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Abstract In this paper we analyze the rate of local convergence of the Newton
primal-dual interior-point method when the iterates are kept strictly feasible with
respect to the inequality constraints.

It is shown under the classical conditions that the rate is q-quadratic when the
functions associated to the binding inequality constraints are concave. In general,
the q-quadratic rate is achieved provided the step in the primal variables does not
become asymptotically orthogonal to any of the gradients of the binding inequality
constraints.

Some preliminary numerical experience showed that the feasible method can be
implemented in a relatively efficient way, requiring a reduced number of function
and derivative evaluations. Moreover, the feasible method is competitive with the
classical infeasible primal-dual interior-point method in terms of number of iterations
and robustness.

Keywords Interior-point methods · Strict feasibility · Centrality · Local
convergence

R. Silva is Ph.D. student at Departamento de Matemática, Universidade de Coimbra, supported by a
scholarship from Fundação para a Ciência e a Tecnologia (FCT).
Support for J. Soares was provided by Centro de Matemática da Universidade de Coimbra.
Support for L.N. Vicente was provided by Centro de Matemática da Universidade de Coimbra and by
FCT under grant POCI/59442/MAT/2004.

R. Silva · J. Soares · L.N. Vicente (�)
Departamento de Matemática, Universidade de Coimbra, 3001-454 Coimbra, Portugal
e-mail: lnv@mat.uc.pt

R. Silva
e-mail: renata@mat.uc.pt

J. Soares
e-mail: jsoares@mat.uc.pt



42 R. Silva et al.

1 Introduction

The local convergence theory of (infeasible) primal-dual interior-point methods for
nonlinear programming was developed in the papers by El-Bakry et al. [5] and Ya-
mashita and Yabe [14]. These papers show a q-quadratic rate of local convergence un-
der the classical assumptions (second order sufficient optimality conditions, linear in-
dependence of the gradients of functions defining the binding constraints (LICQ), and
strict complementarity). The study of q-superlinear convergence for quasi-Newton
updates is reported in [10] and [14]. Furthermore, Vicente and Wright [13] proved
a q-quadratic rate of convergence for a variant of the primal-dual interior-point
method under degeneracy (replacing the LICQ by the Mangasarian–Fromowitz con-
straint qualification). In these approaches, the corresponding primal-dual interior-
point method deals with the multipliers associated to both equality and inequality
constraints as independent variables, and the primal-dual step is a Newton step for a
perturbation of the first order necessary conditions for optimality. These approaches
are infeasible since feasibility, corresponding to equality and, more importantly, to
inequality constraints (rather than simple bounds), is only achieved asymptotically.
Other rates of convergence for different interior-point methods for nonlinear pro-
gramming have been established in [2, 3, 9], and [12].

Gould, Orban, Sartenaer, and Toint [7] investigated the rate of convergence of
primal-dual logarithmic barrier interior-point methods for linear equality constraints
and general inequalities. The log-barrier approach maintains the iterates strictly
feasible with respect to the inequality constraints, and the multipliers correspond-
ing to the equalities are treated implicitly as dependent variables. The authors
proved q-superlinear convergence, with a rate that may be chosen arbitrarily close to
quadratic. Basically, they studied conditions under which a single primal-dual New-
ton step is strictly feasible and satisfies appropriate log-barrier subproblem termina-
tion criteria.

The feasible primal-dual interior-point method of Tits et al. [11] achieves a
quadratic rate of local convergence. In this algorithm, the multipliers correspond-
ing to the inequality constraints are updated according to an appropriate formula and
do not result directly from the Newton related primal-dual step on the perturbed KKT
system of first-order optimality conditions. As we explain below, we are interested
in analyzing the local convergence of a feasible primal-dual interior-point method
without any special provision or correction formula for these multipliers.

In this paper we analyze the rate of local convergence of the feasible primal-dual
interior-point method along the lines of the analyses in [5] and [14]. The aspect con-
sidered is that inequality constraints are not converted into equalities using slack vari-
ables. The method keeps strict feasibility with respect to the inequality constraints.
The other components of the primal-dual interior-point method remain essentially
the same: the primal-dual step is a Newton step on the perturbed KKT system and
the various parameters are updated appropriately to induce a q-quadratic rate on the
sequence of primal-dual iterates.

The material of this paper is organized in the following way. In Sect. 2, we describe
the feasible primal-dual interior-point method in detail. The method is analyzed in
Sect. 3, where it is shown that the iterates converge locally with a q-quadratic rate in
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the case of concave inequalities. The analysis includes the case where the step length
is computed inexactly. The nonconcave case is discussed in Sect. 4. The rate remains
q-quadratic for nonconcave inequalities as long as the primal component of the step is
asymptotically nonorthogonal to the gradients of the (nonconcave) functions defining
the binding inequalities. In Sect. 5 we report some numerical results which show that
the feasible method is competitive with the infeasible method in terms of number of
iterations. We present a scheme to calculate the step length for the feasible method
which requires a moderate number of constraint function evaluations. The paper is
concluded in Sect. 6 with remarks about the theoretical interest and computational
limitation of the analyzed approach.

2 The feasible primal-dual interior-point method

We consider the general nonlinear programming problem written in the form

min f (x),

s.t. h(x) = 0,

g(x) ≤ 0,

(1)

where f : R
n −→ R, h : R

n −→ R
mh , and g : R

n −→ R
mg . The assumptions on the

differentiability of the functions f , g, and h will be stated later. The numbers mh and
mg are assumed to be positive integers. The material of this paper remains valid in
the case where there are no equality constraints (mh = 0).

The Lagrangean function for problem (1) is � : R
n+mh+mg −→ R defined by

�(x, y, z) = f (x) + h(x)�y + g(x)�z,

where x are the primal variables and the pair (y, z) represents the dual variables (or
Lagrange multipliers). The gradient and the Hessian of � with respect to the primal
variables are given by

∇x�(x, y, z) = ∇f (x) + ∇h(x)y + ∇g(x)z,

∇2
xx�(x, y, z) = ∇2f (x) +

mh∑

j=1

yj∇2hj (x) +
mg∑

j=1

zj∇2gj (x),

whenever f , g, and h are twice continuously differentiable at x.
The Karush–Kuhn–Tucker (KKT) first order (necessary optimality) conditions for

problem (1) are described by

F0(x, y, z)
def=

(∇x�(x, y, z)

h(x)

−G(x)z

)
= 0,

g(x) ≤ 0, z ≥ 0,

(2)
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where G(x) = diag(g(x)). As we will see later, the primal-dual interior-point method
is based on a perturbation of the conditions (2), given by

Fμ(x, y, z)
def=

⎛

⎜⎝
∇x�(x, y, z)

h(x)

−G(x)z − μe

⎞

⎟⎠ = 0,

g(x) < 0, z > 0,

where μ is a positive scalar and e is a vector of ones of dimension mg . Note that, for
ē = (0,0, e�)� ∈ R

n+mh+mg ,

Fμ(x, y, z) = F0(x, y, z) − μē. (3)

We will also make use of ‖ē‖ = ‖e‖.
The main part of the iterative step of the primal-dual interior-point method consists

of the linearization of the perturbed KKT system. One computes a primal-dual step
�w = (�x,�y,�z), by solving the linear system of equations

F ′
μ(w)�w = −Fμ(w), (4)

for fixed w = (x, y, z) and μ > 0, where F ′
μ(w) is the Jacobian of Fμ(w). Notice

that, from (3), F ′
μ(w) is also the Jacobian of F0(w). The primal-dual system (4) can

be written by blocks in the form
⎛

⎝
∇2

xx�(x, y, z) ∇h(x) ∇g(x)

∇h(x)� 0 0
−Z∇g(x)� 0 −G(x)

⎞

⎠
(

�x

�y

�z

)
= −

( ∇x�(x, y, z)

h(x)

−G(x)z − μe

)
, (5)

where Z = diag(z).
Most variants of the primal-dual interior-point method keep positive all the vari-

ables subject to nonnegativity constraints. In our case, it means keeping the multipli-
ers z positive. The parameter μ is driven to zero asymptotically. Since we are looking
at the feasible variant of the primal-dual interior-point method, we must also keep
g(x) negative throughout the iterations. The main steps of this feasible variant are
described below in Algorithm 2.1. For the purpose of analyzing local convergence,
we do not include any stopping criterion.

Algorithm 2.1 (Feasible primal-dual interior-point method)
Choose an initial point w0 = (x0, y0, z0) with g(x0) < 0 and z0 > 0.
For k = 0,1,2, . . .

Step 1. Choose the parameter μk > 0.
Step 2. Compute the solution �wk = (�xk,�yk,�zk) of the system (5), for x = xk ,
y = yk , and z = zk .

Step 3. Compute a positive step length αk such that

g(xk + αk�xk) < 0 and zk + αk�zk > 0. (6)
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Step 4. Define the next iterate wk+1 = (xk+1, yk+1, zk+1) according to:

wk+1 = wk + αk�wk. (7)

Since the step size αk must satisfy (6) throughout the iterations, we will impose
that

αk = min

{
1, τk min

i=1,...,mg

{
− (zk)i

(�zk)i
: (�zk)i < 0

}
, τk min

i=1,...,mg

ᾱi
k

}
, (8)

where τk ∈ (0,1) and

ᾱi
k ≤ min{α : gi(xk + α�xk) = 0, α > 0}, i = 1, . . . ,mg. (9)

Whenever the minimum is not achieved, it is assumed by convention that it is set to
+∞.

We point out first that when the inequality constraints are of the simple bound
type (−x ≤ 0), the choice for αk is of the type given above with the inequalities
in (9) satisfied as equalities. In general, when the functions defining the inequality
constraints are nonlinear, it might be computationally expensive to actually determine
the step lengths ᾱi

k such that

ᾱi
k = min{α : gi(xk + α�xk) = 0, α > 0}, i = 1, . . . ,mg. (10)

On the other hand, to get a fast rate of local convergence one cannot compute step
lengths ᾱi

k that differ too much from (10). However, it is possible to allow a certain
inexactness in this computation. Let us define the residuals

ri
k

def= gi(xk + ᾱi
k�xk), i = 1, . . . ,mg.

We will show that the feasible primal-dual interior-point method will retain local
q-quadratic convergence as long as the residuals ri

k satisfy the condition

−ri
k ≤ min

{
σ(−gi(xk)),

−gi(xk)c1‖�wk‖
1 + c1‖�wk‖

}
, i = 1, . . . ,mg, (11)

where σ ∈ (0,1) and c1 > 0 are chosen independently of the iteration counter k. In
Sect. 5.1 we will describe a scheme to compute ᾱi

k that seems to be relatively efficient
in practice.

Moreover, to achieve a q-quadratic rate of local convergence, the feasible primal-
dual interior-point method must update the parameters τk ∈ (0,1) and μk > 0 satis-
fying the classical conditions

1 − τk ≤ c2‖F0(wk)‖, (12)

μk ≤ c3‖F0(wk)‖2, (13)

where c2 and c3 are constants independent of k. Vector and matrix norms in this paper
are chosen to be the Euclidean ones.



46 R. Silva et al.

3 Analysis of local convergence

The local convergence of the feasible primal-dual interior-point method is analyzed
at a point x∗ satisfying the following assumptions. In what follows, B(a∗; r) denotes
the open ball {a ∈ R

d : ‖a − a∗‖ < r} of radius r centered at a∗.

(A1) There exists an ε > 0 such that the functions f , g, and h are twice contin-
uously differentiable in the ball B(x∗; ε). Moreover, the second order partial
derivatives of f , g, and h are Lipschitz continuous in B(x∗; ε).

(A2) The point x∗ is feasible and the gradients of the active constraints are linearly
independent at x∗.

(A3) There exist Lagrange multipliers y∗ and z∗ such that w∗ = (x∗, y∗, z∗) satisfies
the first order KKT conditions and the second order sufficient conditions and
such that the pair (−g(x∗), z∗) satisfies the strict complementarity condition
(−g(x∗) + z∗ > 0).

Assumptions A1–A3 are the classical (nondegenerate) assumptions used to locally
analyze interior-point methods. It results from Assumption A3 that the multipliers
associated with the inequalities are nonnegative (z∗ ≥ 0) and also that

F0(w∗) = 0. (14)

We recall now the basic smoothness results that are required in the proof of the
local convergence of the primal-dual interior-point method.

Lemma 3.1 Let x∗ be a point for which Assumptions A1–A3 hold and w∗ =
(x∗, y∗, z∗). Then, there exists a positive constant γ such that

‖F0(w
1) − F0(w

2)‖ ≤ γ ‖w1 − w2‖, (15)

‖F ′
0(w

1) − F ′
0(w

2)‖ ≤ γ ‖w1 − w2‖,

‖F0(w
1) − F0(w

2) − F ′
0(w

2)(w1 − w2)‖ ≤ 1

2
γ ‖w1 − w2‖2, (16)

for all w1 and w2 in B(w∗; ε).

The next lemma states that the primal-dual matrix is nonsingular around w∗, in
the sense that is of interest to us. For a proof see, for instance, [6].

Lemma 3.2 Let x∗ be a point for which Assumptions A1–A3 hold and w∗ =
(x∗, y∗, z∗). Then the following holds:

(i) F ′
0(w∗) is nonsingular;

(ii) F ′
0(w) is nonsingular for w in B(w∗; εns), for some εns satisfying 0 < εns < ε.

From this lemma, it is assured the existence of a constant ζ > 0 such that

‖F ′
0(w)−1‖ = ‖F ′

μ(w)−1‖ ≤ ζ, (17)
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for all w in B(w∗; εns). For such points w, the primal-dual step �w given by the
solution of the system (4) is well-defined and is equal to

�w = −F ′
μ(w)−1Fμ(w). (18)

The local asymptotic behavior of the feasible primal-dual interior-point method is
studied first for concave binding inequalities.

(A4) The functions gi , for i ∈ {1, . . . ,mg} such that gi(x∗) = 0, are concave.

The main part of the analysis is spent proving a lower bound for the length of the
step size parameter αk .

Lemma 3.3 Let x∗ be a point for which Assumptions A1–A4 hold and w∗ =
(x∗, y∗, z∗). Consider a sequence {wk = (xk, yk, zk)} generated by the feasible
primal-dual interior-point method described in Algorithm 2.1. If αk satisfies (8–9)
and (11) and τk ∈ (0,1) and μk > 0 satisfy (12) and (13), then there exist positive
constants ε and κ independent of k such that, when

wk ∈ B(w∗; ε), (19)

either αk = 1 or the bound

1 − αk ≤ (1 − τk) + κζ(‖F0(wk)‖ + μk‖e‖), (20)

holds for all iterates k.

Proof First we have to set ε = εns , where εns is given in Lemma 3.2.
Using (18), (3), (14), (17), (15), and (19) sequentially, it is easily derived the fol-

lowing bound for the primal-dual step:

‖�wk‖ = ‖F ′
μ(wk)

−1Fμ(wk)‖
≤ ‖F ′

μ(wk)
−1‖(‖F0(wk)‖ + μk‖e‖)

≤ ζ(γ ‖wk − w∗‖ + μk‖e‖)
≤ ζ(γ ε + μk‖e‖).

Thus, from the condition (13) on the size of μk , and given a constant η > 0, one can
reduce ε if necessary such that

‖�wk‖ ≤ η. (21)

In particular, it is possible to choose a sufficiently small ε such that

κ‖�wk‖ ≤ τk, (22)

where κ is defined by

κ
def= max

{
κ2

1 − σ
, κ1 + κ1c1η + c1

}
.
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The constants κ1 and κ2 are given by

κ1 = 2 max

{
1

(z∗)i
: (z∗)i > 0, i ∈ {1, . . . ,mg}

}

and

κ2 = 2M∇g max

{
− 1

gi(x∗)
: gi(x∗) < 0, i ∈ {1, . . . ,mg}

}
,

where M∇g is an upper bound on the size of ∇g in B(x∗; ε).
We divide the proof in two separate cases: the case where the step length is defined

by a multiplier and the case where the step length is defined by an inequality.
Case where step length is defined by a multiplier. In this first case we assume that

there exists an index i ∈ {1, . . . ,mg} for which (�zk)i < 0 and

αk = −τk

(zk)i

(�zk)i
.

If i is such that (z∗)i > 0 then, from the definition of κ and from (22),

αk = τk

(zk)i

−(�zk)i
≥ τk

κ‖�wk‖ ≥ 1.

When (z∗)i = 0 (and gi(x∗) < 0), we make use of the primal-dual block equation
(see (5))

−Zk∇g(xk)
��xk − G(xk)�zk = G(xk)zk + μke,

to write

−(zk)i∇gi(xk)
��xk − gi(xk)(�zk)i = gi(xk)(zk)i + μk,

or equivalently,

− (�zk)i

(zk)i
= 1 + μk

gi(xk)(zk)i
+ pi

k

with

pi
k = ∇gi(xk)

��xk

gi(xk)
≤ |∇gi(xk)

��xk|
−gi(xk)

≤ κ‖�wk‖.
Thus, since μk/(gi(xk)(zk)i) < 0,

− (�zk)i

(zk)i
≤ 1 + κ‖�wk‖

and

αk = τk

(zk)i

−(�zk)i
≥ τk

1 + κ‖�wk‖ ≥ τk(1 − κ‖�wk‖).
Case where step length is defined by an inequality. Now we are interested in the

case

αk = τkᾱ
i
k,
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for some index i ∈ {1, . . . ,mg}. By applying the mean value theorem, we have

ri
k − gi(xk) = gi(xk + ᾱi

k�xk) − gi(xk) = ᾱi
k∇gi(xk + t ikᾱ

i
k�xk)

��xk,

for some t ik ∈ (0,1), and the step length ᾱi
k can be written as

ᾱi
k = ri

k − gi(xk)

∇gi(xk + t ikᾱ
i
k�xk)��xk

. (23)

Since −ri
k ≤ σ(−gi(xk)), both the numerator and the denominator in this expression

for ᾱi
k are positive.

If i is such that gi(x∗) < 0 then, from the definitions of κ2 and κ and from (22),

αk = τkᾱ
i
k ≥ τk

(1 − σ)(−gi(xk))

∇gi(xk + t ikᾱ
i
k�xk)��xk

≥ τk

(1 − σ)(−gi(xk))

‖∇gi(xk + t ikᾱ
i
k�xk)‖‖�xk‖

≥ τk

(1 − σ)

κ2‖�wk‖
≥ τk

κ‖�wk‖
≥ 1.

When gi(x∗) = 0 (and (z∗)i > 0), we must first add and subtract

ri
k

(�zk)i

(zk)i
+ ri

k + ri
k

μk

gi(xk)(zk)i

to the right hand side in the primal-dual equation

−∇gi(xk)
��xk = gi(xk)

(�zk)i

(zk)i
+ gi(xk) + gi(xk)

μk

gi(xk)(zk)i
.

After division by gi(xk) − ri
k , this results in

−∇gi(xk)
��xk

gi(xk) − ri
k

= (�zk)i

(zk)i
+ 1 + μk

gi(xk)(zk)i

+ ri
k

gi(xk) − ri
k

(�zk)i

(zk)i
+ ri

k

gi(xk) − ri
k

+ μkr
i
k

gi(xk)(zk)i(gi(xk) − ri
k)

.

Since the third and the sixth terms in the right hand side of this equality are negative
and since, from (11),

ri
k

gi(xk) − ri
k

≤ c1‖�wk‖,
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we obtain, from (21),

−∇gi(xk)
��xk

gi(xk) − ri
k

≤ 1 + κ1‖�wk‖ + κ1c1‖�wk‖2 + c1‖�wk‖

≤ 1 + (κ1 + κ1c1η + c1)‖�wk‖
≤ 1 + κ‖�wk‖. (24)

Now, from the concavity of gi , we derive

−∇gi(xk + t ikᾱ
i
k�xk)

��xk

gi(xk) − ri
k

= −∇gi(xk + t ikᾱi�xk)
��xk

gi(xk) − ri
k

+ ∇gi(xk)
��xk

gi(xk) − ri
k

− ∇gi(xk)
��xk

gi(xk) − ri
k

= [∇gi(xk + t ikᾱ
i
k�xk) − ∇gi(xk)]��xk

ri
k − gi(xk)

− ∇gi(xk)
��xk

gi(xk) − ri
k

≤ −∇gi(xk)
��xk

gi(xk) − ri
k

≤ 1 + κ‖�wk‖ (25)

and

αk = τkᾱ
i
k = τk

ri
k − gi(xk)

∇gi(xk + t ikᾱ
i
k�xk)��xk

≥ τk

1 + κ‖�wk‖ ≥ τk(1 − κ‖�wk‖).

Conclusion. Combining all the four bounds derived for αk (two in each case con-
sidered), one obtains

αk ≥ min{1, τk(1 − κ‖�wk‖)} = τk(1 − κ‖�wk‖) ≥ τk − κ‖�wk‖.

The last inequality above is based on the fact that τk < 1 for all k provided ε is chosen
small enough. Finally, from this lower bound on αk , we get

0 ≤ 1 − αk ≤ (1 − τk) + κ‖�wk‖ ≤ (1 − τk) + κζ(‖F0(wk)‖ + μk‖e‖),

which concludes the proof of the lemma. �

We can state now the q-quadratic rate of local convergence of Algorithm 2.1. The
proof can be found in [14] and we describe it briefly for completeness.

Theorem 3.1 Let x∗ be a point for which Assumptions A1–A4 hold and w∗ =
(x∗, y∗, z∗). Consider a sequence {wk = (xk, yk, zk)} generated by the feasible
primal-dual interior-point method described in Algorithm 2.1. If αk satisfies (8–9)
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and (11) and τk ∈ (0,1) and μk > 0 satisfy (12) and (13), then there exists a positive
constant ε independent of k such that, when

w0 ∈ B(w∗; ε),
the sequence {wk} is well defined and converges to w∗. Moreover, we have

‖wk+1 − w∗‖ ≤ ν‖wk − w∗‖2, (26)

for all iterates k, where ν is a positive constant independent of k.

Proof Let us assume that ‖wk − w∗‖ < ε. By applying (7), (18), (3), and (14), we
obtain

wk+1 − w∗ = (wk − w∗) + αk�wk

= (1 − αk)(wk − w∗)

+ αkF
′
μk

(wk)
−1[F0(w∗) − F0(wk) − F ′

μk
(wk)(w∗ − wk) + μkē].

Now, using (20), (16), (17), and αk ≤ 1, we have, for a sufficiently small ε,

‖wk+1 − w∗‖ ≤ (1 − αk)‖wk − w∗‖
+ αk‖F ′

μk
(wk)

−1‖‖F0(w∗) − F0(wk) − F ′
μk

(wk)(w∗ − wk)‖
+ αkμk‖F ′

μk
(wk)

−1‖‖e‖
≤ [(1 − τk) + κζ‖F0(wk)‖ + κζ‖e‖μk]‖wk − w∗‖

+ ζγ

2
‖wk − w∗‖2 + ‖e‖ζμk.

We also known that τk and μk satisfy (12) and (13). Thus, using the fact that
‖F0(wk)‖ = ‖F0(wk) − F0(w∗)‖ ≤ γ ‖wk − w∗‖, we assure the existence of a con-
stant ν > 0 independent of the iterates such that (26) holds. It is possible to prove by
induction that {wk} converges to w∗, if ε is chosen sufficiently small. The inequality
(26) shows that the local convergence rate is q-quadratic. �

4 The nonconcave case

The concavity of the inequality constraint functions was required in (25) when the
binding constraint function gi was responsible for the step size αk . However, one can
see that the method retains a q-quadratic rate in the nonconcave case as long as there
exists a positive constant β such that

ri
k − gi(xk) = gi(xk + ᾱi

k�xk) − gi(xk) ≥ βᾱi
k‖�xk‖ (27)

for all k and all indices i corresponding to gi(x∗) = 0. In fact, one would get

[∇gi(xk + t ikᾱ
i
k�xk) − ∇gi(xk)]��xk

ri
k − gi(xk)

≤ L∇gi

β
‖�xk‖,
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where L∇gi
is the Lipschitz constant of the function ∇gi in B(x∗; ε). Then, from (23)

and (24),

1

ᾱi
k

= −∇gi(xk + t ikᾱ
i
k�xk)

��xk

gi(xk) − ri
k

≤ 1 + [(κ1 + κ1c1η + c1) + L∇gi
/β)]‖�wk‖

≤ 1 + κ‖�wk‖,

after an appropriate redefinition of κ .
The bound (27) is satisfied for k sufficiently large as long as

lim inf
k−→+∞∇gi(xk)

� �xk

‖�xk‖ = 4β > 0. (28)

To see why this is true let us expand gi(xk + ᾱi
k�xk) around xk :

gi(xk + ᾱi
k�xk)−gi(xk) = ᾱi

k∇gi(xk)
��xk + (ᾱi

k)
2

2
�x�

k ∇2gi(xk + si
kᾱ

i
k�xk)�xk,

for some si
k ∈ (0,1). Since we are only looking at the cases where ᾱi

k ≤ 1, one can
see that

gi(xk + ᾱi
k�xk) − gi(xk)

ᾱi
k‖�xk‖

≥ β

holds for k sufficiently large as long as

‖�xk‖ ≤ ‖�wk‖ ≤ 2β

M∇2gi

,

where M∇2gi
is an upper bound on the size of the Hessian ∇2gi in B(x∗; ε), requiring

again a redefinition of κ .
Condition (28) has no influence if the constraint is concave because, even when

this condition is not satisfied, the concavity of the function defining the constraint
allows a locally full step (αk = 1) with respect to that constraint.

5 Implementation and numerical results

We have implemented Algorithm 2.1 (the feasible primal-dual interior point method)
and tested it on a set of small CUTEr problems [8]. Subsection 5.1 completes the
algorithm description, namely, we explain there how to compute, without too much
effort, a stepsize that satisfies condition (11). As a baseline for comparison, we have
also tested the infeasible primal-dual interior point method (details are explained in
Subsect. 5.2). Numerical results are reported in Subsect. 5.3.
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5.1 Step size calculation for the feasible method

To achieve a q-quadratic rate of convergence, condition (11) is imposed on the size
of the residual ri

k = gi(xk + ᾱi
k�xk). A simple procedure to calculate ᾱi

k is New-
ton’s method, fully described in Algorithm 5.1 below. Obviously, the scheme is to
be applied only to the nonlinear inequality constraints, as for the linear constraints
(including bounds) one can easily determine the exact maximum allowed step length.

Algorithm 5.1 (Step size calculation for the feasible method)
Choose an initial step size α > 0 (for instance, α = 0.5 if k = 0 and α = ᾱi

k−1 for
k ≥ 1). Choose σ ∈ (0,1) and c1 > 0 (for instance, σ = 10−2 and c1 = 0.5). Set also
�α = 1.
While |�α| > 10−3 and −gi(xk + α�xk) > min{σ(−gi(xk)),

−gi (xk)c1‖�wk‖
1+c1‖�wk‖ } do

compute �α = − gi(xk + α�xk)

∇gi(xk + α�xk)��xk

and replace α by α + �α.

After termination set ᾱi
k = α.

We incorporated a safeguard for negative values of α. When α became negative
we projected it back to the positive axis by setting it to 10−2. This safeguard acted
only in two of the problems tested (leading then to a convergent run).

We also experimented an alternative scheme where the calculation of the deriva-
tives ∇gi(xk +α�xk)

��xk was approximated by ∇gi(xk)
��xk . While this alterna-

tive seemed not to affect the efficiency of the feasible method (in terms of number
of iterations), it provided a less robust method (in the sense that less problems were
solved).

5.2 The infeasible primal-dual interior-point method

As a baseline for comparison we also ran the infeasible primal-dual interior-point
method reported in Algorithm 5.2. This version of the infeasible method is the same
as the feasible method applied to a reformulated problem, where inequality con-
straints are converted into equalities with the introduction of nonnegative slack vari-
ables. The feasible region can thus be written as {x̂ ∈ R

n̂ : ĥ(x̂) = 0, x̂ ≥ 0} and the
Lagrangean function as �̂(x̂, ŷ, ẑ) = f̂ (x̂) + ĥ(x̂)�ŷ − x̂�ẑ.

Algorithm 5.2 (Infeasible primal-dual interior-point method)
Choose an initial point w0 = (x̂0, ŷ0, ẑ0) with x̂0 > 0 and ẑ0 > 0.
For k = 0,1,2, . . .

Step 1. Choose the parameter μk > 0.
Step 2. Compute the solution �wk = (�x̂k,�ŷk,�ẑk) of the system

⎛

⎝
∇2

x̂x̂
�̂(x̂k, ŷk, ẑk) ∇ĥ(x̂k) −In̂×n̂

∇ĥ(x̂k)
� 0 0

Ẑk 0 X̂k

⎞

⎠
(

�x̂k

�ŷk

�ẑk

)
= −

⎛

⎝
∇x̂ �̂(x̂k, ŷk, ẑk)

ĥ(x̂k)

X̂kẑk − μken̂

⎞

⎠ ,

where X̂k = diag(x̂k) and Ẑk = diag(ẑk).
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Step 3. Choose τk ∈ (0,1). Compute a positive step length αk such that

αk = min

{
1, τk min

i=1,...,n̂

{
− (x̂k)i

(�x̂k)i
: (�x̂k)i < 0

}
,

τk min
i=1,...,n̂

{
− (ẑk)i

(�ẑk)i
: (�ẑk)i < 0

}}
.

Step 4. Define the next iterate wk+1 = (x̂k+1, ŷk+1, ẑk+1) according to:

wk+1 = wk + αk�wk.

5.3 Numerical results

We tested both feasible and infeasible primal-dual interior point methods (Algo-
rithms 2.1 and 5.2) on a set of small CUTEr [8] problems. We restricted our attention
to problems with nonlinear inequality constraints and for which the initial point x0,
provided by CUTEr, satisfies g(x0) < 0.

The initial primal point given to the infeasible method was the point x0 pro-
vided by CUTEr. When the initial primal values are nonpositive we projected
them to the positive axis. In some cases, not all variables are restricted in sign
and the infeasible method was adapted to take care of this situation. The re-
maining components of the initial vector for the infeasible method are defined as
follows: ŷ0 = argminŷ‖∇ĥ(x̂0)ŷ + [−ẑin

0 + ∇f̂ (x̂0)]‖ and ẑ0 = max{∇ĥ(x̂0)ŷ0 +
∇f̂ (x̂0), ẑ

in
0 }, where ẑin

0 is a vector of ones of the appropriate size. For the feasible
method, x0 is provided by CUTEr (satisfying g(x0) < 0). Then, we compute y0 =
argminy‖∇h(x0)y + [∇g(x0)z

in
0 + ∇f (x0)]‖ and z0 = max{argminz‖∇g(x0)z +

[∇h(x0)y0 + ∇f (x0)]‖, zin
0 }.

The codes were implemented in Fortran 90 and ran on a Compaq Tru64 (operating
system Unix V5.1, 2 GB RAM, Alpha 21264A 667 MHz). For both algorithms, we
updated τk and μk as follows:

1 − τk = min
{
10−2,10−2‖F0(wk)‖

}
and μk = min

{
10−2,10−1‖F0(wk)‖2}.

The stopping criterion was ‖F0(wk)‖ ≤ 10−8 for the feasible method and
‖(∇x̂ �̂(x̂k, ŷk, ẑk), ĥ(x̂k), X̂kẑk)‖ ≤ 10−8 for the infeasible case. The linear algebra
was implemented in the dense form using the LAPACK [1] routines DGESV (for the
primal-dual systems) and DGELSD (for the least-squares multiplier problems).

The results are reported in Table 1. The legend of the table is as follows: infeasi-
ble method (var = number of variables, eq = number of equalities after slacks are
incorporated, bd = number of bounds, it = number of iterations, evals = number of
function evaluations); feasible method (var = number of variables, eq = number of
equalities, linear g = number of linear inequality constraints including bounds, nlin-
ear g = number of nonlinear inequality constraints, it = number of iterations, evals =
number of function evaluations). The number of function evaluations counts the asso-
ciated derivative calls (and accommodates either calls to set the primal-dual data for
the systems solves or calls needed to apply Scheme 5.1). When convergence was not
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Table 1 Numerical behavior of infeasible and feasible methods on a set of CUTEr problems

Problems Infeasible method Feasible method

var n̂ eq bd it evals var n eq linear g nlinear g it evals

CHACONN1 6 3 3 10 11 3 0 0 3 10 25

ERRINBAR 19 9 15 α < 10−10 18 8 14 1 α < 10−10

EXPFITA 27 22 22 α < 10−10 5 0 0 22 α < 10−10

EXPFITB 107 102 102 α < 10−10 5 0 0 102 α < 10−10

HAIFAS 22 9 9 div 13 0 0 9 div

HIMMELP2 3 1 5 α < 10−10 2 0 4 1 div

HIMMELP3 4 2 6 α < 10−10 2 0 4 2 10 21

HIMMELP4 5 3 7 α < 10−10 2 0 4 3 10 21

HS13 3 1 3 it > 200 2 0 2 1 α < 10−10

HS16 4 2 5 24 25 2 0 3 2 12 26

HS20 5 3 5 α < 10−10 2 0 2 3 12 29

HS24 5 3 5 α < 10−10 2 0 2 3 α < 10−10

HS29 4 1 1 12 13 3 0 0 1 15 30

HS30 4 1 7 α < 10−10 3 0 6 1 39 78

HS32 4 2 7 14 15 3 1 3 1 α < 10−10

HS33 5 2 6 it > 200 3 0 4 2 α < 10−10

HS65 4 1 4 α < 10−10 3 0 6 1 α < 10−10

HS67 17 14 20 α < 10−10 3 0 6 14 it > 200

HS73 6 3 6 α < 10−10 4 1 5 1 α < 10−10

HS84 8 3 16 α < 10−10 5 0 10 6 α < 10−10

HS95 10 4 16 α < 10−10 6 0 12 4 α < 10−10

HS96 10 4 16 α < 10−10 6 0 12 4 α < 10−10

HS109 13 10 20 α < 10−10 9 6 18 2 α < 10−10

HS113 18 8 8 it > 200 10 0 3 5 α < 10−10

HS117 20 5 20 it > 200 15 0 15 5 α < 10−10

HUBFIT 3 1 2 8 9 2 0 1 1 8 16

KSIP 1021 1001 1001 12 13 20 0 0 1001 12 24

LSQFIT 3 1 2 8 9 2 0 1 1 8 16

MATRIX2 8 2 6 15 16 6 0 4 2 α < 10−10

MIFFLIN1 5 2 2 10 11 3 0 0 2 6 20

MINMAXBD 25 20 20 div 5 0 0 20 α < 10−10

NGONE 13 8 14 div 5 0 8 6 α < 10−10

OPTMASS 77 55 11 div 66 44 0 11 7 14

PRODPL0 69 29 69 α < 10−10 60 20 60 9 α < 10−10

PRODPL1 69 29 69 div 60 20 65 9 α < 10−10

READING4 4 2 8 α < 10−10 2 0 4 4 α < 10−10

ROSENMMX 9 4 4 18 19 5 0 0 4 15 46

SVANBERG 20 10 30 α < 10−10 10 0 20 10 19 93

SWOPF 107 102 34 α < 10−10 83 78 20 14 α < 10−10

WOMFLET 6 3 3 div 3 0 0 3 it > 200

ZECEVIC2 4 2 6 α < 10−10 2 0 4 2 12 29

ZY2 5 2 6 7 8 3 0 4 2 α < 10−10
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achieved was either because the maximum number of iterations (200) was achieved,
or because the step size became too small (α < 10−10), or because the iterates start
growing to infinity (div).

Both infeasible and feasible methods converged only for a subset of the problems,
given that no globalization strategy was incorporated. In the cases where both con-
verged, the number of iterations was approximately the same. The infeasible method
converged for 11 problems whereas the feasible method converged for 15. Actually,
this gain in robustness was also observed by looking at the size of the residuals for
the problems where both methods did not converge, which showed that the feasible
method achieved, in average, smaller residuals.

The procedure to determine the step size for the feasible method (Algorithm 5.1)
took a low average number of steps (roughly 2), as we can observe from the difference
between the number of function evaluations and the number of iterations taken by this
method.

The only problem of the form (1) that satisfies Assumption A4 (concave binding
inequalities) is, as far as we could check, problem HS16. The feasible method took
much less iterations on this problem than the infeasible method.

6 Concluding remarks

Keeping strict feasibility with respect to the inequality constraints in the way required
by the feasible primal-dual interior-point method can be numerically affordable. Al-
though the exact computation of the step sizes requires the solution of a number of
nonlinear equations per iteration, it is possible to compute them satisfying inexact
requirements in a relatively efficient way.

Our numerical findings show that the proposed method can be particularly efficient
when the number of inequality constraints is not very large or when the structure of
the functions defining the inequality constraints eases the step size calculation con-
siderably. Strict feasibility can be imposed only partially, with a subset of the problem
inequalities being treated by slack variables. The inequalities imposed strictly may be
those that restrict the objective function domain, or the domain of some other con-
straint functions.

The most restrictive aspect of the proposed algorithm seems to be the initial point.
However, the issue of finding a primal strictly feasible point (g(x0) < 0) is out of
the scope of this paper. See [4], and the references therein, for the determination of
feasible points of systems of (nonlinear) equalities and inequalities.

Despite the numerical considerations, looking at the infeasible variant of the
primal-dual interior-point method is of interest on itself. It is worth pointing out that
the approach presented in this paper covers the infeasible case ([5, 14]) since sim-
ple bounds of the type −x ≤ 0 correspond to concave inequalities. Linear inequality
constraints are also concave and can be treated without slack variables for achieving
the purpose of fast local convergence. Finally, the observation that the q-quadratic
rate is retained in the general nonconcave case provided the angle between the primal
step and the gradients of the binding constraints is kept away from ninety degrees,
see (28), fits well into the theory of interior-point methods since it corresponds to the
notion of centrality.
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