
Concise Lecture Notes on Optimization Methods
for

Machine Learning and Data Science

These lecture notes are publicly available but their use for teaching or even

research purposes requires citing:

L. N. Vicente, S. Gratton, R. Garmanjani, and T. Giovannelli, Concise
Lecture Notes on Optimization Methods for Machine Learning and

Data Science, ISE Department, Lehigh University, April 2024.

If appropriate, the corresponding source references given at the end of these

notes should be cited instead.

These lecture notes are displayed in the form of slides for teaching

convenience.

1 Introduction to (convex) optimization models in data science: Classical
examples

2 Convexity and nonsmooth calculus tools for optimization. Rates of
convergence

3 Subgradient methods

4 Proximal gradient methods

5 Accelerated gradient methods (momentum). Other relevant examples
in data science

6 Limits and errors of learning. Introduction to (nonconvex) optimization
models in supervised machine learning

7 Stochastic gradient descent

8 Noise reduction methods

9 Other topics: Coordinate descent, ADMM, and Frank-Wolfe method

10 References

Presentation outline

1 Introduction to (convex) optimization models in data science: Classical
examples

2 Convexity and nonsmooth calculus tools for optimization. Rates of
convergence

3 Subgradient methods

4 Proximal gradient methods

5 Accelerated gradient methods (momentum). Other relevant examples
in data science

6 Limits and errors of learning. Introduction to (nonconvex) optimization
models in supervised machine learning

7 Stochastic gradient descent

8 Noise reduction methods

9 Other topics: Coordinate descent, ADMM, and Frank-Wolfe method

10 References
LNV,SG,RG,TG Introduction to (convex) optimization models in data science: Classical examples 2/257

The problems typically addressed in ML/DS are of the form

min
x∈Rn

f(x) + g(x)

where f : Rn → R is smooth (∇f is at least Lipschitz continuous) and
g : Rn → R ∪ {+∞} is convex (and proper and closed) typically
non-smooth.

LNV,SG,RG,TG Introduction to (convex) optimization models in data science: Classical examples 3/257

Examples:

1 Unconstrained optimization (g = 0).

2 Structured regularization, where g is a regularizer like the ℓ1 one
(g(x) = λ∥x∥1, λ > 0).

3 Convex constrained smooth optimization, such as

min f(x)

s.t. x ∈ C,

with C ̸= ∅ closed and convex, can be formulated with g = δC (indicator
function of C)

δC(x) =

{
0 if x ∈ C
∞ if x /∈ C

However only simple constraints are handled well in such a way.

LNV,SG,RG,TG Introduction to (convex) optimization models in data science: Classical examples 4/257

A data set for analysis involving optimization is typically of the form

D = {(aj , yj), j = 1, . . . , N}

where the aj ’s vectors are features or attributes

the yj ’s vectors are labels or observation or responses.

The analysis consists of finding a prediction function ϕ such that

ϕ(aj) ≃ yj , j = 1, . . . , N

in some optimal sense.

LNV,SG,RG,TG Introduction to (convex) optimization models in data science: Classical examples 5/257

Now

1 The process of finding ϕ is called learning or training.

2 When the yj ’s are reals, one has a regression problem.

3 When the yj ’s lie in a finite set {1, . . . ,M}, one has a classification
problem.

M = 2 leads to binary classification.

4 The labels may be null. In that case, one may want to group the aj ’s
in clusters (clusterization) or identify a low-dimensional subspace (or
a collection of) where the aj ’s lie (subspace identification).

The labels may have to be learned while learning ϕ.

LNV,SG,RG,TG Introduction to (convex) optimization models in data science: Classical examples 6/257

5 Data is assumed to be clean for optimization, but still:

i) (aj , yj)’s could be noisy or corrupted.

ii) Some aj or yj ’s could be missing.

iii) Data could arrive in streaming fashion (ϕ must be learned online).

Thus, ϕ has to be robust to changes in the data set.

Such data analysis is often referred to as machine learning or data mining.

unsupervised learning (when
labels are null): extract inter-
esting information from data

predictive or supervised learn-
ing (when labels exist)

LNV,SG,RG,TG Introduction to (convex) optimization models in data science: Classical examples 7/257

6 ϕ is used to make predictions about future data items, like predicting
that the label y associated with a would be ϕ(a).

But it could also be used for feature selection where one has to learn
what small fraction of the aj ’s reliably predict the labels yj ’s.

Often, ϕ is parameterized ϕ(x) = ϕ(a;x) and the parameters x have to be
found such that ϕ(aj ;x) ≃ yj , j = 1, . . . , N .

The correct/accurate match of the data is typically quantified by a loss
function ℓ(a, y;x) and thus learning can be formulated as

min
x

N∑
j=1

ℓ(aj , yj ;x) call this function LD(x) ≡ L(x)

LNV,SG,RG,TG Introduction to (convex) optimization models in data science: Classical examples 8/257

To avoid overfitting such a model to D (remember that D could just be a
sample drawn from a larger set), one often regularizes the above
minimization by adding a regularizer

minx
∑N

j=1 ℓ(aj , yj ;x) + g(x) L(x)

λ
2∥x∥

2
2λ∥x∥1

so that ϕ is not so sensitive to changes in D.

LNV,SG,RG,TG Introduction to (convex) optimization models in data science: Classical examples 9/257

Classical examples

Example (1 Least squares and variants)

Consider ϕ(a;x) = ϕ(a;ω, b) = a⊤ω + b with x = (ω, b)

Linear regression is when L(x) =
∑N

j=1(a
⊤
j ω + b− yj)

2

Such least-squares approach gives a maximum likelihood solution when
y = (a⊤ω + b) + ϵ and ϵ is normally distributed with variance σ2

Pr[y | a,w, b] ∼ N(y | a⊤ω + b, σ2)

and the (aj , yj)’s and the aj ’s are independent.

(w, b) ∈ argmaxw,b logPr[D | ω, b]

LNV,SG,RG,TG Introduction to (convex) optimization models in data science: Classical examples 10/257

Ridge regression is when

L(x) =
1

N

N∑
j=1

(a⊤j ω − yj)
2 + λ∥ω∥2︸ ︷︷ ︸

g(x)

Here x = ω, since the regularizer does not depend on b and w.l.o.g. one
can remove b from the model. Why?

There is also a statistical argument for the ridge (reason why L was
divided by N).

The term λ∥x∥22 makes x less sensitive to perturbation in the data.

LNV,SG,RG,TG Introduction to (convex) optimization models in data science: Classical examples 11/257

The LASSO related formulation L(x) =
∑N

j=1(a
⊤
j ω − yj)

2 + λ∥ω∥1 tends
to yield solutions x that are sparse, promoting feature selection.
More later in the course.

Example (2 Support vector machines and Logistic regression)

In SVM one does binary classification (y ∈ {−1, 1}) by determining a
separating hyperplane ω⊤a− b, i.e., by determining (ω, b) such that{

ω⊤aj − b > 0 when yj = 1
ω⊤aj − b ≤ 0 when yj = −1

∀j = 1, . . . , N

using the hinge loss function

ℓH(a, y;ω, b) = max{0, 1− y(ω⊤a− b)}

=

{
0 if y(ω⊤a− b) ≥ 1
1− y(ω⊤a− b) otherwise

LNV,SG,RG,TG Introduction to (convex) optimization models in data science: Classical examples 12/257

Example (2 Support vector machines and Logistic regression (Cont.))

In fact, seeking a separating hyperplane x = (ω∗, b∗) such that{
ω⊤aj − b ≥ 1 when yj = 1
ω⊤aj − b ≤ −1 when yj = −1

∀j = 1, . . . , N S

can be done by

min
ω,b

1

N

N∑
j=1

ℓH(aj , yj ;ω, b) = L(ω, b) (∗∗)

as L(ω∗, b∗) = 0. When no pair (ω, b) exists such that L(ω, b) = 0, the
solution of (∗∗) will be the one closest to satisfying S in some sense.

Note that S is what we want to do w.l.o.g.. Why?

LNV,SG,RG,TG Introduction to (convex) optimization models in data science: Classical examples 13/257

Example (2 Support vector machines and Logistic regression (Cont.))

A regularizer λ
2∥ω∥

2
2 is often added to L(ω, b) to obtain a

maximum-margin separating hyperplane, which is more robust:

a1

a2
2∥ω∥
2

ω
⊤ a

−
b
=

1
ω

⊤ a
−

b
=

−
1

Maximizing 2/∥ω∥2 is then the same as minimizing ∥ω∥22. EXERCISE:
Prove that the distance between the hyperplanes is really 2

∥ω∥2 .

LNV,SG,RG,TG Introduction to (convex) optimization models in data science: Classical examples 14/257

In SVM, the hinge loss is a convex and continuous replacement for

ℓ(a, y;ω, b) = 1(h(a;ω, b) ̸= y)

(with 1(condition) = 1 if condition is true and 0 otherwise), where

h(a;ω, b) = 2× 1(ω⊤a− b > 0)− 1︸ ︷︷ ︸
sign(ω⊤a−b)

.

which is nonconvex and discontinuous.

y = 1

1(sign(z) ̸= 1)

z

HINGE

max{0, 1− z}
z

In the pictures z plays the role of ω⊤a− b.
LNV,SG,RG,TG Introduction to (convex) optimization models in data science: Classical examples 15/257

There is a statistical interesting interpretation of such optimal linear
classifier when using the above loss (as the so-called Bayes function).

Another replacement is the smooth convex logistic loss

ℓL(a, y;ω, b) = log(1 + e−y(ω⊤a−b))

leading to logistic regression (convex objective function)

min
ω,b

1

N

N∑
j=1

ℓL(aj , yj ;ω, b) +
λ

2
∥ω∥22

LOGISTIC LOSS

log(1 + e−z)y = 1
z

LNV,SG,RG,TG Introduction to (convex) optimization models in data science: Classical examples 16/257

Logistic regression can also be interpreted as maximizing a log
-likelihood function of the odds of belonging to one class or the other.

similar to S
P (aj ;ω, b) ≃ 1 when yj = +1 P (a;ω, b)

=

P (aj ;ω, b) ≃ 0 when yj = −1
(
1 + e−(ω⊤a−b)

)−1Why?

LNV,SG,RG,TG Introduction to (convex) optimization models in data science: Classical examples 17/257

Returning to SVM:

Using a hyperplane to separate the + and − cases may lead to a useless
classifier.

Often a mapping Ψ is applied first on the data vectors:

Ψ(aj), j = 1, . . . , N.

The system S{
ω⊤aj − b ≥ 1 when yj = 1
ω⊤aj − b ≤ −1 when yj = −1

∀j = 1, . . . , N

becomes {
ω⊤Ψ(aj)− b ≥ 1 when yj = 1
ω⊤Ψ(aj)− b ≤ −1 when yj = −1

∀j = 1, . . . , N

and the SVM optimization problem is

min
ω,b

1

N

N∑
j=1

max{0, 1− yj(ω
⊤Ψ(aj)− b)}+ λ

2
∥ω∥22

LNV,SG,RG,TG Introduction to (convex) optimization models in data science: Classical examples 18/257

It can be easily seen that the SVM optimization problem can be written as
a convex Quadratic Program (QP):

min
ω,b,c

e⊤c

N
+
λ

2
∥ω∥22

s.t. yj(ω
⊤Ψ(aj)− b) + cj ≥ 1, cj ≥ 0, j = 1, . . . , N

where

e =

1
...
1

 ∈ RN and c =

 c1
...
cN



LNV,SG,RG,TG Introduction to (convex) optimization models in data science: Classical examples 19/257

NOTE: In turns out that the dual of this QP is the following convex QP

max
α

e⊤α− 1

2
α⊤Qα

s.t. 0 ≤ α ≤ 1

N
e

y⊤α = 0

α =

α1
...
αN

 y =

 y1
...
yN


with Qkℓ = (1/λ)ykyℓΨ(ak)

⊤Ψ(aℓ).

The “kernel trick” consists of replacing Ψ(ak)
⊤Ψ(aj) by K(ak, aj),

without requiring the knowledge of Ψ.

A popular choice is the Gaussian kernel

K(ak, aj) = e−∥ak−aj∥2/2σ

with σ > 0.

LNV,SG,RG,TG Introduction to (convex) optimization models in data science: Classical examples 20/257

Presentation outline

1 Introduction to (convex) optimization models in data science: Classical
examples

2 Convexity and nonsmooth calculus tools for optimization. Rates of
convergence

3 Subgradient methods

4 Proximal gradient methods

5 Accelerated gradient methods (momentum). Other relevant examples
in data science

6 Limits and errors of learning. Introduction to (nonconvex) optimization
models in supervised machine learning

7 Stochastic gradient descent

8 Noise reduction methods

9 Other topics: Coordinate descent, ADMM, and Frank-Wolfe method

10 References

Convexity is a key concept in Optimization

A set C is convex if

αx+ (1− α)y ∈ C, ∀x, y ∈ C,α ∈ [0, 1]

x

y

x

y

convex set nonconvex set

αx+ (1− α)y, α ∈ [0, 1] is a convex combination of x and y.∑n
i=1 αixi with

∑n
i=1 αi = 1, αi ≥ 0,∀i is a convex combination of

x1, . . . , xn.

LNV,SG,RG,TG Convexity and nonsmooth calculus tools for optimization. Rates of convergence 22/257

Examples

Rn

∅ (by convention)

a subspace

a polyhedral set {x ∈ Rn : A1x = b1, A2x ≥ b2}
a hyperplane {x ∈ Rn : a⊤x = b}
a halfspace {x ∈ Rn : a⊤x ≥ b}
a system of linear equations {x ∈ Rn : Ax = b}
a polytope (bounded polyhedral set)

a convex cone: K is a cone if αx ∈ K,∀α > 0, x ∈ K

LNV,SG,RG,TG Convexity and nonsmooth calculus tools for optimization. Rates of convergence 23/257

Examples

Here are three important cones in optimization:

1 Rn
+ the cone of linear programming

2

{
x ∈ R : xn ≥

√
x21 + . . .+ x2n−1

}
the ice cream cone (Lorentz or

Minkowski) that appears in second-order cone programming

LNV,SG,RG,TG Convexity and nonsmooth calculus tools for optimization. Rates of convergence 24/257

Examples

3 {A ∈ Rn×n : A ⪰ 0}, A is a symmetric and positive semidefinite
(eigenvalues ≥ 0), the semidefinite cone programming (SDP) cone

[
x y
y z

]
, x, z ≥ 0, xz ≥ y2

LNV,SG,RG,TG Convexity and nonsmooth calculus tools for optimization. Rates of convergence 25/257

Operations preserving convexity

Intersection C1 ∩ C2

Set sum C1 + C2 = {x1 + x2 : x1 ∈ C1, x2 ∈ C2}

Affine transformation f(C) = {Ax+ b : x ∈ C} with f(x) = Ax+ b.
Particular cases:

scaling
translation
projection {x1 : ∃x2 : (x1, x2) ∈ C}

Cartisian product C1 × C2 = {(x1, x2) : x1 ∈ C1, x2 ∈ C2}

The proofs are left as EXERCISES.

LNV,SG,RG,TG Convexity and nonsmooth calculus tools for optimization. Rates of convergence 26/257

A function f : Rn → R is convex if

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y), ∀α ∈ [0, 1], x, y ∈ Rn

Examples

All norms: in particular p–norms, ∥x∥p, 1 ≤ p ≤ ∞.

Affine functions: f(x) = a⊤x+ b.

LNV,SG,RG,TG Convexity and nonsmooth calculus tools for optimization. Rates of convergence 27/257

A convex function f could be of extended type f : Rn → [−∞,∞].

An example is the indicator of a (convex) set C (seen before):

δC(x) =

{
0 if x ∈ C
∞ if x /∈ C

Another example is (n = 1)

f(x) = − log(x) if x > 0, f(x) = ∞ if x ≤ 0.

LNV,SG,RG,TG Convexity and nonsmooth calculus tools for optimization. Rates of convergence 28/257

We thus restrict our attention to proper convex functions where −∞ is
never attained and ∃x ∈ Rn : f(x) <∞ (=⇒ dom(f) ̸= ∅).

Also, the definition of a convex function can be restricted to a convex set
or to the domain of the function (assumed convex). Hopefully each
example will reveal whether we are assuming convexity over a set, the
domain, or the whole space.

In many examples it is difficult to apply directly the definition to verify
convexity. Hence we use necessary and sufficient conditions:

LNV,SG,RG,TG Convexity and nonsmooth calculus tools for optimization. Rates of convergence 29/257

1 (GEOMETRY) f is convex iff its
epigraph epi(f) = {(x, y) : y ≥ f(x)} is convex in Rn+1

2 (REDUCTION TO THE SCALAR CASE) f is convex iff f(x+ αv) is
convex ∀x, v.

With this characterization it is easy to verify that

f(X) = − log(det(X))(= −
n∑

i=1

log(λi(X)))

is convex in the space of matrices n× n and of domain
{X ∈ Rn×n : X = X⊤, λi(X)︸ ︷︷ ︸

i−th eigenvalue of X

> 0, i = 1, . . . , n}

(symmetric positive definite (PD) matrices). Why?LNV,SG,RG,TG Convexity and nonsmooth calculus tools for optimization. Rates of convergence 30/257

3 (CONTINUOUS DIFFERENTIABILITY) Let f be continuous
differentiable in Rn.

f is convex iff (∇f(y)−∇f(x))⊤(y − x) ≥ 0 ∀x, y ∈ Rn

4 (TWICE CONT. DIFF.) Let f be twice cont. differentiable in Rn.
f is convex iff d⊤∇2f(x)d ≥ 0,∀x, d.

EXERCISE: Adapt 1–4 to the case where f is defined over a convex set C.
In 3–4, you have to consider the convex cone of feasible directions:
AC(x) = {d ∈ Rn : x+ αd ∈ C for some α > 0}.

It is easy to see that f(x) = b⊤x+ 1
2x

⊤Ax, with A symmetric and
positive semi-definite︸ ︷︷ ︸

PSD

(eigenvalues ≥ 0) is convex using 4: ∇2f(x) = A

and d⊤Ad ≥ 0, ∀d.

LNV,SG,RG,TG Convexity and nonsmooth calculus tools for optimization. Rates of convergence 31/257

Operations preserving convexity:

Positive weighted sum
∑p

i=1 αifi, αi > 0, and fi convex ∀i.

Composition by affine transformation: f(Ax+ b).

Pointwise maximum max1≤i≤p fi(x), fi convex ∀i.

Composition by nondecreasing convex function

g(f), f, g convex and g nondecreasing

Minimum over a closed convex set g(x) = infy∈C f(x, y)

The proofs are left as EXERCISES.

LNV,SG,RG,TG Convexity and nonsmooth calculus tools for optimization. Rates of convergence 32/257

One can now list more examples of convex functions relevant for this
course and other data science contexts.

∥Ax− b∥p and ∥Ax− b∥22∑p
i=1 e

gi(x) with gi convex

− log(det(X)) for X symmetric PD (seen before)

−
∑p

i=1 log(bi − a⊤i x)

distance to a set C (convex and closed)

dC(x) = min
y∈C

∥x− y∥ ∥ · ∥ = ∥ · ∥2 by default

largest singular value of a matrix

largest eigenvalue of a symmetric matrix

The proofs are left as EXERCISES.

LNV,SG,RG,TG Convexity and nonsmooth calculus tools for optimization. Rates of convergence 33/257

Why is convexity relevant in Optimization?

Let us consider an optimization problem of the form

min f(x)

s.t. x ∈ Ω

A point x∗ is a local (strict) minimizer if ∃N neighborhood of x∗ such that

f(x∗) ≤
(<)

f(x), ∀x ∈ (N ∩ Ω) \ {x∗}

x∗ is said a global (strict) minimizer if

f(x∗) ≤
(<)

f(x), ∀x ∈ Ω \ {x∗}

LNV,SG,RG,TG Convexity and nonsmooth calculus tools for optimization. Rates of convergence 34/257

Then we have

Theorem

If f is convex over C, then every local minimum is global.

Proof.

If x a local minimizer is not global, ∃z : f(z) < f(x). Then for α ∈ (0, 1):

f(αz + (1− α)x) ≤ αf(z) + (1− α)f(x)

< f(x)

which when α→ 0 contradicts the fact that x is a local minimizer.

Moreover, if f is strictly convex on C (“<” in the definition) and ∃ a local
minimizer then ∃ a unique global minimizer. Why?

The set of minimizers of a convex function is convex. Why?

LNV,SG,RG,TG Convexity and nonsmooth calculus tools for optimization. Rates of convergence 35/257

Convexity or strict convexity does not guarantee the existence of
minimizers (take ex in R).

In the general, possible nonconvex case existence of minimizers is
guaranteed by the Weierstrass Theorem: A continuous function has a
minimizer (and a maximizer) in a compact set Ω (in Rn closed and
bounded).

One can trade boundedness of Ω by uniform convexity of f in Ω convex.

LNV,SG,RG,TG Convexity and nonsmooth calculus tools for optimization. Rates of convergence 36/257

A function f is uniformly convex (with constant µf > 0 called the
modulus) if

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y)−
µf
2
α(1− α)∥x− y∥2

The smooth characterizations of uniform convexity are:

(∇f(y)−∇f(x))⊤(y − x) ≥ µf∥x− y∥2, ∀x, y
d⊤∇2f(x)d ≥ µf∥d∥2, ∀x, d

Hence a quadratic q(x) = b⊤x+ 1
2x

⊤Ax with A symmetric and PD is
µq–uniformly convex with µq = λmin(A).

Uniform convexity can be restricted to a convex set C (work out the
details!).

LNV,SG,RG,TG Convexity and nonsmooth calculus tools for optimization. Rates of convergence 37/257

ex is not uniformly convex for any µ > 0, and it does not attain a
minimizer in R (which is closed and convex).

But b⊤x+ 1
2x

⊤Ax does (with A symmetric and PD).

In fact, one has

Theorem

If f is µf–uniformly convex (µf > 0) and continuous (NOTE: It is enough
to be proper and closed) in C closed and convex, then it has a single
minimizer in C.

We will see a proof of a simplified version of this result in a minute. For
the moment we remark that:

LNV,SG,RG,TG Convexity and nonsmooth calculus tools for optimization. Rates of convergence 38/257

Theorem

If f is convex, then it is continuous at any point in int(dom(f)).

Proof.

See any textbook in Convex Analysis (or Beck 2017).

Many convex functions seen in this course are smooth, meaning at least
continuous differentiable (C1).

We pause to present a key inequality for C1 functions used a lot in this
course. The fundamental theorem of calculus yields

f(y)− f(x) =

∫ 1

0
∇f(x+ ξ(y − x))⊤(y − x)dξ.

If in addition ∇f is Lipschitz continuous with constant L∇f , meaning

∥∇f(x)−∇f(y)∥ ≤ L∇f∥x− y∥, ∀x, y

LNV,SG,RG,TG Convexity and nonsmooth calculus tools for optimization. Rates of convergence 39/257

then

f(y)− f(x)− ∇f(x)⊤(y − x)︸ ︷︷ ︸∫ 1
0
∇f(x)⊤(y−x)dξ

=

∫ 1

0

(∇f(x+ ξ(y − x))−∇f(x))⊤(y − x)dξ

≤
∫ 1

0

∥∇f(x+ ξ(y − x))−∇f(x))∥∥y − x∥dξ

≤
∫ 1

0

ξdξ × L∇f∥y − x∥ × ∥y − x∥

=
L∇f

2
∥y − x∥2,

and

f(x)− f(y)−∇f(x)⊤(y − x) ≤ L∇f

2
∥y − x∥2, ∀x, y

LNV,SG,RG,TG Convexity and nonsmooth calculus tools for optimization. Rates of convergence 40/257

On the other hand if f is convex and C1 then (Why?)

f(y) ≥ f(x) +∇f(x)⊤(y − x) ∀x, y

In the C1 case, µf–uniform convexity is equivalent to

f(y) ≥ f(x) +∇f(x)⊤(y − x) +
µf
2
∥y − x∥2 ∀x, y

In such a case we will say that f is µf–strongly convex. The proof of this
equivalence is not requested.

The condition number of a smooth strongly convex function f is defined by

κf =
L∇f

µf
,

where L∇f is the Lips. constant of the gradient and µf is the strong
convexity constant.

LNV,SG,RG,TG Convexity and nonsmooth calculus tools for optimization. Rates of convergence 41/257

We will finally prove now a simplified version of the existence result (the
proof is enough to gain intuition for the general case), that will be used
later in the course.

Theorem

Let f be continuous differentiable and µf–strongly convex. Then f has a
unique minimizer x∗.

Proof.

The idea is to first show that the level set

L(x0) = {x ∈ Rn : f(x) ≤ f(x0)}

is closed and bounded (compact) for any x0. The closeness comes from
the continuity of f . Suppose it is not bounded.

LNV,SG,RG,TG Convexity and nonsmooth calculus tools for optimization. Rates of convergence 42/257

Proof (Cont.)

Then there exist a sequence {xl} such that

∥xl∥ → ∞ and f(xl) ≤ f(x0).

From strong convexity

f(xl) ≥ f(x0) +∇f(x0)⊤(xl − x0) +
µf
2
∥xl − x0∥2

⇓

µf
2
∥xl − x0∥2 ≤ f(xl)− f(x0)−∇f(x0)⊤(xl − x0)

≤ ∥∇f(x0)∥∥(xl − x0)∥ since f(xl) ≤ f(x0)

⇓

∥xl − x0∥ ≤ 2

µf
∥∇f(x0)∥

LNV,SG,RG,TG Convexity and nonsmooth calculus tools for optimization. Rates of convergence 43/257

Proof (Cont.)

and this contradicts the unboundedness of {xl}.

By the Weierstrass Theorem, f has a minimizer, say x∗, in L(x0). It
remains to show that is unique.

Suppose that there are two distinct minimizers x1∗ and x2∗ (with the same
objective function value f∗). Then a contradiction is easily reached.

f

(
1

2
x1∗ +

1

2
x2∗

)
≤ 1

2
f(x1∗) +

1

2
f(x2∗)−

µf
8
∥x1∗ − x2∗∥︸ ︷︷ ︸

̸=0

< f∗

LNV,SG,RG,TG Convexity and nonsmooth calculus tools for optimization. Rates of convergence 44/257

A number of convex functions in this course are nonsmooth, and it
is time now to define tools to deal with nondifferentiability.

Let f a be convex function, possibly of value extended to [−∞,+∞].

The vector v is a subgradient of f at x if

f(x+ d) ≥ f(x) + v⊤d, ∀d ∈ Rn.

The set of all subgradients is called subdifferential

∂f(x) = {v ∈ Rn : v is subgradient of f at x}

Let us see two examples:

LNV,SG,RG,TG Convexity and nonsmooth calculus tools for optimization. Rates of convergence 45/257

f(x) = |x|. In this case ∂f(0) = [−1, 1]

x

|x|

δC(x) =

{
0 if x ∈ C
∞ if x /∈ C

. In this case, for any x ∈ C, v ∈ ∂δC(x) iff

δC(z) ≥ δC(x) + v⊤(z − x) ∀z ∈ C

⇕
v⊤(z − x) ≤ 0 ∀z ∈ C

⇕
v ∈ NC(x)

where NC is the cone normal to C at x.
LNV,SG,RG,TG Convexity and nonsmooth calculus tools for optimization. Rates of convergence 46/257

What are the features of the subdifferential?

Theorem

If f is convex and proper then ∂f(x) is closed and convex for all
x ∈ dom(f).

Proof.

A simple consequence of ∂f(x) being the intersection of half-spaces
(which are closed and convex).

Theorem

If f is convex and proper then ∂f(x) ̸= ∅︸ ︷︷ ︸
f is subdifferentiable at x

and ∂f(x) is

bounded for all x ∈ int(dom(f)).

Proof.

See Beck 2017.

LNV,SG,RG,TG Convexity and nonsmooth calculus tools for optimization. Rates of convergence 47/257

To better understand the last result, consider f(x) = −
√
x,

dom(f) = R+
0 . Note that f is also closed in the sense that epi(f) is

closed.
However, ∂f(0) is the empty set!

Also, convex functions are not necessarily continuous at boundary points
of their domains, as we see from

and this can even happen when f is closed (but for n > 1).
LNV,SG,RG,TG Convexity and nonsmooth calculus tools for optimization. Rates of convergence 48/257

The subdifferential characterizes optimality for convex functions:

Theorem

x∗ is a (global) minimum of f convex iff 0 ∈ ∂f(x∗)

Proof.

If x∗ is a minimizer,

f(x∗ + d) ≥ f(x∗) ≥ f(x∗) + 0⊤d ∀d,

showing that
0 ∈ ∂f(x).

If 0 ∈ ∂f(x∗),
f(x∗ + d) ≥ f(x∗) ∀d.

LNV,SG,RG,TG Convexity and nonsmooth calculus tools for optimization. Rates of convergence 49/257

Calculus rules for ∂f (for simplicity all convex functions are assumed real
value with domain Rn; proofs are left as EXERCISES).

Continuous differentiability ∂f(x) = {∇f(x)}

Positive weighted sum ∂(
∑p

i=1 αifi)(x) =
∑p

i=1 αi∂fi(x)

Composition by affine transformation g = f(Ax+ b)

∂g(x) = A⊤∂f(Ax+ b)

LNV,SG,RG,TG Convexity and nonsmooth calculus tools for optimization. Rates of convergence 50/257

Pointwise maximum g(x) = max1≤i≤p fi(x)

∂g(x) = conv︸︷︷︸
convex hull

⋃
i∈I(x)

∂fi(x)

where I(x) = {i : fi(x) = g(x)}. Hence, in a weak sense, any element of
∂fi(x), i ∈ I(x), is in ∂g(x).

Composition by nondecreasing convex function

h = g(f)

convex nondecreasing convex

Let us assume that g : R → R is continuous differentiable. Then

∂h(x) = g′(f(x))∂f(x)

LNV,SG,RG,TG Convexity and nonsmooth calculus tools for optimization. Rates of convergence 51/257

Distance to a closed convex set dC(x) = miny∈C ∥x− y∥

∂dC(x) =


x− PC(x)

dC(x)︸ ︷︷ ︸
=∥x−PC(x)∥

 for x /∈ C

where PC(x) is the orthogonal projection of x onto C.

If x ∈ C, ∂dC(x) = NC(x)︸ ︷︷ ︸
normal cone

∩ B(0; 1)︸ ︷︷ ︸
{v:∥v∥≤1}

.

In particular, one has 0 ∈ ∂dC(x).

LNV,SG,RG,TG Convexity and nonsmooth calculus tools for optimization. Rates of convergence 52/257

Examples

∂f(x) = 1
2∥Ax− b∥22 + λ∥x∥1

∂f(x) = A⊤Ax−A⊤b+ λ∂∥·∥(x)

= A⊤Ax−A⊤b+ λ

∑
xi ̸=0

sign(xi)ei +
∑
xi=0

[−ei, ei]


with I = [e1 . . . en].

f(x) =
∑p

i=1 |a
⊤
i x− bi|

∂f(x) =

p∑
i=1

∂|·|(a
⊤
i x− bi)ai

f(x) = ∥x∥2
∂f(x) =

{
x/∥x∥2, x ̸= 0
B(0; 1), x = 0

LNV,SG,RG,TG Convexity and nonsmooth calculus tools for optimization. Rates of convergence 53/257

NOTE: ∇f(x∗) = 0 when f is nonconvex and continuous differentiable is
still a necessary condition, but not longer sufficient.

We end this background chapter with some notions of rates of convergent
sequences. We will be interested in knowing the speed of convergence of
sequences such as

f(xk)− f(x∗) optimality gap (when x∗ is a minimizer)

∥∇f(xk)∥
d∂f(xk)(0)

}
stationary or criticality (smooth and
nonsmooth case, respectively)

∥xk − x∗∥ absolute error in the iterates (when xk → x∗)

LNV,SG,RG,TG Convexity and nonsmooth calculus tools for optimization. Rates of convergence 54/257

Let {ωk} ⊂ Rn be a sequence converging to ω∗. There are four major
types of rates of convergence of interest to us

SUBLINEAR limk→∞
∥ωk+1−ω∗∥
∥ωk−ω∗∥ = 1

When n = 1 and ω∗ = 0, at least three examples will be seen in this
course:

1√
k
,

1

k
,

1

k2

Sublinear is a slow rate but 1
k2

is much faster than 1√
k
.

1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

k

1/
√
k

1/k
1/k2

LNV,SG,RG,TG Convexity and nonsmooth calculus tools for optimization. Rates of convergence 55/257

LINEAR (also known as geometric or exponential convergence):
∃r ∈ (0, 1) ∥ωk+1 − ω∗∥ ≤ r∥ωk − ω∗∥ ∀k

When n = 1 and ω∗ = 0, an example is (12)
k.

First-order methods (like the gradient or steepest descent method)
exhibit sublinear or linear rates. Second-order methods achieve a
superlinear rate (quasi-Newton) or a quadratic rate (Newton).

SUPERLINEAR ∃{ηk}ηk→0 ∥ωk+1 − ω∗∥ ≤ ηk∥ωk − ω∗∥ ∀k

The example for n = 1 and ω∗ = 0 is 1
k!

QUADRATIC ∃M > 0, ∥ωk+1 − ω∗∥ ≤M∥ωk − ω∗∥2 ∀k

Take 10(1/2)
k
as the example when n = 1 and ω∗ = 0.

Quadratic =⇒ Superlinear =⇒ Linear =⇒ Sublinear Why?

LNV,SG,RG,TG Convexity and nonsmooth calculus tools for optimization. Rates of convergence 56/257

Somehow we have presented a local version of these rates since (by
assuming that ωk → ω∗) we supposed that ω0 is sufficiently close to ω∗.

These rates are called global when no assumption is made about ω0.

Also the version presented is what is known as the “q–rates”.

See, from ωk+1 ≤ 1
2ωk (ω∗ = 0, ωk > 0 ∀k) one has

ωk ≤
(
1

2

)k

ω0.

However not all sequences satisfying this rate are q–linear.

LNV,SG,RG,TG Convexity and nonsmooth calculus tools for optimization. Rates of convergence 57/257

A trivial example is

ωk =

{
(12)

k when k is even
0 when k is odd

Such {ωk} converges r–linearly to 0.

In general a sequence {ωk} ⊂ Rn, ω → ω∗, has a r–linear rate if ∥ωk −ω∗∥
is bounded by a sequence in R that converges q–linearly to zero.

LNV,SG,RG,TG Convexity and nonsmooth calculus tools for optimization. Rates of convergence 58/257

Presentation outline

1 Introduction to (convex) optimization models in data science: Classical
examples

2 Convexity and nonsmooth calculus tools for optimization. Rates of
convergence

3 Subgradient methods

4 Proximal gradient methods

5 Accelerated gradient methods (momentum). Other relevant examples
in data science

6 Limits and errors of learning. Introduction to (nonconvex) optimization
models in supervised machine learning

7 Stochastic gradient descent

8 Noise reduction methods

9 Other topics: Coordinate descent, ADMM, and Frank-Wolfe method

10 References

For the minimization of a smooth (cont. diff.) function f in Rn, the
steepest descent or gradient method is

xk+1 = xk − αk∇f(xk)

where αk > 0 is the step size.

The negative gradient −∇f(x) is a descent direction

d ̸= 0 : f ′(x; d) < 0

⇓

∃ϵ̄ > 0 : f(x+ ϵd) < f(x), ∀ϵ ∈ (0, ϵ̄]

In fact

f ′(x;−∇f(x)) = ∇f(x)⊤(−∇f(x)) = −∥∇f(x)∥2 < 0

LNV,SG,RG,TG Subgradient methods 60/257

The exact line search strategy consists of choosing

αk = argminα>0 f(xk − α∇f(xk)).

Other strategies will be covered in the next chapter.

When f is not differentiable, −∇f(xk) may not exist. We thus assume
that f is convex and int(dom(f)) = Rn, and consider a generalization
called the subgradient method

xk+1 = xk − αkgk, gk ∈ ∂f(xk),

where the subgradient gk is in the subdifferential ∂f(xk).

Importantly, −gk might not be a descent direction!

LNV,SG,RG,TG Subgradient methods 61/257

Example

f(x1, x2) = |x1|+ 2|x2|

∂f(1, 0) = {(1, x) : |x| ≤ 2}

(1, 2) ∈ ∂f(1, 0)

−(1, 2) is not descent : f ′((1, 0);−(1, 2)) = g′+(0) = 3 > 0

with

g(α) = f((1, 0)− α(1, 2)) = |1− α|+ 4α =

{
1 + 3α, α ∈ [0, 1]
5α− 1, α ≥ 1

LNV,SG,RG,TG Subgradient methods 62/257

Also, the gradient method may fail for a nonsmooth convex function
(Wolf’s example): using exact line searches {xk} is such that ∇f(xk)
exists, f(xk+1) < f(xk)∀k but xk → x∗ such that x∗ is non-optimal.
Wolf’s example is:

f(x1, x2) =

{ √
x21 + x22, |x2| < x1

x1+γ|x2|√
1+γ

, otherwise

with γ > 1.

Because the price of generalization is minor, we consider instead the
projected subgradient method for

min f(x) s.t. x ∈ C where C ̸= ∅ is convex and closed

given by
xk+1 = PC(xk − αkgk), gk ∈ ∂f(xk).

LNV,SG,RG,TG Subgradient methods 63/257

Notes:
1 f is subdifferentiable over C (∂f(x) ̸= ∅, ∀x ∈ C) as it is convex and
C ⊆ int(dom(f)) (see Chapter 2).

2 The orthogonal projection over C is Lips. continuous with constant 1

(nonexpensive): ∥PC(x)− PC(y)∥ ≤ ∥x− y∥,∀x, y. Why?

3 If gk = 0 for some k, then xk is a minimizer and xi = xk∀i ≥ k.

A fundamental inequality for projected subgradient is

∥xk+1 − x∗∥2 ≤ ∥xk − x∗∥2 − 2αk(f(xk)− f∗) + α2
k∥gk∥2,

∀x∗ ∈ X∗ (the set of minimizers of f in C assumed ̸= ∅, which is

necessarily closed). Why?

f∗ is the optimal value.
LNV,SG,RG,TG Subgradient methods 64/257

Proof.

∥xk+1 − x∗∥2 = ∥PC(xk − αkgk)− PC(x∗)∥2

≤ ∥xk − αkgk − x∗∥2

= ∥xk − x∗∥2 − 2αkg
⊤
k (xk − x∗) + α2

k∥gk∥2

subgradient inequality
≤ ∥xk − x∗∥2 − 2αk(f(xk)− f∗) + α2

k∥gk∥2

LNV,SG,RG,TG Subgradient methods 65/257

A natural choice for αk is the minimizer of the RHS of the fundamental
inequality for α ≥ 0

αk =
f(xk)− f∗

∥gk∥2

This results in the Polyak’s stepsize rule

αk =

{
f(xk)−f∗
∥gk∥2

if gk ̸= 0

1 otherwise

LNV,SG,RG,TG Subgradient methods 66/257

One will assume that

∥g∥ ≤ L∂f ∀g ∈ ∂f(x) ∀x ∈ C

which actually implies that

|f(x)− f(y)| ≤ L∂f∥x− y∥ ∀x, y ∈ C

Why?

Rate of convergence of Polyak’s stepsize rule:

fkbest − f∗ ≤
L∂fdX∗(x0)√

k + 1
, ∀k ≥ 0

where fkbest = min0≤i≤k f(xi) (and dX∗(x0) <∞ since X∗ is closed)
LNV,SG,RG,TG Subgradient methods 67/257

Proof.

Plugging the stepsize rule in the fundamental inequality:

∥xk+1 − x∗∥2 ≤ ∥xk − x∗∥2 −
(f(xk)− f∗)

2

∥gk∥2

≤ ∥xk − x∗∥2 −
(f(xk)− f∗)

2

L2
∂f

Thus

1

L2
∂f

k∑
i=0

(f(xi)− f∗)
2 ≤ ∥x0 − x∗∥2 − ∥xk+1 − x∗∥2

≤ ∥x0 − x∗∥2

= d2X∗(x0) (We can choose any x∗ in X∗.)

and
(k + 1)(fkbest − f∗)

2 ≤ L2
∂fd

2
X∗(x0).

LNV,SG,RG,TG Subgradient methods 68/257

Consequences of the proof:

∥xk+1 − x∗∥ ≤ ∥xk − x∗∥, ∀k, ∀x∗ ∈ X∗

limk→∞ f(xk) = f∗

Property 1) is Fejér monotonicity of {xk} w.r.t X∗ which actually implies
that {xk} does converge to a point in X∗. EXERCISE (see Beck 2017)

The worst case complexity (WCC) is O(ϵ−2) in the sense that O(ϵ−2)

iterations are required to obtain a xk such that fkbest − f∗ ≤ ϵ. Why?

The limit f(xk) → f∗ holds for choices of αk such
that (

∑k
i=0 α

2
i)/(

∑k
i=0 αi) −−−→

k→∞
0. EXERCISE (see Beck 2017). An

example is αk = 1√
k+1

.

Variations of this also achieve the 1/
√
k rate (see Beck 2017).

EXERCISE

Apply the subgradient method to f(x1, x2) = |x1 + 2x2|+ |3x1 + 4x2|.
LNV,SG,RG,TG Subgradient methods 69/257

Applications of the subgradient method

Convex feasibility problem

Finding x in: S =

m⋂
i=1

Si ̸= ∅ when Si is convex and closed ∀i

⇐⇒ min
x∈Rn

f(x) where f(x) = max
1≤i≤m

dSi(x)

in which case f∗ = 0 and X∗ = S

Given that the Si’s are closed and convex such f is Lipschitz continuous
with constant Lf = 1 (or nonexpensive)

|f(x)− f(y)| ≤ ∥x− y∥ ∀x, y

Proof.

EXERCISE (see Beck 2017)

LNV,SG,RG,TG Subgradient methods 70/257

Now, all we need is a weak subgradient computation, meaning the
computation of a g ∈ ∂f(x), not a strong computation (all ∂f(x)).

How to compute a gk in ∂f(xk) for the f above?

If xk ∈ S, then gk = 0 and xk+1 = xk.

If not, compute ik ∈ argmax1≤i≤m dSi(xk)

gk =
xk − PSik

(xk)

dSik
(xk)

(see Chapter 2)

Then

xk+1 = xk − αkgk

Polyak
= xk −

(
dSik

(xk)− f∗

∥gk∥2

)
xk − PSik

(xk)

dSik
(xk)

f∗=0,∥gk∥=1
= PSik

(xk)

LNV,SG,RG,TG Subgradient methods 71/257

One has the greedy projection algorithm:

xk+1 = PSik
(xk) with x0 any.

where ik ∈ argmax1≤i≤m dSi(xk) for which the rate of convergence is (of

the order) of 1/
√
k. Why?

When m = 2 one has the alternating projection method:

xk+1 = PS2 (PS1(xk)) with x0 ∈ S2.

LNV,SG,RG,TG Subgradient methods 72/257

Solution of linear feasibility problems

EXERCISE: State the alternating projection method when

S1 = {x ∈ Rn : Ax = b} S2 = {x ∈ Rn : x ≥ 0}

and then, alternatively, the greedy one when (abusing notation for S1, S2)

Si = {x ∈ Rn : a⊤i x = bi}, i = 1, . . . ,m, (ai is the i-th row of A)

Sm+1 = {x ∈ Rn : x ≥ 0}.

Implement both for A =

(
0 6 −7 1
−1 2 10 −1

)
, b =

(
0
10

)
, and plot f(xk),

for k = 1, . . . , 20, in both cases.

In which cases would you then consider the alternating one? ...

LNV,SG,RG,TG Subgradient methods 73/257

Matrix Completion (more later in the course)

Find a positive semidefinite matrix M ∈ Rn×n such that
Mij = Aij , (i, j) ∈ Ω (for a certain given set of points Ω).

The problem can be formulated as the intersection of two convex sets.

Projections (preferably orthogonal) must be defined over the two sets.

For measuring distance one can use the Frobenius norm

∥M∥F =
√
tr(M⊤M).

Formulate and implement an algorithm for finding such matrix.

LNV,SG,RG,TG Subgradient methods 74/257

A ∈ R100×100 is a PSD matrix, where 20% of its entries are missing. We
use the alternating projection method:

0 10 20 30 40 50 60 70 80 90 100

k

10-8

10-6

10-4

10-2

100

102

||X
k+

1
-X

k|| F

So, we see that the distance between Ω and the SDP cone goes to zero. It
looks like that it is going to zero at a linear rate, faster than predicted by
the theory on the optimality gap... In fact the rate is known to be linear
for the alternating projection method when the two sets are closed and
convex (Gubin, Polyak, and Raik 1967, Bauschke and Borwein 1993).

LNV,SG,RG,TG Subgradient methods 75/257

Presentation outline

1 Introduction to (convex) optimization models in data science: Classical
examples

2 Convexity and nonsmooth calculus tools for optimization. Rates of
convergence

3 Subgradient methods

4 Proximal gradient methods

5 Accelerated gradient methods (momentum). Other relevant examples
in data science

6 Limits and errors of learning. Introduction to (nonconvex) optimization
models in supervised machine learning

7 Stochastic gradient descent

8 Noise reduction methods

9 Other topics: Coordinate descent, ADMM, and Frank-Wolfe method

10 References

As we have seen before the gradient method, for continuous differentiable
function f : Rn → R, is defined by

xk+1 = xk − αk∇f(xk)

where αk > 0 is the step size.

A choice of αk that only ensures a simple decrease on f might not
guarantee convergence to a stationary point

Thus, one has to ensure some form of sufficient decrease

f(xk − αk∇f(xk)) ≤ f(xk)− cαk∥∇f(xk)∥22

with c ∈ (0, 1).
LNV,SG,RG,TG Proximal gradient methods 77/257

Note that when xk+1 = xk + αkpk with pk a descent direction
(f ′(xk; pk) = −∇f(xk)⊤pk > 0) sufficient decrease reads like

f(xk − αkpk) ≤ f(xk)− cαk∇f(xk)⊤pk

Such a sufficient decrease condition is typically imposed in Newton or
quasi–Newton type methods.

Sufficient decrease guaranteed by a backtracking procedure:

Choose c, β ∈ (0, 1) and s > 0. Set ᾱ = s.
while f(xk − ᾱ∇f(xk)) > f(xk)− cᾱ∥∇f(xk)∥2 do

ᾱ := β × ᾱ
end while
αk := ᾱ

LNV,SG,RG,TG Proximal gradient methods 78/257

As long as f is bounded below, and thus bounded below in
{xk − α∇f(xk) : α ≥ 0}, this procedure will end in a finite number of
steps, recalling, of course, that −∇f(xk) is a descent direction:

LNV,SG,RG,TG Proximal gradient methods 79/257

Let us assume now that ∇f is Lipschitz continuous with constant
L∇f > 0. Note that f may be nonconvex.

As we know from Chapter 2,

f(

yk︷ ︸︸ ︷
xk − α∇f(xk))−f(xk) ≤ ∇f(xk)⊤(−α∇f(xk)︸ ︷︷ ︸

yk−xk

)+
L∇f

2
∥−α∇f(xk)︸ ︷︷ ︸

yk−xk

∥2

giving rise to

f(xk)− f(xk − α∇f(xk)) ≥ α
(
1− α

2
L∇f

)
∥∇f(xk)∥2.

Besides, if ᾱ/β does not satisfy sufficient decrease

f(xk)− f(xk − (ᾱ/β)∇f(xk)) < c(ᾱ/β)∥∇f(xk)∥2,

LNV,SG,RG,TG Proximal gradient methods 80/257

and this inequality together with the previous one with α = ᾱ/β yield

ᾱ/β

(
1− ᾱ/β

2
L∇f

)
< c(ᾱ/β)

thus

ᾱ >
2β(1− c)

L∇f

Hence

f(xk)− f(xk+1︸︷︷︸
xk−αk∇f(xk)

) ≥ M∥∇f(xk)∥2

with M = cmin
{
s, 2β(1−c)

L∇f

}
.

Such an inequality is the key to analyze complexity and convergence for
the gradient method with step size satisfying sufficient decrease.

LNV,SG,RG,TG Proximal gradient methods 81/257

In fact, summing this inequality from 0 to k− 1 and noting the telescoping
sum

f(x0)− f(xk) ≥ M

k−1∑
i=0

∥∇f(xi)∥2

and, assuming a lower bound flow on f , we reach the rate of convergence
for such method

min
0≤i≤k−1

∥∇f(xi)∥ ≤
√
f(x0)− flow

M

1√
k
, ∀k ≥ 0

as in the subgradient method for convex functions.

As a consequence of this proof the series
∑∞

i=0 ∥∇f(xi)∥2 is summable
and therefore the gradient goes to zero

lim
k→∞

∇f(xk) = 0

LNV,SG,RG,TG Proximal gradient methods 82/257

Moreover, the WCC is O(ϵ−2) in the sense that O(ϵ−2) iterations are
required to obtain an x∗ such that ∥∇f(x∗)∥ ≤ ϵ.

The sublinear rate 1/
√
k of the gradient method (with sufficient decrease)

is, of course, slow and in the nonconvex case other line search methods
based on Newton or quasi-Newton directions are much faster (quadratic or
superlinear rates respectively) but require second-order information.

First-order methods (such as the gradient method) find room for
application in problems where second-order information is prohibited, such
as those handling a large amount of data per iteration.

In those situations the function f is typically convex, an assumption made
for the rest of this chapter.

LNV,SG,RG,TG Proximal gradient methods 83/257

The convex case will be treated in the more general scenario (see
Chapter 1) where the problem is

min
x∈Rn

F (x) ≡ f(x) + g(x)

still covering smooth unconstrained optimization (g = 0), but then
addressing structured regularization (g(x) = λ∥x∥1 for instance) and
simple convex constraints (g(x) = δC , where C ̸= ∅ is closed and convex).

In addition, to later deal efficiently with the inclusion of g, we will cover
gradient methods in their proximal variant.

And because of the features of most optimization data problems requiring
regularization, proximal gradient methods will be analyzed only when f is
convex or strongly convex.

LNV,SG,RG,TG Proximal gradient methods 84/257

It is simple to see that the gradient method can be expressed as

xk+1 = argmin
x∈Rn

{
f(xk) +∇f(xk)⊤(x− xk) +

1

2αk
∥x− xk∥2

}
in other words, as the minimizer of the sum of the linearization of f
around xk with a quadratic proximal term.

So, when dealing with the minimization of F = f + g, it is natural to
consider

xk+1 = argmin
x∈Rn

{
f(xk) +∇f(xk)⊤(x− xk) + g(x) +

1

2αk
∥x− xk∥2

}
Note that

1

2
∥x− (xk − αk∇f(xk))∥2

=
1

2
∥x− xk∥2 + (x− xk)

⊤ (αk∇f(xk)) + (constant in x)

LNV,SG,RG,TG Proximal gradient methods 85/257

Hence, the proximal subproblem (after multiplying its objective by αk) can
be written as

xk+1 = argmin
x∈Rn

{
αkg(x) +

1

2
∥x− (xk − αk∇f(xk))∥2

}

We now introduce the proximal-operator (prox-operator):

proxαg(x) = argminu∈Rn

{
αg(u) +

1

2
∥u− x∥2

}
(for fixed α and x). The proximal gradient method can thus be written as

xk+1 = proxαkg
(xk − αk∇f(xk))

where αk > 0 is the stepsize.

LNV,SG,RG,TG Proximal gradient methods 86/257

We now pause to cover examples and properties of the
prox-operator. Let us start by three important examples:

1 g(x) = 0,∀x. In this case, proxαg(x) = x. This shows of course that
the proximal gradient method reduces to the gradient one when there
is no regularization.

2 g(x) = δC(x) with C closed and convex. Here

proxαg(x) = argmin
u∈Rn

{
αδC(u) +

1

2
∥u− x∥2

}
= argmin

u∈C

{
1

2
∥u− x∥2

}
= PC(x)

which is simply the projection of x onto C.

The proximal gradient method is then the projected gradient one.

LNV,SG,RG,TG Proximal gradient methods 87/257

3 h(x) = α∥x∥1. One can then see that the minimization in the
definition of the prox-operator separates in its n components, being
the i-th one(

proxα∥·∥1(x)
)
i
= argminui

{
α|ui|+

1

2
(ui − xi)

2

}

LNV,SG,RG,TG Proximal gradient methods 88/257

and thus

(
proxα∥·∥1(x)

)
i
=


xi − α if xi ≥ α
0 if xi ∈ (−α, α)
xi + α if xi ≤ −α

This is called the soft-thresholding operation.

LNV,SG,RG,TG Proximal gradient methods 89/257

A fourth example is hard-thresholding,

g(x) = ∥x∥0 = |{i ∈ {1, . . . , n} : xi ̸= 0}| ,

the number of nonzero components of x. Although g is not convex,

the prox-operator is well defined and separates into n components:(
proxα∥·∥0(x)

)
i
=

{
xi if |xi| ≥

√
2α,

0 otherwise,
Why?

i = 1, . . . , n.

LNV,SG,RG,TG Proximal gradient methods 90/257

EXERCISE: Using proxh(x) = argmin
u∈Rn

{
h(u) + 1

2∥u− x∥2
}
calculate the

prox-operator when

h(x) = a⊤x+ b (affine)

h(x) = ∥x∥2

h(x) = a+ b⊤x+
1

2
x⊤Ax A sym. and PSD (convex quadratic)

There are calculus rules for prox-operators, the most relevant being for
composition with affine functions and with the Euclidean norm.

LNV,SG,RG,TG Proximal gradient methods 91/257

Regarding the main properties of the prox-operator, the very first one is
that is well defined as long as h in

proxh(x) = argmin
u∈Rn

{
h(u) +

1

2
∥u− x∥2

}
is a proper convex function (see Chapter 2). Thus we assume that g in
F = f + g is proper and convex.

Moreover, from the first-order conditions, one has

0 ∈ ∂h(proxh(x)) + proxh(x)− x (∗)

⇐⇒ x− proxh(x) ∈ ∂h(proxh(x))

LNV,SG,RG,TG Proximal gradient methods 92/257

Note also (not used later) that the prox-operator is nonexpensive
(Lipschitz continuous with constant 1):

∥ proxh(x)− proxh(y)∥ ≤ ∥x− y∥

The proof is left as an EXERCISE. Hint:

a) First use (∗) for x and y.

b) Then use the fact that the subdifferential of h is monotone:

a ∈ ∂h(u), b ∈ ∂h(v) =⇒ (a− b)⊤(u− v) ≥ 0

c) Then rearrange and apply the Cauchy-Schwartz inequality.

LNV,SG,RG,TG Proximal gradient methods 93/257

We will analyze the proximal gradient method for F = f + g when f is
smooth (∇f Lipschitz continuous with constant L∇f). Then

f(y) ≤ f(x) +∇f(x)⊤(y − x) +
L∇f

2
∥y − x∥2, ∀x, y. (B1)

As we said before, given the presence of g, the cases of interest are when
f is convex or strongly convex. Then

f(y) ≥ f(x) +∇f(x)⊤(y − x) +
µf
2
∥y − x∥22, ∀x, y. (B2)

(µf = 0 convex; µf > 0 strongly convex).

LNV,SG,RG,TG Proximal gradient methods 94/257

It will be very convenient to write the method as

xk+1 = proxαkg
(xk − αk∇f(xk))

= xk − αkGαk
(xk)

Gα(x) is called the gradient mapping but it is not a gradient or a
subgradient of F = f + g.

Moreover from (∗) and omitting the subscript k

(x− α∇f(x))− (x− αGα(x)) ∈ ∂(αg) (x− αGα(x))

⇓

Gα(x)−∇f(x) ∈ ∂g(x− αGα(x)) (∗∗)

(Remark: From here one has that Gα(x) = 0 ⇐⇒ x minimizes
F = f + g.)

LNV,SG,RG,TG Proximal gradient methods 95/257

Our stepsize rule will be simply α = 1
L∇f

but the derivation to come holds

with α ∈ (0, 1
L∇f

]. From (B1)

f(y) ≤ f(x) +∇f(x)⊤(y − x) +
L∇f

2
∥y − x∥2, ∀x, y,

with y = x− αGα(x), one has then

f(x− αGα(x)) ≤ f(x)− α∇f(x)⊤Gα(x) +
α

2
∥Gα(x)∥2 (B1α)

(Here we used α ≤ 1/L∇f .)

LNV,SG,RG,TG Proximal gradient methods 96/257

We are now ready to prove a key inequality measuring the decrease along
Gα(x). First we add g(x− αGα(x)) to both sides of (B1α)

F (x−αGα(x)) ≤ f(x)−α∇f(x)⊤Gα(x)+
α

2
∥Gα(x)∥2+g(x−αGα(x))

For any z, one has from (B2)

f(y) ≥ f(x) +∇f(x)⊤(y − x) +
µf
2
∥y − x∥2

with y replaced by z

f(z) ≥ f(x) +∇f(x)⊤(z − x) +
µf
2
∥z − x∥2

and using it above

LNV,SG,RG,TG Proximal gradient methods 97/257

F (x− αGα(x)) ≤ f(z)+g(z)−∇f(x)⊤(z − x)−
µf
2
∥z − x∥2

− α∇f(x)⊤Gα(x) +
α

2
∥Gα(x)∥2 + g(x− αGα(x))−g(z)

= F (z)−∇f(x)⊤(z − (x− αGα(x)))

+Gα(x)
⊤(z − (x− αGα(x))) +Gα(x)

⊤(x− z)

− α∥Gα(x)∥2 −
µf
2
∥z − x∥2 + α

2
∥Gα(x)∥2

+ g(x− αGα(x))− g(z)

From (∗∗)

g(x− αGα(x))− g(z) ≤ (Gα(x)−∇f(x))⊤(x− αGα(x)− z).

LNV,SG,RG,TG Proximal gradient methods 98/257

Hence the desired inequality

F (x−αGα(x)) ≤ F (z)+Gα(x)
⊤(x−z)− α

2
∥Gα(x)∥2−

µf
2
∥z−x∥2

(∗ ∗ ∗)

from which we can now extract rates of convergence for the convex
(µf = 0) and strongly convex (µf > 0) cases.

First, we point out that setting z = x shows us that the method is indeed
descent

F (x− αGα(x)) ≤ F (x)− α

2
∥Gα(x)∥2.

LNV,SG,RG,TG Proximal gradient methods 99/257

Setting z = x∗ (a global minimizer of F)

F (x− αGα(x))− F∗ ≤ Gα(x)
⊤(x− x∗)−

α

2
∥Gα(x)∥2 −

µf
2
∥x− x∗∥2

=
1

2α

(
∥x− x∗∥2 − ∥x− x∗ − αGα(x)∥2

)
−
µf
2
∥x− x∗∥2

=
1

2α

(
(1− µfα)∥x− x∗∥2 − ∥(x− αGα(x))− x∗∥2

)
and using again the indices k

F (xk+1)−F∗ ≤ 1

2αk

(
(1− µfαk)∥xk − x∗∥2 − ∥xk+1 − x∗∥2

)
(B3)

LNV,SG,RG,TG Proximal gradient methods 100/257

We can now derive a global rate.

In the convex case (µf = 0), summing from 0 to k (with telescoping
cancellation), and using αk = 1/L∇f ,

k∑
i=1

(F (xi)− F∗) ≤
L∇f

2

k∑
i=1

(
∥xi−1 − x∗∥2 − ∥xi − x∗∥2

)
=

L∇f

2

(
∥x0 − x∗∥2 − ∥xk − x∗∥2

)
≤

L∇f

2
∥x0 − x∗∥2

and because F (xi) is nondecreasing we arrive finally at the rate of
convergence of the proximal gradient method (f convex in F = f + g)

F (xk)− F∗ ≤
(
L∇f

2
∥x0 − x∗∥2

)
1

k
∀k ≥ 0.

LNV,SG,RG,TG Proximal gradient methods 101/257

This sublinear rate (1/k) is better than the previous ones (1/
√
k) found

before for the subgradient method (for minimizing f convex) and for the
gradient method (for minimizing f nonconvex).

The WCC bound to reach F (xk)− F∗ ≤ ϵ is then also better: O(ϵ−1).

This applies also to g = 0, i.e., to the gradient method when f is convex.

In the strongly convex case (µf > 0), (B3) gives also (F (xk+1) ≥ F∗ and
α = 1

L∇f
)

0 ≤
L∇f

2

(
(1− µf/L∇f)∥xk − x∗∥2 − ∥xk+1 − x∗∥2

)
⇕

∥xk+1 − x∗∥2 ≤
(
1−

µf
L∇f

)
∥xk − x∗∥2

LNV,SG,RG,TG Proximal gradient methods 102/257

from which we conclude right away that ∥xk+1 − x∗∥ ≤ ∥xk − x∗∥, i.e.,
the distance to the optimal set X∗ = {x∗} does not increase.

Moreover, we obtain the following rate of convergence for the proximal
gradient method (f strongly convex in F = f + g)

∥xk − x∗∥ ≤

1−
µf
L∇f︸ ︷︷ ︸

<1


k

∥x0 − x∗∥2 ∀k.

LNV,SG,RG,TG Proximal gradient methods 103/257

This rate is now linear and translates in a WCC bound of O(− log(ϵ)) to
reach ∥xk − x∗∥ ≤ ϵ, more precisely

O (κf (− log(ϵ))) where κf =
L∇f

µf
is the condition number of f

One can show that F (xk)− F∗ also decreases linearly. Why?

Again this applies to g = 0, i.e., to the gradient method when f is strongly
convex.

LNV,SG,RG,TG Proximal gradient methods 104/257

NOTES

1 When f = 0, the proximal gradient method for a fixed step size is
called the proximal point method, which is not practical as it requires
the minimization of g itself at each iteration.

2 An alternative to the stepsize rule αk = 1/L∇f when L∇f is unknown
or hard to estimate is to do a backtracking scheme on a sufficient
decrease condition.

When g = 0 this can be done as in the nonconvex case.

In the general case g ̸= 0, one possibility is to impose

f(Tα(xk)) ≤ f(xk) +∇f(xk)⊤ (Tα(xk)− xk) +
1

2α
∥Tα(xk)− xk∥2

with Tα(xk) = proxαg(xk − α∇f(xk)).

LNV,SG,RG,TG Proximal gradient methods 105/257

Note that this condition is equivalent to (B1α):

f(Tα(xk)) ≤ f(xk)− α∇f(xk)⊤Gα(xk) +
α

2
∥Gα(xk)∥2.

The backtracking starts at ᾱ = s and stops at the first i ∈ {0, 1, . . .} such
that βiᾱ (β ∈ (0, 1)) satisfies the above condition.

Since such condition is satisfied for α = 1/L∇f it is easy to show that αk

is bounded from below, and the rates of convergence given before for the
convex and strongly convex cases are still valid.

LNV,SG,RG,TG Proximal gradient methods 106/257

3 The proximal gradient method can also be applied, of course, to the
case where f in F = f + g is nonconvex.

The obtained rate of convergence (now for the gradient mapping
min0≤i≤k ∥Gαi(xi)∥) is 1/

√
k, as expected.

However, not only such an algorithm setting finds less application,
but the analysis is lengthier, as one has to prove much more from the
prox-gradient mapping as for instance that is monotone:

∥Gα′(x)∥ ≥ ∥Gα′′(x)∥ ∀0 < α′ ≤ α′′.

4 When g = λ∥ · ∥1 with λ > 0 the proximal gradient method is known
as ISTA (iterative shrinkage-thresholding algorithm︸ ︷︷ ︸

more on this in the next chapter

).

LNV,SG,RG,TG Proximal gradient methods 107/257

EXERCISE
Apply the proximal gradient method to solve

1 Convex QPs with simple bounds

min b⊤x+
1

2
x⊤Ax

s.t. 0 ≤ x ≤ e =

1
...
1

 .

2 LASSO or ℓ1–regularized least squares

min ∥Ax− b∥2 + λ∥x∥1 (λ > 0),

for which the method is then ISTA.

In both cases, use αk = 1/L∇f , after calculating L∇f .

Plot (F (xk)− F∗)/|F∗| over the iteration counter k.

LNV,SG,RG,TG Proximal gradient methods 108/257

Let A ∈ R3000×3000 and b ∈ R3000 be randomly generated (A PD).

The performance of proximal gradient (PG) or ISTA method for solving
the above-mentioned QP problem with αk = 1/λmax(A) is the following:

The rate looks sublinear (although the theory says linear).
LNV,SG,RG,TG Proximal gradient methods 109/257

Let A ∈ R5000×3000 and b ∈ R5000 be randomly generated.

The performance of proximal gradient (PG) or ISTA method for solving
the above-mentioned LASSO problem with λ = 1 and αk = 1/λmax(A

⊤A)
is the following:

The rate looks sublinear (although the theory says linear).LNV,SG,RG,TG Proximal gradient methods 110/257

Presentation outline

1 Introduction to (convex) optimization models in data science: Classical
examples

2 Convexity and nonsmooth calculus tools for optimization. Rates of
convergence

3 Subgradient methods

4 Proximal gradient methods

5 Accelerated gradient methods (momentum). Other relevant examples
in data science

6 Limits and errors of learning. Introduction to (nonconvex) optimization
models in supervised machine learning

7 Stochastic gradient descent

8 Noise reduction methods

9 Other topics: Coordinate descent, ADMM, and Frank-Wolfe method

10 References

Using momentum and still one gradient evaluation per iteration, it is
possible to derive methods that converge at a rate of 1/k2 in the convex
case (thus faster than 1/k).

The momentum idea is to continue to use the direction of the previous
step xk − xk−1 (as it brings previous gradient information) combining it
linearly with the current gradient ∇f(xk).

If for a moment we consider g = 0 in F = f + g, such an idea is expressed
as

xk+1 = xk − αk∇f(xk) + βk(xk − xk−1)︸ ︷︷ ︸
momentum term

.

By applying this formula recursively, one can see that xk+1 is written in
terms of ∇f(x0), . . . ,∇f(xk) in a richer, more parameterized way, when
compared to the case βk = 0 (gradient method).

LNV,SG,RG,TG Accelerated gradient methods (momentum). Other relevant examples in data science 112/257

When f is a strongly quadratic function and αk and βk are held fixed in a
certain way, such approach was first proposed by Polyak 1964 (the Heavy
Ball method), yielding a better constant in the WCC bound when

compared to the gradient method:
√

L∇f

µf
instead of

L∇f

µf
.

The CG (conjugate gradients) method to solve Ax = b, where A is
symmetric and PD, invented even before by Hestenes and Stiefel in 1952,
makes also use of momentum.

Nonlinear conjugate gradients (extension from strongly convex quadratics
to general smooth functions) also make use of momentum.

LNV,SG,RG,TG Accelerated gradient methods (momentum). Other relevant examples in data science 113/257

A key contribution was then made by Nesterov 1983 who introduced an
accelerated gradient method for the minimization of a smooth function f
with a 1/k2 convergence rate.

Each iteration is slightly more complex

xk+1 = xk − αk∇f(xk + βk(xk − xk−1)︸ ︷︷ ︸) + βk(xk − xk−1)︸ ︷︷ ︸

momentum in two places

One can rewrite this scheme as (with yk auxiliary)

xk+1 = yk − αk∇f(yk)
yk+1 = xk+1 + βk+1(xk+1 − xk), ∀k
with x0 arbitrary and y0 = x0.

LNV,SG,RG,TG Accelerated gradient methods (momentum). Other relevant examples in data science 114/257

His accelerated gradient (AG) method is when

βk+1 =
tk − 1

tk+1
with t0 = 1 and tk+1 =

1

2
(1 +

√
1 + 4t2k).

FISTA (“fast ISTA”) is the generalization to the composite case
F = f + g, proposed by Beck and Teboulle 2009 essentially making use of
the prox-operator:

xk+1 = proxαkg
(yk − αk∇f(yk))

tk+1 =
1

2
(1 +

√
1 + 4t2k) FISTA

yk+1 = xk+1 +
tk − 1

tk+1
(xk+1 − xk)

where αk > 0 is the stepsize and t0 = 1, y0 = x0.
LNV,SG,RG,TG Accelerated gradient methods (momentum). Other relevant examples in data science 115/257

Important facts regarding the sequence {tk}:
1 tk ≥ k+2

2 , ∀k ≥ 0 (proof by induction)

2 t2k+1 − tk+1 = t2k, ∀k ≥ 0

NOTE: The rate of convergence holds under 1) and 2) replaced by
t2k+1 − tk+1 ≤ t2k.

Since tk = k+2
2 satisfies this last inequality, AG and FISTA are sometimes

presented in this simplified form.

Let us now prove the global rate.

Let us start by recalling our assumptions on F = f + g: f is a (proper)
convex function with Lipschitz continuous gradient (with constant
L∇f) and g is a (proper) closed convex function; F has a minimum x∗.

LNV,SG,RG,TG Accelerated gradient methods (momentum). Other relevant examples in data science 116/257

This time we need a more general form of (∗ ∗ ∗)

F (Tα(y))− F (x) ≤ 1

2α

(
∥x− y∥2 − ∥x− Tα(y)∥2

)
(4∗)

where Tα(y) = proxαg(y − α∇f(y))
This is essentially the fundamental prox-grad inequality (Theorem 10.16 of
Beck 2017 when f is convex).

We omit the proof in part because (4∗) is essentially a generalization of
(∗ ∗ ∗). This latter one is (µf = 0)

F (x− αGα(x)︸ ︷︷ ︸
Tα(x)

)− F (z) ≤ Gα(x)
⊤(x− z)− α

2
∥Gα(x)∥2

=
1

2α

(
∥x− z∥2 − ∥x− Tα(x)∥2

)

LNV,SG,RG,TG Accelerated gradient methods (momentum). Other relevant examples in data science 117/257

So (4∗) generalizes (∗ ∗ ∗) in the sense of having Tα(y) instead of Tα(x),
and this is to accommodate the way into the prox operator is applied in
FISTA.

We consider a fixed stepsize αk = 1/L∇f .

The proof is known to be quite technical. First one applies the
fundamental prox-grad inequality (4*) with x = t−1

k x∗ + (1− t−1
k)xk and

y = yk

F (t−1
k x∗ + (1− t−1

k)xk)− F (xk+1)

≥ L∇f

2 ∥xk+1 − (t−1
k x∗ + (1− t−1

k)xk︸ ︷︷ ︸)∥2 − L∇f

2 ∥yk − ∥2

=
L∇f

2t2k
∥tkxk+1 − (x∗ + (tk − 1)xk︸ ︷︷ ︸)∥2 − L∇f

2t2k
∥tkyk − ∥2

LNV,SG,RG,TG Accelerated gradient methods (momentum). Other relevant examples in data science 118/257

Using the convexity of F and δk = F (xk)− F∗

F (t−1
k x∗ + (1− t−1

k)xk)− F (xk+1)

≤ (1− t−1
k)(F (xk)− F∗)− (F (xk+1)− F∗)

= (1− t−1
k)δk − δk+1

It is simple to see from the expression for yk that
yk = xk +

tk−1−1
tk

(xk − xk−1), and thus

∥tkyk − (x∗ + (tk − 1)xk)∥2 = ∥ tk−1xk − (x∗ + (tk−1 − 1)xk−1)︸ ︷︷ ︸
uk

∥2

Putting it altogether,

(1− t−1
k)δk − δk+1 ≥

L∇f

2t2k
∥uk+1∥2 −

L∇f

2t2k
∥uk∥2

From t2k − tk = t2k−1,

∥uk+1∥2 +
2

L∇f
t2kδk+1 ≤ ∥uk∥2 +

2

L∇f
t2k−1δk.

LNV,SG,RG,TG Accelerated gradient methods (momentum). Other relevant examples in data science 119/257

By summing both sides of this inequality from 1 to k − 1

∥uk∥2 +
2

L∇f
t2k−1δk ≤ ∥u1∥2 +

2

L∇f
t20δ1

= ∥x1 − x∗∥2 +
2

L∇f
(F (x1)− F∗)

≤ ∥x0 − x∗∥2 Why?

... but this is not really necessary ...

Hence,
2

L∇f
t2k−1δk ≤ ∥x0 − x∗∥2

and from tk−1 ≥ (k + 1)/2

F (xk)− F∗ ≤
(
2L∇f∥x0 − x∗∥2

) 1

(k + 1)2
, ∀k ≥ 1

LNV,SG,RG,TG Accelerated gradient methods (momentum). Other relevant examples in data science 120/257

From here we see that both AG and FISTA require O(ϵ−0.5) iterations to
achieve F (xk)− F∗ < ϵ.

This result is also true for a stepsize rule enforcing sufficient decrease
(Slide 105) provided:

i) The backtracking starts at ᾱ = αk−1. In this way αk ≤ αk−1,∀k ≥ 1
and the stepsize is monotone decreasing (something to be used in the
above proof).

ii) The sufficient decrease condition of Slide 104 is invoked at yk rather
than xk.

Contrasting with the proximal gradient method, and for any of the cases
(stepsize fixed at 1/L∇f or satisfying sufficient decrease), AG/FISTA are
not descent methods, meaning that F (xk+1) < F (xk) might not hold.

LNV,SG,RG,TG Accelerated gradient methods (momentum). Other relevant examples in data science 121/257

When applied to a strongly convex f (f in F = f + g), the WCC bound
becomes

O

(√
L∇f

µf
(− log ϵ)

)
thus with a constant better than the proximal gradient method by a
constant factor of

√
L∇f/µf , as in the heavy ball method. For a proof in

the AG case (g = 0) see, e.g., Wright 2017.

In the case of FISTA, this bound is achieved under a modification
consisting of restarting the method at every N =

⌈√
8κf − 1

⌉
iterations

with κf =
L∇f

µf
(see Theorem 10.39 in Beck 2017).

LNV,SG,RG,TG Accelerated gradient methods (momentum). Other relevant examples in data science 122/257

Nesterov’s AG method is optimal in the sense of achieving the best
convergence rates within all methods of the type

xk+1 = xk +

k∑
j=0

ξj∇f(xj) G

for some ξj , j = 0, . . . , k. This includes already a number of gradient
methods and, according to Nesterov’s 1998 lecture notes, it can be further
generalized to include nearly all practical gradient methods.

For convex functions the result is as follows:

For any 1 ≤ k < 1
2(n+ 1) and x0, there exists a smooth convex

function such that for any method of the type G ,

f(xk)− f∗ ≥ 3L∥x0 − x∗∥2

32(k + 1)2

where x∗ is a minimizer of f , f∗ = f(x∗), and L = L∇f is the
Lipschitz constant of ∇f .

LNV,SG,RG,TG Accelerated gradient methods (momentum). Other relevant examples in data science 123/257

The function f depends on k (!!). First we define
fk(x) =

L
4 (e

⊤
1 x− 1

2x
⊤Ax) with e1 = (1, 0, . . . , 0)⊤, L > 0, and

A =



k︷ ︸︸ ︷

k



2 −1
−1 2 −1

−1 2
. . .

. . .
. . .

. . .
. . . 2 −1

−1 2

0

0 0



LNV,SG,RG,TG Accelerated gradient methods (momentum). Other relevant examples in data science 124/257

The proof of the result reasons around

(xk)i =

{
1− i

k+1 , i = 1, . . . , k

0, k + 1 ≤ i ≤ n

and (fk)∗ =
L
8 (−1 + 1

k+1). The function f is taken as f2k+1.

Along these lines, Nesterov 1998 also provided a strongly convex example
f for which any method of type G yields

∥xk − x∗∥ ≥
(√

κf − 1
√
κf + 1

)k

∥x0 − x∗∥

f(xk)− f∗ ≥ µ

2

(√
κf − 1

√
κf + 1

)2k

∥x0 − x∗∥2

where κf = L∇f/µf , x∗ is the minimizer of f and f∗ = f(x∗).

LNV,SG,RG,TG Accelerated gradient methods (momentum). Other relevant examples in data science 125/257

EXERCISE: Apply FISTA to the examples at the end of Chapter 4 and
compare.

We now elaborate on two problems mentioned before.

Example (3 Feature selection and LASSO)

In many data science/machine learning applications some features are
more important than others. Many features are irrelevant for prediction.

The process of feature selection is to select the relevant features among all
aj , j = 1, . . . , N . A simple idea is to solve

min
ω

N∑
j=1

(a⊤j ω − yj)
2 + λ∥ω∥0 L0λ

The larger λ > 0 is the less features components will be used. Remember
that ∥ω∥0 = |{i : ωi ̸= 0}| is the support of ω (and not really a norm).

LNV,SG,RG,TG Accelerated gradient methods (momentum). Other relevant examples in data science 126/257

Example (3 Feature selection and LASSO (Cont.))

As in previous relevant examples, this problem can be statistically
motivated.

Its solution is difficult as it is NP-hard. Two popular heuristics to compute
an approximate solution are:

1 Iterative Hard Thresholding. This amounts to apply the proximal
gradient method with g(ω) = λ∥ω∥0 (and x = ω), using the
prox-operator for α∥ω∥0 given in Chapter 3.

2 Orthogonal Matching Pursuit. A simple idea consisting of iteratively
increasing the support of ω in a greedy way from an initial singleton.
Each iteration costs a linear least squares problem.

LNV,SG,RG,TG Accelerated gradient methods (momentum). Other relevant examples in data science 127/257

Example (3 Feature selection and LASSO (Cont.))

3 One can also consider an alternative formulation given by

min

N∑
j=1

(a⊤j ω − yj)
2

s.t. ∥ω∥0 ≤ k,

L0k

where k ∈ N. Note that this problem is not equivalent (In what
sense?) to the L0λ one (because ∥ · ∥0 is not convex).
3.1 Then one can also do Iterative Hard Thresholding on L0k by

g(ω) = δC(ω) and C = {ω : ∥ω∥0 ≤ k} and the proximal gradient
method. EXERCISE: Figure out the prox-operator.

3.2 L0k can be reformulated as a QP with binary variables, and solved
using appropriate software. This can lead to rigorous techniques (in the
sense of really solving L0k).

LNV,SG,RG,TG Accelerated gradient methods (momentum). Other relevant examples in data science 128/257

Alternatives to deal with the ∥ · ∥0 norm in L0k and L0λ, are respectively,

min
ω

N∑
j=1

(a⊤j ω − yj)
2

s.t. ∥ω∥1 ≤ δ

L1δ

(known as LASSO, least absolute shrinkage and selection operator,
Tibshirani 1996), where δ > 0, and

min
ω

N∑
j=1

(a⊤j ω − yj)
2 + λ∥ω∥1 L1λ

(known as basis pursuit denoising BPDN, Chen, Donoho, and Sanders
1999), where λ > 0.

LNV,SG,RG,TG Accelerated gradient methods (momentum). Other relevant examples in data science 129/257

Let A ∈ R500×300 and b ∈ R500 be randomly generated.

The comparison between ISTA and FISTA for solving L1λ with λ = 1 and
αk = 1/λmax(A

⊤A):

LNV,SG,RG,TG Accelerated gradient methods (momentum). Other relevant examples in data science 130/257

EXERCISE L1δ and L1λ are equivalent in the sense that for each λ ≥ 0
there is an optimal solution of L1δ for some δ ≥ 0 that is optimal for L1λ
and vice versa.

EXERCISE Both problems L1δ and L1λ are equivalent to QPs (and thus
can be solved by Quadratic Programming techniques).

LNV,SG,RG,TG Accelerated gradient methods (momentum). Other relevant examples in data science 131/257

Problem L1λ can also be derived from statistical assumptions. If we
assume that the components of ωj are independently Laplace
distributed

Pr(ωj | α) = e−α|ωj |

for some α > 0, it can be shown that maximizing likelihood is
equivalent to L1λ for some λ > 0.

Intuitively, one can also see that the ℓ1-norm promotes sparsity (thus
making L1λ a good surrogate model for L0λ):

level curves of ∥ω∥1

a⊤ω = y

ω

LNV,SG,RG,TG Accelerated gradient methods (momentum). Other relevant examples in data science 132/257

One popular technique to solve L1λ is LARS (Least Angle Regression and
Shrinkage, Efron et al. 2004): when λ is very large, the optimal solution of
L1λ is ω∗(λ) = 0. On the other hand, for λ = 0 ω∗(0) is the optimal least
squares solution.

It can be showed that ω∗(λ) is piecewise linear. Why?

LARS starts from ω = 0 adding features iteratively (a bit like Orthogonal
Matching Pursuit), based on explicit formulas for the changes of the
features along the path. To some extent λ is not pre-determined here.

Problem L1λ can be solved efficiently with FISTA, which can be further
enhanced by appropriate choices of the stepsize.

We have seen two possibilities: αk = 1/L∇f or αk satisfying a sufficient
decrease condition.

LNV,SG,RG,TG Accelerated gradient methods (momentum). Other relevant examples in data science 133/257

Another possibility is the so-called Barzilai-Borwein (or spectral) stepsize,
which is derived for F = f but can be used when g ̸= 0 (either in ISTA or
FISTA): When we have exact Hessian ∇2f(xk) (surely the case L1λ).

∇2f(xk)(xk − xk−1) ≃ ∇f(xk)−∇f(xk−1)

Using the approximation ∇2f(xk) ≃ 1
αk
I and imposing this relationship in

the least-squares sense

1

αk
= argmin

α
∥(xk − xk−1)α− (∇f(xk)−∇f(xk−1)) ∥2

resulting in

αk =
(xk − xk−1)

⊤(xk − xk−1)

(xk − xk−1)⊤(∇f(xk)−∇f(xk−1))
BB

LNV,SG,RG,TG Accelerated gradient methods (momentum). Other relevant examples in data science 134/257

A related expression could be derived if instead one would have used

αk = argmin
α

∥(xk − xk−1)− (∇f(xk)−∇f(xk−1))α∥2

Then schemes are not monotone (neither in f(xk) nor in ∇f(xk)) when
g = 0, i.e., when we simply have

xk+1 = xk − αk∇f(xk).

No convergence is guaranteed for a smooth convex f (although it
converges linearly, actually r-linearly, for quadratic functions), again when
g = 0. The fix is to use a non-monotone line search.

LNV,SG,RG,TG Accelerated gradient methods (momentum). Other relevant examples in data science 135/257

In the case of g ̸= 0 and in the context of the proximal gradient method,
SpaRSA (Wright, Nowak, Figueiredo 2009) is such a non-monotone
scheme:

It starts each line search with ᾱ = s ∈ [αmin, αmax], with
0 < αmin < αmax, as close as possible to BB. Then αk = βiᾱ, with
β ∈ (0, 1), and i ∈ {0, 1, . . .}, the first that

f(Tᾱ(xk)) > max
max{k−M,0}≤i≤k

f(xi)−
σ

2αk
∥Tα(xk)− xk∥2

with σ ∈ (0, 1) chosen very small and M ∈ {0, 1, . . .}.

LNV,SG,RG,TG Accelerated gradient methods (momentum). Other relevant examples in data science 136/257

Example (4 Matrix completion (already seen a little in Chapter 3))

One of the typical formulations of matrix completion can be seen as the
extension of least-squares from vector to matrix spaces. The data is
represented by Aj , j = 1, . . . , N , where Aj is an n× p matrix.

We then seek an n× p matrix X by solving

min
X

m∑
j=1

(⟨Aj , X⟩ − yj)
2 MC1

where ⟨·, ·⟩ represents the trace inner product ⟨A,B⟩ = tr(A⊤B). The
observed A’s can come in different types possibly containing one (or a
few) nonzero elements.

LNV,SG,RG,TG Accelerated gradient methods (momentum). Other relevant examples in data science 137/257

Example (4 Matrix completion (Cont.))

One would like the recovered X to contain as much information possible
in a compressed way. So it is natural to solve

min
X

m∑
j=1

(⟨Aj , X⟩ − yj)
2 + λ∥X∥∗, MC2

where ∥ · ∥∗ is the so-called nuclear or trace norm.

∥X∥∗ =

r∑
i=1

σi(X),

in other words the sum of the r singular values of a matrix.

LNV,SG,RG,TG Accelerated gradient methods (momentum). Other relevant examples in data science 138/257

Example (4 Matrix completion (Cont.))

So MC2 is a regularized form of MC1, promoting solutions that are low
rank.

Note that ∥ · ∥∗ is non-smooth but convex. A related popular matrix norm
is the Frobenius norm

∥X∥F =
√
tr(X⊤X) =

√√√√ r∑
i=1

σi(X)2.

LNV,SG,RG,TG Accelerated gradient methods (momentum). Other relevant examples in data science 139/257

Example (4 Matrix completion (Cont.))

Another typical formulation appears in the design of recommender systems
(see the NETFLIX challenge) where one seeks a minimal rank X for which
some entries Xij = Aij are known, (i, j) ∈ Ω:

min
X

rank(X) s.t. Xij = Aij , (i, j) ∈ Ω MC3

for which a convex surrogate is

min
X

∥X∥∗ s.t. Xij = Aij , (i, j) ∈ Ω MC4

This problem also offers a valid statistical solution (Candès and Recht
2009).

LNV,SG,RG,TG Accelerated gradient methods (momentum). Other relevant examples in data science 140/257

Example (4 Matrix completion (Cont.))

A formulation related to MC4 is (for some λ > 0)

min
X

1

2

∑
(i,j)∈Ω

(Xij −Aij)
2

︸ ︷︷ ︸
f(X)

+λ∥X∥∗︸ ︷︷ ︸
g(X)

MC5

leading to our familiar setting F = f + g where f is smooth and g is
convex.

One can apply proximal gradient methods (such as FISTA) to solver MC5.
The prox-operator is

proxλg(X) = argmin
U∈Rn×p

{
λg(U) +

1

2
∥U −X∥2F

}

LNV,SG,RG,TG Accelerated gradient methods (momentum). Other relevant examples in data science 141/257

Example (4 Matrix completion (Cont.))

For the nuclear norm g = ∥ · ∥∗
EXERCISE

proxλ∥·∥∗(X) = UΣproxV
⊤

where UΣV ⊤ is the SVD of X and

Σprox = diag (max{σi(X)− λ, 0}) .

What would be the prox-operator for g(·) = ∥ · ∥F ?

LNV,SG,RG,TG Accelerated gradient methods (momentum). Other relevant examples in data science 142/257

Example (4 Matrix completion (Cont.))

A ∈ R500×500 is formed from a subset of MovieLens dataset, where Aij

represents rating (from 1 to 5) of movie j by user i. Every movie has been
rated by just a number of users. Thus, many entries of A are missing.

Here is the performance of FISTA, ISTA, and subgradient method (SGM)
for completing A (by setting λ = 1 in MC5):

LNV,SG,RG,TG Accelerated gradient methods (momentum). Other relevant examples in data science 143/257

Presentation outline

1 Introduction to (convex) optimization models in data science: Classical
examples

2 Convexity and nonsmooth calculus tools for optimization. Rates of
convergence

3 Subgradient methods

4 Proximal gradient methods

5 Accelerated gradient methods (momentum). Other relevant examples
in data science

6 Limits and errors of learning. Introduction to (nonconvex) optimization
models in supervised machine learning

7 Stochastic gradient descent

8 Noise reduction methods

9 Other topics: Coordinate descent, ADMM, and Frank-Wolfe method

10 References

Our data set for analysis

D = {(aj , yj), j = 1, ..., N}

of features (aj) and labels (yj) will now be seen as a sample taken from
an input-output space

D ⊂ A× Y

The goal is still to learn a prediction function ϕ : A → Y that takes a
feature a and predicts a label ϕ(a).

We need to assume that a point (a, y) ∈ A× Y arises with a certain
(joint) probability PΩ.

LNV,SG,RG,TG Limits and errors of learning. Introduction to (nonconvex) optimization models in supervised machine
learning 145/257

Our goal is thus to find ϕ that minimizes the expected risk of
misclassification

R(ϕ) = PΩ[ϕ(a) ̸= y] = E[1(ϕ(a) ̸= y)]

where 1 is the logical indicator function (= 1 if the argument is true, = 0
otherwise).

Of course PΩ is generally unknown, and this is why one takes a sample D,
leading to the empiricial risk of misclassification

RN (ϕ) =
1

N

N∑
j=1

1(ϕ(aj) ̸= yj)

as an approximation or estimation of R(ϕ).

LNV,SG,RG,TG Limits and errors of learning. Introduction to (nonconvex) optimization models in supervised machine
learning 146/257

We have touched upon overfitting in Chapter 1: A ϕ that perfectly
minimizes RN (ϕ) may overfit D and perform poorly in A× Y.

In fact consider the prediction function of memorization type

ϕmem
N (a) =

{
yj if a = aj for some j,
any y otherwise.

One has RN (ϕmem
N) = 0, i.e., ϕmem

N is optimal for the training set D.

However, ϕmem
N will certainly perform badly outside D (and besides its

evaluation requires storing D).

LNV,SG,RG,TG Limits and errors of learning. Introduction to (nonconvex) optimization models in supervised machine
learning 147/257

Can we approximate minϕR(ϕ) with a sequence of predictions ϕN learned
from DN = D with N → ∞?

In other words, can we obtain

lim
N→∞

R(ϕN) = min
ϕ
R(ϕ)

Unfortunately there is a bad probability under which this does not happen
(the “no free lunch theorem”)

∀ϵ > 0, N ∈ N ∃PΩ for A× Y such that{
R(ϕ∗) = 0 for some ϕ∗ : A → Y
R(ϕN) ≥ 1

2 − ϵ for any prediction ϕN learned from DN

See Devroye, Györfi, and Lugosi 1996

LNV,SG,RG,TG Limits and errors of learning. Introduction to (nonconvex) optimization models in supervised machine
learning 148/257

Note that the above PΩ depends on N , thus so does R.

This is indeed a bit cheating. A stronger version says that

∀{ϵN} with ∃PΩ such that
ϵN > 0 and ϵN → 0 for A× Y{

R(ϕ∗) = 0 for some ϕ∗ : A → Y
R(ϕN) ≥ ϵN ∀N

Now PΩ does not depend on N but on the whole sequence {ϵN}.

LNV,SG,RG,TG Limits and errors of learning. Introduction to (nonconvex) optimization models in supervised machine
learning 149/257

Still, all of this tells us that we either restrict PΩ (generative approach) or
we restrict the class of predictions (discriminative approach).

The discriminative approach corresponds to the parameterization seen in
Chapter 1.

To know how to appropriately parameterize the class of prediction
functions, avoid overfitting, and learn the optimal parameters, we need to
understand better the relationship between the problems

1 min
ϕ∈Φ

R(ϕ) and min
ϕ∈Φ

RN (ϕ) 2

for a certain class Φ of prediction functions.

LNV,SG,RG,TG Limits and errors of learning. Introduction to (nonconvex) optimization models in supervised machine
learning 150/257

We will assume that the minimizers exist:

ϕ∗ is a minimizer of 1 ,

ϕN is a minimizer of 2 .

(ϕ∗ is the Bayes optimal function and R(ϕ∗) the Bayes error.)

First, we bound the regret

R(ϕN)−R(ϕ∗)

≤ [R(ϕN)−RN (ϕN)] + [RN (ϕN)−RN (ϕ∗)]︸ ︷︷ ︸
≤ 0

+[RN (ϕ∗)−R(ϕ∗)]

≤ sup
ϕ∈Φ

{R(ϕ)−RN (ϕ)}+ [RN (ϕ∗)−R(ϕ∗)]

LNV,SG,RG,TG Limits and errors of learning. Introduction to (nonconvex) optimization models in supervised machine
learning 151/257

To show that the second term goes to zero with N , we apply the
Hoeffding’s inequality:

Let Z1, . . . , ZN be independent bounded random variables
(Zi ∈ [a, b]). Then for any t > 0

PΩ

∣∣∣∣∣∣ 1N
N∑
j=1

Zj − E

 1

N

N∑
j=1

Zj

∣∣∣∣∣∣ > t

 ≤ 2 exp

(
−2Nt2

(b− a)2

)

LNV,SG,RG,TG Limits and errors of learning. Introduction to (nonconvex) optimization models in supervised machine
learning 152/257

In fact from there we have (EXERCISE)

Let ϕ be a measurable function from A to Y. Then

PΩ

[
|RN (ϕ)−R(ϕ)| ≤

√
1

2N
log

(
2

α

)]
> 1− α

for any α ∈ (0, 1).

By taking N → ∞ we thus see that RN (ϕ∗) tends to R(ϕ∗) with high
probability.

LNV,SG,RG,TG Limits and errors of learning. Introduction to (nonconvex) optimization models in supervised machine
learning 153/257

Bounding the first term supϕ∈Φ |R(ϕ)−RN (ϕ)| requires understanding
the complexity or capacity of the class of prediction functions Φ.

One such measure of complexity is the Vapnik-Chervonenkis (VC)
dimension:

Let Φ be a class of functions from A to Y.

The VC-dimension CΦ of Φ is the largest number of features
{a1, . . . , aCΦ

} such that for any label set {y1, . . . , yCΦ
}, ∃ϕ ∈ Φ that

correctly classifies the features.

LNV,SG,RG,TG Limits and errors of learning. Introduction to (nonconvex) optimization models in supervised machine
learning 154/257

A simple example is binary classification with linear predictions. Here
|Y| = 2 and ϕ are affine functions Rn → R. In the notation of Chapter 1,

ϕ(a;x) = ϕ(a;w, b) = a⊤w + b with x = (w, b)

One has (w, b) ∈ Rn+1 and the VC-dimension is n+ 1 (EXERCISE).

The VC-dimension of the space of polynomials of degree ≤ p would then

be

(
n+ p
n

)
, thus higher.

So, the gap between the expected and empirical risks is larger for higher
order polynomials since the higher capacity gives room to overfit a training
data set.

LNV,SG,RG,TG Limits and errors of learning. Introduction to (nonconvex) optimization models in supervised machine
learning 155/257

Using the VC-dimension one has:

Let Φ be a class of functions with VC-dimension CΦ. Then

PΩ

[
sup
ϕ∈Φ

|RN (ϕ)−R(ϕ)| ≤ O

(√
1

2N
log

(
2

α

)
+
CΦ

N
log

(
N

CΦ

))]

> 1− α 9

for any α ∈ (0, 1).

We see immediately that for a fixed Φ the error

sup
ϕ∈Φ

|R(ϕ)−RN (ϕ)| −−−−→
N→∞

0

with high probability (this result is of type PAC, probably approximately
correct).

LNV,SG,RG,TG Limits and errors of learning. Introduction to (nonconvex) optimization models in supervised machine
learning 156/257

To learn effectively we need to balance the complexity/capacity of the
predictions with the size of the training set.

Standard risk minimization is an approach where one chooses a structure,
i.e., a collection of nested prediction function families with increased
complexity.

Given the dependence of 9 on CΦ (of type CΦ log(1/CΦ)) there is a

point after which we should not further increase CΦ.

LNV,SG,RG,TG Limits and errors of learning. Introduction to (nonconvex) optimization models in supervised machine
learning 157/257

The experiment corresponding to this plot is roughly carried out by
forming a collection of subsets of a given family Φ (Φ contains several
classes of functions)

ΦC = {ϕ ∈ Φ : CΦ(ϕ) ≤ C}

where C is a hyperparameter. Then ϕ̄ is the minimizer of RN (ϕ) in ΦC .
See Vapnik 1998 and Vapnik and Chernovenkis 1974/79.

LNV,SG,RG,TG Limits and errors of learning. Introduction to (nonconvex) optimization models in supervised machine
learning 158/257

NOTE: This curve behavior is also observed when we replace C by the
time or effort taken in the learning/training phase (application of
optimization). However, we leave such an analysis for later in the course.

A common practice for choosing among prediction functions in a given
class (and thus estimate the gap between expected and empirical risks) is
to compare them using cross-validation.

The data split into three disjoint sets: training, validation, and testing

One first searches a small subset of viable candidates by minimizing
RN (ϕ) in the chosen prediction class using the training set.

From those candidates, one selects the prediction which has the best
performance in the validation set.

The testing set is only used to assess the generalized performance of the
prediction chosen.

LNV,SG,RG,TG Limits and errors of learning. Introduction to (nonconvex) optimization models in supervised machine
learning 159/257

Recent research has shown that convex models may not provide powerful
predictions.

One popular type of such nonconvex models is nonlinear regression, where
one minimizes

L(x) =
1

N

N∑
j=1

(
r(a⊤j w)− yj

)2
(x = w)

where remember D = {(aj , yj), j = 1, . . . , N} is the data set of features
and labels available for training.

In this case there is only one ridge function r (ridge because is only varies
along the directions aj ’s).

We have essentially a nonlinear least-squares problem.

LNV,SG,RG,TG Limits and errors of learning. Introduction to (nonconvex) optimization models in supervised machine
learning 160/257

Advances in nonconvex models have taken place in deep (or hierarchical)
learning, when training deep artificial neural networks.

An artificial neural network is a network of connected nodes (known as
units, neurons, or perceptrons) connected by edges (known as links).

They are inspired from the brain neural networks.

The nodes are typically arranged by layers between an input and output
layer.

LNV,SG,RG,TG Limits and errors of learning. Introduction to (nonconvex) optimization models in supervised machine
learning 161/257

a1

a2

a3

a4

a5

h01

h02

h03

h04

h05

h11

h12

h13

h14

y1

y2

y3

[W1]11

[W1]54

[W2]11

[W2]44

[W3]11

[W3]43

hidden layers

O
U
T
P
U
T

L
A
Y
E
RIN

P
U
T

L
A
Y
E
R

Ni number of inputs
N0 number of outputs

(Example taken from Curtis and Scheinberg 2017.)
LNV,SG,RG,TG Limits and errors of learning. Introduction to (nonconvex) optimization models in supervised machine
learning 162/257

The features are feed to the input layer. The subsequent layers are hidden
as their values are not observed from the outside (this will only happen in
the output layer).

The simple example above depicts a feed forward neural network where
edges only exist between nodes in a layer and subsequent layers.

The values are passed from one node in a layer to all nodes in the next
layer, after multiplication by connection weights (associated with each
edge), followed by adding a term (called the bias term).

LNV,SG,RG,TG Limits and errors of learning. Introduction to (nonconvex) optimization models in supervised machine
learning 163/257

At a given node, the value is further modified by the use of an activation
function (or gateway). Using the example above one has

hik

hi−1,1

[W
i]1,khi−1,2

[Wi]2,k

hi−1,3 [Wi]3,k

hi−1,4

[W
i]4,

k

hik = sik (
∑

l[Wi]lkhi−1,l + (wi)k)

bias termweightsactivation function

LNV,SG,RG,TG Limits and errors of learning. Introduction to (nonconvex) optimization models in supervised machine
learning 164/257

Finally, the last layer provides the value of the prediction functions ϕj(x),
j = 1, . . . , No, and the goal is to find the parameters x such
that ϕj(x) ≃ yj , j = 1, . . . , No.

The weights and the bias term are the parameters of the overall prediction
function.

In the above example, one has

W1 ∈ R4×5,W2 ∈ R4×4,W3 ∈ R3×4

and
w1 ∈ R4, w2 ∈ R4, w3 ∈ R3

a total of 59 parameters.

LNV,SG,RG,TG Limits and errors of learning. Introduction to (nonconvex) optimization models in supervised machine
learning 165/257

The activation function is responsible to the introduction of nonlinearity in
the prediction model (and can also be parameterized).

The idea is to mimic the behavior of a brain neuron (if the combined
energy inputed is large enough, the output of the neuron will be large too,
otherwise small), leading to the threshold function (τ is the threshold)

s(t) =

{
1 if t > τ
0 otherwise.

However, this function is discontinuous. Smooth versions of the threshold
function are the sigmoid and tanh functions

s(t) =
1

1 + e−t
, s(t) =

et − e−t

et + e−t

LNV,SG,RG,TG Limits and errors of learning. Introduction to (nonconvex) optimization models in supervised machine
learning 166/257

Another popular choice is the ReLU (rectified linear unit) (related to the
hinge loss of Chapter 1)

s(t) =

{
t if t > 0
0 otherwise,

and its variants (PReLU and LReLU).

At the end one computes ϕj(x), j = 1, . . . , No.

LNV,SG,RG,TG Limits and errors of learning. Introduction to (nonconvex) optimization models in supervised machine
learning 167/257

In deep learning, the graph structure is more complex.

In recurrent neural networks, for instance, there are recurrent constructions
where at least one node in a layer outputs its value to a node in a previous
layer.

This effect introduces memory in the network, making the model even
more expressive

Another example is convolutional neural networks that exploit inputs
consisting of images (which are inherently connected due to their spatial
relationship).

LNV,SG,RG,TG Limits and errors of learning. Introduction to (nonconvex) optimization models in supervised machine
learning 168/257

The resulting problems are slightly different from Chapter 1

minx L(x) =
∑No

j=1 ℓ(yj ;x) = ℓ(yj ;ϕj(x))

W ’s, w’s, etc.

and are highly nonconvex (with numerous saddle points and minimizers).

We obtain No output functions

ϕj(x) = ϕj(a1, . . . , aNi ;x), j = 1, . . . , No.

Note that this is a simple extension of the nonlinear regression loss

function given before. Why?

LNV,SG,RG,TG Limits and errors of learning. Introduction to (nonconvex) optimization models in supervised machine
learning 169/257

For optimization purposes, in neural networks it is possible to (efficiently)
compute the gradient of ϕj(x) for a given x by backpropagation (as in
automatic differentiation).

This is done first with a forward pass to compute function values and then
by a backward pass to get the derivative values (through the chain rule).

LNV,SG,RG,TG Limits and errors of learning. Introduction to (nonconvex) optimization models in supervised machine
learning 170/257

Finally, we remark that neural networks are universal approximations as
they approximate any continuous function well on arbitrary compact sets
— thus leading to expressiveness.

This can be seen from a feed forward neural network (with only one hidden
layer and one output node)

(W1)1 =

(W1)11
...

(W1)41


(W

2)1,1

(W2)2,1

(W
2
)3,1

LNV,SG,RG,TG Limits and errors of learning. Introduction to (nonconvex) optimization models in supervised machine
learning 171/257

One has

ψ(a) = ϕ(a;W,w) =

N1∑
l=1

(W2)l1 × s
(
(W1)

⊤
l a+ (w1)l

)
N1 is the number of nodes in the hidden layer.

The output unit is considered linear.

The following result was derived by Hornick 1991 (remember that Ni is
the number of inputs).

Let s be a nonconstant, bounded, and continuous function on a given
compact S. Then for any continuous function f on S and any ϵ > 0,

∃N1 ∈ N ∃w1 ∈ RN1 , (W1)l ∈ RNi , l = 1, . . . , N1, (W2)1 ∈ RN1

such that
|ψ(a)− f(a)| < ϵ ∀a ∈ S

LNV,SG,RG,TG Limits and errors of learning. Introduction to (nonconvex) optimization models in supervised machine
learning 172/257

The functions ψ are thus dense in the space of continuous functions on S.

This result was first proved by Cyberko 1989 for sigmoid activation
functions.

Training deep neural networks will depend on the design of the network
and on the choice of the starting point (for the optimization method).

LNV,SG,RG,TG Limits and errors of learning. Introduction to (nonconvex) optimization models in supervised machine
learning 173/257

Presentation outline

1 Introduction to (convex) optimization models in data science: Classical
examples

2 Convexity and nonsmooth calculus tools for optimization. Rates of
convergence

3 Subgradient methods

4 Proximal gradient methods

5 Accelerated gradient methods (momentum). Other relevant examples
in data science

6 Limits and errors of learning. Introduction to (nonconvex) optimization
models in supervised machine learning

7 Stochastic gradient descent

8 Noise reduction methods

9 Other topics: Coordinate descent, ADMM, and Frank-Wolfe method

10 References

We now turn our attention to optimization methods for large-scale
machine learning.

In supervised machine learning, one has access to a training data set
D = {(aj , yj), j ∈ {1, . . . , N}} of features and labels (which can come
all-at-once or incrementally). This data is typically independently drawn.

The goal is to find a prediction function ϕ that maps features to labels,
and we will assume that ϕ is parameterized by x, i.e., ϕ(x) = ϕ(a;x).

Misclassification is quantified by a loss function ℓ.

The expected risk of misclassification of Chapter 6

R(ϕ) = PΩ[ϕ(a) ̸= y] = E[1(ϕ(a) ̸= y)]

is thus written as

R(x) =

∫
ℓ(y;ϕ(a;x))︸ ︷︷ ︸

ℓ(a,y;x) in Chapter 1

dPΩ(a, y)

LNV,SG,RG,TG Stochastic gradient descent 175/257

The empirical risk of misclassification of Chapter 6

RN (ϕ) =
1

N

N∑
j=1

1(ϕ(aj) ̸= yj)

is thus written as

RN (x) =
1

N

N∑
j=1

ℓ(yj ;ϕ(aj ;x)).

We will focus on the minimization of RN (x) without any regularization
term being added.

For the sake of a simple notation let f be the composition of the loss
function ℓ and the prediction function ϕ.

As in Chapter 6, let us also consider the data set as a sample taken from
an input-output space A× Y.

LNV,SG,RG,TG Stochastic gradient descent 176/257

For simplicity, we represent a sample or a set of samples by a random
seed ξ. Then, a set of realizations {ξ[j]}Nj=1 corresponds to a sample
set {(aj , yj), j = 1, . . . , N}.

The loss incurred by the parameter vector x with respect to the j–th
sample is represented as

fj(x) = f(x; ξ[j]).

The empirical risk of misclassification is then written as

RN (x) =
1

N

N∑
j=1

fj(x).

In an optimization algorithm, k has been denoting in this course the
iteration counter. Then, ξk will denote the seed random variable at
iteration k.

LNV,SG,RG,TG Stochastic gradient descent 177/257

There are two main classes of algorithms for machine learning: stochastic
and batch.

In the first class we find the stochastic gradient (SG) method (Robbins
and Monro, 1951):

xk+1 = xk − αk∇fjk(xk)

where jk is randomly generated from {1, . . . , N} (and thus there is an
underlying ξ[jk]).

Notes:

Each iteration is very cheap (only one gradient calculation)

{xk} is no longer a sequence but a stochastic process determined
by {jk}.
∇fjk(xk) might not be descent direction from xk (although it could
be in expectation).

LNV,SG,RG,TG Stochastic gradient descent 178/257

In the second class, we find the gradient, batch gradient, or full gradient
method:

xk+1 = xk − αk∇RN (xk)= xk −
αk

N

N∑
j=1

∇fj(xk)



Notes:

Each iteration is much more expensive but one may expect to take
better steps.

The method can benefit from parallelization in a distributed manner.

The use of the full gradient opens the door to all type of
gradient-based nonlinear optimization.

LNV,SG,RG,TG Stochastic gradient descent 179/257

In Stochastic Optimization, the stochastic gradient is a stochastic
approximation (SA) technique whereas the batch gradient method is a
sample average approximation (SAA) approach.

There are several reasons why the SG method could be preferable
compared to the batch gradient one:

(1) Many large-scale training sets involve redundancy, thus using all the
data in every optimization iteration is inefficient (imagine if the
training set consists of a series of repeated copies of a subset).

Also when using the training/validation/testing sets, one could argue
against using all the data in the training set to make prediction on the
unseen (testing) data.

LNV,SG,RG,TG Stochastic gradient descent 180/257

(2) SG typically makes a very fast initial improvement followed by a
slowdown after 1 or 2 epochs (1 epoch = each set of N consecutive
accesses):

(Although to obtain such a behavior one needs to run SG for a certain
problem using different choices for the stepsize αk = α and identify the
best α.)

LNV,SG,RG,TG Stochastic gradient descent 181/257

Performance of SG on a logistic regression problem with randomly
generated 300 samples in dimension 3:

0 0.5 1 1.5 2 2.5 3
accessed data points 10 4

10 -2

10 -1

10 0

10 1

10 2

em
pi

ric
al

 r
is

k

SGD

LNV,SG,RG,TG Stochastic gradient descent 182/257

Bertsekas 2015 came up with the following example to explore the
slowdown of SG:

Each fj in RN (x) = 1
N

∑N
j=1 fj(x) is a convex quadratic with zero

minimal value and minimizers x∗j evenly distributed in [−1, 1] such that
the minimizer of RN (x) is x∗ = 0.

If we start SG with x1 ≪ −1, the method will move to the right, but after
a while, close to x∗, the method will enter a region of confusion and will
move very slowly.

LNV,SG,RG,TG Stochastic gradient descent 183/257

(3) There is also convincing theoretical motivation.

Suppose RN is strongly convex with minimizer x∗ and R∗
N = RN (x∗).

Then the rate of convergence of the batch method is (see Chapter 4):

RN (xk)−R∗
N = O(rk), with r ∈ (0, 1)

corresponding to a WCC bound of

O(log(1/ϵ))

to reach a gradient of RN of the size ϵ.

Since the cost is proportional to N (to compute ∇RN (xk)) the total work
is

O(N log(1/ϵ)).

LNV,SG,RG,TG Stochastic gradient descent 184/257

On the other hand, the rate of convergence of the SG method (when jk is
uniformly distributed from {1, . . . , N}) is (see later in this chapter)

E [RN (xk)−R∗
N] = O(1/k)

corresponding to a total WCC bound of O(1/ϵ), without any dependence
from N .

In the big data regime, N could be large enough to make N log(1/ϵ)
worse than 1/ϵ.

LNV,SG,RG,TG Stochastic gradient descent 185/257

As we will see also later in this chapter, SG yields the same rate of
convergence in the expected risk

E [R(xk)−R∗] = O(1/k), with R∗ the minimal value of R,

if we consider xk+1 = xk − αk∇f(xk; ξk) with ξk drawn from the joint
distribution PΩ.

In such stochastic optimization setting, the batch method may not be
viable as it requires the computation of ∇R.

In turn, the SG method yields the same rate of convergence as for the
empirical risk.

LNV,SG,RG,TG Stochastic gradient descent 186/257

There is also an argument (Bousquet and Bottou 2008) supporting the
idea that the empirical risk does not have to be minimized accurately
(thus making SG even more attractive):

Let x̂ϵ be an ϵ-accurate solution of minRN (x) (which is assumed to have
a solution x̂∗):

RN (x̂ϵ) ≤ RN (x̂∗) + ϵ

Then, for the expected risk minimization problem minR(x) (assumed to
have a solution x∗), one has

R(x̂ϵ)−R(x∗) ≤ [R(x̂ϵ)−RN (x̂ϵ)]

+ [RN (x̂ϵ)−RN (x̂∗)]︸ ︷︷ ︸
≤ϵ

+ [RN (x̂∗)−R(x∗)]︸ ︷︷ ︸
≤RN (x∗)−R(x∗)

LNV,SG,RG,TG Stochastic gradient descent 187/257

Hence the first and third term are of (see Chapter 6)

O

(√
log(2/α) + 2 log(N)(C/ log(C))

2N

)
where C = CΦ is the complexity constant of a class Φ of prediction
functions assumed fix in this argument.

Our goal is to compute an θ-accurate solution for the expected risk

R(x̂∗) ≤ R(x∗) + θ

From the previous derivation we achieve this with x̂ϵ if

O

(√
log(2/α) + 2 log(N)(C/ log(C))

2N

)
≤ θ

4
and ϵ ≤ θ

2

From the first inequality above

N

log(N)
≥ O(θ−2)

thus N ≥ O(θ−2).
LNV,SG,RG,TG Stochastic gradient descent 188/257

The batch gradient method has thus a cost of O(N) = O(θ−2) per
iteration.

The SG, in turn, has a O(1) cost per iteration.

Hence the SG dominates the batch as long as it reaches an θ
2 -accurate

solution in fewer than O(θ−2) iterations.

When RN is strongly convex, SG complexity bound is O(1/ϵ) (see later in
this chapter). Since ϵ ≃ θ/2, the cost is O(θ−1).

When RN is just convex, SG complexity bound is O(ϵ−2) thus still
O(θ−2). But, in this case, the batch gradient method converges in
O(Nϵ−0.5) in an acceleration mode thus O(θ−2.5) and SG is still
dominant.

LNV,SG,RG,TG Stochastic gradient descent 189/257

We now analyze the SG method but we will do it (following Bottou,
Curtis, and Nocedal 2018) in a general setting of minimizing an obj.
function S : Rn → R where S(x) represents

either E [f(x; ξ)] = R(x) (expected risk)

or 1
N

∑N
j=1 fj(x) = RN (x) (empirical risk)

LNV,SG,RG,TG Stochastic gradient descent 190/257

Each iteration of the general stochastic gradient (GSG) method is of the
form:

k
=

0,
1
,.
.. Generate a realization of ξk, and from there ...

... compute a stochastic direction g(xk; ξk).
Choose a step-size αk > 0.

Set the new iterate xk+1 = xk − αkg(xk; ξk).

We assume that {ξk} is a sequence of jointly independent random
variables.

In the case S = RN , one can pick samples uniformly from {1, . . . , N} and
replacing them into the set, corresponding to sampling from a discrete
distribution (with uniform weights).

In the case S = R, one can pick samples according to the joint
distribution PΩ (in the feature/label setting).

LNV,SG,RG,TG Stochastic gradient descent 191/257

The random variable ξk can be seen as a seed for generating the stochastic
direction.

The stochastic direction g(xk; ξk) could be

∇f(xk; ξk) = ∇fjk(xk) now called simple or basic SG

1

|Bk|
∑
j∈Bk

∇f(xk; ξk,j)︸ ︷︷ ︸
∇fj(xk)

known as mini-batch SG

(|Bk| is the mini-batch size)

(The original version of Robbins and Monro covers both as they actually
worked with a unbiased estimator of ∇S(xk).)

The function S (representing either empirical or expected risk) will be
assumed to have Lipschitz continuous gradient ∇S (with constant
L∇S > 0).

LNV,SG,RG,TG Stochastic gradient descent 192/257

Recall then from Chapter 1 that

S(x)− S(x̄) ≤ ∇S(x̄)⊤(x− x̄) +
1

2
L∇S∥x− x̄∥2

From this we obtain for the GSG method:

Eξk [S(xk+1)]− S(xk) ≤ − αk∇S(xk)⊤Eξk [g(xk; ξk)]

+
1

2
α2
kL∇SEξk

[
∥g(xk; ξk)∥2

]
(∗)

Note that Eξk [S(xk+1)] is an expectation w.r.t. ξk, and S(xk+1) does
depend on ξk.

Proof.

One takes expectations in the inequality

S(xk+1)− S(xk) ≤ ∇S(xk)⊤(xk+1 − xk) +
1

2
L∇S∥xk+1 − xk∥2

= −αk∇S(xk)⊤g(xk; ξk) +
1

2
L∇Sα

2
k∥g(xk; ξk)∥2

noting that xk does not depend on ξk.
LNV,SG,RG,TG Stochastic gradient descent 193/257

If g(xk; ξk) is an unbiased estimator of ∇S(xk),

Eξk [g(xk; ξk)] = ∇S(xk),

and then

Eξk [S(xk+1)]− S(xk) ≤ −αk∥∇S(xk)∥2 +
1

2
α2
kL∇SEξk [∥g(xk; ξk)∥

2]

So we need such an assumption but we see that it can be weakened to

A.1 ∃µG ≥ µ > 0 : ∀k

∇S(xk)⊤Eξk [g(xk; ξk)] ≥ µ∥∇S(xk)∥2

∥Eξk [g(xk; ξk)]∥ ≤ µG∥∇S(xk)∥

LNV,SG,RG,TG Stochastic gradient descent 194/257

We also see that we need to bound the second order moment of g(xk; ξk).
We will see that is enough to also impose:

A.2 ∃M,MV ≥ 0 : ∀k

Vξk [g(xk; ξk)] ≤ M +MV ∥∇S(xk)∥2

In fact from A.2 and A.1 (second inequality) we obtain

(∗∗)
Eξk

[
∥g(xk; ξk)∥2

]
= Vξk [g(xk; ξk)] + ∥Eξk [g(xk; ξk)] ∥2
≤ M + (MV + µ2G︸ ︷︷ ︸

=MG≥µ2>0

)∥∇S(xk)∥2

LNV,SG,RG,TG Stochastic gradient descent 195/257

Finally, we will also assume that {xk} is contained in a set where S is
bounded (say by Slow)

Using (*) and A.1 and A.2

(□)
Eξk [S(xk+1)]− S(xk) ≤ −

(
µ− 1

2αkL∇SMG

)
αk∥∇S(xk)∥2

+1
2α

2
kL∇SM

Proof.

First (*) then A.1 (first inequality), then (**).

LNV,SG,RG,TG Stochastic gradient descent 196/257

NOTES:

1 The random variable xk+1 depends only on xk, ξk, and αk, and not
on any past iterates (Markovian behavior).

2 The first term in the upper bound is negative for small αk, yielding a
decrease proportional to ∥∇S(xk)∥2. However, the second term could
be large enough to allow for an increase...

The analysis of the GSG method is first established for strongly convex
obj. functions S (recall from Chapter 1)

9 ∃µS > 0 : S(x̄) ≥ S(x) +∇S(x)⊤(x̄− x) +
µS
2
∥x̄− x∥2 ∀x, x̄

Let x∗ be the unique minimizer of S and S∗ = S(x∗) = Slow.

LNV,SG,RG,TG Stochastic gradient descent 197/257

Strong convexity of S implies

($) 2µS(S(x)− S∗) ≤ ∥∇S(x)∥2 ∀x

The proof is left as an EXERCISE. Hint: Use 9 with x̄ = x∗ and note
that x− 1

µS
∇S(x) is the minimizer of the quadratic on the right-hand-side

with optimal value S(x)− 1
2µS

∥∇S(x)∥2.

Remember also from Chapter 1 that L∇S ≥ µS .

In the next statements and proofs E[·] will denote the expected value
taken w.r.t. the joint distribution of all random variables.

Example: xk is completely determined by all realizations of ξ0, . . . , ξk−1.
Hence, the total expectation of S(xk) is

E[S(xk)] = Eξ0Eξ1 . . . Eξk−1
[S(xk)]

LNV,SG,RG,TG Stochastic gradient descent 198/257

We first state the result for a fixed stepsize. It is only possible to prove
convergence for a neighborhood of the optimal value as, despite
∇S(xk) → 0, the second term in the RHS of (□) may remain constant.

If αk = ᾱ ∀k with 0 < ᾱ ≤ µ
L∇SMG

, then

E[S(xk)−S∗] ≤ ᾱL∇SM

2µSµ
+(1− ᾱµSµ)

k

(
S(x0)− S∗ −

ᾱL∇SM

2µSµ

)
Hence, this upper bound on the expected optimality gap tends (as
k → ∞) to ᾱL∇SM

2µSµ
.

Proof.

EXERCISE ... See Curtis et al. 2018.

LNV,SG,RG,TG Stochastic gradient descent 199/257

One recovers the context of the (deterministic) gradient method when:

1 g(xk; ξk) is an unbiased estimate of ∇S(xk) (µG = 1) and there is no
noise in g(xk; ξk) (MV = 0), thus MG = 1 and ᾱ ∈ (0, 1/L∇S].

2 There is no noise in g(xk; ξk) (M =MV = 0) or the noise decays with
∥∇S(xk)∥2 (M = 0), thus obtaining a linear rate of convergence.

When g(xk; ξk) is noisy one still obtains a linear rate until the noise
(M > 0) prevents further progress.

Selecting a smaller step size ᾱ allows then to arrive closer to the optimal
value but worsens the contraction in the linear rate.

This suggests a strategy to reduce ᾱ when progress stalls (see Curtis et al.
2018).

LNV,SG,RG,TG Stochastic gradient descent 200/257

We now state and prove a sublinear rate of convergence of the expected
optimality gap for diminishing stepsizes, i.e., αk satisfying

∞∑
k=0

αk = ∞ and
∞∑
k=0

α2
k < ∞

(as in the original work of Robbins and Monro).

If αkL∇SMG ≤ α0L∇SMG ≤ µ for all k, then from (□) and ($)

Eξk [S(xk+1)]− S(xk) ≤ −1

2
αkµ∥∇S(xk)∥2 +

1

2
α2
kL∇SM

≤ −αkµSµ(S(xk)− S∗) +
1

2
α2
kL∇SM

and subtracting S∗ and taking total expectations

(×) E[S(xk+1)− S∗] ≤ (1− αkµSµ)E[S(xk)− S∗] +
1
2α

2
kL∇SM

From this point one can easily prove the main result.
LNV,SG,RG,TG Stochastic gradient descent 201/257

If αk = β
k+γ with γ > 0, β > 1

µSµ
and α0 ≤ µ

L∇SµG
, then

E[S(xk)− S∗] ≤ ν

k + γ

where ν = max
{

β2L∇SM
2(βµSµ−1) , γ(S(x0)− S∗)

}
The expected optimality gap converges to zero at a sublinear rate of 1/k.

Proof.

From the definition of ν

E(S(x0)− S∗) = S(x0)− S∗

= γ
S(x0)− S∗

γ
≤ ν

0 + γ

and the result holds for k = 0.

LNV,SG,RG,TG Stochastic gradient descent 202/257

Proof.

The result is thus proved by induction. It follows from (×) and
αk = β

k+γ ≡ β

k̂

E [S(xk+1)− S∗] ≤
(
1− βµSµ

k̂

)
ν

k̂
+
β2L∇SM

2k̂2

=

(
k̂ − βµSµ

k̂2

)
ν +

β2L∇SM

2k̂2

=

(
k̂ − 1

k̂2

)
ν−

(
βµSµ− 1

k̂2

)
ν +

β2L∇SM

2k̂2︸ ︷︷ ︸
≤0 from the definition of ν

≤ ν

k̂

The last inequality follows from k̂ − 1 ≤ k̂.

LNV,SG,RG,TG Stochastic gradient descent 203/257

Strong convexity played a major role in contracting the expected
optimality gap.

The strong convexity parameter µS did not constrain the step size ᾱ for
fixed step sizes but for diminishing stepsizes one can see that β has to be
larger than 1/(µSµ), and this was critical to get the 1/k rate.

See Curtis et al. 2018 for:

– Role of the initial point.

– Trade-offs of mini-batching.

Many problems in deep learning exhibit a nonconvex function S. One can
still prove convergence of the GSG method, but now only towards first
order stationarity.

LNV,SG,RG,TG Stochastic gradient descent 204/257

Here are such results for fixed and diminishing stepsizes.

If αk = ᾱ ∀k with 0 < ᾱ ≤ µ
LMG

, then the expected average-squared
gradients of S satisfy

E

[
1

K

K∑
k=1

∥∇S(xk)∥2
]

≤ ᾱL∇SM

µ
+ 2

(S(x0)− Slow)

Kµᾱ

and this upper bound tends to ᾱL∇SM
µ when K → ∞.

Note that the lower bound Slow on S(xk) appears in the bound.

Remember that min
0≤i≤k−1

∥∇f(xi)∥ converged to zero at a rate of 1/
√
k for

the deterministic gradient method (Chapter 4). When M = 0 we somehow
recover this result.

LNV,SG,RG,TG Stochastic gradient descent 205/257

Similar conclusions as in the strongly convex case can be drawn here
regarding how the choice of ᾱ impacts the two terms in the lower bound.

If
∑∞

k=0 αk = ∞ and
∑∞

k=0 α
2
k <∞, then

lim
K→∞

E

[
1

AK

K∑
k=0

αk∥∇S(xk)∥2
]

= 0

where AK =
∑K

k=0 αk.

In the case of diminishing stepsizes the expected norm of gradient cannot
stay bounded away from zero. In fact, it is possible to prove

lim inf
k→∞

E
[
∥∇S(xk)∥2

]
= 0.

It is also possible to prove convergence of ∥∇S(xk)∥ to zero in probability
and to have lim instead of lim inf under stronger assumptions (see Curtis
et al. 2018).

LNV,SG,RG,TG Stochastic gradient descent 206/257

Presentation outline

1 Introduction to (convex) optimization models in data science: Classical
examples

2 Convexity and nonsmooth calculus tools for optimization. Rates of
convergence

3 Subgradient methods

4 Proximal gradient methods

5 Accelerated gradient methods (momentum). Other relevant examples
in data science

6 Limits and errors of learning. Introduction to (nonconvex) optimization
models in supervised machine learning

7 Stochastic gradient descent

8 Noise reduction methods

9 Other topics: Coordinate descent, ADMM, and Frank-Wolfe method

10 References

SG suffers from noisy gradient estimates. Besides, the proved rate was
only sublinear (for diminishing stepsizes). A fixed stepsize can prevent
convergence.

Noise reduction methods have been developed to reduce the error in
gradient estimates and/or sequence of iterates.

The three main classes of noise reduction methods are:

Dynamic sampling (increase the mini-batch size)

Gradient aggregation (store and update gradient estimates of previous
iterates, define search direction as weighted averages of these estimates)

Both achieve a linear rate for a fixed step size (for the empirical risk,
assumed strongly convex).

Iterative averaging (maintain an average of previous iterates)

It remains sublinear, O(1/k).

LNV,SG,RG,TG Noise reduction methods 208/257

We will follow again here the main lines in Bottou, Curtis, and Nocedal
2018.

Recall (valid for both expected risk S = R and empirical risk S = RN):

Eξk [S(xk+1)]− S(xk) ≤ −αk∇S(xk)⊤Eξk [g(xk; ξk)]

+
1

2
α2
kL∇SEξk

[
∥g(xk; ξk)∥2

]
If −g(xk; ξk) was a descent direction in expectation (first term negative),
we see that by decreasing Eξk

[
∥g(xk; ξk)∥2

]
like ∥∇S(xk)∥2 would, then

we can achieve similar rates as in the full or batch gradient method.

In fact, assuming ∇S Lipschitz continuous, S strongly convex, A.1 and

A.2 , one does achieve a linear rate if the variance of the stochastic

vectors decreases geometrically:

LNV,SG,RG,TG Noise reduction methods 209/257

If ᾱk = α ∀k with 0 < ᾱ ≤ min
{

µ
L∇Sµ

2
G
, 1
µSµ

}
and if

∃M > 0∃ξ ∈ (0, 1) Vξk [g(xk; ξk)] ≤ Mξk ∀k V

then
E[S(xk)− S∗] ≤ ωρk

with

ω = max

{
ᾱL∇SM

µsµ
, S(x0)− S∗

}
and

ρ = max
{
1− ᾱµSµ

2
ξ
}
< 1

The proof is as follows:

LNV,SG,RG,TG Noise reduction methods 210/257

Using V and αk = ᾱ

Eξk [S(xk+1)]− S(xk) ≤ −µᾱ∥∇S(xk)∥2

+
1

2
ᾱ2L∇S

(
µ2G∥∇S(xk)∥2 +Mξk

)
Using the value of ᾱ and strong convexity

= −
(
µ− 1

2
ᾱL∇Sµ

2
G

)
ᾱ∥∇S(xk)∥2 +

1

2
ᾱL∇SMξk

≤ −1

2
µᾱ∥∇S(xk)∥2 +

1

2
ᾱL∇SMξk

≤ −ᾱµSµ(S(xk)− S∗) +
1

2
ᾱL∇SMξk

Introducing S∗ and taking total expectation yield

E[S(xk+1)− S∗] ≤ (1− ᾱµSµ)E[S(xk)− S∗] +
1

2
ᾱL∇SMξk

and the proof can be concluded by induction.
LNV,SG,RG,TG Noise reduction methods 211/257

Dynamic Sample Size Methods

Consider the minibatch method with fixed stepsize of the type

g(xk; ξk) =
1

|Bk|
∑
j∈Bk

∇f(xk; ξk,j)

with |Bk| = ⌈τk⌉ and τ > 1

xk+1 = xk − ᾱg(xk; ξk)

We now assume that the expectation of each stochastic gradient

∇f(xk; ξk,j) is ∇S(xk). Hence, A.1 is satisfied with µ = µG = 1.

LNV,SG,RG,TG Noise reduction methods 212/257

If in addition, {ξk,j}j∈Bk
are drawn independently according to PΩ and

if ∃M > 0 Vξk [∇f(xk; ξk,i)] ≤M for all k, i, then

Vξk [g(xk; ξk)] =
1

|Bk|
∑
j∈Bk

Vξk [∇f(xk; ξk,j)]

≤ M

|Bk|
≤ M

⌊
1

τ

⌋k
for an arbitrary k, j.

One can now apply the previous result and conclude that the minibatch
with unbiased gradient estimates (and |Bk| = ⌈τk⌉, τ > 1) drives the
optimal value linearly to zero, for strongly convex functions.

LNV,SG,RG,TG Noise reduction methods 213/257

We have seen that SG (one gradient evaluation per iteration) has a total
effort of O(ϵ−1) in gradient evaluations to achieve E[S(xk)− S∗] in the
strongly convex case (rate 1/k).

One can select τ appropriately, τ ∈
(
1,
(
1− ᾱµSµ

2

)−1
]
, to make the

minibatch achieve a similar bound O(ϵ−1) in gradient evaluations. (See
the details in Curtis et al. 2018, and the discussion before Subsection
5.2.1.)

Prechoosing τ before a run of the algorithm or choosing it dynamically
may be difficult in practice.

LNV,SG,RG,TG Noise reduction methods 214/257

An alternative is to choose the sample size adaptively according to the
optimization process. Here is such an idea (see references in Curtis et al.
2018):

First observe that g(xk; ξk) is a descent direction for S at xk if, for some
χ ∈ [0, 1),

δ(xk; ξk) ≡ ∥g(xk; ξk)−∇S(xk)∥ ≤ χ∥g(xk; ξk)∥. ⊗

In fact, since ∥∇S(xk)∥ ≥ (1− χ)∥g(xk; ξk)∥ one has

∇S(xk)⊤g(xk; ξk) ≥ 1

2
(1− χ2)∥g(xk; ξk)∥2 +

1

2
∥∇S(xk)∥2

≥ 1

2

(
1− χ2 + (1− χ)2

)
∥g(xk; ξk)∥2

= (1− χ)∥g(xk; ξk)∥2

LNV,SG,RG,TG Noise reduction methods 215/257

Then, if we assume that g(xk; ξk) is an unbiased gradient estimate

E
[
δ(xk; ξk)

2
]
= E

[
∥g(xk; ξk)−∇S(xk)∥2

]
= Vξk [g(xk; ξk)]

This quantity can in turn be approximated by

Vξk [δ(xk; ξk)] ≃
trace (Cov ({∇f(xk; ξk,j)}j∈Bk

))

|Bk|
≡ φk

An adaptive sampling algorithm would test (see ⊗)

φk ≤ χ2∥g(xk; ξk)∥2

in conjunction with |Bk| increasing at a geometric rate.

LNV,SG,RG,TG Noise reduction methods 216/257

Gradient Aggregation

These methods achieve a lower variance by reusing/revisiting past
computed information. They converge linearly for strongly convex
empirical risks.

SVRG (stochastic variance reduced gradient) applied to S = RN

Inner cycle:

jl chosen randomly

g̃l = ∇fjl(x̃l)−

∇fjl(xk)−∇RN (xk)︸ ︷︷ ︸
diff


x̃l+1 = x̃l − αg̃l

Since the expected value of ∇fjl(xk) is ∇RN (xk), diff is the bias in
∇fjl(xk).

LNV,SG,RG,TG Noise reduction methods 217/257

g̃l is an unbiased estimator of ∇RN (x̃l) but with variance expected to be
lower than ∇fjl(x̃l).

Here is the main algorithm:

For k = 0, 1, . . .

Compute batch gradient ∇RN (xk)

Initialize x̃1 = xk.

For l = 1, . . . ,m
inner cycle

end

xk+1 = x̃m+1 or xk+1 =
1
m

∑m
l=1 x̃l+1 or xk+1 = x̃i+1 (i chosen

uniformly in {1, . . . ,m})

LNV,SG,RG,TG Noise reduction methods 218/257

The linear rate is achieved for S = RN strongly convex choosing m and ᾱ
such that (Johnson and Zhang 2013):

ρ ≡ 1

1− 2ᾱL∇S

(
1

mµSᾱ
+ 2L∇Sᾱ

)
< 1

In practice m and ᾱ are chosen by experimentation.

The result is (S = RN)

E[S(xk+1)− S∗] ≤ ρE[S(xk)− S∗]

LNV,SG,RG,TG Noise reduction methods 219/257

SAGA (stochastic average gradient approximation)
Defazio, Bach, Lacoste-Julien 2014

It computes at each iteration an average of stochastic gradients evaluated
before.

Gradient computation:

Choose l randomly in {1, . . . , N}

Compute ∇fl(xk)

gk = ∇fl(xk)−∇fl(x[l]) + 1
N

∑N
j=1∇fj(x[j])

LNV,SG,RG,TG Noise reduction methods 220/257

Again one has E[gk] = ∇RN (xk), but with variance expected lower than
in SG.

SAGA requires an initialization phase but then the cost per iteration is as
in SG.

For j = 1, . . . , N

Compute ∇fj(x0) and store ∇fj(x[j]) = ∇fj(x0)
end
For k = 0, 1, . . .

Gradient computation

Store ∇fl(x[l]) = ∇fl(xk)
xk+1 = xk − αgk

LNV,SG,RG,TG Noise reduction methods 221/257

For a strongly convex S = RN , taking

ᾱ =
1

2(µSN + L∇S)
,

one has

E
(
∥xk − x∗∥2

)
≤
(
1− µS

2(µSN + L∇S)

)k+1 [
∥x0 − x∗∥2 +

ND

µSN + L∇S

]
where D = S(x0)−∇S(x∗)⊤(x0 − x∗)− S(x∗).

Again the choice of ᾱ depends on the unknown constants µS and L∇S .
(The choice ᾱ = 1/(3L∇S) works when µS is not known.)

LNV,SG,RG,TG Noise reduction methods 222/257

NOTES:
1 Storing N gradients could be prohibitive, but in logistic and least

squares regression

∇fj(xk) = f̂ ′(a⊤j xk)aj when fj(x) = f̂(a⊤j x)

for a certain f̂ , and the features {a1, . . . , aN} are already stored.
2 In the precursor SAG (stochastic average gradient), gk is biased for

∇RN (xk) but the linear rate is preserved:

gk =
1

N

∇fl(xk) +∇fl(x[l]) +
N∑
j=1

∇fj(x[j])


3 In all these methods (SVRG, SAGA, SAG) the complexity bound is of

the form

O
([
N +

L∇S

µS

]
log(1/ϵ)

)
For very large N , gradient aggregation is comparable to batch and it
becomes difficult to beat SG. But it may be better when
N < (or ≪) L∇S

µS
.

LNV,SG,RG,TG Noise reduction methods 223/257

Comparison among SG, SVRG, and SAGA algorithms on a logistic
regression problem with randomly generated 300 samples in dimension 3:

0 1 2 3 4 5 6
Number of gradient calculations 10 4

10 -10

10 -8

10 -6

10 -4

10 -2

10 0

10 2

O
pt

im
al

ity
 g

ap

SGD
SVRG
SAGA

Both SVRG and SAGA perform better than SG.

Linear convergence rate of SVRG and SAGA is observed.

LNV,SG,RG,TG Noise reduction methods 224/257

Iterative Averaging Methods

SG generates noisy iterates which may tend to oscillate around minimizers
during an optimization run.

A natural idea is then to average the iterates:

xk+1 = xk − αkg(xk; ξk)

x̃k+1 =
1

k + 1

k+1∑
i=1

xi

Note that {x̃k+1} has no effect on {xk}.

LNV,SG,RG,TG Noise reduction methods 225/257

Choosing a (longer) diminishing stepsize of O(1/ka), a ∈ (12 , 1), it is
possible to attain a rate of E(∥x̃k − x∗∥2) = O(1/k) for strongly convex
functions (while only E(∥xk − x∗∥2) = O(1/ka))

Iterative averaging has led to various other schemes with longer stepsizes
(robust SA, mirror descent SA, primal-dual averaging).

LNV,SG,RG,TG Noise reduction methods 226/257

Presentation outline

1 Introduction to (convex) optimization models in data science: Classical
examples

2 Convexity and nonsmooth calculus tools for optimization. Rates of
convergence

3 Subgradient methods

4 Proximal gradient methods

5 Accelerated gradient methods (momentum). Other relevant examples
in data science

6 Limits and errors of learning. Introduction to (nonconvex) optimization
models in supervised machine learning

7 Stochastic gradient descent

8 Noise reduction methods

9 Other topics: Coordinate descent, ADMM, and Frank-Wolfe method

10 References

Coordinate descent (CD) methods take steps along coordinate directions:
the objective function S : Rn → R is minimized over a single variable while
all others are kept fixed.

k-th iteration:

xk+1 = xk − αk∇ikS(x
k)eik , with ∇ikS(x

k) =
∂S

∂xik
(xk)

where

xik represents the ik-th element of the vector x

eik represents the ik-th coordinate vector for some ik ∈ {1, . . . , n}

The CD methods are defined by choosing the sequences {αk} and {ik}
(see next slide).

LNV,SG,RG,TG Other topics: Coordinate descent, ADMM, and Frank-Wolfe method 228/257

(1) Two approaches to choose {αk}
1 ensure exact one-dimensional minimization of S along the i-th

coordinate vector

→ desirable when S(x) = q(x) + ∥x∥1, with q convex quadratic

2 ensure sufficient reduction in S

(2) At least three ways of choosing {ik}

1 by cycling through {1, . . . , n}

2 by cycling through a random reordering of the indices in {1, . . . , n}

3 by choosing an index randomly with replacement in each iteration

Randomized CD algorithms (items 2 and 3 above) have superior
theoretical properties.

LNV,SG,RG,TG Other topics: Coordinate descent, ADMM, and Frank-Wolfe method 229/257

A CD method is not guaranteed to converge when applied to minimize any
given continuously differentiable function.

Example (Powell 1973)

Nonconvex continuously differentiable function

S (x1, x2, x3) = − (x1x2 + x2x3 + x1x3) +

3∑
i=1

max{|xi| − 1, 0}2

with minimizers at (1, 1, 1)⊤ and (−1,−1,−1)⊤.

We can find initial points such that CD with (1).1 and (2).1 cycles
without converging to a solution.

The figure is reproduced from Wright 2015.

LNV,SG,RG,TG Other topics: Coordinate descent, ADMM, and Frank-Wolfe method 230/257

In the nonsmooth case, a CD method may get stuck at points that are not
minimizers of the function.

Example (Beck 2017)

Nonsmooth convex function

S (x1, x2) = |3x1 + 4x2|+ |x1 − 2x2|

with minimizer at (0, 0)⊤.

If the initial point does not contain any zero elements, CD with (1).1 gets
stuck after one iteration at a point (−4α, 3α), with α ∈ R

LNV,SG,RG,TG Other topics: Coordinate descent, ADMM, and Frank-Wolfe method 231/257

If S is strongly convex, one can establish a linear rate of convergence for
CD methods under fixed stepsize.

Assumptions:

1 S strongly convex with constant µS > 0

2 ∇S is coordinate-wise Lipschitz continuous:

For all x ∈ Rn, i ∈ {1, . . . , n}, and ∆xi ∈ R, there exists Li > 0∣∣∇iS
(
x+∆xiei

)
−∇iS(x)

∣∣ ≤ Li

∣∣∆xi∣∣
(weaker than Lipschitz continuity)

3 ik is chosen independently and uniformly from {1, . . . , n}
4 αk = 1/L̂, where L̂ = maxi∈{1,...,n} Li

=⇒ E[S
(
xk+1

)
]− S∗ ≤

(
1− µS

nL̂

)k+1 (
S
(
x0
)
− S∗

)
LNV,SG,RG,TG Other topics: Coordinate descent, ADMM, and Frank-Wolfe method 232/257

Proof.

From Ass. 2 and definition of L̂

S
(
xk+1

)
≤ S

(
xk
)
+∇ikS

(
xk
) (
xk+1
ik

− xkik
)
+

1

2
L̂
(
xk+1
ik

− xkik
)2

(∗)

From the iteration update rule of CD methods and Ass. 4

xk+1 = xk − αk∇ikS
(
xk
)
eik −→ xk+1

ik
− xkik = − 1

L̂
∇ikS

(
xk
)

(∗∗)

Plugging (∗∗) into (∗) leads to

S
(
xk+1)− S

(
xk
)
≤ − 1

L̂
∇ikS

(
xk
)2

+
1

2L̂
∇ikS

(
xk
)2

= − 1

2L̂
∇ikS

(
xk
)2 (□)

LNV,SG,RG,TG Other topics: Coordinate descent, ADMM, and Frank-Wolfe method 233/257

Proof (Cont.)

Taking expectations of (□) with respect to the distribution of ik

Eik [S
(
xk+1

)
]− S

(
xk
)
≤ − 1

2L̂
Eik [∇ikS

(
xk
)2
]

= − 1

2L̂

(1
n

n∑
i=1

∇iS
(
xk
)2)

= − 1

2L̂n
∥∇S

(
xk
)
∥2

(△)

From Ass. 1
2µS(S(x

k)− S∗) ≤ ∥∇S(xk)∥2

which can be used to bound the RHS in (△).

The result follows by subtracting S∗, taking total expectations, and
applying the resulting inequality repeatedly over the first k iterations.

LNV,SG,RG,TG Other topics: Coordinate descent, ADMM, and Frank-Wolfe method 234/257

The alternating direction method of multipliers (ADMM) aims to solve
problems in the form

min
x,z

f(x) + g(z)

s.t. Ax+Bz = c

where

f and g are assumed convex

x ∈ Rn, z ∈ Rm, A ∈ Rp×n, B ∈ Rp×m, and c ∈ Rp

Before describing ADMM, let us introduce two related methods

Dual ascent method

Method of multipliers

LNV,SG,RG,TG Other topics: Coordinate descent, ADMM, and Frank-Wolfe method 235/257

Dual ascent method

The problem we consider is

min
x

f(x)

s.t. Ax = b
(□)

where

f is assumed convex

x ∈ Rn, A ∈ Rp×n, and b ∈ Rp

The Lagrangian function of problem (□) is

L(x, y) = f(x) + y⊤(Ax− b)

where y is the dual variable or Lagrange multiplier.

If f is differentiable, the optimality conditions for problem (□) are

Ax∗ − b = 0 (primal feasibility)

∇xL(x∗, y∗) = ∇f(x∗) +A⊤y∗ = 0 (dual feasibility)

LNV,SG,RG,TG Other topics: Coordinate descent, ADMM, and Frank-Wolfe method 236/257

The dual problem of (□) is

max
y

g(y)

where g(y) = min
x

L(x, y) is assumed differentiable.

The dual ascent method applies gradient descent to the dual problem

yk+1 = yk + αk∇g(yk)

where ∇g(yk) = Axk+1 − b and xk+1 = argmin
x

L(x, yk).

k-th iteration:
xk+1 = argmin

x
L
(
x, yk

)
yk+1 = yk + αk

(
Axk+1 − b

)
where αk > 0 is a step size.

xk and yk converge to optimal solutions under strong assumptions, like
strict convexity of f .

LNV,SG,RG,TG Other topics: Coordinate descent, ADMM, and Frank-Wolfe method 237/257

Dual decomposition is the dual ascent method for separable problems

min
x

f(x) =
∑N

i=1 f(xi)

s.t.
∑N

i=1Aixi = b
(□□)

where x = (x1, . . . , xN)⊤, with xi ∈ Rni .

The Lagrangian function of (□□) is

L(x, y) =

N∑
i=1

Li(xi, y) =

N∑
i=1

(fi(xi) + y⊤Aixi − (1/N)y⊤b)

k-th iteration:

xk+1
i = argmin

xi

Li

(
xi, y

k
)
∀i ∈ {1, . . . , N}

yk+1 = yk + αk

(
Axk+1 − b

)
The minimization w.r.t. x leads to N separate problems that can be
solved in parallel.

LNV,SG,RG,TG Other topics: Coordinate descent, ADMM, and Frank-Wolfe method 238/257

Method of multipliers

Given ρ > 0 (referred to as the penalty parameter), the augmented
Lagrangian of problem (□) is

Lρ(x, y) = f(x) + y⊤(Ax− b) + (ρ/2)∥Ax− b∥22

which can be seen as the Lagrangian of the following problem

min
x

f(x) + (ρ/2)∥Ax− b∥22
s.t. Ax = b

(△)

Problem (△) is equivalent to problem (□) since the penalty term is 0 for
any feasible x.

The dual problem of (△) is

max
y

gρ(y)

where gρ(y) = min
x

Lρ(x, y) is assumed differentiable.

LNV,SG,RG,TG Other topics: Coordinate descent, ADMM, and Frank-Wolfe method 239/257

The method of multipliers applies dual ascent to problem (△).

k-th iteration:
xk+1 = argmin

x
Lρ

(
x, yk

)
yk+1 = yk + ρ

(
Axk+1 − b

)
where ρ is used as a step size to ensure dual feasibility at (xk+1, yk+1).

Indeed, since xk+1 minimizes Lρ

(
x, yk

)
, one can write

0 = ∇xLρ

(
xk+1, yk

)
= ∇f

(
xk+1

)
+A⊤(yk + ρ

(
Axk+1 − b

))
= ∇f

(
xk+1

)
+A⊤yk+1 = ∇xL

(
xk+1, yk+1

)
The primal residual Axk+1 − b converges to 0 as k → ∞.

The penalty term allows the method of multipliers to converge under more
general conditions than dual ascent but prevents separability.

LNV,SG,RG,TG Other topics: Coordinate descent, ADMM, and Frank-Wolfe method 240/257

Alternating direction method of multipliers

We recall that ADMM aims to solve problems in the form

min
x,z

f(x) + g(z)

s.t. Ax+Bz = c
(*)

The Lagrangian function of problem (*) is

L(x, z, y) = f(x) + g(z) + y⊤(Ax+Bz − c)

If f and g are differentiable, the optimality conditions for problem (*) are

Ax∗ +Bz∗ − c = 0 (primal feasibility)

∇xL(x∗, z∗, y∗) = ∇f(x∗) +A⊤y∗ = 0 (dual feasibility w.r.t. x)

∇zL(x∗, z∗, y∗) = ∇g(z∗) +B⊤y∗ = 0 (dual feasibility w.r.t. z)

LNV,SG,RG,TG Other topics: Coordinate descent, ADMM, and Frank-Wolfe method 241/257

ADMM blends the decomposability of dual ascent with the superior
convergence properties of the method of multipliers.

Given the penalty parameter ρ > 0, the augmented Lagrangian of
problem (*) is given by the following function

Lρ(x, z, y) = f(x) + g(z) + y⊤(Ax+Bz − c) + (ρ/2)∥Ax+Bz − c∥22

which can be seen as the Lagrangian of the following problem

min
x,z

f(x) + g(z) + (ρ/2)∥Ax+Bz − c∥22
s.t. Ax+Bz = c

(**)

Problem (**) is equivalent to problem (*) Why?

LNV,SG,RG,TG Other topics: Coordinate descent, ADMM, and Frank-Wolfe method 242/257

In ADMM, x and z are updated separately in an alternating fashion.

k-th iteration:

xk+1 = argmin
x

Lρ

(
x, zk, yk

)
zk+1 = argmin

z
Lρ

(
xk+1, z, yk

)
yk+1 = yk + ρ

(
Axk+1 +Bzk+1 − c

)
where ρ is used as a step size to ensure dual feasibility w.r.t. z

Indeed, since zk+1 minimizes Lρ

(
xk+1, z, yk

)
, one can write

0 = ∇zLρ

(
xk+1, yk

)
= ∇g

(
zk+1

)
+B⊤(yk + ρ

(
Axk+1 +Bzk+1 − c

))
= ∇g

(
zk+1

)
+B⊤yk+1 = ∇zL

(
xk+1, zk+1, yk+1

)
Primal feasibility and dual feasibility w.r.t. x are achieved as k → ∞.

LNV,SG,RG,TG Other topics: Coordinate descent, ADMM, and Frank-Wolfe method 243/257

The linear and quadratic terms in Lρ can be written in an equivalent
scaled form by defining r = Ax+Bz − c

y⊤(Ax+Bz − c) + (ρ/2)∥Ax+Bz − c∥22
= y⊤r + (ρ/2)∥r∥22
= (ρ/2)∥r + (1/ρ)y∥22 − (1/2ρ)∥y∥22
= (ρ/2)∥r + u∥22 − (ρ/2)∥u∥22

where u = (1/ρ)y is the scaled dual variable.

Iteration k when using the scaled dual variable:

xk+1 = argmin
x

(
f(x) + (ρ/2)

∥∥Ax+Bzk − c+ uk
∥∥2
2

)
zk+1 = argmin

z

(
g(z) + (ρ/2)

∥∥Axk+1 +Bz − c+ uk
∥∥2
2

)
uk+1 = uk +Axk+1 +Bzk+1 − c

LNV,SG,RG,TG Other topics: Coordinate descent, ADMM, and Frank-Wolfe method 244/257

Convergence of ADMM can be proved using the following assumptions:

(i) f and g are closed, convex, and proper.

(ii) The Lagrangian function L has a saddle point.

Under Assumptions (i) and (ii), one can prove that as k → ∞
iterates approach feasibility: Axk +Bzk − c→ 0.

the objective function f(xk) + g(zk) converges to its optimal value.

In practice

ADMM can be very slow to converge to high accuracy.

ADMM converges to modest accuracy within a few tens of iterations.

=⇒ ADMM is useful mostly in cases when modest accuracy is sufficient
(like in ML/DS problems).

LNV,SG,RG,TG Other topics: Coordinate descent, ADMM, and Frank-Wolfe method 245/257

Example (Constrained Convex Optimization)

Given a convex function f and a closed and convex set C, consider

min
x

f(x)

s.t. x ∈ C

In ADMM form
min
x,z

f(x) + δC(z)

s.t. x− z = 0

where δC(z) is the indicator function of C.

Iteration k:

xk+1 = argmin
x

(
f(x) + (ρ/2)

∥∥x− zk + uk
∥∥2
2

)
zk+1 = PC(x

k+1 + uk)

uk+1 = uk + xk+1 − zk+1

where PC denotes the orthogonal projection of x onto C.

LNV,SG,RG,TG Other topics: Coordinate descent, ADMM, and Frank-Wolfe method 246/257

Example (LASSO)

The LASSO problem can be written as

min
x

(1/2)∥Ax− b∥2 + λ∥x∥1

In ADMM form

min
x,z

(1/2)∥Ax− b∥2 + λ∥z∥1
s.t. x− z = 0

Iteration k:

xk+1 = (A⊤A+ ρI)−1(A⊤b+ ρ(zk − uk))

zk+1 = sλ/ρ(x
k+1 + uk)

uk+1 = uk + xk+1 − zk+1

where sλ/ρ denotes the soft-thresholding operator with threshold λ/ρ.

LNV,SG,RG,TG Other topics: Coordinate descent, ADMM, and Frank-Wolfe method 247/257

Example (Consensus Optimization)

Given convex functions fi, consider

min
x

f(x) =
∑N

i=1 fi(x)

In ADMM form

min
x1,...,xN

∑N
i=1 fi(xi)

s.t. xi − z = 0, ∀i ∈ {1, . . . , N}

where the constraints force all the local variables xi to agree, and z is a
common global variable.

The augmented Lagrangian is

Lρ(x1, . . . , xN , z, y) =

N∑
i=1

(fi(xi) + y⊤i (xi − z) + (ρ/2)∥xi − z∥22)

Note that the minimization w.r.t. xi is separable.

LNV,SG,RG,TG Other topics: Coordinate descent, ADMM, and Frank-Wolfe method 248/257

Example (Consensus Optimization (Cont.))

Iteration k:

xk+1 = argmin
x

Lρ

(
x, zk, yk

)
zk+1 =

1

N

N∑
i=1

(xk+1
i +

1

ρk
yki)

yk+1
i = yki + ρk(x

k+1
i − zk+1), ∀i ∈ {1, . . . , N}

From the second equality, one can obtain

1

N

N∑
i=1

ρk(z
k+1 − xk+1

i) =
1

N

N∑
i=1

yki

By plugging the expression for yk+1
i , one has 1

N

∑N
i=1 y

k+1
i = 0, and so

zk+1 =
1

N

N∑
i=1

xk+1
i

LNV,SG,RG,TG Other topics: Coordinate descent, ADMM, and Frank-Wolfe method 249/257

The Frank-Wolfe method, also known as conditional gradient method,
solves problems with a convex function f over a compact convex set C

min f(x)
s.t. x ∈ C

At each iteration, f(x) is replaced by a linear Taylor-series approximation
around xk.

k-th iteration:

vk+1 = argmin
v∈C

v⊤∇f(xk)

xk+1 = xk + αk(v
k − xk), αk =

2

k + 2

The subproblem can be solved very cheaply in some settings.

Frank-Wolfe method is useful mostly in cases when modest accuracy is
sufficient (like in ML/DS problems).

LNV,SG,RG,TG Other topics: Coordinate descent, ADMM, and Frank-Wolfe method 250/257

One can prove a sublinear convergence rate by assuming ∇f to be
Lipschitz continuous with constant L∇f > 0.

Let D be the diameter of C

∥x− y∥ ≤ D, ∀{x, y} ⊂ C

Then

f(xk)− f(x∗) ≤
2L∇fD

2

k + 2

Proof.

From smoothness of f , considering xk+1 = xk + αk(v
k − xk) and the

definition of D

f
(
xk+1

)
⩽ f

(
xk
)
+ αk∇f

(
xk
)⊤(

vk − xk
)
+

1

2
α2
kL∇f

∥∥vk − xk
∥∥2

⩽ f
(
xk
)
+ αk∇f

(
xk
)⊤(

vk − xk
)
+

1

2
α2
kL∇fD

2
(∗)

LNV,SG,RG,TG Other topics: Coordinate descent, ADMM, and Frank-Wolfe method 251/257

Proof (Cont.)

Since vk solves the subproblem and x∗ is a feasible point for the
subproblem

∇f
(
xk
)⊤(

vk − xk
)
⩽ ∇f

(
xk
)⊤(

x∗ − xk
)
⩽ f

(
x∗
)
− f

(
xk
)

where the last inequality comes from the convexity of f .

Plugging such an upper bound into (*) and subtracting f∗ from both
sides, one obtains

f
(
xk+1

)
− f

(
x∗
)
⩽
(
1− αk

)
[f
(
xk
)
− f

(
x∗
)
] +

1

2
α2
kLD

2

The proof can be concluded by applying an inductive argument.

LNV,SG,RG,TG Other topics: Coordinate descent, ADMM, and Frank-Wolfe method 252/257

Presentation outline

1 Introduction to (convex) optimization models in data science: Classical
examples

2 Convexity and nonsmooth calculus tools for optimization. Rates of
convergence

3 Subgradient methods

4 Proximal gradient methods

5 Accelerated gradient methods (momentum). Other relevant examples
in data science

6 Limits and errors of learning. Introduction to (nonconvex) optimization
models in supervised machine learning

7 Stochastic gradient descent

8 Noise reduction methods

9 Other topics: Coordinate descent, ADMM, and Frank-Wolfe method

10 References

References:

Part of the organization of the material of Chapters 1 and 6 is inspired
from

S. J. Wright, Optimization algorithms for data analysis, IAS/Park
City Mathematics Series, 2017.

M. Pfetsch and S. Ulbrich, Optimization Methods for Machine
Learning, Lecture Notes, TU Darmstadt, Winter Term 2016/17.

The presentation of the subgradient methods and the proof of the rate of
convergence of FISTA follows

A. Beck, First-Order Methods in Optimization, MPS-SIAM Book
Series on Optimization, SIAM, Philadelphia, 2017.

This books was very helpful in other places referenced in our notes.

LNV,SG,RG,TG References 254/257

The proof of the rates of convergence of proximal gradient methods is
based on:

L. Vandenberghe, EE236C – Optimization Methods for Large-Scale
Systems (Spring 2016), UCLA, 2016.

The assumptions and proofs related to the rates of convergence of
stochastic gradient descent and noisy reduction methods are taken from:

L. Bottou, F. E. Curtis, and J. Nocedal, Optimization Methods for
Large-Scale Machine Learning, Related Databases, SIAM Review, 60
(2018) 223–311.

LNV,SG,RG,TG References 255/257

Other references that helped us:

F. E. Curtis and K. Scheinberg, Optimization Methods for Supervised
Machine Learning: From Linear Models to Deep Learning, in
INFORMS Tutorials in Operations Research, Chapter 5, pages
89–114, 2017.

K. Scheinberg, Evolution of randomness in optimization methods for
supervised machine learning, SIAG/OPT Views and News, Vol. 24,
Num. 1, 2016.

LNV,SG,RG,TG References 256/257

The section on coordinate descent methods is mainly based on Bottou,
Curtis, and Nocedal 2018. Another useful reference was Beck 2017
(where CD is referred to as the alternating minimization method).
Powell example is taken from

S.J. Wright, Coordinate descent algorithms, Math. Program. 151,
3–34 (2015).

The section on ADMM is based on

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, Distributed
Optimization and Statistical Learning via the Alternating Direction
Method of Multipliers, Now Foundations and Trends, 2011.

The section on Frank-Wolfe methods is based on Wright 2017.

LNV,SG,RG,TG References 257/257

	Introduction to (convex) optimization models in data science: Classical examples
	Convexity and nonsmooth calculus tools for optimization. Rates of convergence
	Subgradient methods
	Proximal gradient methods
	Accelerated gradient methods (momentum). Other relevant examples in data science
	Limits and errors of learning. Introduction to (nonconvex) optimization models in supervised machine learning
	Stochastic gradient descent
	Noise reduction methods
	Other topics: Coordinate descent, ADMM, and Frank-Wolfe method
	References

