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In this note we present algorithms that compute, exactly or approximately, time dependent
waiting time tail probabilities and the time dependent expected waiting time in M(t)/M/s(t)
queueing systems.

1. Introduction

In many service systems, the performance measure of interest is a function of the tail prob-

ability of the waiting time. For example, in many telephone call centers, the service target

is a maximum fraction of customers delayed for more than a given number of seconds, e.g.

the probability that a customer waits more than twenty seconds is less than fifteen percent.

Another example is a hospital emergency department (ED), in which the goal is to limit

the fraction of patients who experience a delay of more than, e.g., an hour in receiving care

from a physician. In both of these examples, as well as in many other systems, the customer

arrival rate varies over the day, and managers vary the staffing over the day in order to meet

the desired performance standard.

In this note, we consider an M(t)/M/s(t) queueing system with arrival rate {λ(t), t > 0},
service rate µ, and the number of servers given by a piecewise constant function {s(t), t ≥
0} (of nonnegative integers). Let Wq(t) denote the waiting time in queue until service

commences of a customer that arrives to the system at time t. We are interested in computing

the tail probability P (Wq(t) > x), where x is a given time parameter and the expected

waiting time in queue to begin service is E(Wq(t)). This latter measure is important in

many applications such as call centers, where it is commonly referred to as average speed of

answer (ASA).
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When x = 0, P (Wq(t) > x) reduces to the probability of delay, which is dependent only

on the state probabilities at time t and the number of servers at time t and not on the number

subsequent to time t. But when x > 0, the derivation is complicated by the fact that the

event ‘Wq(t) > x’ depends not only on s(t) but also on the number of servers available after

t, i.e., s(u), u ∈ (t, t + x]. Similarly, the derivation of the expected waiting time in queue,

denoted E(Wq(t)), is problematic since it depends upon the tail probabilities.

In our derivations we assume that the infinite dimensional vector ~p(t) = [pn(t)], where

pn(t) denotes the probability of n customers in the system at time t, is known. For exam-

ple, this vector ~p(t) may have been obtained numerically as the solution of the Chapman-

Kolmogorov differential equations that describe the queueing system at hand, see e.g. Green

at al. (2001). Let W n
q (t) denote the waiting time until service commences for a customer

that arrives at time t and sees n people in the system. Then,

P (Wq(t) > x) =
+∞∑

n=s(t)

P (W n
q (t) > x)pn(t), (1)

and

E(Wq(t)) =
+∞∑

n=s(t)

E(W n
q (t))pn(t). (2)

In this note, we present exact expressions for P (W n
q (t) > x) in the important special case

where the number of servers changes at most once in the interval [t, t + x], and we present

an algorithm for the general case. Easy-to-compute lower and upper bounds are also derived

for the general case. We do a similar analysis for E(W n
q (t)), for any n, so that the desired

quantities follow from (1) and (2).

Since the departure process behaves as a non-homogeneous Poisson process with rate

µs(u), for u ≥ t (assuming all servers are busy throughout the interval), the number of

departures over the time period [t, t + x] is Poisson distributed with mean

a = µ
∫ t+x

t
s(u) du. (3)

Thus, when n ≥ s(t), we may be tempted to say that the event ‘W n
q (t) > x’ is equivalent to

the event ‘n− s(t) or fewer departures over [t, t + x]’ so that P (W n
q (t) > x) would be given

by

P (‘n− s(t) or fewer departures over [t, t + x]’) =
n−s(t)∑
j=0

aje−a

j!
. (4)

This is not true in general. For example, suppose the number of servers changes exactly once

over the time period [t, t + x] at the epoch t + ∆t, where ∆t < x, and the resulting number
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of servers is reduced to a level that is less than the number of customers in service. To

maintain consistency with the Chapman-Kolmogorov equations, we must assume that the

“excess” customers being served at the epoch t + ∆t will rejoin the queue. (This standard

assumption is reasonable in situations where service times are long relative to shift lengths

such as hospital EDs. It is likely to be an approximation in some contexts such as call

centers. See Ingolfsson et al. 2005 for the case where servers finish serving any customers

in progress at shift changes.) Therefore, the (n + 1)st customer at time t may have to see

more than n− s(t) departures over [t, t + x] prior to starting service, namely, n− s(t + ∆t)

if there are not enough departures in [t, t + ∆t]. Thus, P (W n
q (t) > x) is not always given

by (4), contrary to the exposition in the appendix of Ingolfsson et al. (2002). Similarly, if

the number of servers increases during [t, t + x], fewer than n − s(t) departures may result

in W n
q (t) < x.

In Section 2, we derive precise and simple formulae for P (W n
q (t) > x) when the number

of servers changes at most once in the interval [t, t + x]. In many actual settings this is

a valid assumption. For example, in a call center, x is likely to be measured in seconds,

while staffing levels are typically changed in intervals ranging from 15 minutes to 2 hours.

In Section 3, we study the general case, i.e., when the number of servers changes more than

once. The general case is more likely to occur in a system like a hospital ED where x is

likely to range from a quarter-hour to more than 2 hours and overlapping shifts may cause

staffing changes from one hour to the next, see Green et al. (2005). In Section 4, we develop

results for E(W n
q (t)).

We note that our results could readily be extended to the case when the service rate

also varies with time. In addition, since our approach is based on the assumption that the

vector ~p(t) = [pn(t)] is known, our results can be used for some other Markovian time-varying

queueing systems such as the finite capacity M(t)/M/s(t)/K system.

2. The simplest cases for P (W n
q (t) > x)

First, consider the case where the number of servers does not change during the time period

[t, t + x], i.e., s(u) = s0, u ∈ [t, t + x]. Then, a = µs0x and using standard queueing theory

results such as Gross and Harris (1998), page 67, W n
q (t) is either zero, when n < s0, or

the sum of n − s0 + 1 independent and identically distributed (i.i.d.) exponential random
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variables with mean 1/(µs0), when n ≥ s0. Mathematically,

P (W n
q (t) > x) =


n−s0∑
i=0

aie−a

i!
if n ≥ s0,

0 if n < s0.

(5)

Now, consider the case where the number of servers changes exactly once in [t, t + x], i.e.,

there exists some ∆t ≤ x such that

s(u) =

{
s0 if u ∈ [t, t + ∆t),
s1 if u ∈ [t + ∆t, t + x].

(6)

In this case, a = y0+y1 where y0 = µs0∆t and y1 = µs1(x−∆t). Notice that P (W n
q (t) > x) =

0 when n < max(s0, s1) because the (n+1)st customer will begin service either immediately

upon arrival or no later than time t + ∆t. When n ≥ max(s0, s1) then P (W n
q (t) > x) will

have a positive value that depends upon whether the number of servers increases or decreases

at time t + ∆t.

Suppose s0 < s1, i.e., the number of servers increases at time t + ∆t. Then, for n ≥ s1,

the events ‘W n
q (t) > x’ and ‘n− s1 or fewer departures over [t, t + x]’ are equivalent. Thus,

P (W n
q (t) > x) =


n−s1∑
j=0

aje−a

j!
if n ≥ s1,

0 if n < s1.

(7)

Now, suppose that s0 > s1, i.e., the number of servers decreases at time t + ∆t. For any

n ≥ s0, let Kn,t(u) denote the number of departures over [t, t + u]. The event ‘W n
q (t) > x’

can be expressed as the union of two disjoint events

A ≡ {Kn,t(x) ≤ n− s0}, B ≡ {Kn,t(∆t) ≤ n− s0, n− s0 < Kn,t(x) ≤ n− s1}.

A is the event that there were not enough departures for the customer to have entered

service even if the number of servers had not been reduced. B is the event that not enough

departures occurred before the shift change and the number of departures after the shift

change left more than s1 people in the system at time t + x. These two sub-events in B

are not independent and so P (B) is computed by conditioning on the number of departures

that occurred before the shift change epoch. Mathematically,

P (W n
q (t) > x) = (8)

=


n−s0∑
j=0

aje−a

j!
+

n−s0∑
j=0

(yj
0e
−y0

j!

) n−j−s1∑
i=(n−j−s0)+1

yi
1e
−y1

i!

 if n ≥ s0,

0 if n < s0.
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Note that, for any pair of real numbers y0, y1,

n∑
j=0

(y0 + y1)
j

j!
=

n∑
j=0

yj
0

j!

n−j∑
i=0

yi
1

i!

 , (9)

since after multiplying each side by e−(y0+y1) (9) becomes equivalent to stating that the

distribution function of the sum of two independent Poisson random variables is Poisson

with parameter equal to the sum of the individual parameters. Using this identity, we get

the following equivalent expression for (8)

P (W n
q (t) > x) = (10)

=


n−s1∑
j=0

aje−a

j!
−

n−s1∑
j=(n−s0)+1

(yj
0e
−y0

j!

)n−j−s1∑
i=0

yi
1e
−y1

i!

 if n ≥ s0,

0 if n < s0,

that allows for the computation of P (W n+1
q (t) > x) from P (W n

q (t) > x) in O(s0 − s1)

operations. Formula (10) also has an intuitive explanation. Due to the fact that the (n+1)st

customer arriving at time t will see no more than n − s1 departures before starting service

(but may see fewer), the event ‘W n
q (t) > x’ is a subset of the event C ≡ {Kn,t(x) ≤ n− s1} ,

which is the event ‘not enough departures in [t, t + x] if the number of servers was kept at

its lower level throughout’. But, to compute P (W n
q (t) > x) from P (C) we have to exclude

the probability of the event

C ∩ {Kn,t(∆t) > n− s0}

which is the event ‘not enough departures in [t, t + x] (if the number of servers was kept at

its lower level throughout) but enough departures in (t, ∆t]’.

Formula (8) will be the basis for a lower bound for the general case, while formula (10)

will be the basis for an upper bound. This will be explained in the next section.

3. The general case for P (W n
q (t) > x)

In general, s(u), u ∈ [t, t + x] is piecewise constant, i.e., for some finite K, there are K + 1

positive integers s0, s1, . . . , sK and K + 1 real numbers satisfying 0 = ∆t0 < ∆t1 < ∆t2 <

. . . < ∆tK ≤ ∆tK+1 = x such that, for every u ∈ [t, t + x],

s(u) =


s0 if u ∈ [t + ∆t0, t + ∆t1),
s1 if u ∈ [t + ∆t1, t + ∆t2),
. . .
sK if u ∈ [t + ∆tK , t + ∆tK+1].
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Define the following quantities that will be used in the results that follow. For each i =

0, 1, . . . , K, let

Si = max{si, si+1, . . . , sK},

yi = µsi (∆ti+1 −∆ti)

ai = µ
∫ t+x

t+∆ti
s(u) du =

K∑
j=i

µsj (∆tj+1 −∆tj) =
K∑

j=i

yj.

The quantity ai is the mean parameter of the number of departures over the time period

[t + ∆ti, t + x], so that a0 equals the value of a defined in (3). Theorem 1 below provides

a characterization of P (W n
q (t) > x) from which an easy-to-compute lower bound will be

derived. Note that the quantity ηi(n), used in the theorem, is the probability of, given n

customers in system at epoch t+∆ti, not enough departures in the interval [t+∆ti, t+∆ti+1]

and not enough departures in later intervals to start service, but not so few so as to overlap

with event A. Theorem 2 provides a similar characterization for an easy-to-compute upper

bound. The proofs of both theorems appear in the appendix.

Theorem 1 For every i = 0, 1, . . . , K,

P (W n
q (t + ∆ti) > x−∆ti) =


e−ai

n−Si∑
j=0

aj
i

j!
+ σi(n)

 if n ≥ Si,

0 if n < Si,

(11)

where, σK(n) = 0, for every n, and, for every i = 0, 1, . . . , K − 1, and n ≥ Si,

σi(n) = ηi(n) +
n−Si∑
j=0

yj
i

j!
σi+1(n− j)

ηi(n) =
n−Si∑
j=0

yj
i

j!

 n−j−Si+1∑
k=(n−j−Si)+1

ak
i+1

k!

 .

Theorem 1 implies that P (W n
q (t + ∆ti) > x−∆ti) ≥ li(n) where, for any i = 0, 1, . . . , K

and n ≥ Si,

li(n) ≡ e−ai

n−Si∑
j=0

aj
i

j!
+

n−Si∑
j=0

yj
i

j!

 n−j−Si+1∑
k=(n−j−Si)+1

ak
i+1

k!


= e−ai

n−Si+1∑
j=0

aj
i

j!
−

n−Si+1∑
j=(n−Si)+1

yj
i

j!

n−j−Si+1∑
k=0

ak
i+1

k!

 ,

which is an interesting expression because it allows for the computation of li(n + 1) from

li(n) in O(max{Si−Si+1, 1}) operations. A necessary and sufficient condition for this lower

bound to be tight for any n is that Si+1 = SK .
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Theorem 2 For every i = 0, 1, . . . , K,

P (W n
q (t + ∆ti) > x−∆ti) =


e−ai

n−SK∑
j=0

aj
i

j!
− εi(n)

 if n ≥ Si,

0 if n < Si,

(12)

where, εK(n) = 0, for every n, and, for every i = 0, 1, . . . , K − 1, and n ≥ Si,

εi(n) = δi(n) +
n−Si∑
j=0

yj
i

j!
εi+1(n− j)

δi(n) =
n−SK∑

j=(n−Si)+1

yj
i

j!

n−j−SK∑
k=0

ak
i+1

k!

 .

Theorem 2 implies that P (W n
q (t+∆ti) > x−∆ti) ≤ ui(n) where, for any i = 0, 1, . . . , K

and n ≥ Si,

ui(n) ≡ e−ai

n−SK∑
j=0

aj
i

j!
−

n−SK∑
j=(n−Si)+1

yj
i

j!

n−j−SK∑
k=0

ak
i+1

k!

 .

As before, this expression is interesting because it allows for the computation of ui(n + 1)

from ui(n) in O(max{Si − SK , 1}) operations. A necessary and sufficient condition for this

upper bound to be tight for any n is that Si+1 = SK .

It is not clear whether it would be better to use (11) or (12) to compute the exact value

of P (W n
q (t) > x). We saw in the previous section one specific case in which (12), namely

(10), was preferable. From Theorems 1 and 2, we also get the following bounds,

P (W n
q (t) > x) ≤

n−SK∑
j=0

aje−a

j!
, for every n ≥ SK , (13)

and

P (W n
q (t) > x) ≥

n−S0∑
j=0

aje−a

j!
, for every n ≥ S0. (14)

In particular, the upper bound (13) will be used in the next section when dealing with an

infinite number of breakpoints in the number of servers.

4. The computation of E(W n
q (t))

We start by considering the case of finitely many shift changes over the planning horizon.

For the most common situation when the arrival rate is periodic and therefore so are staffing

levels, this assumption is reasonable because the planning horizon can be chosen to be
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long enough relative to the period so that staffing changes beyond the planning horizon are

unlikely to have any impact on delays during the period. For example, if staffing decisions are

made on a daily basis, then the planning horizon can be chosen to be two days particularly

if the expected delay is likely to be much less than 24 hours. Later in the section we address

the issue of infinitely many shift changes.

Suppose that, for some finite K, there are K+1 positive integers s0, s1, . . . , sK , and K+1

real numbers satisfying 0 = ∆t0 < ∆t1 < ∆t2 < . . . < ∆tK such that, for every u ∈ [t,∞),

s(u) =


s0 if u ∈ [t + ∆t0, t + ∆t1),
s1 if u ∈ [t + ∆t1, t + ∆t2),
. . .
sK if u ∈ [t + ∆tK ,∞).

(15)

The quantities E(W n
q (t)), for every n, can be computed recursively. We use conditioning on

the number of service completions to derive the recursion formula. The formula is initiated

with

E(W n
q (t + ∆tK)) =


n− sK + 1

µsK

if n ≥ sK ,

0 if n < sK .
(16)

For a generic i ∈ {0, 1, . . . , K − 1} we have the following derivation. For any n < si,

E(W n
q (t + ∆ti)) = 0, while, for any n ≥ si,

E(W n
q (t + ∆ti)) =

= Ain(t)

1−
n−si∑
j=0

yj
i e
−yi

j!

+
n−si∑
j=0

yj
i e
−yi

j!

(
∆ti+1 −∆ti + E(W n−j

q (t + ∆ti+1))
)
, (17)

where yi = µsi(∆ti+1−∆ti) and Ain(t) denotes the expected value of W n
q (t+∆ti) given that

there are more than n− si service completions in the interval [t + ∆ti, t + ∆ti+1). Thus,

Ain(t) = E(X|X ≤ ∆ti+1 −∆ti),

where X is the sum of n− si + 1 i.i.d. exponential random variables of parameter µsi. From

Lemma 2 in the appendix,

Ain(t) =
n− si + 1

µsi


1−

(n−si)+1∑
j=0

yj
i e
−yi

j!

1−
n−si∑
j=0

yj
i e
−yi

j!

 . (18)

Now, we may apply the recursion formula (17) in the order i = K − 1, K − 2, . . . , 0. In the

end, we obtain the exact values for E(W n
q (t)) ≡ E(W n

q (t + ∆t0)), for any n.
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If the number of shift changes is not finite and, as an approximation, we assume that

{s(u), u ≥ t} has the form (15) for some finite K then

E(W n
q (t + ∆ti)) ≈ Cn(t + ∆ti), for every i, n,

where Cn(t + ∆ti) = 0, for every n < si, and

Cn(t + ∆ti) =
n− si + 1

µsi

1−
(n−si)+1∑

j=0

yj
i e
−yi

j!

+ (∆ti+1 −∆ti)

n−si∑
j=0

yj
i e
−yi

j!

+

+
n−si∑
j=0

yj
i e
−yi

j!
Cn−j(t + ∆ti+1), (19)

for every n ≥ si. Applying this recursive formula starting from

Cn(t + ∆tK) =


n− sK + 1

µsK

if n ≥ sK ,

0 if n < sK .
(20)

and in the order i = K − 1, K − 2, . . . , 0 leads us to Cn(t) ≡ Cn(t + ∆t0), an approximation

of E(W n
q (t)), for any n. Our next result, which is proved in the appendix, presents a bound

on the approximation error.

Theorem 3 Assume that {s(u), u ≥ t} is always positive. For every T ≥ 0, let

C(t) =
∞∑

n=s(t)

Cn(t)pn(t)

where {Cn(t), n = 0, 1, . . .} is the final output of the recursive formula (19) assuming that

{s(u) ≡ 1, u ≥ t + T}. Then

0 ≤ C(t)− E(Wq(t)) ≤ h(T )

where

h(T ) ≡
∞∑

n=s(t)

n

µ

e−µT
n−1∑
j=0

(µT )j

j!

− T

e−µT
n−2∑
j=0

(µT )j

j!

 pn(t). (21)

Moreover, if m(t) =
∑∞

n=0 npn(t) < ∞ then limT→∞ h(T ) = 0.

We are using, by convention, that a sum is zero when the upper limit of a sum is smaller

than its lower limit.

It follows from Theorem 3 that, under a mild assumption, the bound can be arbitrarily

close to zero. Thus, for every ε > 0, there exists T = Tε ≥ 0 such that, if we compute C(t)

as explained in Theorem 3 then 0 ≤ C(t)−E(Wq(t)) ≤ ε. Hence, the approximation can be

made arbitrarily accurate by assuming a large enough number of shift changes.
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Appendix

Lemma 1 For any real y0 ≥ 0 and integer n ≥ 0,

∫ y0

0

(
n∑

i=0

yie−y

i!

)
dy = (n + 1)

1−
n∑

j=0

yj
0e
−y0

j!

+ y0

n−1∑
j=0

yj
0e
−y0

j!

 (22)

∫ ∞
y0

(
n∑

i=0

yie−y

i!

)
dy = (n + 1)

 n∑
j=0

yj
0e
−y0

j!

− y0

n−1∑
j=0

yj
0e
−y0

j!

 (23)

and, for any pair of integers m, n ≥ 0 such that m ≥ n,

∫ ∞
0

(
m∑

i=n

yie−y

i!

)
dy = m− n + 1 (24)

Proof: As it may be checked

d

dy

−(n + 1)

 n∑
j=0

yje−y

j!

+ y

n−1∑
j=0

yje−y

j!

 =
n∑

i=0

yie−y

i!
.

Thus, (22) and (23) follow from the Fundamental Theorem of Calculus. The sum of (22)

and (23) equals n + 1. Thus,

∫ ∞
0

(
m∑

i=n

yie−y

i!

)
dy =

∫ ∞
0

(
m∑

i=0

yie−y

i!

)
dy −

∫ ∞
0

(
n−1∑
i=0

yie−y

i!

)
dy = m− n + 1.

♦

Lemma 2 If {Ei, i = 1, 2, . . . , n} are n i.i.d. exponential random variables with mean b and

X ≡ ∑n
i=1 Ei then, for every t > 0,

E(X | X ≤ t) = nb


1−

n∑
i=0

(t/b)ie−t/b

i!

1−
n−1∑
i=0

(t/b)ie−t/b

i!

 (25)

Proof: Let N be the number of arrivals during (0, t] in a Poisson process with rate 1/b

and with interarrival times {Ei, i = 1, 2, . . .}. Denote the probability mass function and

cumulative distribution function of N by pN(j) and FN(j), respectively, and let GN(j) =

10



1 − FN(j) = P{N ≥ j + 1}. Then, noting that the event X ≡ ∑n
i=1 ≤ t is the same as

N ≥ n, we get

E(X|X ≤ t) =
∞∑

j=0

E(X|X ≤ t, N = j)P{N = j|X ≤ t}

=
∞∑

j=0

E(X|N ≥ n,N = j)P{N = j|N ≥ n}

=
∞∑

j=n

E(X|N = j)
pN(j)

GN(n− 1)

=
∞∑

j=n

nt

(j + 1)

pN(j)

GN(n− 1)

=
nt

GN(n− 1)

∞∑
j=n

(t/b)je−t/b

(j + 1)!

=
nb

GN(n− 1)

∞∑
j=n+1

(t/b)je−t/b

j!

= nb
GN(n)

GN(n− 1)

which one can verify to be equal to the formula in (25). ♦

Note that, when n = 1 (25) becomes

E(X | X ≤ t) = b− t

(
e−t/b

1− e−t/b

)
.

Proof: (of Theorem 1) We prove this statement by mathematical induction. When i = K,

(5) applies, so that

P (W n
q (t + ∆tK) > x−∆tK) =


n−sK∑
i=0

yi
Ke−yK

i!
if n ≥ sK ,

0 if n < sK .

Since aK = yK and SK = sK , we conclude that the statement is true when i = K. Now,

suppose that (11) holds for some i + 1. We will prove that it also holds for i. Conditioning

on the system state at time t + ∆ti+1,

P (W n
q (t + ∆ti) > x−∆ti) =

=


n−si∑
j=0

yj
i e
−yi

j!
P (W n−j

q (t + ∆ti+1) > x−∆ti+1) if n ≥ si,

0 if n < si,

(26)

11



because the number of service completions over [t + ∆ti, t + ∆ti+1) is Poisson distributed

with parameter yi.

First, consider the case where si > Si+1 which, in particular, implies si = Si > Si+1. For

every n < Si = si, P (W n
q (t + ∆ti) > x −∆ti) = 0 because there are idle servers or servers

enough to serve the (n + 1)-customer on time (see (26)). For every n ≥ Si, we have that

n − j ≥ Si > Si+1, for every j = 0, 1, . . . , n − Si, so that, from (26), from the induction

hypothesis and from the identity (9),

P (W n
q (t + ∆ti) > x−∆ti) =

=
n−Si∑
j=0

yj
i e
−yi

j!

e−ai+1

n−j−Si+1∑
k=0

ak
i+1

k!
+ σi+1(n− j)

 (27)

= e−ai

n−Si∑
j=0

yj
i

j!

n−j−Si+1∑
k=0

ak
i+1

k!

+
n−Si∑
j=0

yj
i

j!
σi+1(n− j)

 (28)

= e−ai

n−Si∑
j=0

aj
i

j!
+

n−Si∑
j=0

yj
i

j!

 n−j−Si+1∑
k=(n−j−Si)+1

ak
i+1

k!

+
n−Si∑
j=0

yj
i

j!
σi+1(n− j)

 (29)

= e−ai

n−Si∑
j=0

aj
i

j!
+ σi(n)

 . (30)

Thus, (11) follows when si > Si+1. Finally, consider the case where si ≤ Si+1, which implies

si ≤ Si = Si+1. Then, from the induction hypothesis,

n < Si ⇒ n− j ≤ n < Si+1 (j = 0, 1, . . . , n− si)
⇒ P (W n−j

q (t + ∆ti+1) > x−∆ti+1) = 0 (j = 0, 1, . . . , n− si),

so that P (W n
q (t + ∆ti) > x−∆ti) = 0, follows from (26). Moreover, n ≥ Si implies

n− j ≤ Si − 1 < Si+1 (j = n− Si + 1, n− Si + 2, . . . , n− si)

which, in turn, also implies P (W n−j
q (t+∆ti+1) > x−∆ti+1) = 0, for every j = n−Si +1, n−

Si+2, . . . , n−si. Furthermore, n ≥ Si implies n−j ≥ Si = Si+1, for every j = 0, 1, . . . , n−Si.

Thus, (27) and the chain of equalities (28)-(30) is again valid so that the desired result fol-

lows also when when si ≤ Si+1. ♦

Proof: (of Theorem 2) As before, we prove this statement through mathematical induc-

tion. The statement is true when i = K, as shown in the proof of Theorem 1. Now, suppose

that the statement is true for some i + 1. We prove that it is also true for i. As in (26), the

12



exact value of P (W n
q (t+∆ti) > x−∆ti) can be derived through conditioning on the system

state at time t + ∆ti+1.

First, consider the case where si > Si+1 which, in particular, implies si = Si > Si+1 ≥ SK .

For every n < Si = si, P (W n
q (t + ∆ti) > x − ∆ti) = 0 because there are idle servers or

servers enough to serve the (n + 1)-customer on time. For every n ≥ Si, we have that

n − j ≥ Si > Si+1, for every j = 0, 1, . . . , n − Si so that, from (26), from the induction

hypothesis and from (9),

P (W n
q (t + ∆ti) > x−∆ti) =

= e−ai

n−Si∑
j=0

yj
i

j!

n−j−SK∑
k=0

ak
i+1

k!
− εi+1(n− j)

 (31)

= e−ai

n−Si∑
j=0

yj
i

j!

n−j−SK∑
k=0

ak
i+1

k!

− n−Si∑
j=0

yj
i

j!
εi+1(n− j)

 (32)

= e−ai

n−SK∑
j=0

aj
i

j!
−

n−SK∑
j=(n−Si)+1

yj
i

j!

n−j−SK∑
k=0

ak
i+1

k!

− n−Si∑
j=0

yj
i

j!
εi+1(n− j)

 (33)

= e−ai

n−SK∑
j=0

aj
i

j!
− εi(n)

 . (34)

Thus, (12) follows when si > Si+1. Finally, consider the case where si ≤ Si+1, which implies

si ≤ Si = Si+1 ≥ SK . Then, from the induction hypothesis,

n < Si ⇒ n− j ≤ n < Si+1 (j = 0, 1, . . . , n− si)
⇒ P (W n−j

q (t + ∆ti+1) > x−∆ti+1) = 0 (j = 0, 1, . . . , n− si),

so that P (W n
q (t + ∆ti) > x − ∆ti) = 0, follows from (26). Moreover, n ≥ Si implies

n− j ≤ Si− 1 < Si+1, for every j = n−Si +1, n−Si +2, . . . , n− si), which, in turn, implies

P (W n−j
q (t + ∆ti+1) > x−∆ti+1) = 0, for every j = n−Si + 1, n−Si + 2, . . . , n− si). Thus,

the chain of equalities (31)-(33) is again valid so that the desired result follows also when

si ≤ Si+1. ♦

Lemma 3 For every n ≥ 1, the function f(y) ≡ e−y ∑n−1
j=0 yj/j!, y ≥ 0, is nonincreasing.

Proof: For every n ≥ 1 and for every y ≥ 0,

f ′(y) = −e−y
n−1∑
j=0

yj

j!
+ e−y

n−1∑
j=1

yj−1

(j − 1)!
= −e−y

n−1∑
j=0

yj

j!
+ e−y

n−2∑
j=0

yj

j!
= −e−y yn−1

(n− 1)!
≤ 0.
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♦

Actually, as pointed out by one of the referees, Lemma 3 could be rephrased to say that

a Poisson random variable is stocastically increasing in its mean, and this is proven in Ross

(1983), page 256.

Lemma 4 For any nonnegative sequence {pn} such that
∑∞

n=0 pn = 1 and positive integer

s, ∫ ∞
0

∞∑
n=s

n−1∑
j=0

e−xxj

j!

 pn dx =
∞∑

n=s

∫ ∞
0

n−1∑
j=0

e−xxj

j!
dx

 pn =
∞∑

n=s

npn. (35)

Proof: The sequence {fn(x)}, defined by fn(x) ≡ ∑n−1
j=0 (e−xxj/j!)pn, for n = 0, 1, . . ., is such

that fn(x) ≤ pn, for every x > 0 and every n. Since
∑∞

n=s pn < +∞ then
∑n

j=s fj converges

uniformly in (0, +∞), see Rudin (1976), page 148, Theorem 7.10. The first equality in (35)

follows from Theorem 7.16 on page 151 of the same book. The second equality follows from

(24). ♦

Proof: (of Theorem 3) For any fixed T ≥ 0, E(Wq(t)) equals

∫ T

0

∞∑
n=s(t)

P (W n
q (t) > x)pn(t) dx +

∫ ∞
T

∞∑
n=s(t)

P (W n
q (t) > x)pn(t) dx. (36)

Now, consider a new M(t)/M/s(t) model which only differs from the original M(t)/M/s(t)

model in the values of staffing function s(·) over the interval [t+T,∞), in which it is reset to

one. For this new model, the expected waiting time until service commences of a customer

that arrives to the system at time t, denoted C(t), can be computed exactly through the

recursive formula (19). Since the new staffing s(·) function kept the original values over

[t, t + T ) then C(t) equals

∫ T

0

∞∑
n=s(t)

P (W n
q (t) > x)pn(t) dx + g(T ). (37)

Note that C(t)− E(Wq(t)) ≥ 0 due to the way the staffing function differs in both models.

Assume that the new staffing function has K breakpoints. From (13),

g(T ) ≤
∫ ∞

T

∞∑
n=s(t)

e−aK(x)
n−SK∑
j=0

aK(x)j

j!

 pn(t) dx,
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where

aK(x) ≡ µs0(∆t1 −∆t0) + . . . + µsK−1(∆tK −∆tK−1) + µ(x−∆tK)

≥ µ(∆t1 −∆t0) + . . . + µ(∆tK −∆tK−1) + µ(x−∆tK)

= µx,

Thus, from Lemma 3 and using the fact that SK = 1,

g(T ) ≤
∫ ∞

T

∞∑
n=s(t)

e−µx
n−1∑
j=0

(µx)j

j!

 pn(t) dx,

a bound that we denote by h(T ). From Lemma 4,

h(T ) =
∞∑

n=s(t)

∫ ∞
T

e−µx
n−1∑
j=0

(µx)j

j!
dx

 pn(t)

and from Lemma 1, h(T ) equals the expression in (21). Moreover, since the second integral

in (36) is nonnegative ,

C(t)− E(Wq(t)) ≤ g(T ) ≤ h(T ).

This completes the first part of the proof. It remains to be shown that limT→∞ h(T ) = 0.

From (24),

h(0) =
∞∑

n=s(t)

∫ ∞
0

e−µx
n−1∑
j=0

(µx)j

j!
dx

 pn(t) =
∞∑

n=s(t)

npn(t) < +∞.

On the other hand, for any nonnegative T ,

h(0) =
∫ ∞
0

 ∞∑
n=s(t)

e−µx
n−1∑
j=0

(µx)j

j!
pn(t)

 dx

=
∫ T

0

 ∞∑
n=s(t)

e−µx
n−1∑
j=0

(µx)j

j!
pn(t)

 dx +
∫ ∞

T

 ∞∑
n=s(t)

e−µx
n−1∑
j=0

(µx)j

j!
pn(t)

 dx

= h(T ) +
∫ T

0

 ∞∑
n=s(t)

e−µx
n−1∑
j=0

(µx)j

j!
pn(t)

 dx.

As T goes to infinity, the integral in the right-hand-side goes to h(0) < +∞ and, therefore,

h(T ) must go to zero. Thus, the second part of the proof is complete. ♦
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