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ON THE CONVERGENCE THEORY OF TRUST{REGION{BASEDALGORITHMS FOR EQUALITY{CONSTRAINED OPTIMIZATIONJ. E. DENNIS � AND LU��S N. VICENTE yAbstract. In a recent paper, Dennis, El{Alem, and Maciel proved global convergence to a sta-tionary point for a general trust{region{based algorithm for equality{constrained optimization. Thisgeneral algorithm is based on appropriate choices of trust{region subproblems and seems particularlysuitable for large problems.This paper shows global convergence to a point satisfying the second{order necessary optimalityconditions for the same general trust{region{based algorithm. The results given here can be seen asa generalization of the convergence results for trust{regions methods for unconstrained optimizationobtained by Mor�e and Sorensen. The behavior of the trust radius and the local rate of convergence areanalyzed. Some interesting facts concerning the trust{region subproblem for the linearized constraints,the quasi{normal component of the step, and the hard case are presented.It is shown how these results can be applied to a class of discretized optimal control problems.Key words. Equality{constrained optimization, trust regions, SQP methods, second{order nec-essary optimality conditions, local rate of convergence, hard caseAMS subject classi�cation. 49M37, 90C301. Introduction. Trust{region algorithms have been proved to be e�cient androbust techniques to solve unconstrained optimization problems. An excellent surveyin this area is Mor�e [22]. Other classical references for convergence results are Carter[3], Mor�e and Sorensen [23], Powell [26], and Shultz, Schnabel, and Byrd [29]. Thestandard techniques to handle the trust{region subproblems are the dogleg algorithm(Powell [25]), conjugate gradients (Steihaug [32] and Toint [33]), and Newton{likemethods for the computation of locally constrained optimal steps (Gay [15], Mor�eand Sorensen [23], and Sorensen [30]). See also the book of Dennis and Schnabel [9].Recent new algorithms to compute a locally constrained optimal step (in other words astep that satis�es a fraction of optimal decrease on the trust{region subproblem) thatare very promising for large problems have been proposed by Rendl and Wolkowicz[28] and Sorensen [31].Since the mid eighties a signi�cant e�ort has been made to address the equality{constrained optimization problem. References are Celis, Dennis, and Tapia [4], Vardi[34] (see also El{Hallabi [14]), Byrd, Schnabel, and Shultz [2], Powell and Yuan [27],and El{Alem [13]. The fundamental questions associated with the application of trust{region algorithms to equality{constrained optimization are the decomposition of thestep, the choice of the trust{region subproblems, and the choice of the merit function.During the �rst stages of the research conducted in this area it was not clear how toanswer these questions properly. However, if we examine carefully the most recent� Department of Computational and Applied Mathematics, Rice University, Houston, Texas 77005{1892, USA. E-Mail: dennis@rice.edu. Support of this author has been provided by DOE contractDOE{FG03{93ER25178, NSF cooperative agreement CCR{9120008, and AFOSR contract F49620{9310212.y Departamento de Matem�atica, Universidade de Coimbra, 3000 Coimbra, Portugal. This workwas developed while the author was a graduate student at the Department of Computational andApplied Mathematics of Rice University. E-Mail: lvicente@mat.uc.pt. Support of this author hasbeen provided by INVOTAN (NATO scholarship), CCLA (Fulbright scholarship), FLAD, and NSFcooperative agreement CCR{9120008. 1



CONVERGENCE THEORY FOR TRUST{REGION ALGORITHMS 2references (Byrd and Omojokon [24], Dennis, El{Alem, and Maciel [7], El{Alem [12],[13], and Lalee, Nocedal, and Plantenga [21]) we can observe the same decompositionof the step (in its normal, or quasi{normal, and tangential components) and the sametrust{region subproblems (the trust{region subproblem for the linearized constraintsand the trust{region subproblem for the Lagrangian reduced to the tangent subspace).This is explained in great detail in Section 2 of this paper. As in the unconstrainedcase, the conditions that each component has to satisfy and the way they are computedmight of course di�er from algorithm to algorithm. We can see also in these mostrecent references that the merit function used is either the `2 penalty function withoutconstraint term squared (cases of [21], [24]) or the augmented Lagrangian function (in[7], [12], [13]).Consider now the equality{constrained optimization (ECO) problemminimize f(x)subject to C(x) = 0;(1.1)where f : IRn �! IR, ci : IRn �! IR, i = 1; : : : ; m, C(x) = �c1(x) � � �cm(x)�T ,and m < n. The functions f and ci, i = 1; : : : ; m, are assumed to be at least twicecontinuously di�erentiable in the domain of interest.In [7], Dennis, El{Alem, and Maciel have considered a general trust{region{basedalgorithm for the solution of the ECO problem (1.1). This general algorithm is verymuch like the algorithm proposed by Byrd and Omojokon [24]1. As mentioned before,each step s is decomposed as sn + st, where sn is the quasi{normal component ofthe step, associated with trust{region subproblem for the linearized constraints andst is the tangential component, associated with the trust{region subproblem for theLagrangian reduced to the tangent subspace. Each component of the step is onlyrequired to satisfy a fraction of Cauchy decrease on the corresponding trust{regionsubproblem. Another key feature of this general algorithm is the choice of the aug-mented Lagrangian as a merit function and the use of the El{Alem's scheme [11] toupdate the penalty parameter. Under appropriate assumptions, it can be shown thatthere exists a subsequence of iterates driving to zero the norm of the residual of theconstraints and the norm of the gradient of the Lagrangian reduced to the tangent sub-space (see [7][Section 8]). It is important to remark that this global convergence resultis obtained under very mild conditions on the components of the step, on the multi-pliers estimates, and on the Hessian approximations. Thus, the Dennis, El{Alem, andMaciel [7] result is similar to the global result given by Powell [26] for unconstrainedoptimization.One of the purposes of this paper is to show global convergence to a point sat-isfying the second{order necessary optimality conditions for this class of algorithms.Our result is similar to the results established by Mor�e and Sorensen [23], [30] fortrust{region algorithms for unconstrained optimization. We accomplish this here byimposing a fraction of optimal decrease on the tangential component st of the step,by using exact second{order information, and by imposing conditions on the quasi{normal component sn and on the Lagrange multipliers.1 The Thesis [24] was directed by Professor R. H. Byrd. The trust{region algorithm proposed hereis usually referred as the Byrd and Omojokon algorithm.



CONVERGENCE THEORY FOR TRUST{REGION ALGORITHMS 3In [2], Byrd, Schnabel, and Shultz have proposed a trust{region algorithm forequality{constrained optimization and established global convergence to a point satis-fying the second{order necessary optimality conditions. However this algorithm doesnot belong to the class of trust{region algorithms considered here and their result isobtained with the use of the (exact) normal component and the least{squares multipli-ers update which we do not require in this paper. Other di�erences are that they usethe `1 penalty function as the merit function and the analysis is carried out by usingan orthogonal null{space basis. In recent papers, Coleman and Yuan [6] and El{Alem[12] have proposed trust{region algorithms for which they prove global convergence topoints satisfying �rst{order and second{order necessary optimality conditions. Theiralgorithms use the (exact) normal component, an orthogonal null{space basis, and theleast{squares multipliers update.The conditions we need to impose to assure that a limit point of the sequence ofiterates satis�es the second{order necessary optimality conditions arerx`(xk; �k)Tsnk = O(�kkC(xk)k) and k��kk = k�k+1 � �kk = O(�k);where `(x; �) = f(x)+ �TC(x), snk is the quasi{normal component of the step sk , and�k is the trust{region radius. In the case where kC(xk)k is small compared with �k,the �rst condition implies that any increase of the quadratic model of the Lagrangianfrom xk to xk+snk is O(�2k). To see why this is relevant recall that a fraction of optimaldecrease is being imposed on the tangential component stk yielding a decrease of O(�2k)on the quadratic model. The second condition is needed for the same reasons because��k also appears in the de�nition of predicted decrease. We show that both condi-tions are satis�ed when either (i) the (exact) normal component and the least{squaresmultipliers are used; or (ii) the most reasonable choices of quasi{normal componentand multipliers are made for a class of discretized optimal control problems. Theformer result is in agreement with the result obtained by El{Alem [12].Gill, Murray, and Wright [17] and El{Alem [10] considered in their analyses thatrx`(xk; �k) is O(kskk). In the latter work this assumption is used to prove local con-vergence results, and in the former to establish properties of an augmented Lagrangianmerit function. We point out that this assumption implies that rx`(xk; �k)Tsnk isO(�kkC(xk)k) since sk is O(�k) and we assume that snk is O(kC(xk)k).We also prove that if the algorithm converges to a point where the reduced Hessianis positive de�nite, then the penalty parameter �k is uniformly bounded and thetrust{region radius �k is uniformly bounded away from zero, a desired property of atrust{region algorithm. In this case, particular choices of the multipliers and of thecomponents sn and st lead us to a q{quadratic rate of convergence in x.A detailed treatment of the global convergence theory is given in Vicente [35].The structure of the trust{region subproblem for the linearized constraints can beexploited to obtain some interesting results. We introduce a quasi{normal componentthat satis�es a fraction of optimal decrease on the trust{region subproblem for the lin-earized constraints. We show that the (exact) normal component shares this property.We also prove that if the algorithm is well behaved (for instance if the trust radius isuniformly bounded away from zero), then this subproblem has a natural tendency tofall into the so{called hard case.We review the notation used in this paper. The Lagrangian function associ-ated with the ECO problem (1.1) is de�ned by `(x; �) = f(x) + �TC(x), where



CONVERGENCE THEORY FOR TRUST{REGION ALGORITHMS 4� 2 IRm is the Lagrange multiplier vector. The matrix rC(x) is given by rC(x) =�rc1(x) � � �rcm(x)�, where rci(x) represents the gradient of the function ci(x). Letr2f(x) and r2ci(x) be the Hessian matrices of f(x) and ci(x) respectively. We usesubscripted indices to represent the evaluation of a function at a particular point ofthe sequences fxkg and f�kg. For instance, fk represents f(xk) and `k is the sameas `(xk; �k). The vector and matrix norms used are the `2 norms, and Il representsthe identity matrix of order l. Finally, �1(A) denotes the smallest eigenvalue of thesymmetric matrix A.The structure of this paper is as follows. In Section 2, we introduce the trust{region subproblems and outline the general trust{region algorithm and the generalassumptions. In Section 3, we present the global convergence theory. A class ofdiscretized optimal control problems is introduced in Section 4 as a justi�cation forthe general form of our algorithms and theory. In Sections 5 and 6, we analyzerespectively the behavior of the trust radius and the local rates of convergence. Thetrust{region subproblem for the linearized constraints is studied in Section 7. We endthis paper with some summary conclusions.2. Algorithm and general assumptions. The trust{region algorithm ana-lyzed by Dennis, El{Alem, and Maciel [7] for the solution of the ECO problem (1.1),consists of computing, at each iteration k, a step sk decomposed as sk = snk+stk, wherethe components snk and stk are required to satisfy given conditions. If the step sk isaccepted, the algorithm continues by setting xk+1 to xk + sk. If the step is rejectedthen xk+1 = xk.2.1. Decomposition of the step. Suppose that kCkk 6= 0. The componentsnk is called the quasi{normal (or quasi{vertical) component of sk and is required tosatisfy a fraction of Cauchy decrease on the trust{region subproblem for the linearizedconstraints de�ned by minimize 12krCTk sn + Ckk2subject to ksnk � r�k;where r 2 (0; 1) and �k is the trust radius. In other words, snk has to satisfykCkk2 � krCTk snk + Ckk2 � �n �kCkk2 � krCTk cnk + Ckk2� ;(2.1)where �n > 0 and cnk is the so{called Cauchy point for this trust{region subproblem,i.e. cnk is the optimal solution ofminimize 12krCTk cn + Ckk2subject to cn 2 spanf�rCkCkg;kcnk � r�k;and therefore cnk = 8<: � krCkCkk2krCTk rCkCkk2rCkCk if krCkCkk3krCTk rCkCkk2 � r�k;� r�kkrCkCkkrCkCk otherwise.



CONVERGENCE THEORY FOR TRUST{REGION ALGORITHMS 5The component snk also is required to satisfy the conditionksnkk � �1kCkk;(2.2)where �1 is a positive constant independent of the iterate k of the algorithm. Thiscondition is saying that close to feasibility the quasi{normal component has to besmall.In this paper, we require the quasi{normal component snk also to satisfyrx`Tk snk � �2kCkk�k;(2.3)where �2 is a positive constant independent of the iterates. The important consequenceof this condition is that if kCkk is small compared with �k , then any increase of thequadratic model of the Lagrangian along the quasi{normal component snk is of O(�2k).The two choices of snk given in Sections 4.1 and 4.2 satisfy conditions (2.1), (2.2),and (2.3). Other choices have been suggested in [7], [20].The component stk is the tangential (or horizontal) component, and it must satisfyrCTk stk = 0;i.e. it must lie in the null space N (rCTk ) of rCTk . Let Wk be an n� (n�m) matrixwhose columns form a basis for N (rCTk ). Let alsoqk(s) = `k +rx`kT s+ 12sTHksbe a quadratic model of ` at (xk; �k), where Hk is an approximation to r2xx`(xk; �k).Since for any st 2 N (rCTk ), there exists a �st 2 IRn�m such that st = Wk�st, weconsider also �qtk(�st) which is given by�qtk(�st) = qk(snk +Wk�st) = qk(snk ) + �gTk �st + 12(�st)T �Hk(�st)with �Hk = WTk HkWk, �gk = WTk rqk(snk ) and qk(snk ) = `k +rx`kT snk + 12(snk)THk(snk ).If k�gkk 6= 0, �stk is required to satisfy a fraction of Cauchy decrease for the trust{region subproblem minimize �qtk(�st)subject to ksnk +Wk�stk � �k :Note that this is not a standard trust{region subproblem because snk might not beorthogonal to N (rCTk ) and hence �st = 0 might not be the center of the trust region.The steepest{descent direction at �st = 0 associated with �qtk(�st) in the `2 norm is ��gk.If we take into account the scaling matrix Wk, then the steepest{descent directionin the kWk � k norm is given by �(WTk Wk)�1�gk. We consider the steepest{descentdirection ��gk for �qtk(�st) on f�st 2 IRn�m : ksnk +Wk�stk � �kg and require �stk to satisfyqk(snk)� qk(snk +Wk�stk) � ��t �qk(snk)� qk(snk +Wk�ctk)� ;(2.4)where ��t > 0, and �ctk is the Cauchy point for the `2 norm given by�ctk = 8<: � k�gkk2�gTk �Hk�gk �gk if k�gkk2kWk�gkk�gTk �Hk�gk � ��k and �gTk �Hk�gk > 0;� ��kkWk�gkk�gk otherwise,



CONVERGENCE THEORY FOR TRUST{REGION ALGORITHMS 6with ��k = k � �maxWk�gkk and�max = argmaxf� : ksnk � �Wk�gkk � �kg:This is equivalent to saying that �max is the maximum step length along snk � �Wk�gkallowed inside the trust region de�ned by �k. It is easy to verify that��k 2 �(1� r)�k; (1 + r)�k�:The results given in this paper hold also if �ctk is de�ned along �(WTk Wk)�1�gkprovided the sequence fk(WTk Wk)�1kg is bounded. They are valid also if the coupledtrust{region constraint ksnk +Wk�stk � �k is decoupled as k�stk � �k. In this latter casethe parameter r de�ning the quasi{normal component snk can have any positive value.A step �stk that satis�es this requirement can be computed by using Powell's doglegalgorithm [25] or by the conjugate{gradient algorithm adapted for trust regions bySteihaug [32] and Toint [33] (see also [7], [8], [21]).In order to establish global convergence to a point satisfying the second{ordernecessary optimality conditions, we need �stk to satisfy a fraction of optimal decreaseon the following trust{region subproblemminimize �qtk(�st)subject to kWk�stk � ~�k ;(2.5)where ~�k = ( ��k if k�gkk 6= 0(1� r)�k otherwise.In other words, we require �stk to satisfy the following conditions:�qtk(0)� �qtk(�stk) � �t1 ��qtk(0)� �qtk(�s�k)� ;kWk�stkk � �t2~�k;(2.6)where �t1; �t2 > 0, and �s�k is the optimal solution of the trust{region subproblem (2.5).This can be accomplished by applying the GQTPAR routine of Mor�e and Sorensen[23] or by using the algorithms recently proposed by Rendl and Wolkowicz [28] andSorensen [31].If �stk satis�es a fraction of optimal decrease on the trust{region subproblem (2.5),then kskk � ksnkk+ kWk�stkk � r�k + �t2~�k � (r + �t2(1 + r))�k:If �stk is only required to satisfy a fraction of Cauchy decrease, then kskk = ksnk +Wk�stkk � �k . We can combine both cases and writekskk = ksnk +Wk�stkk � �0�k ;(2.7)where �0 = maxfr+ �t2(1 + r); 1g.It is also important to note that the de�nition of ~�k assures that the fraction ofoptimal decrease (2.6) implies the fraction of Cauchy decrease (2.4) provided �t2 � 1.



CONVERGENCE THEORY FOR TRUST{REGION ALGORITHMS 72.2. General trust{region algorithm. We introduce now the merit functionand the corresponding actual and predicted decreases. The merit function used is theaugmented LagrangianL(x; �; �) = f(x) + �TC(x) + �C(x)TC(x);where � is the penalty parameter. The actual decrease ared(sk; �k) at the iteration kis given by ared(sk; �k) = L(xk; �k; �k)� L(xk+1; �k+1; �k):The predicted decrease (see [7]) is the following:pred(sk; �k) = L(xk; �k; �k)� �qk(sk) + ��Tk (rCTk sk + Ck) + �kkrCTk sk + Ckk2� :To update the penalty parameter �k we use the scheme proposed by El{Alem [11].The Lagrange multipliers �k are required to satisfyk��kk = k�k+1 � �kk � �3�k ;(2.8)where �3 is a positive constant independent of k. This condition is not necessary forglobal convergence to a stationary point.The general trust{region algorithm is given below.Algorithm 2.1 (General trust{region algorithm).1 Choose x0, �0, �0, H0, and W0. Set ��1 � 1. Choose �1, �1, �min, �max, ��,and r such that 0 < �1; �1 < 1, 0 < �min � �max, �� > 0, and r 2 (0; 1).2 For k = 0; 1; 2; : : : do2.1 If kCkk + kWTk rx`kk + 
k = 0, where 
k is given in (2.10), stop thealgorithm and use xk as a solution for the ECO problem (1.1).2.2 Set snk = stk = 0.If kCkk 6= 0 then compute snk satisfying (2.1), (2.2), (2.3), and ksnkk � r�k.If kWTk rx`kk+ 
k 6= 0 then compute �stk satisfying (2.6).Set sk = snk + stk = snk +Wk�stk.2.3 Compute �k+1 satisfying (2.8).2.4 Compute pred(sk; �k�1):qk(0)� qk(sk)���Tk (rCTk sk + Ck) + �k�1 �kCkk2 � krCTk sk + Ckk2� :If pred(sk; �k�1) � �k�12 �kCkk2 � krCTk sk + Ckk2� then set �k = �k�1.Otherwise set�k = 2 qk(sk)� qk(0) + ��Tk (rCTk sk + Ck)kCkk2 � krCTk sk + Ckk2 !+ ��:2.5 If ared(sk ;�k)pred(sk ;�k) < �1, set �k+1 = �1kskk and reject sk.Otherwise accept sk and choose �k+1 such thatmaxf�min; �kg � �k+1 � �max:2.6 If sk was rejected set xk+1 = xk and �k+1 = �k. Otherwise set xk+1 =xk + sk and �k+1 = �k +��k.



CONVERGENCE THEORY FOR TRUST{REGION ALGORITHMS 8It is important to understand that the role of �min is just to reset �k after a stepsk has been accepted. During the course of �nding such a step the trust radius can bedecreased below �min. To our knowledge Zhang, Kim, and Lasdon [37] were the �rstto suggest this modi�cation. We remark that the rules to update the trust radius inthe previous algorithm can be much more complicated but those given su�ce to proveconvergence results and to understand the trust{region mechanism.As a direct consequence of the way the penalty parameter is updated, we havethe following result.Lemma 2.1. The sequence f�kg satis�es�k � �k�1 � 1 andpred(sk; �k) � �k2 �kCkk2 � krCTk sk + Ckk2�:(2.9)In order to establish global convergence results, we use the general assumptionsgiven in [7]. These are Assumptions A.1{A.4. However for global convergence to apoint that satis�es the second{order necessary optimality conditions, we also needAssumption A.5. We assume that for all iterations k, xk and xk + sk are in 
, where
 is an open subset of IRn.General assumptionsA.1 The functions f , ci, i = 1; : : : ; m, are twice continuously di�erentiable in 
.A.2 The gradient matrix rC(x) has full column rank for all x 2 
.A.3 The functions f , rf , r2f , C, rC, r2ci, i = 1; : : : ; m, are bounded in 
.The matrix (rC(x)TrC(x))�1 is uniformly bounded in 
.A.4 The sequences fWkg, fHkg, and f�kg are bounded.A.5 The Hessian approximation Hk is exact, i.e. Hk = r2xx`k, and r2f and r2ci,i = 1; : : : ; m, are Lipschitz continuous in 
.Assumptions A.3 and A.4 are equivalent to the existence of positive constants�0; : : : ; �9 such that jf(x)j � �0, krf(x)k � �1, kr2f(x)k � �2, kC(x)k � �3,krC(x)k � �4, k(rC(x)TrC(x))�1k � �5, kr2ci(x)k � �6, i = 1; : : : ; m, for allx 2 
, and kWkk � �7, kHkk � �8, and k�kk � �9 for all k.2.3. Predicted decrease along the tangential component. Consider againthe trust{region subproblem (2.5). We can use the general assumptions and thestructure of this subproblem to obtain a lower bound on the predicted decreaseqk(snk)� qk(snk + stk) along the tangential component of the step.It follows from the Karush{Kuhn{Tucker conditions that there exists a 
k � 0such that �Hk + 
kWTk Wk is positive semi{de�nite,(2.10) � �Hk + 
kWTk Wk��s�k = ��gk ; and
k�~�k � kWk�s�kk� = 0:(It turns out that these conditions are also su�cient for �s�k to solve the trust{regionsubproblem (2.5), see Gay [15] and Sorensen [30].) As a consequence of this we canwrite �qtk(0)� �qtk(�s�k) = 12 �kRk�s�kk2 + 
k~�2k� � 12
k~�2k ;



CONVERGENCE THEORY FOR TRUST{REGION ALGORITHMS 9where �Hk + 
kWTk Wk = RTkRk. Hence we haveqk(snk )� qk(snk + stk) = �qtk(0)� �qtk(�stk) � �t1 ��qtk(0)� �qtk(�s�k)�� 12�t1(1� r)2
k�2k :(2.11)3. Global convergence. Dennis, El{Alem, and Maciel [7] have proved underAssumptions A.1{A.4 and conditions (2.1), (2.2), and (2.4) thatlim infk!+1 �kWTk rx`kk+ kCkk� = 0:(3.1)In this section we assume that �stk satis�es the fraction of optimal decrease (2.6)on the trust{region subproblem (2.5), as well as conditions (2.3), (2.8), and A.5 onsnk , �k, and Hk respectively, and show that (3.1) can be extended tolim inf k! +1 �kWTk rx`kk+ kCkk+ 
k� = 0:(3.2)The proof of (3.2) although simpler has the same structure as the proof given in [7].We prove the result by contradiction, under the supposition thatkWTk rx`kk+ kCkk+ 
k > �tol(3.3)for all k. We start by analyzing the fraction of Cauchy and optimal decrease conditions.Lemma 3.1. Let the general assumptions hold. ThenkCkk2 � krCTk sk + Ckk2 � �4kCkkminf�5kCkk; r�kg(3.4)and qk(snk )� qk(sk) � �6k�gkkminf�7k�gkk; �8�kg;(3.5)and, moreover, since �stk satis�es a fraction of optimal decrease for the trust{regionsubproblem (2.5), qk(snk)� qk(sk) � �9
k�2k ;(3.6)where �4; : : : ; �9 are positive constants independent of the iterate k.Proof. The conditions (3.4) and (3.5) are an application of Powell's result (see[26, Theorem 4], [22, Lemma 4.8]) followed by the general assumptions. The condition(3.6) is a restatement of (2.11) with �9 = 12�t1(1� r)2.The following inequality is needed in the forthcoming lemmas.Lemma 3.2. If the general assumptions hold, thenqk(0)� qk(snk )���Tk (rCTk sk + Ck) � ��10kCkk�k ;(3.7)where �10 is a positive constant independent of k.Proof. The term qk(0)�qk(snk) can be bounded using (2.2), (2.3), and AssumptionA.4, in the following way:qk(0)� qk(snk) = �rx`Tk snk � 12(snk )THk(snk)� ��2kCkk�k � 12kHkk ksnkk2� ��2kCkk�k � 12�8r�1kCkk�k:



CONVERGENCE THEORY FOR TRUST{REGION ALGORITHMS 10On the other hand, it follows from (2.8) and krCTk sk + Ckk � kCkk that���Tk (rCTk sk + Ck) � ��3kCkk�kIf we combine these two bounds we get (3.7) with �10 = �2 + 12�8r�1 + �3.The following technical lemma gives us upper bounds on the di�erence betweenthe actual decrease and the predicted decrease. The proof follows similar argumentsas the proof of Lemma 6.3 in [11].Lemma 3.3. Let the general assumptions hold. There exist positive constants��1,: : : ,��7 independent of k, such thatjared(sk; �k)� pred(sk; �k)j � ��1kskk3 + ��2k��kk kskk2 +�k���3kskk3 + ��4kCkk kskk2�(3.8)and jared(sk; �k)� pred(sk; �k)j � ��5k��kk kskk2 +�k���6kskk3 + ��7kCkk kskk2�:(3.9)Proof. If we add and subtract `(xk+1; �k) to ared(sk; �k)�pred(sk ; �k) and expand`(�; �k) around xk we getared(sk; �k)� pred(sk; �k) = 12sTk �Hk � r2xx`(xk + �1ksk ; �k)�sk+ ��Tk (�Ck+1 + Ck +rCTk sk)� �k�kCk+1k2 � krCTk sk + Ckk2�for some �1k 2 (0; 1). Again using the Taylor expansion we can writeared(sk; �k)� pred(sk; �k) = 12sTk �Hk �r2xx`(xk + �1ksk; �k)�sk� 12Pmi=1(��k)isTkr2ci(xk + �2ksk)sk� �k �Pmi=1 ci(xk + �3ksk)(sk)Tr2ci(xk + �3ksk)(sk)+ (sk)TrC(xk + �3ksk)rC(xk + �3ksk)T (sk)� (sk)TrC(xk)rC(xk)T (sk)� ;where �2k ; �3k 2 (0; 1). Now we expand ci(xk + �3ksk) around ci(xk). This and thegeneral assumptions give us the estimate (3.8) for some positive constants ��1,: : : ,��4.The inequality (3.9) follows from (3.8) and �k � 1.The following three lemmas bound the predicted decrease. They correspond re-spectively to Lemmas 7.6, 7.7, and 7.8 given in [7].Lemma 3.4. Let the general assumptions hold. Then the predicted decrease in themerit function satis�espred(sk; �) � �6k�gkkminf�7k�gkk; �8�kg � �10kCkk�k+� �kCkk2 � krCTk sk + Ckk�2 ;(3.10)



CONVERGENCE THEORY FOR TRUST{REGION ALGORITHMS 11and alsopred(sk; �) � �9
k�2k � �10kCkk�k + � �kCkk2 � krCTk sk + Ckk�2 ;(3.11)for any � > 0.Proof. The two conditions (3.10) and (3.11) follow from a direct application of(3.7) and from the two di�erent lower bounds (3.5) and (3.6) on qk(snk )� qk(sk).Lemma 3.5. Let the general assumptions hold, and assume that kWTk rx`kk +kCkk+ 
k > �tol. If kCkk � ��k, where � satis�es� � min� �tol3�max ; �tol6�7�8�1�max ; �6�tol12�10�max min� �7�tol6�max ; �8� ; �9�tol6�10 � ;(3.12)then the predicted decrease in the merit function satis�es eitherpred(sk; �) � �62 k�gkkminf�7k�gkk; �8�kg+ � �kCkk2 � krCTk sk + Ckk2�(3.13)or pred(sk; �) � �92 
k�2k + � �kCkk2 � krCTk sk + Ckk2� ;(3.14)for any � > 0.Proof. From kWTk rx`kk + kCkk + 
k > �tol and the �rst bound on � given by(3.12), we get kWTk rx`kk+ 
k > 23�tol:Thus either kWTk rx`kk > 13�tol or 
k > 13�tol. Let us �rst assume that kWTk rx`kk >13�tol. Then it follows from the second bound on � given by (3.12) thatk�gkk = kWTk rx`k +WTk Hksnkk� kWTk rx`kk � kWTk Hksnkk� 13�tol � �7�8�1kCkk� 16�tol:Using this, (3.10), �k � �max, and the third bound on � given by (3.12), we obtainpred(sk; �) � �62 k�gkkminf�7k�gkk; �8�kg+ �6�tol12 minf�7�tol6 ; �8�kg� �10�maxkCkk+ � �kCkk2 � krCTk sk + Ckk2�� �62 k�gkkminf�7k�gkk; �8�kg+ � �kCkk2 � krCTk sk + Ckk2� :Now suppose that 
k > 13�tol. To establish (3.14), we combine (3.11) and the lastbound on � given by (3.12) and getpred(sk; �) � �92 
k�2k + ��96 �tol�k � �10kCkk� �k + � �kCkk2 � krCTk sk + Ckk2�� �92 
k�2k + � �kCkk2 � krCTk sk + Ckk2� :



CONVERGENCE THEORY FOR TRUST{REGION ALGORITHMS 12We can set � to �k�1 in Lemma 3.5 and conclude that, if kWTk rx`kk+kCkk+
k >�tol and kCkk � ��k , then the penalty parameter at the current iterate does not needto be increased. See Step 2.4 of Algorithm 2.1.The proof of the next lemma follows the argument given in the proof of Lemma3.5 to show that either k�gkk > 16�tol or 
k > 13�tol holds.Lemma 3.6. Let the general assumptions hold, and assume that kWTk rx`kk +kCkk+ 
k > �tol. If kCkk � ��k, where � satis�es (3.12), then there exists a constant�11 > 0 such that pred(sk; �k) � �11�2k :(3.15)Proof. By Lemma 3.5 we know that either (3.13) or (3.14) holds. Now we set� = �k. In the �rst case we use k�gkk > 16�tol and getpred(sk; �k) � �6�tol12 minf�7�tol6 ; �8�kg� �6�tol12 minf �7�tol6�max ; �8g�k� �6�tol12�max minf �7�tol6�max ; �8g�2k:In the second case we use 
k > 13�tol, to obtainpred(sk; �k) � �9�tol6 �2k :Hence (3.15) holds with�11 = min� �6�tol12�max min� �7�tol6�max ; �8� ; �9�tol6 � :Next we prove under the supposition (3.3), that the penalty parameter �k isbounded.Lemma 3.7. Let the general assumptions hold. If kWTk rx`kk+ kCkk+ 
k > �tolfor all k, then �k � ��;where �� does not depend on k, and thus f�kg and fLkg are bounded sequences.Proof. If �k is increased at iteration k, then it is updated according to the rule�k = 2 qk(sk)� qk(0) + ��Tk (rCTk sk + Ck)kCkk2 � krCTk sk + Ckk2 !+ ��:We can write�k2 �kCkk2 � krCTk sk + Ckk2� = rx`(xk; �k)Tsnk + 12(snk)THk(snk)�(qk(snk)� qk(sk)) + ��Tk (rCTk sk + Ck)+ ��2�kCkk2 � krCTk sk + Ckk2�:



CONVERGENCE THEORY FOR TRUST{REGION ALGORITHMS 13By applying (3.4) to the left hand side and (3.5) and (3.7) to the right hand side, weobtain�k2 �4kCkkminf�5kCkk; r�kg � �10�kkCkk+ ��2�� 2(rCkCk)Tsk � krCTk skk2�� (�10 + ���0�4)�kkCkk:If �k is increased at iteration k, then from Lemma 3.5 we certainly know that kCkk >��k , where � satis�es (3.12). Now we use this fact to establish that��42 minf�5�; rg��k � �10 + ���0�4:We have proved that f�kg is bounded. From this and the general assumptions weconclude that fLkg is also bounded.We can prove also under the supposition (3.3), that the trust radius is boundedaway from zero.Lemma 3.8. Let the general assumptions hold. If kWTk rx`kk+ kCkk+ 
k > �tolfor all k, then �k � �� > 0;where �� does not depend on k.Proof. If sk�1 was an acceptable step, then �k � �min. If not then �k = �1ksk�1k,and we consider the cases kCk�1k � ��k�1 and kCk�1k > ��k�1, where � satis�es(3.12). In both cases we use the fact1� �1 � ����ared(sk�1; �k�1)pred(sk�1; �k�1) � 1���� :Case I. kCk�1k � ��k�1. From Lemma 3.6, inequality (3.15) holds for k = k � 1.Thus we can use ksk�1k � �0�k�1, (2.8) and (3.9) with k = k � 1, to obtain����ared(sk�1; �k�1)pred(sk�1; �k�1) � 1���� � (��5�0�3�2k�1 + ����6�20�2k�1 + ����7��0�2k�1)ksk�1k�11�2k�1 :Thus �k = �1ksk�1k � �1(1��1)�11��5�0�3+����6�20+����7��0 � �12.Case II. kCk�1k > ��k�1. In this case from (2.9) and (3.4) with k = k� 1 we getpred(sk�1; �k�1) � �k�12 �4kCk�1kminf�5kCk�1k; r�k�1g� �k�1�13�k�1kCk�1k� �k�1��13�2k�1;where �13 = �42 minf�5�; rg. Again we use �k�1 � 1, (2.8) and (3.9) with k = k � 1,and this time the last two lower bounds on pred(sk�1; �k�1), and write���ared(sk�1 ;�k�1)pred(sk�1 ;�k�1) � 1��� � �k�1(��5�0�3+��6�20)�2k�1ksk�1k�k�1��13�2k�1 + �k�1��7�0�k�1kCk�1k ksk�1k�k�1�13�k�1kCk�1k� � ��5�0�3+��6�20+��7��0��13 � ksk�1k:Hence �k = �1ksk�1k � �1(1��1)��13��5�0�3+��6�20+��7��0 � �14.



CONVERGENCE THEORY FOR TRUST{REGION ALGORITHMS 14The result follows by setting �� = minf�min; �12; �14g.The next result is needed also for the forthcoming Theorem 3.1.Lemma 3.9. Let the general assumptions hold. If kWTk rx`kk+ kCkk+ 
k > �tolfor all k, then an acceptable step is always found in �nitely many trial steps.Proof. Let us prove the assertion by contradiction. Assume that for a given �k,xk = x�k for all k � �k. This means that limk!+1 �k = 0 and all steps are rejectedafter iteration �k. See Steps 2.5 and 2.6 of Algorithm 2.1. We can consider the caseskCkk � ��k and kCkk > ��k , where � satis�es (3.12), and appeal to arguments similarto those used in Lemma 3.8 to conclude that in any case����ared(sk; �k)pred(sk; �k) � 1���� � �15�k; k � �k ;where �15 is a positive constant independent of the iterates. Since we are assumingthat limk!+1 �k = 0, we have limk!+1 ared(sk ;�k)pred(sk ;�k) = 1 and this contradicts the rulesthat update the trust radius. See Step 2.5 of Algorithm 2.1.Now we �nally can state our �rst asymptotic result.Theorem 3.1. Under the general assumptions, the sequence of iterates fxkggenerated by the Algorithm 2.1 satis�eslim infk!+1 �kWTk rx`kk+ kCkk+ 
k� = 0:(3.16)Proof. Suppose that there exists an �tol > 0 such that kWTk rx`kk+kCkk+
k > �tolfor all k.At each iteration k either kCkk � ��k or kCkk > ��k, where � satis�es (3.12). Inthe �rst case we appeal to Lemmas 3.6 and 3.8 and obtainpred(sk; �k) � �11�2� :If kCkk > ��k , we have from �k � 1, (2.9), (3.4), and Lemma 3.8, thatpred(sk; �k) � �42 �minf�5�; rg�2�:Hence there exists a positive constant �16 not depending on k such that pred(sk; �k) ��16. From Lemma 3.9, we can ignore the rejected steps and work only with successfuliterates. So, without loss of generality, we haveLk � Lk+1 = ared(sk; �k) � �1pred(sk; �k) � �1�16:Now, if we let k go to in�nity, this contradicts the boundedness of fLkg.From this result we can state our global convergence result: existence of a limitpoint of the sequence of iterates generated by the algorithm satisfying the second{order necessary optimality conditions. This result generalizes those obtained for un-constrained optimization by Sorensen [30] and Mor�e and Sorensen [23].Theorem 3.2. Let the general assumptions hold. Assume that W (x) and �(x)are continuous functions and �k = �(xk) for all k.If fxkg is a bounded sequence generated by Algorithm 2.1, then there exists a limitpoint x� such that� C(x�) = 0,



CONVERGENCE THEORY FOR TRUST{REGION ALGORITHMS 15� W (x�)Trf(x�) = 0, and� r2xx`(x�; �(x�)) is positive semi{de�nite on N (rC(x�)T ).Moreover, if �(x�) is such that rx`(x�; �(x�)) = 0 then x� satis�es the second{ordernecessary optimality conditions.Proof. Let fkig be the index subsequence considered in (3.16). Since fxkig isbounded, it has a subsequence fxkjg that converges to a point x� and for whichlimj!+1 �kWTkjrx`kjk+ kCkjk+ 
kj� = 0:(3.17)Now from this and the continuity of C(x), we get C(x�) = 0. Then we use thecontinuity of W (x) and rf(x) to obtainW (x�)Trf(x�) = 0:Since �1(�) is a continuous function, we can use (2.10), limj!+1 
kj = 0, thecontinuity ofW (x), �(x), and of the second derivatives of f(x) and ci(x), i = 1; : : : ; m,to obtain �1 �W (x�)Tr2xx`(x�; �(x�))W (x�)� � 0:This shows that r2xx`(x�; �(x�)) is positive semi{de�nite on N (rC(x�)T ).The continuity of an orthogonal null space basis has been discussed in [1], [5], [16].A class of nonorthogonal null space basis is described in Section 4.1.The equationrx`(x�; �(x�)) = 0 is satis�ed for consistent updates of the Lagrangemultipliers like the least{squares update (4.7) or the adjoint update (4.3).4. Examples.4.1. A class of discretized optimal control problems. We now introduce animportant class of ECO problems where we can �nd convenient matrices Wk , quasi{normal components snk , and multipliers �k satisfying all the requirements needed forour analysis. The numerical solution of many discretized optimal control problemsinvolves solving the ECO problemminimize f(y; u)subject to C(y; u) = 0;(4.1)where y 2 IRm, u 2 IRn�m and x =  yu ! (see [8], [19], [20]). The variables in y arethe state variables and the variables in u are the control variables. Other applicationsinclude parameter identi�cation, inverse, and 
ow problems and design optimization.In many situations there are bounds on the control variables, but this is not consideredhere. Another interesting aspect of these problems is that rC(x)T can be partitionedas rC(x)T = � Cy(x) Cu(x) � ;where Cy(x) is a square matrix of order m.In this class of problems the following assumption traditionally is made:The partial Jacobian Cy(x) is nonsingular and its inverse is uniformlybounded in 
.(4.2)



CONVERGENCE THEORY FOR TRUST{REGION ALGORITHMS 16As a consequence of this, the columns ofW (x) =  �Cy(x)�1Cu(x)In�m !form a basis for the null space of rC(x)T .The usual choice for �k in these problems is the so{called adjoint multipliers�k = �Cy(xk)�Tryf(xk):(4.3)It follows directly from the continuity of rC(x) and the uniformly boundedness ofCy(x)�1 thatW (x) varies continuously with x. Furthermore �(x) = �Cy(x)�Tryf(x)is a continuous function of x with bounded derivatives.Using the structure of the problem we can de�ne the quasi{normal component snk(see references [8], [19], [20]) assnk =  �&kCy(xk)�1Ck0 ! ;(4.4)where &k = 8<: 1 if kCy(xk)�1Ckk � r�k;r�kkCy(xk)�1Ckk otherwise.As we will see in Section 7, the quasi{normal component (4.4) satis�es a fraction of op-timal decrease and hence a fraction of Cauchy decrease on the trust{region subproblemfor the linearized constraints.Other choices for quasi{normal components are given in [20]. All these quasi{normal components are of the formsnk =  (snk )y0 ! :(4.5)Lemma 4.1. If snk veri�es (4.5) and �k is given by (4.3), then conditions (2.3)and (2.8) are satis�ed.Proof. From (4.3) and (4.5) we can see thatrx`Tk snk =  0ruf(xk) + Cu(xk)T�k !T  (snk )y0 ! = 0and condition (2.3) is trivially satis�ed. Condition (2.8) follows from the existence ofbounded derivatives for �(x) = �Cy(x)�Tryf(x) in 
.4.2. The normal component and the least{squares multipliers. Consideragain the general ECO problem (1.1). If the component snk of the step sk is orthogonalto the null space of rCTk , then it is a multiple of rCk(rCTkrCk)�1Ck. If we alsorequire that snk lies inside the trust region of radius r�k, then it is given bysnk = ( �rCk(rCTk rCk)�1Ck if krCk(rCTk rCk)�1Ckk � r�k;��krCk(rCTk rCk)�1Ck; otherwise,(4.6)



CONVERGENCE THEORY FOR TRUST{REGION ALGORITHMS 17where �k = r�kkrCk(rCTk rCk)�1Ckk . If the quasi{normal component snk of the step isgiven by (4.6), then it is called normal. As we will see in the Section 7, the normalcomponent (4.6) satis�es a fraction of optimal decrease and hence a fraction of Cauchydecrease on the trust{region subproblem for the linearized constraints.Lemma 4.2. The quasi{normal component (4.6) and the least{squares update�k = �(rCTk rCk)�1rCTk rfk(4.7)satisfy conditions (2.3) and (2.8).Proof. It can be easily con�rmed that rx`Tk snk = 0. The condition (2.8) holdssince �(x) = �(rC(x)TrC(x))�1rC(x)Trf(x) has bounded derivatives in 
.5. The behavior of the trust radius. In Sections 5 and 6 we no longer needto consider that the tangential component �stk satis�es a fraction of optimal decreaseon the trust{region subproblem (2.5). It su�ces to assume the fraction of Cauchydecrease condition (2.4). We assume that the component snk satis�es conditions (2.1)and (2.2).We need to strengthen conditions (2.3) and (2.8) in the following way:rx`Tk snk � �02kCkk kskk;(5.1) k��kk = k�k+1 � �kk � �03kskk;(5.2) ksnkk � �04kskk;(5.3)where �02, �03, and �04 are positive constants independent of the iterates. The choicesof snk and �k suggested in Section 4 satisfy these requirements as well. See Lemmas4.1 and 4.2 for the �rst two conditions. It is obvious that the normal component (4.6)satisfy (5.3). The quasi{normal component (4.4) also satis�es (5.3) (see [35][Lemma5.6.1]).The next theorems show that if limk!+1 xk = x� and r2xx`(x�; �(x�)) is positivede�nite on N (rC(x�)T ), then the penalty parameter �k is uniformly bounded andthe trust radius �k is uniformly bounded away from zero.Theorem 5.1. Let the general assumptions hold and W (x) and �(x) be continu-ous. If fxkg converges to x� and r2xx`(x�; �(x�)) is positive de�nite on N (rC(x�)T ),then f�kg is a bounded sequence.Proof. First since r2xx`(x�; �(x�)) is positive de�nite onN (rC(x�)T ) andr2f(x),r2ci(x), i = 1; : : : ; m, W (x), and �(x) are continuous functions of x, there exists aneighborhood N (x�) of x� and a �
 > 0 such that for any x in N (x�),�1 �W (x)Tr2xx`(x; �(x))W (x)�� �
:Since �qtk(�stk)� �qtk(0) � 0 we can write12(�stk)T �Hk(�stk) � �(�stk)T �gk � k�stkk k�gtkk:Thus for all k such that xk 2 N (x�) we have12�
k�stkk2 � k�stkk k�gkk;



CONVERGENCE THEORY FOR TRUST{REGION ALGORITHMS 18and this implies kstkk � 2�7�
 k�gkk:(5.4)Now by using (3.5) and (5.4), we have for all k such that xk 2 N (x�), thatqk(snk )� qk(sk) � �6k�gkkminf�7k�gkk; �8�kg� �17kstkk2;(5.5)where �17 = �6�
2�7 minf�7�
2�7 ; �81+rg.Now let kCkk � �0kskk where the positive constant �0 is de�ned later. Usingsimilar arguments as in Lemma 3.2, it follows from (2.2), (5.1), (5.2), kCkk � �0kskk,and Assumption A.4 thatqk(0)� qk(snk )���Tk (rCTk sk + Ck) � ��010kCkk kskk;(5.6)where �010 = �02 + 12�8�21�0 + �03.From (2.2) and kCkk � �0kskk we also getkskk2 � �ksnkk+ kstkk�2 � 2ksnkk2 + 2kstkk2� 2�0�21kCkk kskk+ 2kstkk2;which together with (5.5) and (5.6) impliespred(sk; �) � 14�17kskk+ �14�17kskk � (�0�21�17 + �010)kCkk� kskk+ � �kCkk2 � krCTk sk + Ckk2� ;(5.7)for all � > 0. We now need to impose the following condition on �0:�0 � �174�0�21�17 + 4�010 :(5.8)Now we set � = �k�1 in (5.7) and conclude that the penalty parameter does notneed to be increased if kCkk � �0kskk (see Step 2.4 of Algorithm 2.1). Hence, if �k isincreased then kCkk > �0kskk holds, and by using (5.1){(5.3) we obtain:qk(0)� qk(snk )���Tk (rCTk sk + Ck) � ��0010kCkk kskk;(5.9)with �0010 = �02 + 12�8�1�04 + �03. Recall from the proof of Lemma 3.7 that if �k isincreased then�k2 �4kCkkmin��5kCkk; r�0 kskk� � (�0010 + ���4)kskk kCkk;which in turn implies��42 min��5�0; r�0���k � �0010 + ���4 () �k � �0�:This completes the proof of the Theorem.



CONVERGENCE THEORY FOR TRUST{REGION ALGORITHMS 19Theorem 5.2. Let the general assumptions hold and W (x) and �(x) be continu-ous. If fxkg converges to x� and r2xx`(x�; �(x�)) is positive de�nite on N (rC(x�)T ),then �k is uniformly bounded away from zero and eventually all iterations are success-ful. Proof. The proof of the theorem is based on the boundedness of f�kg. We considerthe cases kCkk > �0kskk and kCkk � �0kskk, where �0 satis�es (5.8).If kCkk > �0kskk, then from (2.7), (2.9), and (3.4), we �nd thatpred(sk; �k) � �k �42 kCkkminf�5kCkk; r�kg � �k�18kskk2;(5.10)where �18 = �4�02 minf�5�0; r�0 g. In this case it follows from (3.9), (5.10), and �k � 1that ����ared(sk; �k)pred(sk; �k) � 1���� � ���5�03�18 + ��6�18� kskk+ ��7�18kCkk:(5.11)Now, suppose that kCkk � �0kskk. From (5.7) with � = �k we obtainpred(sk; �k) � �174 kskk2:Now we use (3.9) and �k � �� to get����ared(sk; �k)pred(sk; �k) � 1���� � �4��5�03�17 + 4��6���17 � kskk+ 4��7���17 kCkk:(5.12)It follows from Theorem 8.4 in [7] thatlim infk!+1 �kWTk rx`kk+ kCkk� = 0:From this result, the continuity of C(x), and the convergence of fxkg we obtainlimk!+1 kCkk = 0.Finally from (5.11), (5.12), and the limits limk!+1 xk = x�, limk!+1 �k =�(x�), and limk!+1 kCkk = 0, we �nally getlimk!+1 ����ared(sk; �k)pred(sk; �k) ���� = 1;which by the rules for updating the trust radius in Step 2.5 of Algorithm 2.1 showsthat �k is uniformly bounded away from zero.6. Local rate of convergence. In order to obtain q{quadratic local rates ofconvergence, we require the reduced tangential component �stk to satisfy (2.4) and thefollowing condition:if �Hk is positive de�nite and k �H�1k �gkk � ��k then �stk = � �H�1k �gk:(6.1)6.1. Discretized optimal control formulation. Consider again problem (4.1)and assume that this problem has the structure described in Section 4.1. We can nowuse Theorem 5.2 to obtain a local rate of convergence.Theorem 6.1. Suppose that the ECO problem is of the form (4.1). Let thegeneral assumptions and assumption (4.2) hold and assume that fxkg converges to x�.In addition to this, let �stk, snk , and �k be given by (6.1), (4.4) and (4.3).



CONVERGENCE THEORY FOR TRUST{REGION ALGORITHMS 20If r2xx`(x�; ��) is positive de�nite on N (rC(x�)T ), where�� = �Cy(x�)�Tryf(x�);then xk converges q{quadratically to x�.Proof. It can be shown by appealing to Theorem 8.4 in [7] that rx`(x�; ��) = 0.It follows from Theorem 5.2 that �k is uniformly bounded away from zero. Thusthere exists a positive integer �k such that for all k � �k, �stk = � �H�1k �gk and snk = �Cy(xk)�1Ck0 !. Now the rate of convergence follows from [19].6.2. Normal component and least{squares multipliers. Consider the gen-eral ECO problem (1.1) again and suppose that the quasi{normal component is thenormal component (4.6) and �k is given by (4.7).We can now use Theorem 5.2 to obtain the desired local rate of convergence. Itis assumed that the orthogonal null{space basis is a continuous function of x.Theorem 6.2. Let the general assumptions hold and assume that fxkg convergesto x�. In addition to this, let �stk, snk , and �k be given by (6.1), (4.6), and (4.7).If r2xx`(x�; ��) is positive de�nite on N (rC(x�)T ), where�� = � �rC(x�)TrC(x�)��1rC(x�)Trf(x�);then xk converges q{quadratically to x�.Proof. It can be shown by appealing to Theorem 8.4 in [7] that rx`(x�; ��) = 0.It follows from Theorem 5.2 that �k is uniformly bounded away from zero. Thusthere exists a positive integer �k such that for all k � �k, �stk = � �H�1k �gk and snk =�rCk(rCTk rCk)�1Ck. The q{quadratic rate of convergence follows from [18], [36].7. The trust{region subproblem for the linearized constraints. In thissection we investigate a few aspects of the trust{region subproblem for the linearizedconstraints minimize 12krCTk sn + Ckk2subject to ksnk � r�k:(7.1)First we prove that the normal component (4.6) and the quasi{normal component(4.4) always give a fraction of optimal decrease on this trust{region subproblem.Theorem 7.1. Let the general assumptions hold. Then:(i) The normal component (4.6) satis�es a fraction of optimal decrease on thetrust{region subproblem for the linearized constraints, i.e. there exists a posi-tive constant �n1 such thatkCkk2 � krCTk snk + Ckk2 � �n1 �kCkk2 � krCTk s�k + Ckk2� ;(7.2)where s�k is the optimal solution of (7.1).(ii) In addition, assume assumption (4.2). The quasi{normal component (4.4)satis�es the fraction of optimal decrease (7.2).



CONVERGENCE THEORY FOR TRUST{REGION ALGORITHMS 21Proof. (i) If krCk(rCTkrCk)�1Ckk � r�k, then snk solves (7.1), and the resultholds for any positive value of �n1 in (0; 1]. If this is not the case, thenkCkk2 � krCTk snk + Ckk2 = �k(2� �k)kCkk2 � �kkCkk2 � r�k�4�5 kCkk;(7.3)since krCk(rCTk rCk)�1Ckk � �4�5kCkk and �k � 1.We also havekCkk2 � krCTk s�k + Ckk2 = �2(rCkCk)Ts�k � (s�k)T (rCkrCTk )(s�k)� 2�4kCkk ks�kk+ �24ks�kk2� 2�4r�kkCkk+ �24r�kks�kk� (2�4r + �34�5r)�kkCkk;since krCk(rCTk rCk)�1kkCkk > r�k � ks�kk. Combining this last inequality with(7.3) we getkCkk2 � krCTk snk + Ckk2 � 1�24�5(2 + �24�5) �kCkk2 � krCTk s�k + Ckk2� ;and this completes the proof of (i).(ii) If kCy(xk)�TCkk � r�k then snk solves (7.1), and (7.2) holds for any positivevalue of �n1 . If this is not the case, we havekCkk2 � krCTk snk + Ckk2 = kCkk2 � k� &krCTk  Cy(xk)�1Ck0 !+ Ckk2= &k(2� &k)kCkk2(7.4) � r�k�10 kCkk;where �10 is the uniform bound on kCy(xk)�1k. Now the rest of the proof follows asin (i).As a consequence of this theorem, we have immediately that the normal compo-nent (4.6) and the quasi{normal component (4.4) give a fraction of Cauchy decreaseon the trust{region subproblem for the linearized constraints.To compute a step snk that gives a fraction of optimal decrease on the trust{regionsubproblem for the linearized constraints we can also use the techniques proposed in[23], [28], [31].In the next theorem we show that the trust{region subproblem (7.1), due to itsparticular structure, tends to fall in the hard case in the latest stages of the algorithm.This result is relevant in our opinion since the algorithms proposed in [23], [28], [31]deal with the hard case.The trust{region subproblem (7.1) can be rewritten asminimize 12CTk Ck + (rCkCk)Tsn + 12(sn)T (rCkrCTk )(sn)subject to ksnk � r�k:(7.5)The matrix rCkrCTk is always positive semi{de�nite and, under the general assump-tions, has rank m. Let Ek(0) denote the eigenspace associated with the eigenvalue0, i.e. Ek(0) = fvk 2 IRn : rCkrCTk vk = 0g. The hard case is de�ned by the twofollowing conditions:



CONVERGENCE THEORY FOR TRUST{REGION ALGORITHMS 22(a) (vk)T (rCkCk) = 0 for all vk in Ek(0) and(b) k(rCkrCTk + �In)�1rCkCkk < r�k for all � > 0.Theorem 7.2. Under the general assumptions, if limk!+1 kCkk�k = 0 then thereexists a kh such that, for all k � kh, the trust{region subproblem (7.5) falls in the hardcase as de�ned above by (a) and (b).Proof. First we show that (a) holds at every iteration of the algorithm. If vk 2Ek(0), rCkrCTk vk = 0:Multiplying both sides by (rCTk rCk)�1rCTk gives usrCTk vk = 0:Thus (vk)T (rCkCk) = 0 for all vk in Ek(0).Now we prove that there exists a kh such that (b) holds for every k � kh. Sincegk(�) = k(rCkrCTk + �In)�1rCkCkk is a monotone strictly decreasing function of �for � > 0, lim�!0+ gk(�) < r�kis equivalent to gk(�) < r�k , for all � > 0. Also, from the singular value decompositionof rCk, we obtainlim�!0+ gk(�) = k lim�!0+(rCkrCTk + �In)�1rCkCkk = krCk(rCTk rCk)�1Ckk:Hence gk(�) < r�k holds for all � > 0 if and only if krCk(rCTk rCk)�1Ckk < r�k.Now since limk!+1 kCkk�k = 0, there exists a kh such that kCkk < r�4�5 �k for allk � kh. Thus krCk(rCTk rCk)�1Ckk � �4�5kCkk < r�k, for all k � kh, and thiscompletes the proof of the theorem.We complete this section with the following corollary.Corollary 7.1. Under the general assumptions, if limk!+1 kCkk = 0 and thetrust radius is uniformly bounded away from zero, then there exists a kh such that, forall k � kh, the trust{region subproblem (7.5) falls in the hard case as de�ned above by(a) and (b).Proof. If limk!+1 kCkk = 0 and the trust radius is uniformly bounded away fromzero then limk!+1 kCkk�k = 0 and Theorem 7.2 can be applied.8. Concluding remarks. In Theorems 3.1 and 3.2 we have established globalconvergence to a point satisfying the second{order necessary optimality conditionsfor the general trust{region{based algorithm considered in this paper. In Theorem5.2 we have proved that the trust radius is, under su�cient second{order optimalityconditions, bounded away from zero. With the help of this result we analyzed localrates of convergence for di�erent choices of steps and multipliers. We believe thatthese results complement the theory developed by Dennis, El{Alem, and Maciel in [7]that proves global convergence to a stationary point. We have also given a detailedanalysis of the trust{region subproblem for the linearized constraints.Acknowledgments. We thank Mahmoud El{Alem with whom we had manydiscussions about the contents of this paper. We are also grateful to our referees fortheir careful and insightful reading of this paper.
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