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Abstract. Let P(G) be the set of all positive semidefinite matrices whose graph is G, and
msr(G) be the minimum rank of all matrices in P(G). Upper and lower bounds for msr(G) are given
and used to determine msr(G) for some well-known graphs, including chordal graphs, and for all
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1. Introduction. If A is an n-by-n Hermitian matrix, then its graph G(A) is
the undirected, simple graph on vertices {1, 2, . . . , n}, which has an edge between
vertices i and j if and only if the i, j entry of A is nonzero and i �= j. The graph is
independent of the real diagonal entries of A. The set of all Hermitian matrices that
share a common graph G is denoted H(G): H(G) = {A | A = A∗, G(A) = G }. If
G is a simple connected graph, then matrices in H(G) may be viewed as the discrete
version of the continuous Schrödinger operators with magnetic fields [3].

The possible multiplicities of the eigenvalues among matrices in H(G) have been
of much recent interest [6, 7, 9, 10, 11, 13]. It is known, for example, that if G is a tree,
then the smallest eigenvalue of any matrix in H(G) has multiplicity one [10, Corollary
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732 MATTHEW BOOTH ET AL.

3.9]. This implies that any Hermitian positive semidefinite (psd) matrix whose graph
is a tree has rank at least n − 1. The Laplacian matrix of a tree on n vertices is a
psd matrix with rank equal to n− 1 [14]. A converse to this statement, that, for any
nontree the minimum rank of a psd matrix is less than n−1, was proved independently
(Lemma 5, [8] and Theorem 4.1, [17]). This raises the following interesting question,
given a graph G, what is the minimum rank among psd matrices in H(G)?

Let P(G) denote the psd matrices in H(G). Define the minimum semidefinite
rank of G, msr(G), as min{rankA : A ∈ P(G)}. We present here some results about
msr(G), which give msr(G) for every chordal graph and for most graphs on fewer
than seven vertices. The few exceptions can be handled by separate arguments. It is
equally interesting to find the minimum psd rank over the symmetric real matrices
instead of Hermitian matrices. It is not known if these two problems are different,
though there can be differences in some related problems [12].

If G is not connected, it is clear that msr(G) is the sum of the minimum semidef-
inite ranks of each of G’s connected components, so that we may (and do) confine
our attention to connected graphs. Note that, if G is a connected graph with two or
more vertices, the diagonal entries of A ∈ P(G) are positive.

2. Lower bounds using induced subgraphs. We will obtain several lower
bounds using induced subgraphs. An induced subgraph H of a graph G is obtained by
deleting all vertices except for the vertices in a subset S. Since a principal submatrix
of a psd matrix is psd [5, p. 397], and the rank of a submatrix can never be greater
than that of the matrix, we have the following.

Lemma 2.1. If H is an induced subgraph of a connected graph G, then msr(H) ≤
msr(G).

Equality can occur in the inequality of Lemma 2.1 in important ways; of course,
strict inequality is common. One case of equality is that in which the induced subgraph
is the result of the deletion of a duplicate vertex from G. For a vertex w, let n(w)
denote the set of all vertices adjacent to w. The closed neighborhood of w is n(w)∪{w}.
A vertex u is a duplicate of a vertex v of G if u and v are adjacent, and their closed
neighborhoods are the same. We denote the induced subgraph of G resulting from
the deletion of a vertex u by G− u. We then have the following.

Proposition 2.2. Let G be a connected graph on three or more vertices. If u is
a duplicate vertex of v in G, then msr(G− u) = msr(G).

Proof. From Lemma 2.1, msr(G − u) ≤ msr(G). Let A′ ∈ P(G − u) be a psd
matrix such that rankA′ = msr(G − u). By permuting the rows and columns of A′

let the first row and column of A′ correspond to the vertex v. If A′ = B∗B, then

consider A =
[

B∗

eT1 B∗

]
[B Be1 ] where eT

1 = (1, 0, . . . , 0). Then rankA = rankA′ and

A ∈ P(G). Thus msr(G) ≤ msr(G− u).
From a sequential deletion of duplicate vertices and application of Proposition 2.2

we get the following.
Corollary 2.3. If H is the induced subgraph of a connected graph G obtained

by a sequential deletion of duplicate vertices of G and H has at least two vertices, then
msr(H) = msr(G).

Remark 2.4. As an easy consequence of Corollary 2.3, we obtain that, for n ≥
2, msr(Kn) = 1 where Kn denotes the complete graph on n vertices. Note that
Proposition 2.2 is incorrect if applied to two nonadjacent vertices with the same
neighbors. To see this, let G be K4 minus an edge. Deletion of a degree 3 vertex
gives msr(G) = 2 using Proposition 2.2, but deletion of a degree 2 vertex results in
K3 whose msr equals one.
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Fig. 2.1. fm(G) = 4.

Another important application of Lemma 2.1 is that in which H is an induced
tree on the maximum possible number of vertices as we know the msr for any tree.
For a graph G, we consider its “tree size,” denoted ts(G), which is the number of
vertices in a maximum induced tree [4]. As already noted, when T is a tree, msr(T )
is one less than the number of vertices of T . This fact, combined with Lemma 2.1,
immediately gives the following.

Lemma 2.5. If G is a connected graph, msr(G) ≥ ts(G) − 1.
As mentioned in the introduction, equality in Lemma 2.5 occurs whenever G is a

tree. It also occurs for any nontree G on n vertices for which ts(G) = n − 1; in this
case msr(G) ≥ n − 2 by Lemma 2.5, and msr(G) ≤ n − 2 because G is not a tree.
Thus msr(G) = n− 2. For example, if G is a cycle on n vertices, the tree size is n− 1
(because deletion of any one vertex leaves a path on n − 1 vertices). Therefore, the
msr of a cycle on n vertices is n− 2 (cf. [17, Theorem 4.3]).

For an induced forest of G with components T1, T2, . . . , Tk, count ts(T1)+ts(T2)+
· · · + ts(Tk) − (the number of components that are not isolated vertices). Among all
the induced forests of G maximize this count and call this result fm(G), the “forest
measure” of G. Any isolated vertices occurring in an induced subgraph of a connected
graph G contribute 1, rather than 0, to msr(G), as an irreducible psd matrix has
positive diagonal entries. We then have the following.

Proposition 2.6. If G is a connected graph, then msr(G) ≥ fm(G) ≥ ts(G)−1.
Figure 2.1 illustrates that strict inequality is possible in the second inequality of

Proposition 2.6, as fm(G) = 4 by deleting any single interior vertex.
One special case of an induced forest is an induced set of isolated vertices. The

maximum cardinality of such a set is the independence number i(G), the greatest
number of vertices among which there are no edges. Clearly fm(G) ≥ i(G), so that
we have the following.

Corollary 2.7. For a connected graph G, msr(G) ≥ i(G).
Suppose G is a connected graph with vertex set V = {v1, v2, . . . , vn}. We call

a set of vectors
−→
V = {−→v1 ,

−→v2 , . . . ,
−→vn} in C

m a vector representation (or orthogonal
representation) of G if

⎡
⎢⎢⎢⎣

−→v1−→v2

...
−→vn

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

−→v1−→v2

...
−→vn

⎤
⎥⎥⎥⎦

∗

= A ∈ P(G).

In other words, we associate a vector −→vi ∈ C
m to each vertex vi ∈ V (G) such that,

for i �= j, 〈−→vi ,−→vj 〉 �= 0 if vi and vj are adjacent in G, and 〈−→vi ,−→vj 〉 = 0 if vi and vj
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are not adjacent. Since every psd matrix A ∈ P(G) can be written as A = B∗B for
some matrix B, we can always find a vector representation of G(A) that produces
A. Also, the rank of the matrix and the dimension of the span of the vectors in the
vector representation (which we call the rank of the vector representation) are always
the same [5, p. 408].

We end this section by giving a sufficient condition on G so that msr(G) =
ts(G) − 1. To prove the result we need the following lemma.

Lemma 2.8. Suppose X1, . . . , Xm, Xi ⊆ C
n for 1 ≤ i ≤ m, are vector represen-

tations of subgraphs G1, . . . , Gm of a connected graph G such that
• for every pair of adjacent vertices v, w of G, there exists an i such that v and

w are adjacent in Gi; and
• for every pair of vertices v, w of G that are not adjacent, if −→xv represents

vertex v in Xi and −→xw represents vertex w in Xj, 〈−→xv,
−→xw〉 = 0.

Then there exists a vector representation X of G, with

rankX ≤ rank

⎛
⎝ ⋃

1≤i≤m

spanXi

⎞
⎠ ≤

∑
1≤i≤m

rankXi.

Proof. We prove the statement for the case of two vector representations as the
result can be easily generalized. Let X1 = {−→xi} and X2 = {−→wi} be vector represen-
tations of subgraphs G1 and G2 of a graph G. Extend X1 and X2 to represent all of
the vertices of G by adding copies of the zero vector if need be. We claim there exists
c ∈ R such that {−→xi + c−→wi} is a vector representation of G.

If (vi, vj) /∈ E, then 〈−→xi ,
−→xj〉 = 〈−→wi,

−→wj〉 = 〈−→xi ,
−→wj〉 = 〈−→wi,

−→xj〉 = 0. This implies
that 〈−→xi + c−→wi,

−→xj + c−→wj〉 = 0 for any c ∈ C. If vi and vj are adjacent, then {〈−→xi +
c−→wi,

−→xj + c−→wj〉} is a set of quadratics in c having finitely many roots. Thus we may
choose c ∈ R so that {−→xi + c−→wi} is a vector representation of G.

Suppose T is a maximum induced tree. If w is a vertex not belonging to T , denote
by E(w) the edge set of all paths in T between every pair of the vertices of T that are
adjacent to w.

Theorem 2.9. For a connected graph G, msr(G) = ts(G) − 1 if the following
condition � holds:

� There exists a maximum induced tree T such that, for u and w not on T ,
E(u) ∩ E(w) �= ∅ if and only if u and w are adjacent in G.

Proof. If G is a tree, we have already seen that msr(G) = ts(G)− 1. If G is not a
tree, we will cover G with subgraphs that have vector representations satisfying the
conditions of Lemma 2.8. If � holds for a maximum induced tree T of G, then every
vertex w not on T must be adjacent to some vertex on T . Moreover, by the definition
of T , w is adjacent to at least two vertices of T . Assign an orthonormal set of vectors
{−→xe} of dimension (ts(G) − 1) to the edges of T , one vector per edge. If v ∈ V (T ),
assign the vector −→v =

∑
e
−→xe to v, where the summation is over all edges incident to

v. This gives a vector representation
−→
T of T .

For any path p = (e1, e2, . . . , em) in T , let

−→p =

m∑
j=1

(−1)j−→xej .
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Given a vertex w not on T and an adjacent vertex v1 on T , w must have another
neighbor v2 on T . If p is a path between v1 and v2 in T , letting −→p represent w and−→
T represent T yields a vector representation of a subgraph of G containing the edge
between w and v1.

Given two vertices w1 and w2 not on T that are adjacent, by � there exist
intersecting paths p1 and p2 in T so that the end vertices of pi are neighbors of wi,

i = 1, 2. Letting −→pi represent wi for i = 1, 2 and
−→
T represent T yields a representation

of a subgraph of G containing the edge connecting w1 and w2.
By construction, these representations cover all the edges of G and are contained

in span{−→xe : e an edge of T}. We now show that these representations satisfy the con-
ditions of Lemma 2.8. If v and w are adjacent in G, we have explicitly constructed
above a representation of a subgraph of G in which v and w are adjacent.

If v and w are not adjacent, there are three cases to consider. First, if v and w
are both vertices in T , then in any two representations, v and w are represented by

the corresponding vectors in
−→
T , which are orthogonal. For other cases, first notice

that, if a vertex w is not on T , then w is represented by −→p derived from a path p. If
v is a vertex on T not adjacent to w, then v cannot be an endpoint of p. Thus the

vector representing v in
−→
T is orthogonal to −→p . Suppose v and w are both not on T

and are not adjacent in G. The vectors −→q and −→p representing v and w, respectively,
are derived from paths q and p, respectively. By � the paths p and q have no edges
in common and thus −→p and −→q must be orthogonal. Applying Lemma 2.8 we get
msr(G) ≤ ts(G) − 1.

3. Chordal graphs. The sum of two psd matrices is psd, and the rank of a sum
is never more than the sum of the ranks [5, p. 13]. If we cover all of the edges of
a graph G with (not necessarily induced) subgraphs of known msr, this can lead to
useful upper bounds for msr(G). First, suppose that G is labeled and that G1, . . . , Gk

are (labeled) subgraphs of G, that is, each Gi, i = 1, . . . , k is the result of deleting
some edges and/or vertices from G. We say that G1, . . . , Gk cover G if each vertex
of G is a vertex of at least one Gi, and for every pair of adjacent vertices v, w of G,
v and w are adjacent in at least one Gi. The cover C1, . . . , Ck of G is called a clique
cover of G if each of C1, . . . , Ck is a clique of G. The clique cover number cc(G) (see
[15]) of G is the minimum value of k for which there is a clique cover C1, . . . , Ck of G.

Proposition 3.1. For any simple connected graph G, msr(G) ≤ cc(G).
Proof. The proof follows from Lemma 2.8 and Remark 2.4.
Since the clique cover number of a cycle on n ≥ 4 vertices is n but its msr is n−2,

strict inequality is possible in Proposition 3.1.

Given a vector representation
−→
V of G, with −→v representing vertex v, replace each

vector −→w ∈ −→
V with the orthogonal projection

−→w − 〈−→v ,−→w 〉
〈−→v ,−→v 〉

−→v

to yield a set of vectors denoted
−→
V �−→v . It is easily verified that rank(

−→
V ) is one more

than rank(
−→
V �−→v ).

Consider the graph corresponding to
−→
V � −→v . It is obtained from the original

graph G, first by removing the vertex v and then modifying the graph in the following
manner: For u,w ∈ n(v), if (u,w) is not an edge of G, then (u,w) is an edge of the
modified graph and if (u,w) is an edge of G, then (u,w) may or may not be an edge
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of the modified graph. Notice in the latter case that the “may or may not” depends

on the choice of vector representation
−→
V . In what follows, we consider graphs which

have multiple edges. This allows us to define below a graph G � v, which better

captures the relationship between
−→
V �−→v and the “orthogonal removal of vertex v.”

Following van der Holst [17], let G be an undirected graph with no loops but
possibly multiple edges, with vertex set V = {1, 2, . . . , n}. Let HG be the set of all
n-by-n Hermitian matrices A = [aij ] such that

• aij �= 0 if i and j are connected by exactly one edge;
• aij = 0 if i and j are not adjacent, and i �= j.

Notice that we make no restriction on aij if i and j are connected by more than

one edge. Now,
−→
V = {−→v1 , . . . ,

−→vn} in C
m is a vector representation of a graph G

with multiple edges when 〈−→vi ,−→vj 〉 �= 0 if i and j are connected by a single edge and
〈−→vi ,−→vj 〉 = 0 if i and j are not adjacent.

Let G be a graph (with multiple edges). The graph G� v, called the orthogonal
removal of v from G, is obtained as follows: In the induced subgraph G − v of G,
between any u,w ∈ n(v) add e− 1 edges, where e is the sum of the number of edges
between u and v and the number of edges between w and v.

Remark 3.2. If
−→
V is a vector representation of a graph G, then

−→
V �−→v is a vector

representation of G� v. As mentioned earlier, this process results in a representation

that has rank one less than rank
−→
V . Unfortunately, msr(G) − msr(G � v) may be

arbitrarily large as demonstrated by the complete bipartite graph K2,n: For n ≥ 3, by
Corollary 2.7, msr(K2,n) ≥ n, but the orthogonal removal of a vertex from the smaller
independent set yields the complete graph on n+1 vertices, Kn+1, and msr(Kn+1) = 1
by Remark 2.4.

We say that subgraphs G1, . . . , Gm cover a graph G with multiple edges if each
vertex of G is a vertex of at least one Gi and, for every pair of vertices v and w of G
joined by exactly one edge, there exists an i such that v and w are joined by exactly
one edge in Gi. We now restate Lemma 2.8 for graphs with multiple edges.

Lemma 3.3. Suppose X1, . . . , Xm, Xi ⊆ C
n for 1 ≤ i ≤ m, are vector represen-

tations of subgraphs G1, . . . , Gm of a connected graph G (with multiple edges) such
that

• G1, . . . , Gm cover G;
• for every pair of vertices v, w that are not adjacent in G, if −→xv represents

vertex v in Xi and −→xw represents vertex w in Xj, 〈−→xv,
−→xw〉 = 0.

Then there exists a vector representation X of G, with

rankX ≤ rank

⎛
⎝ ⋃

1≤i≤m

spanXi

⎞
⎠ ≤

∑
1≤i≤m

rankXi.

Recall that a vertex v such that n(v) induces a complete graph is said to be
simplicial.

Lemma 3.4. Suppose v is a simplicial vertex of a connected graph G that is joined
to at least one neighbor by exactly one edge. Then msr(G) = msr(G� v) + 1.

Proof. From Remark 3.2, we have that msr(G) ≥ msr(G� v) + 1. From Remark
2.4, we may find a vector representation of rank one of the subgraph of G induced by
v and its neighbors. Choosing this representation to be orthogonal to a representation
of G� v, we may apply Lemma 3.3 to see that msr(G) ≤ msr(G� v) + 1.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

MINIMUM PSD RANK OF A GIVEN GRAPH 737

The following corollary simplifies finding the minimum rank of graphs with pen-
dant vertices, which are simply vertices of degree 1. This corollary is also found in
[17, Lemma 3.6] with a different proof.

Corollary 3.5. If a simple connected graph G has a pendant vertex v, then
msr(G) = msr(G− v) + 1.

A graph is said to be chordal if it has no induced cycles Cn with n ≥ 4. It
is known that every nonempty chordal graph has at least one simplicial vertex [2,
p. 175]. A clique cover of a graph G with multiple edges is a collection of cliques of
G that cover every single edge between the vertices of G. As before, the clique cover
number of G cc(G) is the minimum number of cliques in a clique cover of G. We are
now able to show that, for chordal graphs, the msr is the clique cover number.

Theorem 3.6. Let G be a connected chordal graph. Then msr(G) = cc(G).
Proof. Induct on the number of vertices of G. We start the induction with an

edge. For graphs with three or more vertices, identify a simplical vertex v of G. If, in
addition, v is a duplicate vertex, then cc(G− v) = cc(G) and msr(G− v) = msr(G).
If v is not a duplicate vertex and not connected to any other vertex by exactly one
edge, then cc(G− v) = cc(G) and msr(G− v) = msr(G).

Finally, if v is not a duplicate vertex and is connected to at least one other vertex
by exactly one edge, we observe that cc(G � v) = cc(G) − 1. To see this, when v is
simplicial, there are multiple edges between each pair of vertices in n(v) in G � v.
Thus remove exactly one clique from a minimum clique cover of G to obtain a clique
cover of G� v. Now using Lemma 3.4 we get msr(G) = cc(G).

4. Minimum psd rank for graphs on less than seven vertices. For all
the graphs G with |V (G)| ≤ 6, with a few exceptions listed below, we can determine
msr(G) using results discussed in this paper. A catalog of these graphs can be found
in [16]. Table 4.1 lists the minimum psd ranks of 142 connected graphs on 2 or more
vertices but less than seven vertices using the numbering found in [16].

We now detail how to use the results of this paper to find the msr of the graphs
listed in Table 4.1. The graphs G174, G175, G198, and G204 are the exceptional
cases which cannot be handled by the results presented above. We provide alternate
methods for these graphs.

The complete graphs G3, G7, G18, G52, and G208 have msr equal to 1 by Re-
mark 2.4. As mentioned in the introduction, the msr of a tree is one less than the
number of vertices. This gives the msr for the trees G3, G6, G13, G14, G29–31,
G77–81, and G83.

Among the nontree, noncomplete graphs, the following 64 graphs are chordal:
G15, G17, G34–36, G40–42, G45–47, G49, G51, G92–95, G97, G100, G102, G111–

Table 4.1

msr(G) Graph
5 G77–81 and G83.
4 G29–31, G92–100, G102–105, G111-115, G118, G120–125,

G127–129, G135–139, G145–149, G152, G161, G162, G164,
and G167.

3 G13, G14, G34-38, G40, G41, G43, G44, G46, G47, G117,
G119, G126, G130, G133, G134, G140–144, G150, G151,
G153, G154, G156–160, G163, G166, G168–175, G177–189,
G192, G193, G196–198, G201, and G202.

2 G6, G15–17, G42, G45, G48-51, G165, G190, G191, G194,
G195, G199, G200, and G203–207.

1 G3, G7, G18, G52, and G208.
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Fig. 4.1. G163.

1 6

3 4

2 5

Fig. 4.2. G152.

115, G117, G119, G120, G123, G130, G133–139, G142, G144, G150, G156, G157,
G160–165, G167, G177–181, G183, G191–193, G195, G200–G202, G205, and G207.
Theorem 3.6 gives that the msr of a chordal graph is its clique cover number. For
example, we have cc(G163) = msr(G163) = 3 (Figure 4.1).

There are 20 nonchordal graphs whose msr is 4. All but graph G152 (Figure 4.2)
satisfy ts(G) = 5. The discussion following Lemma 2.5 shows that, for these graphs,
msr(G) = 4. For G152, if we orthogonally remove simplicial vertices 2 and 5 and
apply Lemma 3.4, we observe that msr(G152) = 4. In addition, G152 is not chordal,
but msr(G) = cc(G) = 4, indicating that the converse to Theorem 3.6 is false.

Among the 32 nonchordal graphs whose msr is 3, G37, G38, G43, and G44 have
ts(G) = 4, hence they have msr(G) = 3. The msr of G140, G141, G143, G158, and
G159 is 3 by Corollary 3.5. A duplicate vertex is removed in G126, G153, G168, G169,
G170, G172, G185, and G189, and the resulting graph on 5 vertices has msr equal
to 3. The graphs G151, G154, G166, G171, G173, G182, G184, G186–G188, G196,
and G197 satisfy the sufficient condition of Theorem 2.9. The exceptional cases are
G174, G175, and G198. These three graphs could be handled using a construction
as shown below or by applying Theorem 3.1 and Proposition 3.2 of [17] along with
Lemma 2.5.

A maximum induced tree of G198 (Figure 4.3) is induced by {v1, v2, v3, v4}. Using
the Laplacian matrix of this tree in the top left 4-by-4 block, we construct rows 5 and
6 to represent the graph G198,

⎡
⎢⎢⎢⎢⎢⎢⎣

1 −1 0 0 −1 1
−1 2 −1 0 1 −1

0 −1 2 −1 1 1
0 0 −1 1 −1 −1

−1 1 1 −1 2 0
1 −1 1 −1 0 2

⎤
⎥⎥⎥⎥⎥⎥⎦
.

The graph G198, with this rank 3 psd matrix, is an example which shows that the �
condition of Theorem 2.9 is not necessary.
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v1

v2

v3

v4

Fig. 4.3. G198.
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5

4

Fig. 4.4. G204.

Among the 9 nonchordal graphs whose msr is 2, G16 is a cycle on 4 vertices,
while G50 and G203 satisfy the sufficient condition of Theorem 2.9. Removing one
duplicate vertex from G48 and G206, and removing two duplicate vertices from G190,
G194 and G199 reduce the graph to a known case. The one exceptional case is G204
(see Figure 4.4).

Suppose −→e1 = [ 1
0 ] and −→e2 = [ 0

1 ]. Then we can write a vector representation for
G204 as follows: −→v1 = −→e1 , −→v2 = −→e2 , −→v3 = 2−→e1 + −→e2 , −→v4 = −→e1 − 2−→e2 , −→v5 = −→e1 + −→e2 , and
−→v6 = −→e1 −−→e2 . Thus msr(G204) = 2. Alternatively, we may use [1, Theorem 15].
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