2.8 4421 19.1 21.9 48.8%
ftv33 1000 1281.9 1311.1 0.03612 5.5 2700 13.8 19.3 54.7%
ftv35 500 1435.6 1464.2 0.13534 3.2 12449 59.4 62.6 17.8%
ftv35 1000 1454.6 1466.0 0.11960 6.4 2190 13.4 19.8 74.1%
ftv38 500 1496.1 1513.5 0.11292 3.6 8999 59.6 63.2 48.2%
ftv38 1000 1512.8 1514.6 0.08486 7.1 2926 20.8 27.9 77.1%
ftv44 1000 1577.1 1586.0 0.10168 10.8 8217 82.5 93.3 66.5%
ftv44 5000 1584.7 1585.8 0.05515 52.4 2408 27.8 80.3 71.2%
ftv47 1000 1740.3 1750.5 0.09320 14.1 27997 347.9 362.1 42.3%
ftv47 5000 1746.9 1749.8 0.05170 70.6 12957 174.6 245.2 60.9%
ftv55 5000 1583.9 1585.6 0.04191 101.7 38867 940.5 1042.1 -0.6%
ftv55 10000 1583.9 1584.7 0.01919 205.7 20 16.8 222.5 78.5%
ftv64 5000 1807.3 1813.9 0.03699 161.8 18252 584.4 746.2 73.0%
ftv64 10000 1807.3 1810.6 0.01694 309.7 9876 349.9 659.5 76.1%
ftv70 5000 1908.4 1910.3 0.02956 198.0 36051 1215.8 1413.8 62.0%
ftv70 10000 1908.4 1909.6 0.01351 409.9 35 42.2 452.2 87.8%
p43 1582 5578.3 5633.8 0.00717 28.8 175194 6424.6 6453.4 -204.7%
p43 5000 5580.1 5625.1 0.00420 76.7 86710 3041.5 3118.3 -47.3%
ry48p 3328 14280.1 14422.9 0.00455 47.0 13181 187.7 234.8 60.9%
ry48p 5000 14280.1 14393.0 0.00351 66.3 6625 87.9 154.3 74.3%
ft53 5000 6904.0 6948.9 0.01414 82.5 1572 38.9 121.4 85.3%
ft53 7243 6904.0 6945.0 0.01000 127.2 74 14.7 141.9 82.8%
ft70 5000 38640.1 8831.2 0.03572 208.9 32930 983.4 1192.3 67.4%
ft70 10000 38640.1 38735.1 0.01637 432.3 236 46.3 478.6 86.9%

Table 2: Results of applying Cplex after VA.

solution of the ftv55 instance is not accelerated much but, after 10000 iterations Cplex
required only 20 iterations (16.8 seconds) to get an optimal solution. Another example
is the ftv70 instance. After 5000 VA iterations Cplex time still is the large bulk to the
total time. After 10000 iterations the gain in time is far greater, 87.8%.

By comparing the total times of Tables 1 and 2 - see Figure 2 - we observe an overall
advantage in using the VA before invoking the dual simplex method of Cplex. In some
cases, ftv70 for example, the combined strategy is even superior to the interior point
method. Nevertheless, there are instances, br17 and p43, for which the combined strategy
did not work.

Since the role of the dualized constraints in this Lagrangian strategy is to avoid the
subtours, we also claimed that the number of subtours in the Lagrangian subproblems
would decrease as the volume algorithm stabilizes, becoming more and more similar to
tours. This claim was not completely validated but, we observe a tendency. Figure 3
reports the number of subtours found in 1000 VA iterations for the ftv70 instance.

9

0%

20%

40%

60%

80%

100%

br17 ftv33 ftv35 ftv38 ftv44 ftv47 ftv55 ftv64 ftv70 p43 ry48p ft53 ft70

Instances

VA+CPLEX CPLEX (dualopt) CPLEX (baropt)

Figure 2: Comparing solution times.

0

2

4

6

8

10

12

14

0 100 200 300 400 500 600 700 800 900 1000

Iterations

Su
bt

ou
rs

Figure 3: Number of subtours generated throughout VA for the ftv70 instance.

5.2 Variable fixing before branch-and-bound

In this subsection, we analyze the strategy of using the solution output from the volume
algorithm to guess which variables are zero at an integral optimum. Table 3 presents the
results of a straight call to Cplex MIP without providing any initial information for four
of the small instances.

Table 4 reports some of the results obtained for a combined strategy of running the
volume algorithm, decide which x variables to fix to zero and, then, invoke Cplex MIP.
All the primal variables whose value is less or equal to 0.0005 and whose reduced cost

10

ATSP
Cplex MIP

ID
Simplex Time

It. (sec.)
br17 27349 162.2
ftv33 24226 56.8
ftv35 288329 2094.9
ftv38 2403409 25536.7

Table 3: Results of Cplex MIP on some small instances.

is greater than or equal to 0.5 are fixed to zero. The first part of the table duplicates
information presented before. The second part contains the performance of Cplex MIP.
The column before last displays the total time spent (i.e., VA+ Cplex MIP). The last
column displays the gain of time as compared to a straight call to Cplex MIP.

ATSP
VOLUME Cplex MIP

Total Time
ID

VA Time Final Simplex Time
Time Gain

It. (sec.) Solution It. (sec.)
br17 500 0.7 39 48837 158.4 159.1 1.9%
br17 1000 1.4 39 35331 121.4 122.8 24.3%
ftv33 500 2.8 1286 2508 1.1 3.9 93.1%
ftv33 1000 5.5 1286 2879 1.4 6.8 88.0%
ftv35 500 3.2 1473 5028 27.9 31.1 98.5%
ftv35 1000 6.4 1473 4106 24.4 30.8 98.5%
ftv38 500 3.6 1530 5997 36.9 40.5 99.8%
ftv38 1000 7.1 1530 11662 64.0 71.2 99.7%

Table 4: Results of Cplex MIP after VA on a few small instances.

For the br17 instance the time spent with Cplex MIP is still large after 500 itera-
tions of VA. However, an increase in the number of VA iterations allowed to fixing 1071
variables (out of 4624) lead to a time gain of 24.3%. This performance contrasts with the
performance of the solving of the br17 fractional model. For the remaining instances, the
time gains is in the order of 90%. For the ftv33 instance, after fixing 10 709 variables (out
of 38148), an integer solution was found in 3.9s total time, instead of 56.8s. However, an
increase in the number of VA iterations did not lead to an improvement in the total time.
For the ftv35 instance, 500 VA iterations allowed the fixing of 5990 variables out of 45360
variables but, 1000 VA iterations allowed for the fixing of 6132 variables and the extra
VA time was compensated by the reduction in Cplex MIP time. The ftv38 instance
is a counterexample to this good behavior. 500 VA iterations allowed the fixing of 6972
variables, out of 57798, but 1000 VA iterations allowed the fixing of 6827 variables and
the time required by Cplex MIP worsened considerably.

5.3 Heuristic integer solution finding

There are essentially two types of heuristic methods for the ATSP. Construction heuristics
generate a solution adding individual components (nodes, arcs, variables, etc) step by step
until a feasible solution is found. A simple example is the nearest neighbor heuristic which

11

works in the following way. One starts at a randomly chosen vertex and then, successively,
connects each vertex to nearest unvisited vertex until a tour is formed. Often, this is not
a suitable technique because the last connections tend to have rather large costs.

Improvement heuristics (also called local search and neighborhood search) depart from
a feasible tour and successively generate neighboring tours through exchange rules. Up-
dates occur when tours of better quality are found. A simple example is the 2-Opt
heuristic which essentially builds a neighboring tour by taking a pair of arcs in a tour and
exchange their endpoints. A generalization of this very simple principle forms the basis
of the successful Lin-Kernighan heuristic [25].

In this subsection, we study the strategy of running an off-the-shelf heuristic method
for the ATSP every once in a while during the course of the volume algorithm. The cost
(cij) is changed to (cij − (ūi + v̄j)), where w̄ = (ū, v̄) are the optimal dual variables of the
current assignment subproblem. The set of optimal solutions for the ATSP for the new
cost remains the same but the behavior of the heuristic methods can be quite different.
Each 100 iterations of the VA we run an heuristic method. The best upper bound is
reported after 1000 or 5000 iterations of the VA.

Table 5 describes some additional test problems. The first eight problems are part of
the TSPLib collection. We have also made some numerical experiments on some larger
instances randomly generated through a code available from the DIMACS Implementation
Challenge webpage [22]. These instances belong to the class of Random Asymmetric
Matrices (tmat). First, each arc distance cij is randomly chosen in {0, 1, . . . , 106}. Then,
whenever cij > cik + ckj we set cij = cik + ckj. Repeat until no changes can be further
made. These instances, the last eleven of Table 5, satisfy the triangular inequality.

We have tried four different heuristics, as they were implemented in the software
tsp solve [19] namely: addition, assign, loss and patching. The heuristic addition is similar
to the nearest neighbor heuristic. A description is found in [21]. The heuristic assign first
solves an assignment problem and then gathers the subtours into a single tour heuristically.
The heuristic loss is an implementation of the method proposed in [10]. The heuristic
patching first solves an assignment problem and then gathers the subtours into a single
tour through operations of patching [23].

Table 6 reports the best upper bound found after 1000 or 5000 iterations of the volume
algorithm. Each one of these heuristics is run every 100 iterations by using the reduced
costs described before. For each instance we present the total number of VA iterations
and for each heuristic we present the best upper bound found, as well as the iteration
number where this upper bound was hit for the first time. The heuristic assign always
hit its upper bound after 100 VA iterations of the VA.

The heuristic assign found the integer optimum in all cases, even when the original
costs were used. This heuristic cycles in instance p43 and reports an error message because
of the dimension in instances tmat180 until tmat200.

The heuristics addition, loss and patching required, in general, more than 100 VA
iterations to find the best upper bound. In most cases, the heuristics addition and patching
did not perform well.

Figure 4 maps the upper bounds found by the heuristic addition for ftv44 instance
throughout the 5000 VA iterations. The best upper bound was found in iterations 3400
and 4800. At iteration zero, the upper bound found was 1829. In this case, the reduced
costs helped in finding a better upper bound.

The Lin-Kernighan heuristic [25] is generally considered one of the most effective

12

ATSP

ID |V | |E| Int.
Optimal

ftv100 101 10100 1788
ftv110 111 12210 1958
ftv120 121 14520 2166
ftv130 131 17030 2307
ftv140 141 19740 2420
ftv150 151 22650 2611
ftv160 161 25760 2683
ftv170 171 29070 2755
tmat100 100 9900
tmat110 110 11990
tmat120 120 14280
tmat130 130 16770
tmat140 140 19460
tmat150 150 22350
tmat160 160 25440
tmat170 170 28730
tmat180 180 32220
tmat190 190 35910
tmat200 200 39800

Table 5: Instances of larger dimensions.

1733 1733

1700

1750

1800

1850

1900

1950

2000

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Iterations

U
pp

er
 B

ou
nd

Figure 4: Upper Bounds found for ftv44 instance with addition heuristic.

methods to generate optimal or near-optimal solutions for the traveling salesman problem.
It belongs to the class of local search heuristics. In this heuristic we search for adjacent
tours to the current tour by performing λ-opt operations. A λ-opt operation corresponds
to taking any combination of λ arcs and generate alternative paths between the endpoints
to get a different tour. Whenever a better solution is generated, the current tour is updated

13

ATSP VA addition assign loss patching
ID It. UB It. UB UB It. UB It.

br17 1000 39 100 39 39 100 39 100
ftv33 1000 1482 200 1286 1372 600 1409 200
ftv35 1000 1491 100 1473 1508 300 1489 200
ftv38 1000 1634 200 1530 1547 700 1546 100
ftv44 5000 1733 3400 1613 1673 300 1699 100
ftv47 5000 1793 700 1776 1787 1600 1846 300
ftv55 5000 1781 3400 1608 1747 200 1657 100
ftv64 5000 2054 500 1839 1890 500 1871 900
ftv70 5000 2168 400 1950 2074 100 2004 600
ftv100 5000 2119 3000 1788 1969 900 1878 400
ftv110 5000 2335 800 1958 2156 4400 2036 500
ftv120 5000 2618 3000 2166 2402 100 2244 1100
ftv130 5000 2900 3300 2307 2519 100 2402 1000
ftv140 5000 2965 5000 2420 2590 300 2500 1200
ftv150 5000 3166 3400 2611 2971 200 2691 1500
ftv160 5000 3318 4200 2683 2839 100 2729 200
ftv170 5000 3509 4500 2755 2938 300 2809 600
kro124p 5000 40524 200 36230 41121 500 40106 100
p43 5000 5623 800 5638 1100 5640 200
ry48p 5000 14939 200 14422 15254 1000 14857 100
ft53 5000 8088 300 6905 7383 500 7847 100
ft70 5000 40566 500 38673 39065 1900 39197 100

tmat100 5000 1628486 1700 1377025 1379385 3500 1395601 500
tmat110 5000 1579919 200 1362004 1371800 700 1367459 100
tmat120 5000 1684696 2800 1390478 1396470 600 1419536 100
tmat130 5000 1716897 4500 1429864 1428864 3400 1444402 300
tmat140 5000 1719640 4800 1433486 1443556 300 1449585 100
tmat150 5000 1598899 3500 1364821 1364821 100 1389641 300
tmat160 5000 1855854 1300 1484992 1486164 2200 1487017 100
tmat170 5000 1674560 1600 1405055 1405273 4400 1405172 800
tmat180 5000 1941760 4400 1558217 500 1562008 100
tmat190 5000 1670791 500 1411658 1000 1424933 200
tmat200 5000 1968195 1400 1548893 400 1547919 100

Table 6: Solutions obtained with tsp solve heuristics.

and the heuristic is halted when a better tour is not identifiable this way.
Keld Helsgaum describes in [18] the implementation of a modified version of Lin-

Kernighan heuristic. The new algorithm differs in many details from the original and
its implementation is publicly available. The new algorithm uses larger and more com-
plex search steps. The numerical experiences reported in [18] and others show that its
implementation is quite efficient and considerably improves upon the original algorithm.

We have embedded this implementation within the volume algorithm as explained
before for the other heuristics. Table 7 reports the best upper bound found on the

14

instances from TSPLib. In all these problems, the best upper bound was found in the
iteration 100 except for ftv150, ftv170 and p43, for which the best upper bound was found
in iterations 400, 500 and 400, respectively.

ATSP
UB

ATSP
UB

ATSP
UB

ID ID ID
br17 39 ftv100 1788 tmat100 1377025
ftv33 1286 ftv110 1958 tmat110 1362004
ftv35 1473 ftv120 2166 tmat120 1390478
ftv38 1530 ftv130 2307 tmat130 1429864
ftv44 1613 ftv140 2420 tmat140 1433486
ftv47 1776 ftv150 2611 tmat150 1364821
ftv55 1608 ftv160 2683 tmat160 1484992
ftv64 1839 ftv170 2755 tmat170 1405055
ftv70 1950 tmat180 1554371
kro124p 36230 tmat190 1411658
p43 5620 tmat200 1545211
ry48p 14422
ft53 6905
ft70 38673

Table 7: Performance of the Lin-Kernighan heuristic, as implemented by K. Helsgaum.

It should be said that this implementation of the Lin-Kernighan heuristic also found
the integer optimum for all these instances but for p43. Here, the original costs made the
heuristic find a tour of value 5621, which is worse than the heuristic solution found by
the same algorithm after 400 VA iterations.

6 Conclusions

Our study showed that the volume algorithm is a viable mechanism of deriving a good
initial basis for the solving of a polynomial formulation of the ATSP like the extended
disaggregated flow formulation by simplex algorithms. In a few cases our combined strat-
egy is even faster than the interior point method. However, special caution is required on
the volume algorithm stopping criterion. Halting too soon may be more damaging than
beneficial.

Relatively to the usage of the reduced costs generated by the volume algorithm, we do
not see as much an impact especially because Helsgaum implementation of Lin-Kernighan
heuristic is so efficient. We have also observed that the volume algorithm can be quite
effective in the identification of irrelevant arcs but our results are scarce.

Overall, we think that this combined strategy is viable and deserves to be further
exploited. Of course our numerical experiments were limited and further testing is re-
quired especially on even larger models. A direction for future research in the context
of the ATSP is, for example, to test the usage of the solution output from the volume
algorithm as a means to speeding the solving of the fractional DFJ model (that has an
exponential number of constraints) by a constraint generation algorithm. In the context

15

of other models, we think similar conclusions can be made when the reoptimization of the
Lagrangian subproblems can be performed efficiently.

References

[1] R. Anbil, J. J. Forrest, and W. R. Pulleyblank. Column generation and the airline
crew pairing problem. Documenta Mathematica, Extra Volume ICM III:677–686,
1998.

[2] D. Applegate, R. Bixby, V. Chvátal, and W. Cook. On the solution of traveling
salesman problems. In Proceedings of the International Congress of Mathematicians,
Vol. III (Berlin, 1998), number Extra Vol. III, pages 645–656 (electronic), 1998.

[3] L. Bahiense, F. Barahona, and O. Porto. Solving steiner tree problems in graphs with
lagrangian relaxation. Journal of Combinatorial Optimization, 3(7):259–282, 2003.

[4] L. Bahiense, N. Maculan, and C. Sagastizábal. The volume algorithm revisited:
Relation with bundle methods. Mathematical Programming, 94:41–70, 2002.

[5] F. Barahona and R. Anbil. The volume algorithm: Producing primal solutions with
a subgradient method. Mathematical Programming, 87:385–399, 2000.

[6] F. Barahona and R. Anbil. On some difficult linear programs coming from set par-
titioning. Discrete Applied Mathematics, 118(1-2):3–11, 2002.

[7] F. Barahona and F. A. Chudak. Near-optimal solutions to large scale facility location
problems. Technical report, IBM Watson Research Center, 1999.

[8] F. Barahona and L. Ladanyi. Branch and cut based on the volume algorithm: Steiner
trees in graphs and max-cut. Technical report, IBM Watson Research Center, 2001.

[9] A. Claus. A new formulation for the travelling salesman problem. SIAM Journal of
Algebraic and Discrete Methods, 5:21–25, 1984.

[10] P. V. D. Cruyssen and M. Rijckaert. Heuristic for the asymmetric travelling salesman
problem. Journal of the Operational Research Society, 29(7):697–701, 1978.

[11] G. Dantzig, D. Fulkerson, and S. Johnson. Solution of a large-scale traveling salesman
problem. Operations Research, 2:393–410, 1954.

[12] M. Fischetti and P. Toth. A polyhedral approach to the asymmetric traveling sales-
man problem. Management Science, 43(11):1520–1536, 1997.

[13] K. Fox, B. Gavish, and S. Graves. An n-constraint formulation of the (time-
dependent) traveling salesman problem. Operations Research, 28:1018–1021, 1980.

[14] L. Gouveia and J. M. Pires. The asymmetric travelling salesman problem: on gener-
alizations of disaggregated Miller-Tucker-Zemlin constraints. Discrete Applied Math-
ematics, 112(1-3):129–145, 2001. Combinatorial Optimization Symposium (Brussels,
1998).

16

[15] M. Held and R. M. Karp. The traveling-salesman problem and minimum spanning
trees. Operations Research, 18:1138–1162, 1970.

[16] M. Held and R. M. Karp. The traveling-salesman problem and minimum spanning
trees: Part II. Mathematical Programming, 1:6–25, 1971.

[17] M. Held, P. Wolfe, and H. P. Crowder. Validation of subgradient optimization.
Mathematical Programming, 6:62–68, 1974.

[18] K. Helsgaum. An effective implementation of the lin-kernighan traveling salesman
problem. European Journal of Operations Research, 126:106–130, 2000. Code avail-
able at http://www.dat.ruc.dk/˜keld/.

[19] C. Hurwitz and R. Craig. GNU Tsp solve. Version 1.3.8, 1994.

[20] ILOG. Cplex 7.0. ILOG, 2000.

[21] D. Johnson and C. Papadimitriou. Performance guarantees for heuristics. In
E. Lawler, J. Lenstra, A. R. Kan, and D. Shmoys, editors, The Traveling Sales-
man Problem: A Guided Tour of Combinatorial Optimization, pages 145–180. John
Wiley & Sons, Chichester, 1985.

[22] D. Jonhson, L. McGeoch, F. Glover, and C. Rego. Website for the
DIMACS implementation challenge on the traveling salesman problem.
http://www.research.att.com/˜dsj/chtsp.

[23] R. Karp and J. Steele. Probabilistic analysis of heuristics. In E. Lawler, J. Lenstra,
A. R. Kan, and D. B. Shmoys, editors, The Traveling Salesman Problem: A Guided
Tour of Combinatorial Optimization, pages 181–205. John Wiley & Sons, Chichester,
1985.

[24] A. Langevin, F. Soumis, and J. Desrosiers. Classification of travelling salesman
problem formulations. Operations Research Letters, 9:127–132, 1990.

[25] S. Lin and B. W. Kernighan. An effective heuristic algorithm for the traveling sales-
man problem. Operations Research, 21:498–516, 1973.

[26] C. Miller, A. Tucker, and R. Zemlin. Integer programming formulation of traveling
salesman problems. Journal of ACM, 7:326–329, 1960.

[27] M. Padberg and T. Sung. An analytical comparison of different formulations of the
travelling salesman problem. Mathematical Programming, 52:315–357, 1991.

[28] G. Reinelt. TSPLIB - a traveling salesman problem library. ORSA
Journal on Computing, 3:376–384, 1991. Available at http://www.iwr.uni-
heidelberg.de/groups/comopt/software/TSPLIB95.

17

