
Risk and Decision Analysis
5. Game Theory
Instructor: João Soares (FCTUC)

Post-graduation Course on
Complex Transport Infrastructure Systems

MIT|Portugal
J. Soares Game Theory

Scope of game theory Two-person zero sum games Two-person general sum games Noncooperative games Two-person Cooperative Gimes n-person Cooperative Games	

What is game theory?
What is the purposs?
Imortant elements
The strategic form
The extensiv form
The ocolitiononal form
What we will cover

Outline

Scope of game theory

Two-person zero sum games
Two-person general sum games
Noncooperative games
Two-person Cooperative Games
n-person Cooperative Games

Outline

Scope of game theory
Two-person zero sum games
Two-person general sum games
Noncooperative games
Two-person Cooperative Games
n-person Cooperative Games

- Game theory is about
mathematical modelling of strategic behavior.
- Strategic behavior arises whenever the outcome of an individual's actions depends on actions taken by other individuals.
- Examples include: store managers fixing prices, bidding in auctions, Voting at the United Nations, fair allocation of costs (or profits) when a group share a common facility.
- Game theory is an assemblage of ideas and theorems that attempts to provide a rational basis for resolving conflicts, with or without cooperation.

What is game theory? What is the purpose?
 What itant elements The trate The tic form
 The strategic form The extesive form The coalitional form
 The coalitional form What we will cover

What is the purpose?

The content of Game Theory is a study of the following questions and related:

- What will each individual guess about the others' choices?
- What action will each person take? How should we react to them?
- What is the outcome of these actions? Is this outcome good for the group as a whole?
- Should the group act as a whole, how should the outcome be split among individuals?
- How do answers change, or may change, if each individual is unsure about the characteristics of others in the group?

Game theory is a formal way to consider each of the following items

- group In any game there is more than one decision maker; each decision-maker is referred to as a player.
- interaction What any individual player does directly affects at least one other player in the group.
- strategic An individual player accounts for this interdependence in deciding what action to take.
- rational While accounting for this interdependence each player will choose her best action.

Two prisoners, Clavin and Klein, are hauled in for a suspected crime. The DA speaks to each prisoner separately. Each crook will be jailed for as many years as prescribed by the following table:

Calvin \backslash Klein	Confess	Not Confess
Confess	5,5	0,15
Not Confess	15,0	1,1

We say that this game is given in strategic (or normal) form.

The strategic form of a two-person game is defined by two sets X and Y and two real-valued functions $u_{1}(x, y)$ and $u_{2}(x, y)$ defined on $X \times Y$ such that:

- X is a nonempty set, the set of strategies of Player I.
- Y is a nonempty set, the set of strategies of Player II.
- $u_{1}(x, y)$ and $u_{2}(x, y)$ represent the payoffs to the players when x and y are the chosen strategies.
This definition generalizes in an obvious way to more than two players In a game in strategic form, the players choose their strategies simultaneously, without knowing the choices of the other players.

What is game theory? What is the purpose? .
 What is the purpose? Important elements The strategic form
 The strategic form The extensive form The coalitional form
 The extensive form The coalitional form What we will cover

The extensive form
Quality with commitment

The extensive form

Quality with commitment (cont.)

We say that this game is given in ex-
J. Soares Game Theory

The extensive form

Microsoft vs Quitesmallersoft (cont.)
Extensive games of imperfect informa

tion model exactly which information is available to the players when they make a move.

The nodes enclosed by ovals are called information sets. A player cannot distinguish among the nodes in an information set.
Note that whether or not the large company is able to launch a competing product is random. This is modeled by
 chance moves.

sell itself or it can remain independent and launch its product.
A small startup has announced deployment of a key new technology.
With 50% chance, a large software company has the ability to produce a competing product.
The large company can either announce the release of the competing product (even if bluffing) or it can cede the market.
Then, the smaller company can either
tensive form

Games in extensive form formalize in teractions where the players can over time be informed about the actions of others.
n this case it is an extensive game of perfect information because every player is at any point aware of the previous choices of all other players.

Consider a service provider (e.g. internet) who makes a first move, High or Low quality of service.
Then, the customer is informed about that choice and decide separately between buy and don't buy in each case. The payoffs are given in the figure.
J. Soares Game Theory

The extensive form
Microsoft vs Quitesmallersoft C Soares

What is game theory? What is the purpose? 隹
 Mnat is che purpos? Important elements The strategic form The e ertenic for
 The strategic form The extesive form The coalitional form
 The extensive form The coalitional form What we will cover

The coalitional form
Jed, Ned and Ted' car pool

Jed, Ned and Ted are neighbors. They work in the same office, at the same time, on the same days.
In order to save money they would like to form a car pool.

They must first agree on how to share the car pool's benefits.

The coalitional form

Definition

- The coalitional form of an n-person game is given by the pair (N, ν), where
- $N=\{1,2, \ldots, n\}$ is the set of players;
- ν is a real-valued function called the characteristic function of the game, defined on the set 2^{N}, of all coalitions (subsets of N).
- The real number $\nu(S)$ may be considered as the value, or worth, or power, of coalition S when its members act together as a unit.
- In general, but not always, the ν function will satisfy the superadditivity property

$$
\nu(S)+\nu(T) \leq \nu(S \cup T), \quad \text { for all disjoint } S, T .
$$

so that all the players are better off forming coalitions. In particular, they will have the interest in forming the grand coalition, N.

The coalitional form

Jed, Ned and Ted' car pool (cont.)
Let Jed be Player 1, Ned Player 2 and Ted Player 3.
Let $c(S)$ denote the the cost of the coalition $S \subseteq\{1,2,3\}$ driving to work by sharing the same car.
Now, define $\bar{\nu}(S)$, the benefit of cooperation associated with the coalition $S \subseteq\{1,2,3\}$. Then,

$$
\bar{\nu}(S)=\sum_{i \in S} c(\{i\})-c(S)
$$

so that by forming a car pool, J, N and T will save

$$
\bar{\nu}(\{1,2,3\})=\sum_{i=1}^{3} c(\{i\})-c(\{1,2,3\}) .
$$

How should this money savings be split among them?

The Program

1. Two-person zero sum games. These are the simplest games. We will analyse the so-called Matrix Games.
2. Two-Person general sum games. We will analyse the so-called Bimatrix Games.

- Noncooperative theory. Nash equilibrium.
- Cooperative theory: (1) side payments allowed; (2) Nash bargaining model.

3. Games in coalitional form. We will discuss ways to reach an agreement on a fair division.

Outline

Scope of game theory

Two-person zero sum games

Two-person general sum games

Noncooperative games

Two-person Cooperative Games
n-person Cooperative Games

- Players I and II simultaneously call out numbers one or two. If the sum of the numbers is odd Player I wins the sum otherwise Player II wins the sum. Thus, $X=Y=\{1,2\}$ and A is given (in euros) in the following table:

l		
$I \backslash I I$	1	2
	-2	+3
	+3	-4

- Suppose Player 1 uses the following mixed strategy: he calls 'one' with probability $3 / 5$ and 'two' with probability $2 / 5$. Then,
- If II calls 'one', I wins $(-2)(3 / 5)+(+3)(2 / 5)=0$, on average;
- If II calls 'two', I wins $(+3)(3 / 5)+(-4)(2 / 5)=1 / 5$, on average.

Thus, through this mixed strategy, Player I is assured of at least breaking even on the average no matter what II does.
 the

The strategic form of a two-person zero sum game is given by a triplet (X, Y, A), where

- X is a nonempty set, the set of strategies of Player I.
- Y is a nonempty set, the set of strategies of Player II.
- A is a real-valued function defined on $X \times Y$.

Simultaneously, Player I chooses $x \in X$ and Player II chooses $y \in Y$.
Then, their choices are made known and I wins $A(x, y)$ from II.
Thus, $A(x, y)$ represents the winnings of I and the losses of II.

Saddle Points

- Consider the following game

- The Minimax Theorem: For every two-person zero-sum game,

1. there is a number V, called the value of the game,
2. there is a mixed strategy for I that gives him at least an average gain of V no matter what II does, and
3. there is a mixed strategy for II that gives him at most an average loss of V no matter what I does.
Such strategies are called minimax strategies.

- In the game of Odd-and-Even the minimax strategies are the equalizing strategies.

For this game, $V=a_{42}=1$ and the two minimax strategies are pure strategies.

- In general, we say that $a_{i j}$ is a saddle point if
- $a_{i j}$ is the minimum of the i th row, and
- $a_{i j}$ is the maximum of the j th column.
- When a saddle point exist, it is the value of the game.

Solving $2 \times n$ and $m \times 2$ games

- Dominated Strategy: We say the ith row of a matrix $A=\left(a_{i j}\right)$ dominates the k th row if $a_{i j} \geq a_{k j}$ for all j. If the inequality is strict in all j then we say the the i th row strictly dominates the k th row.
- Similar definition for columns (but with inequality reversed).
- Dominated rows may be removed from the game. Everything that can be achieved with that row, can also be achieved without it.
- We may iterate this procedure as in the following example:

$$
A=\left(\begin{array}{lll}
2 & 0 & 4 \\
1 & 2 & 3 \\
4 & 1 & 2
\end{array}\right) \rightarrow\left(\begin{array}{ll}
2 & 0 \\
1 & 2 \\
4 & 1
\end{array}\right) \rightarrow\left(\begin{array}{ll}
1 & 2 \\
4 & 1
\end{array}\right)
$$

From the last game we conclude that the optimal strategy for Player I must be ($0,3 / 4,1 / 4$), the optimal strategy for Player II is $(1 / 4,3 / 4,0)$. The value is $7 / 4$.

Games with matrices of size $2 \times n$ or $m \times 2$ may be solved with the aid of a graphical interpretation. Consider the following game

$$
\begin{gathered}
p \\
1-p
\end{gathered}\left(\begin{array}{llll}
2 & 3 & 1 & 5 \\
4 & 1 & 6 & 0
\end{array}\right)
$$

The average payoffs for each of the pure strategies of Player II are drawn on the figure.

I's optimal strategy is ($5 / 7,2 / 7$) and the value is $17 / 7$ Hence, the optimal strategy for Player I is the same as for the game

Solving $2 \times n$ and $m \times 2$ games (cont.)
Similar reasoning applies to $m \times 2$ may be solved with the aid of a graphical interpretation. Consider the following game

$$
\begin{gathered}
q \\
\left(\begin{array}{ll}
1-q \\
4 & 5 \\
6 & 2
\end{array}\right)
\end{gathered}
$$

The average payoffs for each of the pure strate-
 gies of Player I are drawn on the figure.

From the graph we see that any value of q between $1 / 4$ and $1 / 2$ defines Player's 2 minimax strategy. The value of the game is 4 .
The optimal strategy for Player I to play the pure strategy: row 2.

J. Soares	Game Theory
Outline Scope of game theory wo-person zero sum games Two-person general sum games Noncooperative games Two-person Cooperative Games \boldsymbol{n}-person Cooperative Games	The strategic form Example - Odd or Even The Minimax Theorem The Minimax Theorem Saddle Points Dominated Strategies Solving $2 \times n$ and $m \times 2$ games Best Responses Best Responses Reduction to $L \mathrm{~F}$ Extensive Form of a Game
Best Responses (cont.)	

- If Player II chooses a column using $\boldsymbol{q} \in Y^{*}$ and Player I chooses row i then, the average payoff to Player I is

$$
\sum_{j=1}^{n} a_{i j} q_{j}=(A \boldsymbol{q})_{i}
$$

- If Player I chooses a row using $\boldsymbol{p} \in X^{*}$ and Player II chooses column j then, the average payoff to Player I is

$$
\sum_{i=1}^{m} a_{i j} p_{i}=\left(\boldsymbol{p}^{T} A\right)_{j}
$$

- In general, if Player 1 uses $\boldsymbol{p} \in X^{*}$ and Player 2 uses $\boldsymbol{q} \in Y^{*}$ then, the average payoff to Player I is

$$
\sum_{i=1}^{m} \sum_{j=1}^{n} a_{i j} p_{i} q_{j}=\boldsymbol{p}^{T} A \boldsymbol{q}
$$

Best Responses

Consider an arbitrary two-person zero sum game (X, Y, A) where A is an $m \times n$ matrix. Let

$$
\begin{aligned}
& X^{*}=\left\{\boldsymbol{p} \equiv\left(p_{1}, \ldots, p_{m}\right): p_{i} \geq 0, i=1, \ldots, m \text { and } \sum_{i=1}^{m} p_{i}=1\right\} \\
& Y^{*}=\left\{\boldsymbol{q} \equiv\left(q_{1}, \ldots, q_{n}\right): q_{j} \geq 0, j=1, \ldots, n \text { and } \sum_{j=1}^{n} q_{j}=1\right\}
\end{aligned}
$$

Hence, X^{*} contains the mixed strategies for Player 1 and Y^{*} contains the mixed strategies for Player 2.

- Suppose Player II announces that will use $\boldsymbol{q} \in Y^{*}$. Then, Player I's best response is to choose $i \in X$ (or, equivalently, $\boldsymbol{p} \in X^{*}$) that solves

$$
\max _{1 \leq i \leq m} \sum_{j=1}^{n} a_{i j} q_{j}=\max _{\boldsymbol{p} \in X^{*}} \boldsymbol{p}^{T} A \boldsymbol{q} .
$$

- Otherwise, Player I may plan for the worst through solving

$$
\max _{\boldsymbol{p} \in X^{*}} \min _{\boldsymbol{q} \in \boldsymbol{Y}^{*}} \boldsymbol{p}^{T} A \boldsymbol{q}=\max _{\boldsymbol{p} \in X^{*}} \min _{1 \leq j \leq n} \sum_{i=1}^{m} a_{i j} p_{i}=\underline{V}
$$

which is called the lower value of the game. The vector $\boldsymbol{p} \in X^{*}$ where the maximum is achieved is called the minmax strategy for I.

Best Responses (cont.)

- Suppose Player I announces that will use $\boldsymbol{p} \in X^{*}$. Then, Player II's best response is to choose $j \in Y$ (or, equivalently, $\boldsymbol{q} \in Y^{*}$) that solves

$$
\min _{1 \leq j \leq n} \sum_{i=1}^{m} a_{i j} p_{i}=\min _{\boldsymbol{q} \in \boldsymbol{Y}^{*}} \boldsymbol{p}^{T} A \boldsymbol{q}
$$

- Otherwise, Player II may plan for the worst through solving

$$
\min _{\boldsymbol{q} \in \boldsymbol{Y}^{*}} \max _{\boldsymbol{p} \in X^{*}} \boldsymbol{p}^{T} A \boldsymbol{q}=\min _{\boldsymbol{q} \in \boldsymbol{Y}^{*}} \max _{1 \leq i \leq m} \sum_{j=1}^{n} a_{i j} q_{j}=\bar{V}
$$

which is called the upper value of the game. The vector $\boldsymbol{q} \in Y^{*}$ where the minimum is achieved is called the minmax strategy for II.

The extensive form of the game is drawn on the figure.

Reduction to Linear Programming

- Basically, it is a consequence of the Equlibrium Theorem stated before that for finite games

$$
\bar{V}=\underline{v}
$$

and that both players have minimax strategies.

- Both can be found through Linear Programming
- Let us solve an example using the solver of Excel...

- A two-person game in extensive form is represented by a graph known as the Kuhn tree:
- a finite tree with vertices T;
- a payoff function that assigns a real number to each terminal vertex;
- a partition of the rest of the vertices into two groups of information sets (one for each player);
- from each information set, a set of edges corresponding to possible strategies.
- Knowing the Kuhn tree means knowing the rules of the game.
- Games in which both players know the Kuhn tree are called games of complete information.
- Recall that games of perfect information are games in which the information sets are single vertices.

Reduction to Strategic Form

- Any game in extensive form can be put in strategic form.
- If there are k information sets for Player 1 then a pure strategy for Player I is k-tuple $\boldsymbol{x}=\left(x_{1}, \ldots, x_{k}\right)$ where each component characterizes the choice of Player I facing a given information set.
- Proceed similarly with Player 2.
- Random payoffs are replaced by their average values.

Game Theory

$$
\begin{aligned}
& \text { The strategic form } \\
& \text { Reducing extensive to strategic form } \\
& \text { Safety Levels } \\
& \text { Cooperative vs Noncooperative Theory }
\end{aligned}
$$

Outline

Scope of game theory

Two-person zero sum games

Two-person general sum games

Noncooperative games

Two-person Cooperative Games
n-person Cooperative Games

A finite two-person general sum game in strategic form is defined similarly as in the zero-sum case, except that now payoffs are ordered pairs.

- Thus, a finite two-person game in strategic form can be represented by a so-called bimatrix. For example,

$$
\left(\begin{array}{cccc}
(1,4) & (2,0) & (-1,1) & (0,0) \\
(3,1) & (5,3) & (3,-2) & (4,4) \\
(0,5) & (-2,3) & (4,1) & (2,2)
\end{array}\right)
$$

where, the rows are the pure strategies of Player I and the columns are the pure strategies of Player II. If Player I chooses row 3 and Player II chooses column 2 then I receives -2 and II receives 3 .

- The same game can be also represented by a pair of matrices (A, B) where

- The analysis of general-sum games is more complex than zero-sum. In particular, the minimax theorem does not hold.
- The analysis divides into:
- Noncooperative Theory: Either Players are unable to communicate bebore decisions are made or, if they do, they cannot make binding agreements.
- Cooperative Theory: Players are allowed to make binding agreements. Theory further divides into
- Transferable Utility Games: Payoffs have the same monetary units. Hence, it is a matter of fairly dividing an agreed outcome, i.e., defining the side payments.
- NonTransferable Utility Games Payoffs do have the same monetary units. Side payments are not allowed.

Safety Levels

- Consider the following game

$$
\left(\begin{array}{ll}
(2,0) & (1,3) \\
(0,1) & (3,2)
\end{array}\right) \quad \text { or } \quad A=\left(\begin{array}{ll}
2 & 1 \\
0 & 3
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{ll}
0 & 3 \\
1 & 2
\end{array}\right) .
$$

- Player I has a gurantee winning of $3 / 2$, on the average, if he plays his maxmin strategy (3/4, 1/4).
- Player II has a gurantee winning of 2 , on the average, if he plays his maxmin strategy $(0,1)$.
- We say that $3 / 2=\operatorname{Val}(A)$ is the safety level of Player I and $2=\operatorname{Val}\left(B^{T}\right)$ is the safety level of Player II.
- If both players use their maxmin strategies,

$$
\text { Player I gets } 3 / 2 \text { while Player II gets } 11 / 4=(3 / 4) 3+(1 / 4) 2 .
$$

Hence, Player II is happy. He gets more than his safety level.

- But Player I is unhappy. Can he do better?What if they could cooperate? J. Soares Game Theory

Outline

Scope of game theory

Two-person zero sum games

Two-person general sum games

Noncooperative games
Two-person Cooperative Games

Pure strategic equilibrium
(Mixed) strategic equilibrit
Pure strategic equiliorium
(Mixed strategic equilibrium
Examples
.
Examples
Finding all PSEs
The Coll
Tinding all PSEs
The Cournot Model of Duopoly

It is useful to extend this definition to allow for mixed strategies.
A vector of mixed strategies choices $\left(\boldsymbol{p}_{1}, \boldsymbol{p}_{2}, \ldots, \boldsymbol{p}_{n}\right)$, with

$$
\boldsymbol{p}_{i} \in X_{i}^{*} \equiv\left\{\boldsymbol{p} \equiv\left(p_{1}, \ldots, p_{m_{i}}\right): p_{i} \geq 0, i=1, \ldots, m_{i} \text { and } \sum_{i=1}^{m_{i}} p_{i}=1\right\}
$$

is said be a Strategic Equilibrium if, for all $i=1,2, \ldots, n$,

$$
g_{i}\left(\boldsymbol{p}_{1}, \ldots, \boldsymbol{p}_{i-1}, \boldsymbol{p}_{i}, \boldsymbol{p}_{i+1}, \ldots, \boldsymbol{p}_{n}\right) \geq g_{i}\left(\boldsymbol{p}_{1}, \ldots, \boldsymbol{p}_{i-1}, \boldsymbol{p}, \boldsymbol{p}_{i+1}, \ldots, \boldsymbol{p}_{n}\right)
$$

for all $\boldsymbol{p} \in X_{i}^{*}$
Thus, any mixed strategy $\boldsymbol{p}_{\boldsymbol{i}}$ in a strategic equilibrium $\left(\boldsymbol{p}_{1}, \boldsymbol{p}_{2}, \ldots, \boldsymbol{p}_{n}\right)$ is a Best Response to those of the other players
Theorem. (Nash, 1950) Every finite n-person game in strategic form has at least one strategic equilibrium.

The PSE are (a, a) and (b, b). But, Player I prefers the first and Player II prefers the second.

- Safety Levels. $v_{I}=v_{I I}=2 / 3$, the same for both players. Player's I minmax strategy is $(1 / 3,2 / 3)$ while Player's II minmax strategy is (2/3, 1/3).
- There is a third SE given by $\boldsymbol{p}=(2 / 3,1 / 3)$ and $\boldsymbol{q}=(1 / 3,2 / 3)$. The payoff is $(2 / 3,2 / 3)$. Hence, it is worse than either of the PSE.

Example 3: The Prisoner's Dilemma

Consider the game with bimatrix

cooperate defect
cooperate
defect

(4,0) \& (1,1)\end{array}\right)\).

- There is a unique PSE which is $(1,1)$.
- However, if both players use their dominated strategies, each player receives 3 .

There are two competing firms producing a single homogeneous product. These firms must choose how much of the good to produce.
If Firm 1 produces q_{1} and Firm 2 produces q_{2} for a total of $Q=q_{1}+q_{2}$,
the price is

$$
P(Q)=(a-Q)^{+} \quad(a>0)
$$

Hence, the payoffs for the two players are

$$
\begin{aligned}
& u_{1}\left(q_{1}, q_{2}\right)=q_{1}\left(a-q_{1}-q_{2}\right)^{+}-c q_{1} \\
& u_{2}\left(q_{1}, q_{2}\right)=q_{2}\left(a-q_{1}-q_{2}\right)^{+}-c q_{2}
\end{aligned}
$$

where c is the unit production cost. Assume $c<a$.

For larger matrices it is not difficult to find all pure strategic equilibria. An example should make this clear:

$$
\left(\begin{array}{cccccc}
(2,1) & (4,3) & \left(7^{*}, 2\right) & \left(7^{*}, 4\right) & \left(0,5^{*}\right) & (3,2) \\
\left(4^{*}, 0\right) & \left(5^{*}, 4\right) & \left(1,6^{*}\right) & (0,4) & (0,3) & \left(5^{*}, 1\right) \\
\left(1,3^{*}\right) & \left(5^{*}, 3^{*}\right) & (3,2) & (4,1) & \left(1^{*}, 0\right) & \left(4,3^{*}\right) \\
\left(4^{*}, 3\right) & \left(2,5^{*}\right) & (4,0) & (1,0) & \left(1^{*}, 5^{*}\right) & (2,1)
\end{array}\right)
$$

In this example there are two PSE with payoffs $(5,3)$ and $(1,5)$, respectively.

Finding all PSEs

To find a duopoly PSE, we look for a pure strategy for each player that is a best response to the other's strategy. Setting derivatives to zero,

$$
\begin{array}{ll}
\frac{\partial u_{1}}{\partial q_{1}}\left(q_{1}, q_{2}\right)=a-2 q_{1}-q_{2}-c=0, & \left(0<q_{1}+q_{2}<a\right) \\
\frac{\partial u_{2}}{\partial q_{2}}\left(q_{1}, q_{2}\right)=a-q_{1}-2 q_{2}-c=0, & \left(0<q_{1}+q_{2}<a\right)
\end{array}
$$

Solving these equations simultaneously, we find

$$
q_{1}^{*}=\frac{a-c}{3} \quad \text { and } \quad q_{2}^{*}=\frac{a-c}{3}
$$

The payoff each player receives is $\frac{(a-c)^{2}}{9}$
Note: it may be shown that there are no more PSEs.

The Cournot Model of Duopoly (cont.)
It would be interesting to study the case in which the two firms cooperate, i.e., under a monopoly,

	Monopoly	Duopoly
Total production	$\frac{a-c}{2}$	$\frac{2(a-c)}{3}$
Total payoffs	$\frac{2(a-c)^{2}}{8}$	$\frac{2(a-c)^{2}}{9}$
Unit Cost	$\frac{a+2 c}{3}$	$\frac{a+c}{2}$

Hence,

- if the firms were allowed to cooperate they could improve their profits.
- The consumer is better off under a duopoly than under a monopoly.

- In Noncooperative Theory, even if communication is allowed, players are forbidden to make binding agreements.
- In Cooperative Theory, communication is allowed and also allow binding agreements to be made.
- Hence, in Cooperative Theory, players can usually do much better. Recall the Prisoner's Dilemma game.
- We will analyse distinctly the Transferable Utility and NonTransferable Utility cases.

Outline

Scope of game theory

Two-person zero sum games

Two-person general sum games

Noncooperative games

Two-person Cooperative Games
n-person Cooperative Games

- Consider a bimatrix game (A, B). Being a cooperative game the players may agree to achieve a payoff to be any of the points $\left(a_{i j}, b_{i j}\right)$ or a probability mixture of all these points.
- Def: The NTU feasible set is the convex hull of the mn points $\left(a_{i j}, b_{i j}\right)$ for $i=1, \ldots, m$ and $j=1, \ldots, n$.

As an example, consider the bimatrix game

$$
\left(\begin{array}{ll}
(4,3) & (0,0) \\
(2,2) & (1,4)
\end{array}\right)
$$

which has two PSE, upper left and lower right. The NTU feasible set is represented in the figure.


```
C.
l
Cooperative Strategy and Side Payment:
M
```


The NTU Feasible Set (cont.)

- If an agreement is to be reached, it must be such that no player can be made better off without making at least one other player worse off.
- Def: A feasible payoff vector, $\left(v_{1}, v_{2}\right)$ is to be Pareto Optimal if the only feasible payoff vector $\left(v_{1}^{\prime}, v_{2}^{\prime}\right)$ such that $v_{1}^{\prime} \geq v_{1}$ and $v_{2}^{\prime} \geq v_{2}$ is the vector $\left(v_{1}^{\prime}, v_{2}^{\prime}\right)=\left(v_{1}, v_{2}\right)$.

For the previous example,

$$
\left(\begin{array}{ll}
(4,3) & (0,0) \\
(2,2) & (1,4)
\end{array}\right)
$$

the Pareto Optimal payoffs are represented in the figure.

J. Soares Game Theory

$$
\begin{aligned}
& \text { Cooperative Games } \\
& \text { Feasibe Setsof Payoff Vectors } \\
& \text { The TU roblem } \\
& \text { Cooperative Strategy and Side Payments } \\
& \text { A TU game } \\
& \text { The NTU problem }
\end{aligned}
$$

$$
\begin{aligned}
& \text { A TU G game } \\
& \text { The NToblem } \\
& \text { The Nash Bargaining Model }
\end{aligned}
$$

The TU Feasible Set

- Consider a bimatrix game (A, B). Now, each payoff vector $\left(a_{i j}, b_{i j}\right)$ can be changed to $\left(a_{i j}+s, b_{i j}-s\right)$. The value s is a side payment to Player I.
- Def: The TU feasible set is the convex hull of points of the form $\left(a_{i j}+s, b_{i j}-s\right)$ for $i=1, \ldots, m$, for $j=1, \ldots, n$ and for any real number s.

As an example, consider the bimatrix game

The TU Feasible Set

- Consider a bimatrix game (A, B). Now, each payoff vector $\left(a_{i j}, b_{i j}\right)$ can be changed to $\left(a_{i j}+s, b_{i j}-s\right)$. The value s is a side payment to Player I.
- Def: The TU feasible set is the convex hull of points of the form $\left(a_{i j}+s, b_{i j}-s\right)$ for $i=1, \ldots, m$, for $j=1, \ldots, n$ and for any real number s.

As an example, consider the bimatrix game

$$
\left(\begin{array}{ll}
(4,3) & (0,0) \\
(2,2) & (1,4)
\end{array}\right)
$$

The TU feasible set is represented in the figure.

J. Soares Game Theory

The TU problem

- Consider the following bimatrix game

$$
\left(\begin{array}{cc}
(5,3) & (0,-4) \\
(0,0) & (3,6)
\end{array}\right)
$$

Try to reach an agreement!

- The TU problem is to choose the threats and proposed side payments judiciously.
- Next, we will analyse two-person Cooperative TU games. Later we will consider the n-person case.

Cooperative Strategy and Side Payments

- Consider a two-person Cooperative TU game with bimatrix (A, B).
- Rationality implies that players will agree to achieve the largest possible total payoff, i.e.,

$$
\sigma=\max _{i} \max _{j}\left(a_{i j}+b_{i j}\right)
$$

- Let \boldsymbol{p} be a threat strategy for Player I and let \boldsymbol{q} be a threat strategy for Player II. The resulting payoff vector is

$$
D=D(p, q)=\left(p^{T} A q, p^{T} B q\right)=\left(D_{1}, D_{2}\right)
$$

This is called the disagreemente (or threat) point. Hence, Player I will accept no less than D_{1} and Player 2 will accept no less than D_{2}. Therefore, the mid point

$$
\begin{equation*}
\varphi=\left(\varphi_{1}, \varphi_{2}\right)=\left(\frac{\sigma+D_{1}-D_{2}}{2}, \frac{\sigma+D_{2}-D_{1}}{2}\right) \tag{1}
\end{equation*}
$$

- How to choose the threat strategies (i.e., \boldsymbol{p} and \boldsymbol{q})?
- From (1), we see that Player I wants $D_{1}-D_{2}$ to be maximum while Player II wants $D_{1}-D_{2}$ to be minimum.
- This is in fact a zero-sum game with matrix $A-B$:

$$
D_{1}-D_{2}=p^{T} A q-p^{T} B q=p^{T}(A-B) q
$$

- Let \boldsymbol{p}^{*} and \boldsymbol{q}^{*} denote optimal strategies of the game $A-B$. Then,

$$
\begin{equation*}
\varphi=\left(\varphi_{1}, \varphi_{2}\right)=\left(\frac{\sigma+\delta}{2}, \frac{\sigma-\delta}{2}\right) \tag{2}
\end{equation*}
$$

is the TU value (or TU solution), where $\delta=p^{* T}(A-B) q^{*}$.

- The discrepancy between (2) and the chosen payoff ($a_{i_{0} j_{0}}, b_{i_{0} j_{0}}$) defines the side payment.

Cooperative Strategy and Side Payments (cont.)

- Consider the TU game with bimatrix

$$
\left(\begin{array}{ccc}
(0,0) & (6,2) & (-1,2) \\
(4,-1) & (3,6) & (5,5)
\end{array}\right)
$$

- Cooperative strategy: I chooses row 2 and II chooses column 3, $\sigma=10$.
- To determine the side payment, we must consider the zero-sum game with matrix

$$
A-B=\left(\begin{array}{ccc}
0 & 4 & -3 \\
5 & -3 & 0
\end{array}\right) .
$$

for which $p^{*}=(.3, .7)$ and $q^{*}=(0, .3, .7)$. Hence, $\delta=-.9$ so that

$$
\varphi=\left(\frac{10-.9}{2}, \frac{10+.9}{2}\right)=(4.55,5.45) .
$$

To arrive at this payoff from $(5,5)$, requires a side payment of .45 from Player I to Player II

The NTU problem

Now, we consider cooperative games in which side payments are forbidden. It may be assumed that the utility scales are measured in noncomparable units.

Recall the bimatrix game shown before

$$
\left(\begin{array}{ll}
(4,3) & (0,0) \\
(2,2) & (1,4)
\end{array}\right)
$$

The NTU feasible set and Pareto Optimal payoffs are represented in the figure.

Which of the Pareto points to agree upon?

$$
\begin{aligned}
& \text { Cooperative Games } \\
& \text { Feasibe Sets of Payoff Vectors } \\
& \text { The TU Uroblem } \\
& \text { Coperative Strategy and Side Payments. } \\
& \text { ATU game } \\
& \text { The NTU roblem } \\
& \text { The Nash Bargaining Model }
\end{aligned}
$$

The Nash Bargaining Model (cont.)
Theorem (Nash, 1950) There exists a unique function f satisfying the Nash axioms. Moreover, if there exists a point $(u, v) \in S$ such that $u>u^{*}$ and $v>v^{*}$, then $f\left(S,\left(u^{*}, v^{*}\right)\right)$ is that point of S that maximizes $\left(u-u^{*}\right)\left(v-v^{*}\right)$ among points of S such that $u \geq u^{*}$ and $v \geq v^{*}$.

Cooperative Games
Feasible Sets of Payoff Vectors
The TU
Theasio Sets of Payori Vectors
The TU problem
Cooperative Strategy and Side Payments
Cooperative Strategy and
ATU game
The NTU problem
The NTU problem
The Nash Bargaining Model
The Nash Bargaining Model

We approach NTU games through the Nash Bargaining Model
Let S be the NTU feasible set and let $\left(u^{*}, v^{*}\right) \in S$ be a threat point, i.e. the natural outcome if an agreement is not reached.
In the approach of Nash, a fair and reasonable outsome, or solution, of the game is a point $(\bar{u}, \bar{v})=f\left(S,\left(u^{*}, v^{*}\right)\right)$ to satisfy the following axioms:

1. Feasibility
2. Pareto Optimality
3. Symmetry
4. Independence of irrelevant alternatives
5. Invariance under change of location and scale

See explanation in class!

Recall the bimatrix game shown before
$\left(\begin{array}{lll}(4,3) & (0,0) & (0,0) \\ (2,2) & (1,4) & (0,0) \\ (0,0) & (0,0) & (0,0)\end{array}\right)$

The NTU feasible set and Pareto Optimal payoffs are represented in the figure.

- Let $\left(u^{*}, v^{*}\right)=(0,0)$ and let S be the NTU feasible set.
- The NTU-solution is $(4,3)$

Scope of game theory

Two-person zero sum games

Two-person general sum games

Noncooperative games

Two-person Cooperative Games
n-person Cooperative Games

- Jed, Ned and Ted are neighbors. They work in the same office, at the same time, on the same days.
- In order to save money they would like to form a car pool.
- They must first agree on how to share the car pool's benefits.
- See map on the next slide.

- We now consider n-person TU cooperative games, which allow for side payments to be made among the players.
- All players seek a fair distribution of a benefit and each player wants as much as possible of it.
- The fairness of a distribution is assumed to depend on the bargaining strengths of the various coalitions that could possibly form among some, but not all, of the players.
- But, a fundamental assumption is that a grand coalition of all players is formed - either voluntarily or enforced by an external agent or circumstance.
- The benefit is, usually, the savings or gain of the grand coalition.
- We will introduce a modeling framework, characteristic function games, and the solution concept the nucleolus.
J. Soares Game Theory

Characteristic functions

Jed, Ned and Ted's map


```
Characteristic Function Games
l
Reasonable set
Rational core
Rational
Rational core
Rational e-core
Nucleolus
```


Characteristic functions

The car pool cost functions
Let Jed be Player 1, Ned Player 2 and Ted Player 3.
Let $c(S)$ denote the the cost of the coalition $S \subseteq\{1,2,3\}$ driving to work by sharing the same car.

Assume that all players have identical cars and that the cost of driving to work, including depreciation, is k dollars per mile.

Then,

$$
\begin{array}{ll}
c(\{1\})=(4+d) k, & c(\{1,2\})=(4+d) k, \\
c(\{2\})=(\{1,2,3\})=(7+d) k, \\
c(\{3\})=(3+d) k, & c(\{2,3\})=(6+d) k, \\
c(\{1,3\})=(6+d) k .
\end{array}
$$

J. Soares Game Theory

Characteristic functions
Jed, Ned and Ted's (normalized) benefit of cooperation

For completeness, we append $\bar{\nu}(\emptyset)=0$. Hence, we have defined a characteristic function $\bar{\nu}: 2^{N} \rightarrow \mathbb{R}$.

The number $\bar{\nu}(S)$, the benefit that players in S can obtain if they cooperate with each other but not with the players outside S, is a measure of the bargaining strength of the coalition S.

It will be convenient to express this measure as a fraction of the strength of the grand coalition.

Characteristic functions

Jed, Ned and Ted's benefit of cooperation
Now, define $\bar{\nu}(S)$, the benefit of cooperation associated with the coalition $S \subseteq\{1,2,3\}$, through the following formula

$$
\bar{\nu}(S)=\sum_{i \in S} c(\{i\})-c(S) .
$$

Then,

$$
\begin{array}{ll}
\bar{\nu}(\{1\})=0, & \bar{\nu}(\{1,2\})=(3+d) k, \quad \bar{\nu}(\{1,2,3\})=(3+2 d) k, \\
\bar{\nu}(\{2\})=0, & \bar{\nu}(\{2,3\})=(d) k, \\
\bar{\nu}(\{3\})=0, & \bar{\nu}(\{1,3\})=(1+d) k,
\end{array}
$$

so that by forming a car pool, J, N and T will save $(3+2 d) k$ dollars per trip.
How should this money savings be split among them?

Characteristic functions

Jed, Ned and Ted's (normalized) benefit of cooperation

Hence, define $\nu(S)=\bar{\nu}(S) / \bar{\nu}(\{1,2,3\})$, the normalized characteristic function.

Then, besides $\nu(\emptyset)=0$, we have

$$
\begin{array}{ll}
\nu(\{1\})=0, & \nu(\{1,2\})=\frac{3+d}{3+2 d}, \quad \nu(\{1,2,3\})=1, \\
\nu(\{2\})=0, & \nu(\{2,3\})=\frac{d}{3+2 d}, \\
\nu(\{3\})=0, & \nu(\{1,3\})=\frac{1+d}{3+2 d .}
\end{array}
$$

Characteristic functions

Coalitional form

- The coalitional form of an n-person TU (cooperative) game is given by the pair (N, ν), where
- $N=\{1,2, \ldots, n\}$ is the set of players;
- ν is a real-valued function called the characteristic function of the game defined on the set 2^{N}, i.e., the set of all possible coalitions with elements in N.
- The real number $\nu(S)$ may be considered as the value, or worth, or power, of coalition S when its members act together as a unit.
- In our development in class we will assume $\nu(N)=1$.

- More generally, an imputation of an n-person cooperative game is an n-dimensional vector $x \equiv\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ such that

$$
\begin{align*}
& x_{i} \geq 0, \quad i=1,2, \ldots, n \tag{3a}\\
& x_{1}+x_{2}+\ldots+x_{n}=1 \tag{3b}
\end{align*}
$$

- When x satisfies (3a) we say that x is individually rational.
- When x satisfies (3b) we say that x is group rational.

Imputations

Jed, Ned and Ted's allocations

- Assume that the car pool will use Jed's car. So it is Jed who actually foots the bills.
- If x_{1} is the fraction that Jed receives from the car pool's benefits $(3+2 d) k$ then

$$
0 \leq x_{1}, x_{2}, x_{3}, \quad x_{1}+x_{2}+x_{3}=1
$$

where, similarly, x_{2} applies to Ned and x_{3} applies to Ted.

- Then, Ned or Ted should pay Jed

$$
c(\{i\})-(3+2 d) k x_{i} \quad(\text { dollars per trip })
$$

- Our task is to determine the fractions x_{1}, x_{2} and x_{3}.
- We will refer to the vector $x \equiv\left(x_{1}, x_{2}, x_{3}\right)$ as an imputation.
- We will refer to the component x_{i} as Player i's allocation at x.

Reasonable set

So how much should Jed receive?

- So, what can be regarded as a fair distribution of the benefits of cooperation? For Jed, for example?
- For every subset T of $N \equiv\{1,2,3\}$ and containing 1 , the value of

$$
\nu(T)-\nu(T \backslash\{1\})
$$

is like a marginal fraction value of Jed within coalition T

- Let Π_{1} is the family of whole subsets of N containing 1 . Then,

$$
\begin{aligned}
x_{1} \leq & \max _{T \in \Pi_{1}}\{\nu(T)-\nu(T \backslash\{1\})\} \\
= & \max \{\nu(\{1,2,3\})-\nu(\{2,3\}), \quad \nu(\{1,2\})-\nu(\{2\}), \\
& \nu(\{1,3\})-\nu(\{3\}), \quad \nu(\{1\})-\nu(\emptyset)\}, \\
= & \max \left\{1-\frac{3}{7}, \frac{4}{7}-0, \frac{10}{21}-0,0-0\right\}=\frac{4}{7} \quad(d=9)
\end{aligned}
$$

Reasonable set

Definition

Reasonable set

Is the car pool problem solved?
In Jed, Ned and Ted's problem we have

$$
X=\left\{\begin{array}{l|l}
x & \begin{array}{l}
x_{1}+x_{2}+x_{3}=1, \\
0 \leq x_{1} \leq \frac{4}{7}, \quad 0 \leq x_{2} \leq \frac{4}{7}, \quad 0 \leq x_{3} \leq \frac{10}{21}
\end{array}
\end{array}\right\}
$$

This set X is represented in light and dark shading in the figure.

So, the answer is No !
There are (still) too many points
in the reasonable set.

J. Soares Game Theory

Rational core
Is the car pool problem solved?

For Jed, Ned and Ted's problem we have

$$
\begin{align*}
& e(\emptyset, x)=0=e(\{1,2,3\}, x)=0, \tag{4a}\\
& e(\{i\}, x)=-x_{i}, \quad i=1,2,3, \tag{4b}\\
& e(\{1,2\}, x)=\frac{4}{7}-x_{1}-x_{2}, \tag{4c}\\
& e(\{1,3\}, x)=\frac{10}{21}-x_{1}-x_{3}, \tag{4d}\\
& e(\{2,3\}, x)=\frac{3}{7}-x_{2}-x_{3}, \tag{4e}
\end{align*}
$$

Characteristic Function Game
Characteristic Function Game
lmputations
lmputations
l}\begin{array}{l}{\mathrm{ Reasonable set }}
{\mathrm{ Rational core }}
l}\begin{array}{l}{\mathrm{ Reasonable set }}
{\mathrm{ Rational core }}
Mationale-col
Mationale-col

Rational core
Is the car pool problem solved? (cont.)
The rational core, i.e., the points in X such that (4a)-(4e) holds, is represented in dark shading in the figure.

So, the answer is again No! There are (still) too many points in the rational core.

Rational ϵ-core

Definition

Rational ϵ-core

Application to the car pool problem

For Jed, Ned and Ted's problem we have that $x \in C^{+}(\epsilon)$ if and only if $x \in X$ and

$$
\begin{align*}
& -x_{i} \leq \epsilon, \quad i=1,2,3, \tag{5a}\\
& \frac{4}{7}-x_{1}-x_{2} \leq \epsilon, \tag{5b}\\
& \frac{10}{21}-x_{1}-x_{3} \leq \epsilon, \tag{5c}\\
& \frac{3}{7}-x_{2}-x_{3} \leq \epsilon, \tag{5d}
\end{align*}
$$

The rational ϵ-core of a game is the set of all imputations at which no coalition other than \emptyset or N has a greater excess than ϵ. That is,

$$
C^{+}(\epsilon)=\{x \in X: e(S, x) \leq \epsilon, \text { for all coalitions } S \neq \emptyset, N\} .
$$

- Note that the rational core, if it exists, is a rational 0-core.
- The set $C^{+}(\epsilon)$ is characterized by a finite number of linear constraints on the variables $x_{1}, x_{2}, \ldots, x_{n}$ and ϵ.

The rational ϵ-core, for $\epsilon \in\left\{0,-\frac{1}{21},-\frac{2}{21},-\frac{1}{7},-\frac{11}{63}\right\}$, is represented in the figure.

- The smaller the ϵ, the smaller the set $C^{+}(\epsilon)$.
- The smaller ϵ for which $C^{+}(\epsilon)$ is nonempty is $-11 / 63$ and can be found by LP. (see class!)

- Since $C^{+}\left(-\frac{11}{63}\right)=\left\{\left(\frac{25}{63}, \frac{22}{63}, \frac{16}{63}\right)\right\}$, i.e., contains a single point, then

Characteristic Function Games Characteristic functions
 Characteristic Imputations Reasonable set

Reasonable set
Rational ocre
Rational ϵ-core
Rational core
Rutionolus
N-core
$\left(\frac{25}{65}, \frac{22}{63}, \frac{16}{63}\right)$ is the solution!

Rational ϵ-core

Least rational core

Nucleolus

The antique dealing problem

- Let ϵ_{1} be the optimal value of the following LP,

$$
\min _{\epsilon, x}\left\{\epsilon: x \in C^{+}(\epsilon)\right\}= \begin{cases}\min _{x} & \max \{e(S, x): S \in N, S \neq \emptyset, N\} \\ \text { s.t. } & x \in X\end{cases}
$$

- Hence, the value of ϵ_{1} is simply the smallest maximum dissatisfaction among all coalitions that could possibly form.
- The set $X_{1}=C^{+}\left(\epsilon_{1}\right)$ is called the least rational core.
- If $X_{1}=\left\{x^{*}\right\}$, i.e., contains a single point, then x^{*} is the solution of the game.
- However, X_{1} may still contain infinitely many imputations. What to do then?

- Jed, Ned, Ted and Zed are antique dealers. They conduct their businesses in separate but adjoining rooms of a common premises.
- Their advertised office hours are shown in the figure, on the next slide.
- Because the dealers have other jobs, it is in the dealers' interest to pool their time in minding the store.
- The only constraint is that at least one of them should be in store during office hours.
- What are the fair allocations of store-minding duty?

Let Jed be Player 1, Ned, Player 2, Ted, Player 3 and Zed, Player 4. Now, define $\bar{\nu}(S)$, the benefit of cooperation associated with the coalition $S \subseteq\{1,2,3,4\}$.Then,

$$
\begin{array}{lll}
\bar{\nu}(\{1\})=0, & \bar{\nu}(\{1,2\})=4, & \bar{\nu}(\{1,2,3\})=10, \\
\bar{\nu}(\{1,2,3,4\})=13, \\
\bar{\nu}(\{2\})=0, & \bar{\nu}(\{1,3\})=4, & \bar{\nu}(\{1,2,4\})=7, \\
\bar{\nu}(\{3\})=0, & \bar{\nu}(\{1,4\})=3, & \bar{\nu}(\{1,3,4\})=7, \\
\bar{\nu}(\{4\})=0, & \bar{\nu}(\{2,3\})=6, & \bar{\nu}(\{2,3,4\})=8, \\
& \bar{\nu}(\{2,4\})=2, \\
& \bar{\nu}(\{3,4\})=2 . &
\end{array}
$$

so that, by cooperating, J, N, T and Z will save 13 office hours a day. How should this time savings be split among them?


```
Characteristic Function Games
l
Reasonable set
Retional core
Rationa
Rationat core
Rational c-co
Nutcleolus
```


Nucleolus

Jed, Ned, Ted and Zed's (normalized) benefit of cooperation

Nucleolus

Solving the antique dealing problem
Now, define $\nu(S)=\bar{\nu}(S) / \bar{\nu}(\{1,2,3,4\})$, the normalized characteristic function. Then, besides $\nu(\emptyset)=0$, we have

$$
\begin{array}{cll}
\nu(\{1\})=0, & \nu(\{1,2\})=4 / 13, & \nu(\{1,2,3\})=10 / 13, \quad \nu(\{1,2,3,4\})=1, \\
\nu(\{2\})=0, & \nu(\{1,3\})=4 / 13, & \nu(\{1,2,4\})=7 / 13, \\
\nu(\{3\})=0, & \nu(\{1,4\})=3 / 13, & \nu(\{1,3,4\})=7 / 13, \\
\nu(\{4\})=0, & \nu(\{2,3\})=6 / 13, & \nu(\{2,3,4\})=8 / 13, \\
& \nu(\{2,4\})=2 / 13, \\
& \nu(\{3,4\})=2 / 13 .
\end{array}
$$

and we have the coalitional game completely characterized.

Nucleolus

Solving the antique dealing problem (cont.)

- Answer: Solve all the LPs,

$$
\begin{equation*}
\min _{x}\left\{e(S, x): x \in X_{1}\right\}, \tag{7}
\end{equation*}
$$

for every $S \neq \emptyset, N$.

- For some of these linear programs, the optimal x is not the \bar{x} found before.

Thus, the set X_{1} is not singleton.

- Note that whenever, for a given S, the optimal value of (7) is lower than ϵ_{1} then it means that there is an imputation $x \in X_{1}$ for which the dissatisfaction for coalition S is lower than ϵ_{1}.
- As it may be checked, that is true for all coalitions except for coalitions $\{4\}$ and $\{1,2,3\}$. linear program, e.g., in Excel:
- How can we conclude this?
- Now, let

- First, we find the least rational core through solving the following

$$
\begin{equation*}
\min _{\epsilon, x}\{\epsilon: x \in X, e(S, x) \leq \epsilon \text { for all } S \neq \emptyset, N\} \tag{6}
\end{equation*}
$$

- The optimal value is $\epsilon_{1}=-3 / 26=-0,11538 \ldots$
- Let \bar{x} be an optimal x in (6). Is \bar{x} unique? In other words, is $X_{1}=C^{+}\left(\epsilon_{1}\right)$ singleton?

$$
\begin{aligned}
\Sigma_{1} & =\left\{S \neq \emptyset, N: e(S, x)<\epsilon_{1} \text { for some } x \in X_{1}\right\} \\
& =\left(2^{N} \backslash\{\emptyset, N\}\right) \backslash(\{4\} \cup\{1,2,3\})
\end{aligned}
$$

- and solve the following linear program, e.g., in Excel:

$$
\begin{equation*}
\min _{\epsilon, x}\left\{\epsilon: x \in X_{1}, e(S, x) \leq \epsilon \text { for all } S \in \Sigma_{1}\right\} \tag{8}
\end{equation*}
$$

- The optimal value is $\epsilon_{2}=-7 / 52=-0,13462 \ldots$

Let X_{2} be the set of optimal x 's in (8). Is X_{2} singleton?

Nucleolus

Solving the antique dealing problem (cont.)

- Now, we solve the LPs,

$$
\begin{equation*}
\min _{x}\left\{e(S, x): x \in X_{2}\right\} \tag{9}
\end{equation*}
$$

for every $S \in \Sigma_{1}$.
We observe that the optimal x is not the same in all of them.
Thus, the set X_{2} is not singleton.

- Moreover, we see that the optimal value of (9) is smaller than ϵ_{2} for all coalitions in Σ_{1} except for coalitions $\{1,4\}$ and $\{2,3,4\}$.

- Now, let

$$
\Sigma_{2}=\Sigma_{1} \backslash(\{1,4\} \cup\{2,3,4\})
$$

- and solve the following linear program, e.g., in Excel:

$$
\begin{equation*}
\min _{\epsilon, x}\left\{\epsilon: x \in X_{2}, e(S, x) \leq \epsilon \text { for all } S \in \Sigma_{2}\right\} \tag{10}
\end{equation*}
$$

- The optimal value is $\epsilon_{3}=-15 / 104=-0,14423 \ldots$.
- Let X_{3} be the set of optimal x 's in (10). Is X_{3} singleton?

