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The error bounds for quadratic regression models (based on the condition number of a
scaled version of the regression matrix), given in Theorem 4.13, can be derived as follows.

First, note that one can assume y0 = 0 without loss of generality (see the argument
at the end of the proof of Theorem 3.16). Recall that the regression model is written as
m(y) = c + g>y + (1/2)y>Hy, the sample set is Y = {f(y0), f(y1), . . . , f(yp)}, φ̄ is the
canonical basis in (3.1), and M = M(φ̄, Y ) is the regression matrix. Under the Lipschitz
continuity of the Hessian of f (with constant ν2 > 0), one has

M

 f(y0)
∇f(y0)

vec(∇2f(y0))

− f(Y ) = r,

with f(Y ) = (f(y0), f(y1), . . . , f(yp))> and |ri| ≤ (ν/2)∆3, i = 0, . . . , p. Here we used the
notation vec(A) for the vectorial representation of A that uses the ordering of the columns
of M corresponding to the quadratic terms. Thus, one obtains1 f(y0)

∇f(y0)
vec(∇2f(y0))

−M †f(Y ) =

 f(y0)
∇f(y0)

vec(∇2f(y0))

−
 c

g
vec(H)

 = M †r. (0.1)

Letting In and Ip̄ be the identity matrices of order n and p̄ = n(n + 1)/2, respectively,
one can write

M † =

 1 0 0
0 (1/∆)In 0
0 0 (1/∆2)Ip̄

 M̂ †, (0.2)

where M̂ = M(φ̄, Ŷ ) and Ŷ ⊂ B(0; 1) is the scaled sample set.
Now, from (0.1) and (0.2),

‖ vec(∇2f(y0))− vec(H)‖ ≤ p̄
1
2ν2

2
‖M †‖∆,

from which we deduce

‖∇2f(y0)−H‖ ≤
√

2p̄
1
2ν2

2
‖M †‖∆, (0.3)

1A† denotes the Moore-Penrose generalized inverse of a matrix A, which can be expressed by the singular
value decomposition of A for any real or complex matrix A. In the current context where M is full column
rank, we obtain the left inverse M† = (M>M)−1M>.
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and thus

‖∇2f(y)−H‖ ≤

(
ν2 +

√
2p̄

1
2ν2

2
‖M †‖

)
∆.

For the bound on the gradient, also from (0.1) and (0.2), we have

‖∇f(y0)− g‖ ≤ n
1
2ν2

2
‖M †‖∆2. (0.4)

Hence, using y0 = 0, (0.3), and (0.4), for some t ∈ (0, 1),

‖∇f(y)−∇m(y)‖ = ‖∇f(y0) +∇2f(y0 + ty)y − g −Hy −∇2f(y0)y +∇2f(y0)y‖

≤ ν2∆2 +
n

1
2ν2

2
‖M †‖∆2 +

√
2p̄

1
2ν2

2
‖M †‖∆2

=

(
ν2 +

(
n

1
2 +
√

2p̄
1
2

2

)
ν2‖M †‖

)
∆2.

For the bound on function values, noting again that y0 = 0,

|f(y)−m(y)| =

∣∣∣∣f(y0) +∇f(y0)>y +
1

2
y>∇2f(y0)y − c− g>y − 1

2
y>Hy

∣∣∣∣+
ν2

2
∆3.

Thus, using (0.1), (0.3), and (0.4),

|f(y)−m(y)| ≤

(
ν2

2
+

(
1

2
+
n

1
2

2
+

√
2p̄

1
2

4

)
ν2‖M †‖

)
∆3.
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