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Abstract

Every fall, thousands of high school swimming coaches across the country begin the arduous process of preparing
their athletes for competition.With a grueling practice schedule and a dedicated group of athletes, a coach can hone
the squad into a cohesive unit, poised for any competition. However, oftentimes all preparation is in vain, as coaches
assign swimmers to events with a lineup that is far from optimal. This paper provides a model that may help a
high school (or other level) swim team coach make these assignments. Following state and national guidelines
for swim meets, we describe a binary integer model that determines an overall assignment that maximizes the
total number of points scored by the squad based on the times for swimmers on the squad and for the expected
opponent.
� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Every fall, thousands of high school swimming coaches across the country begin the arduous process
of preparing their athletes for competition. With a grueling practice schedule and a dedicated group of
athletes, a coach can hone the squad into a cohesive unit, poised for any competition. However, oftentimes
all preparation is in vain, as coaches assign swimmers to events with a lineup that is far from optimal.
Prior to each meet, a coach must decide which athletes will compete in which events. In a sport where
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every point counts, these decisions are extremely important. Making one poor assignment may cost the
team a victory. Coach Denny Hill, winner of 20 state championships at Ann Arbor (Michigan) Pioneer
High School and former national swim coach of the year, says, “a lot of times we wonder why a coach
used the swimmers that they did.”
Each meet consists of multiple events in various disciplines, such as freestyle and backstroke, with

points awarded in each event based on placement. Swimmers can compete in individual or relay events.
However, each swimmer is restricted in the number of events he/she can race, due to both meet rules and
physical limitations.
Determining which athletes to assign to which events is a difficult task, often taking years to master.

Analyzing the individual performances of a squad of 60 swimmers in order to determine which two or
three should compete in one event, while keeping in mind the 10 other events can be next to impossible.
Similar to how a veteran basketball coach determines the best matchups for his squad, but on a much
larger scale, most older swimming coaches make their lineups based on a gut instinct that can only be
developed with years of experience. They know which swimmers have the best opportunity to excel in
certain events, and how many events a swimmer can compete in without a reduction in performance due
to exhaustion. They can do this because they have the knowledge that comes from experiencing countless
scenarios in competition.
Coach Hill believes that the main cause of poor assignments is that many young coaches have neither

the time nor the experience to create a competitive lineup. Moreover, in practice the complexity of this
assignment task overwhelms thepossible “game theoretic” nature of the underlying problem. In particular,
even if a coach is fully awareof theopponent’sassignmentof swimmersand their performancecapabilities,
the challenge of creating a good (much less an “optimal”) assignment without the help of a formal model
is daunting.
This paper provides a model that may help a high school (or other level) swim team coach to

assign swimmers to events at a meet. Although there may be many different objectives (maximiz-
ing the number of points won, maximizing the probability that the team wins, providing an opportu-
nity for swimmers to qualify for later meets, etc.), this model only addresses the goal of maximizing
the number of points won by a team. Because determining the optimal placement of swimmers in
events is a constrained assignment problem, a binary integer program is used for the model formu-
lation [1].
Operations research has been used extensively in sports for quite some time, including early sta-

tistical analysis of baseball by Lindsey[2,3] and Freeze[4]. More specifically, integer programming
has found a use in sports, primarily as a tool in scheduling games over a season. Examples of this
include Nemhauser and Trick[5] in scheduling college basketball; Bean and Birge[6] in schedul-
ing the National Basketball Association; Ferland and Fleurent[7] in scheduling the National Hockey
League; and Cain[8] for major league baseball. More recently, integer programming has been used
by Adler et al.[9] to determine when a major league baseball team has been eliminated from playoff
contention.
Despite this emphasis on the “major” sports, such as basketball, baseball and hockey, the potential

impact of optimization on “minor” sports can be significant. There are currently over 228,000 athletes
registered with USA Swimming, along with over 9200 coaches. Each of these coaches, whether a 20
year veteran or someone new to the job, could use help in creating a lineup that provides his/her team
with the best chance of winning. In the year 2000 alone, over 2000 new coaches were registered by
USA Swimming. As the sport of swimming continues to expand and the coaching ranks grow, there
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is an increasing need for a tool that can be used both as an aid to a decision maker, and as a time
saver.

2. Guidelines

The size of asquad(the group of athletes eligible to compete) may vary widely among teams. We
assume (without loss of generality) that the squad has enough swimmers to fill all the events. Theroster
(the assignment of swimmers to events) is generally fixed at the beginning of the meet (although in
practice swimmers may be re-assigned just prior to an event). Therefore, we assume that the allocation of
swimmers is completed prior to the first event and no changes are made during the meet. Although swim
teams can compete in a variety of meets, we focus on a dual meet, in which two teams compete.
The assignment of swimmers is limited by constraints currently in effect in many high school compe-

titions:

• each team can enter at most three swimmers in any one individual (non relay) event. Thus each
individual event usually has six swimmers (three from each team), unless a team fails to (or chooses
not to) enter three;

• each team can provide at most three “entries” in each relay event, where an entry is agroup of four
swimmers;

• each swimmer can enter at most four events;
• each swimmer can enter at most two individual events;
• in a relay event, a team cannot be awarded points for more than two finishing places.

Coaches make decisions about which events their swimmers should enter using information such as
their event times, their capabilities of performing a particular sequence of events, their performance
in competition compared to training, etc. The coaches also have some limited information about the
opposing team’s swimmers. We assume that all assignments are made based on an estimated time for
each swimmer on “our” squad (hereafter referred to as “the squad”) for each event. These estimates can
be made using information from earlier meets, training sessions or previous seasons. They may also be
adjusted depending on how a coach believes a swimmer will compete under certain conditions, such as
swimming two consecutive events.
In reality, of course, the actual event times are random variables and any information about past

performance can only lead to estimates of parameters (such as means and variances) of their associated
probability distributions. We ignore this randomness in the analysis that follows for two reasons. Firstly,
the model itself allows for reasonable sensitivity analysis with respect to variability in times. Secondly,
although a formulation that accounts for randomness would involve a fairly straightforward extension of
our model, the effort needed to solve the resulting problem might not be balanced by any improvement
in the performance of the resulting rosters.
Opponent’s times are also estimated using previously observed times from past meets, which are

generally available to a coach. An opponent’s roster is then estimated using these times, and is as-
sumed to be set prior to determining the squad assignments. This assumption, of course, neglects the
game-theoretical aspects of the problem, but allows for a first cut at a roster, and (according to expe-
rienced coaches) provides an extremely useful formulation and solution. Although it would be prefer-
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able to be able to report on the full game-theoretical analysis, such an analysis is beyond the scope of
this paper.

3. Model formulation

Our model compares the times for swimmers on the squad to those of the opponent, and determines
an overall assignment that maximizes the total number of points.

3.1. Definitions

• A = {1,2, . . . , E} is the set of all events. TypicallyE = 11 in a high school dual meet (diving is
generally a 12th event, but is not included in this model).

• I is the set of individual events, andR is the set of relay events, whereI ∩ R = ∅ andI ∪ R = A.
• tij is the estimated time for swimmeri in eventj, j ∈ A.
• a(1)j , a(2)j anda(3)j are the best, second best and third best times, respectively, of the opposing
squad in eventj . Because of increased accuracy in timing, it is reasonable to assume that there are no
ties in a race, so that no two times are equal anda(1)j < a(2)j < a(3)j for all j .

• xij , yij , andzij are assignment variables that indicate whether swimmeri on the squad competes in
eventj and, if so, has the best, the second best, or the third best time on the squad, respectively, so that

xij =
{
1 if i is assigned to eventj and has the best time on the squad in eventj,

0 otherwise,

yij =
{
1 if i is assigned to eventj and has the second best time on the squad in eventj,

0 otherwise,

zij =
{
1 if i is assigned to eventj and has the third best time on the squad in eventj,

0 otherwise.

If j is a relay event,xij = 1 if swimmeri is assigned to the team of four swimmers that has the best
time among the squad’s relay teams in eventj , etc.

• r(1)j , r(2)j , andr(3)j are the best, second best and third best (i.e., last) times, respectively, realized by
the squad in eventj . Since four swimmers are assigned to each relay event, the sum of their individual
times is the realized time for the event.

3.2. Natural constraints and relations among the variables

Since each event must have three entries from a squad,

∑
i

xij = 1 for all j ∈ I,
∑

i

xij = 4 for all j ∈ R,
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∑
i

yij = 1 for all j ∈ I,
∑

i

yij = 4 for all j ∈ R,

∑
i

zij = 1 for all j ∈ I,
∑

i

zij = 4 for all j ∈ R. (1)

Each swimmer can enter at most four events, with at most two of those being individual events. Therefore,
the following constraints apply:∑

j∈I

(xij + yij + zij )�2 for all i, (2)

∑
j∈A

(xij + yij + zij )�4 for all i.

Finally, a swimmer can only place once in an event, leading to

xij + yij + zij �1 for all i, j. (3)

The realized times in an event are a function of which swimmers swim in the event, and their estimated
times. This is expressed by the relations

r(1)j =
∑

i

tij xij for all j ∈ A,

r(2)j =
∑

i

tij yij for all j ∈ A,

r(3)j =
∑

i

tij zij for all j ∈ A. (4)

In order to force consistency in the placement order, we use constraints

r(1)j + ��r(2)j for all j ∈ A,

r(2)j + ��r(3)j for all j ∈ A, (5)

where� is a very small positive number.
The realized times in each event are compared to the opponent’s times to determine the outcome of the

various events. For example, if

r(1)j < r(2)j < a(1)j < a(2)j < a(3)j < r(3)j , (6)

then the squad would be awarded points for first, second and sixth place in eventj .
The goal of the squad is to maximize the total points won during the meet. To address this objective,

we define the indicator variableswjlmn for 1� l < m < n�6, that specify the outcome of eventj , where

wjlmn =
{
1 if , in eventj, the squad receives placesl, m andn,

0 otherwise.

For an individual eventj ,wjlmn = 1 if and only if the squad’s best swimmer receives placel, the second
best swimmer receives placem, and the third best swimmer receives placen; interpretation for relay
events is analogous.
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Table 1
Points for individual and relay events

Place 1 2 3 4 5 6
Points (individual event) 6 4 3 2 1 0
Points (relay event) 8 4 2 0 0 0

This outcome indicator can be used to construct constraints on the realized timesr(·)j . For the example
given in (6) above, in which the squad places first, second and sixth in eventj, wj126=1, and the condition
r(2)j < a(1)j (the squad’s second best swimmer is faster than the opponents best swimmer) must hold.
This can be enforced by using the constraint

r(2)j + ��a(1)jwj126+ (1− wj126)M, (7)

whereM is a very large number. Thus, ifwj126= 1, thenr(2)j < a(1)j as desired. However, if the
outcome does not occur, so thatwj126= 0, thenr(2)j is essentially unconstrained (it is bounded above
by a very large number). Similarly, for the example in (6) to hold,a(3)j < r(3)j must be true for the
squad’s third best swimmer to place sixth. The constraint

r(3)j �a(3)jwj126+ � (8)

ensures this, sincer(3)j is, essentially, either bounded from below by� or by a(3)j , depending on the
outcome.
For each eventj , every feasible combination ofl, m andn has constraints similar to those in (7) and/or

(8) for each of the three swimmers in the event.
Finally, the constraint∑

1� l<m<n�6
wjlmn = 1 for all j ∈ A (9)

guarantees that each event will have exactly one outcome.

3.3. Objective function

The reward for each outcome is determined by adding the points for each place for each event. The
point structure used for this model is the one used in Michigan High School competition, as shown in
Table 1.
Let gjlmn be the reward for receiving thelth,mth andnth places in eventj . For example,gj126=10 if

j is an individual event andgj126= 12 for a relay event. This parameter incorporates the fact that a team
cannot be awarded points for more than two finishing places in a relay event. For example,gj123= 12
for a relay event, since the points for the third place finish are not included. The squad’s total score in the
meet is

T =
∑

j,l,m,n

gjlmnwjlmn. (10)

The problem then is to maximizeT with respect to the assignment variablesxij , yij , zij and the variables
r(1)j , r(2)j , r(3)j , andwjlmn.
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3.4. Integer programming formulation

For convenience in notation, we define (for allj ) a(s)j = 0 if s�0 anda(s)j = M (an arbitrarily large
number) ifs�4. The integer program formulation of the rostering problem can be now stated as

max
xij ,yij ,zij ,r(1)j ,r(2)j ,r(3)j ,wjlmn

∑
j,l,m,n

gjlmnwjlmn (11)

subject to
∑

i

tij xij = r(1)j ,
∑

i

tij yij = r(2)j ,
∑

i

tij zij = r(3)j for all j ∈ A,

r(1)j + ��r(2)j , r(2)j + ��r(3)j for all j ∈ A,

∑
1� l<m<n�6

wjlmn = 1 for all j ∈ A,

∑
i

xij = 1,
∑

i

yij = 1,
∑

i

zij = 1 for all j ∈ I,

∑
i

xij = 4,
∑

i

yij = 4,
∑

i

zij = 4 for all j ∈ R,

∑
j∈I

xij + yij + zij �2 for all i,

∑
j∈A

xij + yij + zij �4 for all i,

xij + yij + zij �1 for all i, j,

� + rj (1)�a(l)jwjlmn + M(1− wjlmn) for all j ∈ A and 1� l < m < n�6,

� + a(l − 1)jwjlmn�r(1)j for all j ∈ A and 1� l < m < n�6,

� + rj (2)�a(m − 1)jwjlmn + M(1− wjlmn) for all j ∈ A and 1� l < m < n�6,

� + a(m − 2)jwjlmn�r(2)j for all j ∈ A and 1� l < m < n�6,

� + rj (3)�a(n − 2)jwjlmn + M(1− wjlmn) for all j ∈ A and 1� l < m < n�6,

� + a(n − 3)jwjlmn�r(3) for all j ∈ A and 1� l < m < n�6,

xij , yij , zij ∈ {0,1} for all i, j,

wjlmn ∈ {0,1} for all j ∈ A and 1� l < m < n�6.
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4. Results and analysis

The model was tested using data obtained fromWestminster Academy (High School) in Atlanta, GA.
The men’s squad has 17 swimmers who are eligible to compete in 11 events. An extension was made to
the formulation in order to allow for a medley relay event, such that the times for the swimmers are stroke
specific. The resulting IP for a problem of this size has 781 variables and 1530 constraints, requiring 3.5 s
to solve on a Sun SPARC station using CPLEX version 8.1.0[10].
The data we used for our analysis comes from a dual meet in which the Westminster men’s team lost

97–73. The predicted times used for the squad are found inTable 2, and the predicted opponent’s times in
Table 3. The medley relay times are split into each stroke (free, back, breast, and butterfly) for the squad.
The 200 and 400 freestyle relay times (200 FR and 400 FR) are the split times for each swimmer, while
the time for the opponent is the cumulative total. These predictions were made based on performance in
previous events. There is some variation in times between swimmers for most events. This variation is
common, particularly at the high school level, and it should give a coach some room for error in making
predictions. The sensitivity of the code to these errors is further discussed below.
Using ourmodel, we created an assignment of swimmers that would have scored 89 out of 170 possible

points, more than the 86 points required for a victory. The assignments, places and points for the 11 events
determined using the model are shown inTable 4. The actual results from the meet are inTable 5. Note
that due to the limited roster size, there were only two entries in each of the relay events in the actual
meet. This does not have an effect on the results, as only the top two relay teams on each squad score
points. The first three events listed are relays and the assignment numbers indicate the swimmer number.
The two tables show the impact that a few minor changes can have on the outcome of a meet. For

example, if swimmer 2 were entered in event 7 instead of event 5, he would most likely have won the
event and contributed an additional four points to the team total. However, most of the improvements
result in minor changes in points. For example, shifting swimmer 1 from event 4 to event 5 would have
allowed the team to gain two points, as they could have finished the event in third and fourth, instead
of third and sixth place. This indicates that the lineup is, in general, effective, which is not surprising
considering the veteran coach at Westminster. Some of the differences may be attributed to the coach
hoping for a swimmer to qualify for the state meet in an event that he does not generally swim, or giving
a swimmer a rest in an event. Yet, the overall improvements that can be made to a good lineup are an
indicator of the potential for improvement to a bad lineup.
In order to analyze the model’s sensitivity to values of the times, we calculated how the squad would

perform against an opponent that is faster than expected. Keeping the original optimized squad assign-
ments as shown inTable 4, all opponent’s times were lowered by a fixed percentage and the points that the
squad would have received against the “faster” opponent were calculated. If the opponent’s times were
1% lower than anticipated, the roster would have only scored 80 points, losing the meet, yet still scoring
seven more points than the actual result. If the opponent’s times were 2% lower, the roster would have
scored 75 points, still better than the actual meet result!
Similarly, we analyzed how the squad would perform if its swimmers were less competitive than

predicted. The opponent’s times were held constant while the squad’s times were increased. An increase
of 1% resulted in a score of 80 points by the lineup inTable 4, the same score as when the opponent’s
times were lowered by 1%. The team would have lost the meet, but the score would have been much
closer than the actual outcome. Increasing the squad’s times by 2% also produced the same result as
when the opponent’s times were decreased by 2%, with a score of 75 points. It should be noted, however,
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Table 2
Predicted times for squad swimmers

Swimmer 200 FR 400 FR 200 Free 200 IM 50 Free 100 Fly 100 Free 500 Free 100 BA 100 BR Medley Relay—Stroke Splits

1 27.5 56.65 120.24 134.12 27.5 62.14 56.65 326.28 0 0 27.5 31.53 38.54 29.82
2 23.62 56.49 0 119.85 23.62 56.41 0 0 56.36 0 23.62 26.79 33.62 27
3 29.74 72.34 154.28 168.5 29.74 87.54 72.34 411.82 0 91.23 29.74 0 0 0
4 25.86 0 120.22 0 25.86 60.61 0 0 68.27 0 25.86 0 0 27.81
5 29.77 0 156.69 0 29.77 90.88 0 0 85.3 89.69 29.77 0 0 0
6 26.39 0 115.27 123.98 26.39 0 53.64 298.02 0 0 26.39 31.3 37.65 29.82
7 29.25 72.35 169.35 0 29.25 0 72.35 0 103 87.3 29.25 0 0 0
8 23.34 51.12 105.44 0 23.34 0 51.12 281.59 0 0 23.34 29.15 33.98 29.97
9 27.38 61.27 0 145.35 27.38 72.16 61.27 0 0 75.05 27.38 34.59 36.59 30.36
10 24.51 56.24 0 153.48 24.51 74.11 55.45 0 0 0 24.51 34.81 37.78 32.18
11 26.65 57.48 130.33 0 26.65 0 57.48 0 69.28 0 26.65 30.6 43.61 35.23
12 31.71 72.58 149.6 177.18 31.71 0 73.02 0 82.3 0 31.71 37.11 0 0
13 24.76 54.84 117.21 0 24.76 0 54.84 348.18 0 0 24.76 35.13 37.2 30.81
14 25.51 0 0 0 25.51 65.95 0 0 0 68.43 25.51 0 0 0
15 25.12 0 0 0 25.12 0 0 0 0 67.62 25.12 0 0 0
16 28.47 59.96 123.15 0 28.47 0 59.96 339.81 0 0 28.47 39.39 44.51 37.35
17 24.07 52.3 0 136.8 24.07 57.11 51.95 0 57.7 0 24.07 27.01 32.96 26.36

Zero entries indicate that the swimmer does not participate in this event.
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Table 3
Predicted times for opponent

Swimmer 200 FR 400 FR 200 Free 200 IM 50 Free 100 Fly 100 Free 500 Free 100 BA 100 BR 200 MR

1 95.6 210.3 108.26 131.51 22.3 59.3 50.44 307.88 53.51 70.21 104.86
2 101.22 243.36 125.55 145.57 23.24 61.31 54.19 372.08 58.82 70.84 109.61
3 103.6 266.15 127.36 146.46 25.04 68.78 54.85 600 66.04 71.93 115.74

Table 4
Optimized results for Westminster men’s squad

Event Assignment Places Points

1 2 3

1 {2,8,10,17} {4,13,14,15} {1,5,6,9} 1,4,6 8
2 {1,12,13,17} {3,8,10,11} {7,14,15,16} 2,3,6 6
3 {2,4,9,10} {3,11,12,16} {5,6,7,13} 3,5,6 2
4 8 4 16 1,3,4 11
5 6 1 9 1,3,4 11
6 10 13 14 3,4,6 5
7 2 17 4 1,2,4 12
8 6 13 11 2,4,6 6
9 8 1 16 1,3,4 11
10 2 17 11 2,3,6 7
11 15 14 9 1,2,6 10

Table 5
Actual results for Westminster men’s squad

Event Assignment Places Points

1 2 3

1 {6,8,10,17} {9,14,15,16} No entry 1,4 8
2 {1,6,8,17} {3,7,11,16} No entry 2,4 4
3 {1,10,11,14} {2,9,12,15} No entry 3,6 2
4 8 1 12 1,3,6 9
5 6 9 2 1,3,6 9
6 10 15 14 3,5,6 4
7 17 10 3 1,5,6 7
8 8 11 7 2,5,6 5
9 6 1 16 1,3,4 11
10 17 11 13 3,5,6 4
11 15 14 9 1,2,6 10

that even a 1% or 2% difference from estimated times might not be too common. Competitive swimmers
are consistent enough so that even the most inexperienced coaches can predict how well their team will
perform within an overall margin of error around 1%.



ARTICLE IN PRESS
M. Nowak et al. / Computers & Operations Research( ) – 11

If a coach believes that the opponent may actually swim faster than predicted, the opponent’s times can
be lowered and a new roster can be determined using the model. Lowering the opponent’s times by 1%
and re-rostering resulted in a roster that would have scored 85 points (a tie) against the “faster” opponent,
and the same 85 points if the opponent’s times were not faster, but actually those inTable 3. Similarly,
if the opponent’s times were lowered by 2%, re-rostering would result in a score of 83 points against
the “faster” opponent, as well as against the times inTable 3. The scores 85 and 83 are better than those
found pitting the original roster against the faster opponent. However, they result in a loss or tie even if
the opponent does not swim faster than predicted. This may raise an interesting dilemma for a coach:
does one use a roster that will win if the opponent swims as predicted, or one that will perform well if
the opponent swims faster than predicted, but will not necessarily win, even if the prediction is correct?
This question cannot be answered for the coach; however, the model allows the coach to choose from a
variety of strong options representing numerous potential scenarios.

5. Conclusions

Our model finds an optimal assignment of swimmers to events. It can be useful as a decision aid
for novice coaches overwhelmed by the prospect of creating a full lineup, or as a timesaver for more
experienced coaches who would like to spend more time coaching rather than mulling over various
possible swimmer lineups. Determining the top swimmer in an event is generally trivial; it is the second
and third positions that are most difficult to fill, particularly in relay events.While placing first in an event
may be a psychological boost for the team, a meet is often won by the lower tier swimmers. As Pete
Higgins, national swim coach of the year at Westminster Academy in Atlanta, GA attests, “we can get
first place in an event, but we’re not going to be winning anything if our other guys get fifth and sixth.”
The model can take a lot of the guesswork out of deciding which swimmers to place in the crucial lower
positions.
Straightforward extensions to the model might include:

• allowing for performance degradation if a swimmer competes in two consecutive events. This may be
accounted for by increasing the time in the second event by some percentage.

• incorporating a prohibition (as some coaches prefer) against swimming in two consecutive events,
• allowing (as is the case in some states) four entries per team in an event.

The model provides a tool for the future analysis of strategies that may be used as a rule of thumb
when creating lineups, such as what to do with a swimmer who is the best on the team in the majority
of events. Finally, it may be used to assign athletes to events in track and field competitions, which have
similar constraints and objectives.

References

[1] Nemhauser GL, Wolsey LA. Integer and combinatorial optimization. NewYork: Wiley; 1988.
[2] Lindsey GR. Statistical data useful for the operation of a baseball team. Operations Research 1959;7:197–207.
[3] Lindsey GR. An investigation of strategies in baseball. Operations Research 1963;11:477–501.
[4] Freeze RA. An analysis of baseball batting order by monte carlo simulation. Operations Research 1974;22:728–35.
[5] Nemhauser GL, Trick MA. Scheduling a major college basketball conference. Operations Research 1998;46:1–8.



12 M. Nowak et al. / Computers & Operations Research( ) –

ARTICLE IN PRESS

[6] Bean JC, Birge JR. Reducing traveling costs and player fatigue in the national basketball association. Interfaces 1980;10:
98–102.

[7] Ferland JA, Fleurent C.Allocating games for the national hockey league using integer programming. Operations Research
1993;41:649–54.

[8] Cain Jr WO. Optimal strategies in sports. Chapter A computer assisted heuristic approach used to schedule the major
league baseball clubs. Amsterdam: North-Holland; 1977, pp. 32–41.

[9] Adler I, Erera A, Hochbaum DS, Olinick EV. Baseball, optimization and the world wide web. Interfaces 2002;32:12–22.
[10] ILOG, Inc. CPLEX 8.0 Reference manual. Paris, France, 2002.


	Assignment of swimmers to dual meet events
	Introduction
	Guidelines
	Model formulation
	Definitions
	Natural constraints and relations among the variables
	Objective function
	Integer programming formulation

	Results and analysis
	Conclusions
	References


