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The error bounds for quadratic regression models (based on the condition number of a
scaled version of the regression matrix), given in Theorem 4.13, can be derived as follows.

First, note that one can assume y° = 0 without loss of generality (see the argument
at the end of the proof of Theorem 3.16). Recall that the regression model is written as
m(y) = ¢+ gy + (1/2)y" Hy, the sample set is Y = {f(y°), f(y}),..., f(y")}, ¢ is the
canonical basis in (3.1), and M = M(¢,Y) is the regression matrix. Under the Lipschitz
continuity of the Hessian of f (with constant v, > 0), one has
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with f(Y) = (f(%°), f(¥Y), ..., f(¥P))" and |r;] < (v/2)A3, i =0,...,p. Here we used the
notation vec(A) for the vectorial representation of A that uses the ordering of the columns
of M corresponding to the quadratic terms. Thus, one obtains!
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Letting I,, and I; be the identity matrices of order n and p = n(n + 1)/2, respectively,
one can write
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where M = M(¢,Y) and Y C B(0;1) is the scaled sample set.
Now, from (0.1) and (0.2),
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from which we deduce
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L AT denotes the Moore-Penrose generalized inverse of a matrix A, which can be expressed by the singular
value decomposition of A for any real or complex matrix A. In the current context where M is full column
rank, we obtain the left inverse MT = (M TM)~'MT.



and thus
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For the bound on the gradient, also from (0.1) and (0.2), we have
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Hence, using y* = 0, (0.3), and (0.4), for some ¢ € (0, 1),
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For the bound on function values, noting again that y° = 0,
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Thus, using (0.1), (0.3), and (0.4),
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