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ON THE CONVERGENCE THEORY OF TRUST-REGION-BASED
ALGORITHMS FOR EQUALITY-CONSTRAINED OPTIMIZATION
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Abstract. In a recent paper, Dennis, El-Alem, and Maciel proved global convergence to a sta-
tionary point for a general trust-region—based algorithm for equality—constrained optimization. This
general algorithm is based on appropriate choices of trust—region subproblems and seems particularly
suitable for large problems.

This paper shows global convergence to a point satisfying the second—order necessary optimality
conditions for the same general trust-region—based algorithm. The results given here can be seen as
a generalization of the convergence results for trust-regions methods for unconstrained optimization
obtained by Moré and Sorensen. The behavior of the trust radius and the local rate of convergence are
analyzed. Some interesting facts concerning the trust—region subproblem for the linearized constraints,
the quasi-normal component of the step, and the hard case are presented.

It is shown how these results can be applied to a class of discretized optimal control problems.

Key words. Equality—constrained optimization, trust regions, SQP methods, second—order nec-
essary optimality conditions, local rate of convergence, hard case
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1. Introduction. Trust—region algorithms have been proved to be efficient and
robust techniques to solve unconstrained optimization problems. An excellent survey
in this area is Moré [22]. Other classical references for convergence results are Carter
[3], Moré and Sorensen [23], Powell [26], and Shultz, Schnabel, and Byrd [29]. The
standard techniques to handle the trust-region subproblems are the dogleg algorithm
(Powell [25]), conjugate gradients (Steihaug [32] and Toint [33]), and Newton-like
methods for the computation of locally constrained optimal steps (Gay [15], Moré
and Sorensen [23], and Sorensen [30]). See also the book of Dennis and Schnabel [9].
Recent new algorithms to compute a locally constrained optimal step (in other words a
step that satisfies a fraction of optimal decrease on the trust-region subproblem) that
are very promising for large problems have been proposed by Rendl and Wolkowicz
[28] and Sorensen [31].

Since the mid eighties a significant effort has been made to address the equality—
constrained optimization problem. References are Celis, Dennis, and Tapia [4], Vardi
[34] (see also El-Hallabi [14]), Byrd, Schnabel, and Shultz [2], Powell and Yuan [27],
and El-Alem [13]. The fundamental questions associated with the application of trust—
region algorithms to equality—constrained optimization are the decomposition of the
step, the choice of the trust-region subproblems, and the choice of the merit function.
During the first stages of the research conducted in this area it was not clear how to
answer these questions properly. However, if we examine carefully the most recent
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references (Byrd and Omojokon [24], Dennis, El-Alem, and Maciel [7], El-Alem [12],
[13], and Lalee, Nocedal, and Plantenga [21]) we can observe the same decomposition
of the step (in its normal, or quasi-normal, and tangential components) and the same
trust-region subproblems (the trust-region subproblem for the linearized constraints
and the trust-region subproblem for the Lagrangian reduced to the tangent subspace).
This is explained in great detail in Section 2 of this paper. As in the unconstrained
case, the conditions that each component has to satisfy and the way they are computed
might of course differ from algorithm to algorithm. We can see also in these most
recent references that the merit function used is either the {5 penalty function without
constraint term squared (cases of [21], [24]) or the augmented Lagrangian function (in
7], 1121, [13]).

Consider now the equality—constrained optimization (ECO) problem

minimize f(x)

(1.1) )
subject to C(z) =0,
T
where f : R — R, ¢; : R" — R, 7 =1,...,m, C(z) = (cl(w)cm(x)) ,
and m < n. The functions f and ¢;, 7 = 1,...,m, are assumed to be at least twice
continuously differentiable in the domain of interest.

In [7], Dennis, El-Alem, and Maciel have considered a general trust—region—based
algorithm for the solution of the ECO problem (1.1). This general algorithm is very
much like the algorithm proposed by Byrd and Omojokon [24]'. As mentioned before,
each step s is decomposed as s" + st, where s" is the quasi-normal component of
the step, associated with trust-region subproblem for the linearized constraints and
st is the tangential component, associated with the trust-region subproblem for the
Lagrangian reduced to the tangent subspace. Each component of the step is only
required to satisfy a fraction of Cauchy decrease on the corresponding trust-region
subproblem. Another key feature of this general algorithm is the choice of the aug-
mented Lagrangian as a merit function and the use of the El-Alem’s scheme [11] to
update the penalty parameter. Under appropriate assumptions, it can be shown that
there exists a subsequence of iterates driving to zero the norm of the residual of the
constraints and the norm of the gradient of the Lagrangian reduced to the tangent sub-
space (see [7][Section 8]). It is important to remark that this global convergence result
is obtained under very mild conditions on the components of the step, on the multi-
pliers estimates, and on the Hessian approximations. Thus, the Dennis, El-Alem, and
Maciel [7] result is similar to the global result given by Powell [26] for unconstrained
optimization.

One of the purposes of this paper is to show global convergence to a point sat-
isfying the second—order necessary optimality conditions for this class of algorithms.
Our result is similar to the results established by Moré and Sorensen [23], [30] for
trust—region algorithms for unconstrained optimization. We accomplish this here by
imposing a fraction of optimal decrease on the tangential component st of the step,
by using exact second—order information, and by imposing conditions on the quasi-
normal component s" and on the Lagrange multipliers.

! The Thesis [24] was directed by Professor R. H. Byrd. The trust-region algorithm proposed here
is usually referred as the Byrd and Omojokon algorithm.
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In [2], Byrd, Schnabel, and Shultz have proposed a trust-region algorithm for
equality—constrained optimization and established global convergence to a point satis-
fying the second—order necessary optimality conditions. However this algorithm does
not belong to the class of trust-region algorithms considered here and their result is
obtained with the use of the (exact) normal component and the least—squares multipli-
ers update which we do not require in this paper. Other differences are that they use
the {1 penalty function as the merit function and the analysis is carried out by using
an orthogonal null-space basis. In recent papers, Coleman and Yuan [6] and El-Alem
[12] have proposed trust—region algorithms for which they prove global convergence to
points satisfying first—order and second—order necessary optimality conditions. Their
algorithms use the (exact) normal component, an orthogonal null-space basis, and the
least—squares multipliers update.

The conditions we need to impose to assure that a limit point of the sequence of
iterates satisfies the second—order necessary optimality conditions are

Vol(e, Ae) sh = Ok||C(2)|]) and [|AN] = [[Ag1 — Akl] = O(61),

where {(z,)\) = f(2)+ ATC(x), s} is the quasi-normal component of the step sy, and
6y is the trust-region radius. In the case where ||C'(z)|| is small compared with 6y,
the first condition implies that any increase of the quadratic model of the Lagrangian
from @y, to 2+ s is O(63). To see why this is relevant recall that a fraction of optimal
decrease is being imposed on the tangential component si vielding a decrease of O(§%)
on the quadratic model. The second condition is needed for the same reasons because
AAj also appears in the definition of predicted decrease. We show that both condi-
tions are satisfied when either (i) the (exact) normal component and the least-squares
multipliers are used; or (ii) the most reasonable choices of quasi-normal component
and multipliers are made for a class of discretized optimal control problems. The
former result is in agreement with the result obtained by El-Alem [12].

Gill, Murray, and Wright [17] and El-Alem [10] considered in their analyses that
Vaol(xg, Ag) is O(||sk||). In the latter work this assumption is used to prove local con-
vergence results, and in the former to establish properties of an augmented Lagrangian
merit function. We point out that this assumption implies that Vxﬁ(xk,/\k)Tsz is
O(6k||C(zr)]]) since si is O(éy) and we assume that <7 is O(||C(zg)|]).

We also prove that if the algorithm converges to a point where the reduced Hessian
is positive definite, then the penalty parameter pj is uniformly bounded and the
trust—region radius ¢ is uniformly bounded away from zero, a desired property of a
trust-region algorithm. In this case, particular choices of the multipliers and of the
components s" and st lead us to a q—quadratic rate of convergence in z.

A detailed treatment of the global convergence theory is given in Vicente [35].

The structure of the trust-region subproblem for the linearized constraints can be
exploited to obtain some interesting results. We introduce a quasi-normal component
that satisfies a fraction of optimal decrease on the trust—region subproblem for the lin-
earized constraints. We show that the (exact) normal component shares this property.
We also prove that if the algorithm is well behaved (for instance if the trust radius is
uniformly bounded away from zero), then this subproblem has a natural tendency to
fall into the so—called hard case.

We review the notation used in this paper. The Lagrangian function associ-

ated with the ECO problem (1.1) is defined by {(z,)) = f(z) + AT C(z), where
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A € R™ is the Lagrange multiplier vector. The matrix VC'(z) is given by VC'(z) =
(Vcl(x) X -ch(x)), where Ve;(2) represents the gradient of the function ¢;(z). Let

V2 f(z) and VZ¢;(z) be the Hessian matrices of f(z) and ¢;(x) respectively. We use
subscripted indices to represent the evaluation of a function at a particular point of
the sequences {1} and {A;}. For instance, fj represents f(xy) and {j is the same
as {(x, Ag). The vector and matrix norms used are the {3 norms, and I; represents
the identity matrix of order /. Finally, A\1(A) denotes the smallest eigenvalue of the
symmetric matrix A.

The structure of this paper is as follows. In Section 2, we introduce the trust—
region subproblems and outline the general trust-region algorithm and the general
assumptions. In Section 3, we present the global convergence theory. A class of
discretized optimal control problems is introduced in Section 4 as a justification for
the general form of our algorithms and theory. In Sections 5 and 6, we analyze
respectively the behavior of the trust radius and the local rates of convergence. The
trust-region subproblem for the linearized constraints is studied in Section 7. We end
this paper with some summary conclusions.

2. Algorithm and general assumptions. The trust—region algorithm ana-
lyzed by Dennis, El-Alem, and Maciel [7] for the solution of the ECO problem (1.1),
consists of computing, at each iteration k, a step s, decomposed as s, = s —I—si, where
the components s} and 52 are required to satisfy given conditions. If the step si is
accepted, the algorithm continues by setting zz41 to xp + sg. If the step is rejected
then zx4q1 = 2.

2.1. Decomposition of the step. Suppose that ||Ck]| # 0. The component
sP is called the quasi-normal (or quasi-vertical) component of s; and is required to
satisfy a fraction of Cauchy decrease on the trust-region subproblem for the linearized
constraints defined by

minimize %HVC’,{S” + O
subject to  ||s"|| < réy,
where r € (0,1) and ¢y, is the trust radius. In other words, s} has to satisfy
(2.1) ICkI2 = IV CT SR+ Cel? > o (kI = IVCF e + Crl?)
where ¢" > 0 and ¢} is the so—called Cauchy point for this trust-region subproblem,
i.e. ¢} is the optimal solution of
minimize %HVC’,{C” + Cl)?
subject to " € span{-VCC},
1] < 7o,
and therefore

FeTvencs YOG it Rerve.cE < ok

n
Ck =
IIVCkaIIVCka otherwise.
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The component s} also is required to satisfy the condition
(2:2) [[shll < sl Cll,

where k1 is a positive constant independent of the iterate k of the algorithm. This
condition is saying that close to feasibility the quasi-normal component has to be
small.

In this paper, we require the quasi-normal component s} also to satisfy

(2.3) Vs < kal|Crll6r,

where k9 is a positive constant independent of the iterates. The important consequence
of this condition is that if ||Cy|| is small compared with 65, then any increase of the
quadratic model of the Lagrangian along the quasi-normal component s is of O(67).
The two choices of s} given in Sections 4.1 and 4.2 satisfy conditions (2.1), (2.2),
and (2.3). Other choices have been suggested in [7], [20].
The component 52 is the tangential (or horizontal) component, and it must satisfy

VC;;FSL =0,

i.e. it must lie in the null space N(VCT) of VOI. Let Wy be an n x (n — m) matrix
whose columns form a basis for N(VCF). Let also

1
qr(s) =l + Vol !s + §5THk5

be a quadratic model of £ at (z, \z), where Hy is an approximation to VZ_{(x, A).
Since for any st € NM(VCY]), there exists a st € IR"™™ such that st = Wyst, we
consider also gt (%) which is given by

o ~ 7t L, tra
) = el + Wist) = quls]) + T+ (59T H(s")

with Hy = WkTHka, gr = W,;[qu(sz) and gx(s)) = + VxﬁkTsz + %(SQ)THk(sz)
If ||gx|| # 0O, 52 is required to satisfy a fraction of Cauchy decrease for the trust—
region subproblem

minimize  gh(s")
subject to |0 + Wyst|| < 6.

Note that this is not a standard trust-region subproblem because s} might not be
orthogonal to N(VC’;{) and hence 5% = 0 might not be the center of the trust region.
The steepest—descent direction at §¢ = 0 associated with (j,E(Et) in the £ norm is —gg.
If we take into account the scaling matrix Wy, then the steepest—descent direction
in the [|[Wy - || norm is given by —(WIW;)~tgs. We consider the steepest—descent
direction —gy for gt(s%) on {58 € R"™™ : [|s] + Wyst|| < 61} and require 3¢ to satisfy

(2.4) 0 (s7) = qi (s} + Wish) > 0 (au(s]) = qul(s] + Wieh))

where gt > 0, and 62 is the Cauchy point for the {3 norm given by

N2 . = 12 W.a = — T =
B _ el if %ﬁu < & and gf Hpgy > 0,
Ck =

otherwise,
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with 6¢ = || — Trmaze Wrgx|| and
Tmazr = argmaz{T : ||sp — 7Wigx|| < 61}

This is equivalent to saying that 7,4, is the maximum step length along s} — 7Wygx
allowed inside the trust region defined by ég. It is easy to verify that

6 € (1= )b, (14 7)é).

The results given in this paper hold also if 62 is defined along —(W,?Wk)_lgk
provided the sequence {||(WIWj)~!||} is bounded. They are valid also if the coupled
trust-region constraint ||s + W5t|| < 8 is decoupled as ||5%]] < 8;. In this latter case
the parameter 7 defining the quasi-normal component s} can have any positive value.

A step 52 that satisfies this requirement can be computed by using Powell’s dogleg
algorithm [25] or by the conjugate—gradient algorithm adapted for trust regions by
Steihaug [32] and Toint [33] (see also [7], [8], [21]).

In order to establish global convergence to a point satisfying the second—order
necessary optimality conditions, we need 52 to satisfy a fraction of optimal decrease
on the following trust-region subproblem

minimize g(st)

(2.5) ) s
subject to ||Wys|| < é,

where

- { Sk 1ngkH 750
o = (

1—7)é; otherwise.

In other words, we require 52 to satisfy the following conditions:

26) 74(0) — ai(sh) > 5} (a(0) — ak(sp)) -

Wil < 556,

where ﬁ}, ﬂ% > 0, and 57 is the optimal solution of the trust-region subproblem (2.5).
This can be accomplished by applying the GQTPAR routine of Moré and Sorensen
[23] or by using the algorithms recently proposed by Rendl and Wolkowicz [28] and
Sorensen [31].

If 52 satisfies a fraction of optimal decrease on the trust-region subproblem (2.5),
then

lsll < ISR+ IWRSEI] < 7+ B3 < (r + B5(1+ 1))

If 5t is only required to satisfy a fraction of Cauchy decrease, then [[sg| = [|s] +
WkEEH < 6. We can combine both cases and write

(2.7) skl = ||s} + Wist|| < kod,

where 1o = max{r + #5(1 + r),1}. )
It is also important to note that the definition of é; assures that the fraction of
optimal decrease (2.6) implies the fraction of Cauchy decrease (2.4) provided g% > 1.
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2.2. General trust-region algorithm. We introduce now the merit function
and the corresponding actual and predicted decreases. The merit function used is the
augmented Lagrangian

L(a,Xip) = f(z) + ATC(x) 4 pC(2)TCl2),

where p is the penalty parameter. The actual decrease ared(sy; pi) at the iteration k
is given by

ared(sg; pr) = L(xg, A\gs pr) — L(Tpg1, Aptas pr)-

The predicted decrease (see [7]) is the following:
pred(sg; pr) = L{zg, Aws pr) — (f]k(sk) + ANL(VCE sk + Cr) + prl VO 55 + CkHz) :

To update the penalty parameter p; we use the scheme proposed by El-Alem [11].
The Lagrange multipliers A are required to satisfy

(2.8) JAAL] = [[Akt1 — Akl < Kadg,

where k3 is a positive constant independent of k. This condition is not necessary for
global convergence to a stationary point.
The general trust—region algorithm is given below.

ALGORITHM 2.1 (GENERAL TRUST-REGION ALGORITHM).
1 Choose zq, 09, Ao, Ho, and Wy. Set p_y > 1. Choose a1, n1, bmin, Omaz, P,
and r such that 0 < aq, 7y <1, 0 < émin < dmaz, p > 0, and r € (0,1).
2 For k=0,1,2,...do
2.1 If [|Ckl| + IWEVilk]] + 7% = 0, where 74 is given in (2.10), stop the
algorithm and use zj as a solution for the ECO problem (1.1).
2.2 Set s = st = 0.
If ||C|| # 0 then compute s satisfying (2.1), (2.2), (2.3), and ||s} || < rdy.
If [WIV.le|| + vk # 0 then compute 3¢ satisfying (2.6).
Set sp = sp + 52 =sp 4 Wkgi.
2.3 Compute Ap4q satisfying (2.8).
2.4 Compute pred(sy; pg—1):

0:(0) = als) = AN (VC sk + Cn) + prca ([ICHI1 = [|VCT s+ Cl|?)

If pred(sg; pr—1) > 25+ (HCkHQ — IVCEsp + CkHz) then set pr = pr_1.
Otherwise set

=2 qk(sk) — qk(O) + A/\{(VC,?sk + Ck) +5
|C,II? = [IVC sk + CI?

d(sk; o .
2.5 If %d(% <, set dpp1 = ay||sk|] and reject si.

Otherwise accept s; and choose 4541 such that
max{éminv 6k} S 6k—|—1 S 6maac-

2.6 If s; was rejected set xp4q = 2 and Agy1 = Ag. Otherwise set 2541 =
2 + s and /\k-l—l = A+ AN
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It is important to understand that the role of ¢,,;, is just to reset 0 after a step
st has been accepted. During the course of finding such a step the trust radius can be
decreased below 6,,;,. To our knowledge Zhang, Kim, and Lasdon [37] were the first
to suggest this modification. We remark that the rules to update the trust radius in
the previous algorithm can be much more complicated but those given suffice to prove
convergence results and to understand the trust-region mechanism.

As a direct consequence of the way the penalty parameter is updated, we have
the following result.

LeMMA 2.1. The sequence {py} satisfies

pr > pr—1 > 1 and

(2.9) pred(sii pi) = (112 = IVCT s+ Cul?).

In order to establish global convergence results, we use the general assumptions
given in [7]. These are Assumptions A.1-A.4. However for global convergence to a
point that satisfies the second—order necessary optimality conditions, we also need
Assumption A.5. We assume that for all iterations k, z; and zp 4+ s are in 2, where
1 is an open subset of IR".

General assumptions

A.1 The functions f, ¢;, 1 = 1,...,m, are twice continuously differentiable in 2.

A.2 The gradient matrix VC'(z) has full column rank for all 2 € Q.

A.3 The functions f, Vf, V2f, C, VC, V?¢;, i = 1,...,m, are bounded in Q.
The matrix (VC(2)TVC(2))~! is uniformly bounded in Q.

A.4 The sequences {Wy}, {H}, and {A;} are bounded.

A.5 The Hessian approximation Hy is exact,i.e. Hj = VZ_{}, and V2f and VZ¢;,
1=1,...,m, are Lipschitz continuous in €.

Assumptions A.3 and A.4 are equivalent to the existence of positive constants
Vor- oty such that |f(2)] < o Vi) < v, [V2f(@)] < o [C@| < s,
IVC(@)]| < v, [(VO@)IVC@NT < v, IV2(@)]] < v6. i = Le..om, for all
€ Q,and ||Wy| < vz, [|[Hg|| < vs, and ||Ag]] < vo for all k.

2.3. Predicted decrease along the tangential component. Consider again
the trust-region subproblem (2.5). We can use the general assumptions and the
structure of this subproblem to obtain a lower bound on the predicted decrease
41(s0) — qr(s? + st) along the tangential component of the step.

It follows from the Karush—Kuhn-Tucker conditions that there exists a v, > 0
such that

(2.10) Hy + v WEW, is positive semi-definite,

(Hk + ’ykW,;‘FWk) 5, = —gk, and

(8 = IWsi]l) = 0.
(It turns out that these conditions are also sufficient for 5} to solve the trust-region
subproblem (2.5), see Gay [15] and Sorensen [30].) As a consequence of this we can
write

~ —t o —% I 1 I3
a(0) = ah(s0) = 5 (1ResEl + 7e8F) = St

N | —
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where Hj, + ’ykaTWk = R%Rk. Hence we have

v

Ge(sD) = u(s] 4+ s8) = gH0) - (s > 8Y(aH0) - ai(sp))

$BY(L = 7)?y63.

3. Global convergence. Dennis, El-Alem, and Maciel [7] have proved under
Assumptions A.1-A.4 and conditions (2.1), (2.2), and (2.4) that

(2.11)

v

. T _
(3.1) timinf (WY.Ll + C4l) = 0.

In this section we assume that 5% satisfies the fraction of optimal decrease (2.6)
on the trust-region subproblem (2.5), as well as conditions (2.3), (2.8), and A.5 on
st Ak, and Hy, respectively, and show that (3.1) can be extended to

(3.2) lim inf k — +o0 (W Volil| + [|Cill + %) = 0.

The proof of (3.2) although simpler has the same structure as the proof given in [7].
We prove the result by contradiction, under the supposition that

(3.3) IWEV k]| + 1CkI + 75 > €ror

for all k. We start by analyzing the fraction of Cauchy and optimal decrease conditions.
LemMA 3.1. Let the general assumptions hold. Then

(3.4) ICKII? = (IVCE sk + Crll* > k4l Crl| min{rs| | Ckl|, 65}
and
(3.5) ax(sp) — qr(sx) > rellgx || min{rz||grll, #sér},

and, moreover, since 52 satisfies a fraction of optimal decrease for the trust—region
subproblem (2.5),

(3.6) ak(sh) — qu(sk) > Kovkdy,

where Kq,...,Kg are positive constants independent of the iterate k.

Proof. The conditions (3.4) and (3.5) are an application of Powell’s result (see
[26, Theorem 4], [22, Lemma 4.8]) followed by the general assumptions. The condition
(3.6) is a restatement of (2.11) with g = 2841 —r)2. 0

The following inequality is needed in the forthcoming lemmas.

LeMMA 3.2. If the general assumptions hold, then

(3.7) 0:(0) — qr(sf) — AN(VCE s+ Cr) > —kiol|Crll 6k,

where k1o s a positive constant independent of k.
Proof. The term ¢;(0)—gx(s}) can be bounded using (2.2), (2.3), and Assumption
A .4, in the following way:

45(0) — qi(s})

—Vali s — 5(sP) T Hi(s])

—ra[|Celloe — gl Hxll [|s711?

— k2| Crl|6x — %VgTI{lHCkH(Sk.

(AVARNAYS
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On the other hand, it follows from (2.8) and ||VC{'s; + Ck|| < ||Ck|| that
~AN(VOTsp + Cr) > —ka||Crl| 6k

If we combine these two bounds we get (3.7) with k19 = K2 + %1/87‘/@1 + Ks. d

The following technical lemma gives us upper bounds on the difference between
the actual decrease and the predicted decrease. The proof follows similar arguments
as the proof of Lemma 6.3 in [11].

LemMA 3.3. Let the general assumptions hold. There exist positive constants
Ri,...,k7 independent of k, such that

|ared(sk; pr) — pred(sis pr)l - < Fallsell® + 2l AN [[sill* +

(3.8) - -
pie(Rallsll® + Rl Cell 15412

and

59) |ared(sy; pr) — pred(sk; pr)l < Rsl| AN [sell? +

pi(Rollsell® + R Cll llsal|?)

Proof. 1f we add and subtract {(z 41, Ak) to ared(sg; pr)—pred(sg; pi) and expand
0(-, A\g) around ) we get

ared(sg; pr) — pred(sg; pr) = %5;‘5 (Hk — V2 l(w) + 7} s, /\k)) Sk
+ AN (=Cry1 + Cp + VCFEsy)

— e (ICk1 12 = IV s+ Ci])?)
for some 7} € (0,1). Again using the Taylor expansion we can write

ared(sg; pr) — pred(sg; pr) = %sg (Hk — V2 l(xy + 7} s, /\k)) Sk
— LY (AN isEV R ei(wy + TEsk)sk
— p (THy cilan + misn)(s1)TV2e(an + i) (se)
+ (1) IVC(2p + 73s1)VO (@) + misp) T (s1)
— (1) IV C () V()T (51))

where 72, 7 € (0,1). Now we expand ¢;(zg + 73sx) around ¢;(wy). This and the
general assumptions give us the estimate (3.8) for some positive constants Ry,. . .,R4.
The inequality (3.9) follows from (3.8) and pg > 1. 0
The following three lemmas bound the predicted decrease. They correspond re-
spectively to Lemmas 7.6, 7.7, and 7.8 given in [7].
LeMMA 3.4. Let the general assumptions hold. Then the predicted decrease in the
merit function satisfies

pred(sp;p) > kellgk|| min{rz(|grll, £80k } — 10| Crllék

(3.10) 2
+o (IClI? = IVCEsk+ Cill)
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and also
2 2 T 2
(3.11)  pred(siip) > oo} — k1ol Cullén + p (ICKII* = [IVCEsr + Cull)
for any p > 0.
Proof. The two conditions (3.10) and (3.11) follow from a direct application of
(3.7) and from the two different lower bounds (3.5) and (3.6) on qx(s]) — qu(sg). O

LEMMA 3.5. Let the general assumptions hold, and assume that ||WEV Lx| +
O+ 7 > €tor- If |Cr|| < by, where o satisfies

. €tol €tol Re€tol . R7€to] R9€to]
(3.12) a < mm{ ° - . { ° 8} ° }

38 mar 6U708K10mar” 12R100man 66mae >J 7 Br10
then the predicted decrease in the merit function satisfies either

(3.13) pred(siip) > “llgell min{rellgell, kssiy + p (IO = [VCT s + Cul?)
or

(3.14) pred(siip) > bt +p (ICHI* = [VCE sk + Cill?)

for any p > 0.
Proof. From ||[WEIV le|l + [|Ckl] + 7% > €0 and the first bound on a given by
(3.12), we get

2
"ngxﬁk" + Ye > §€tol-

Thus either HW,?VMkH > %qol or Y > %qol. Let us first assume that HW,;‘FVxﬁkH >
%qol. Then it follows from the second bound on « given by (3.12) that

sl = (W Vol + W Hys]|
> WVl = (|WE Hysp|
> Leor — vrvsk ||Chl|
> Lew

Using this, (3.10), 6x < dmqz, and the third bound on « given by (3.12), we obtain

Ke€tol

pred(si;p) > 5 gel| min{orl|gall ksbr} + G2 min{ 5L gy )
= w100l |Call + p (IO = IV CE st + Co?)
> gl min{ke[lgell, msds} + p (ICKII2 = IVCT st + Cill?) -

Now suppose that 7 > ey, To establish (3.14), we combine (3.11) and the last
bound on « given by (3.12) and get

pred(siip) > Snb]+ (b = ol Cull) 8+ p (ICHI* = [VCE s+ ClP?)
> bt +p (112 = IVCTsi + Cil?)
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We can set p to pg_1 in Lemma 3.5 and conclude that, if [[W'V Cx]| + || Ckl| +7& >
€tor and ||Ckl|| < ady, then the penalty parameter at the current iterate does not need
to be increased. See Step 2.4 of Algorithm 2.1.

The proof of the next lemma follows the argument given in the proof of Lemma
3.5 to show that either ||gz|| > %qol or Y > %qol holds.

LEMMA 3.6. Let the general assumptions hold, and assume that ||WEV (k| +
O+ 7k > €tor- If ||Cr|| < by, where a satisfies (3.12), then there exists a constant
K11 > 0 such that

(3.15) pred(sg; pr) > K116}
Proof. By Lemma 3.5 we know that either (3.13) or (3.14) holds. Now we set
p = pr. In the first case we use ||gg|| > %qol and get

pred(sg;pr) > g min{ ~Ee kgl )

6
ke €tol H K7€tol
> e mm{%mw,mg}ék
Kg Etol : K7€¢ol 2
Z 2 max mln{ 66771(133 ? HS}ék‘

In the second case we use v > %Qol, to obtain

~o€to] o9
]
k .

pred(sg; pr) >

Hence (3.15) holds with
P mln{ Kettol min { K7€tol K } ’4396150[}
e 126,00 66mac” ) 6 S
O

Next we prove under the supposition (3.3), that the penalty parameter pj is
bounded.

LEMMA 3.7. Let the general assumptions hold. If ||WIV 0| + ||Ckll + 7% > €0l
for all k, then

pk S p*7

where p. does not depend on k, and thus {py} and {Ly} are bounded sequences.
Proof. If py is increased at iteration k, then it is updated according to the rule

=2 qk(sk) — qk(O) + A/\{(VC,?sk + Ck) +5
1CkI? = IVCE sk 4 Crl|? '

We can write
2 (1CHI2 = IVCT sk + Cull?) = Vallag, )T + S(s0)T He(s])
—(qi(s]) — ar(sk)) + AN (VCEsp + C)
+5 (Il = [V CT 51+ Cul)
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By applying (3.4) to the left hand side and (3.5) and (3.7) to the right hand side, we
obtain

5-hal| Ol min{ ks || Cyl[, 785}

IN

w00t Crll + 5 (= 2AVCCH) st~ VO]
< (k1o + prova)8k[|Crll-

A

If py is increased at iteration k, then from Lemma 3.5 we certainly know that ||Cy|| >
ady, where a satisfies (3.12). Now we use this fact to establish that

(% min{ksa, 7‘}) Pr < K10 + proly.

We have proved that {p;} is bounded. From this and the general assumptions we
conclude that {L;} is also bounded. 0
We can prove also under the supposition (3.3), that the trust radius is bounded
away from zero.
LEMMA 3.8. Let the general assumptions hold. If ||WEV .0x|| 4+ [|Ckll + & > €0l
for all k, then

where 0, does not depend on k.

Proof. If sp_1 was an acceptable step, then 6 > 6,,4,. If not then 6y = aql|sk—1]|,
and we consider the cases ||Cr_1|| < adp—1 and [|Cr_y|| > abr_1, where a satisfies
(3.12). In both cases we use the fact

ared(sk—1; pr—1)

—1].
pred(sg_1; pr—1)

I—-m<

Case I. ||Cr-1]] € abg_q1. From Lemma 3.6, inequality (3.15) holds for k = k — 1.
Thus we can use ||s;_1|| < Kodr—1, (2.8) and (3.9) with £ = k — 1, to obtain

ared(Sp—1; pr—1)

(Rskoks0?_| + pakekddi_| + pufrarodi_)||se—1l|
pred(sg_1; pr—1)

2
k11054

_1‘<

_ a1(1—m)ri1 —
Thus &, = alHSk_lH = Eskoka+psRera+puRraky F12.

Case IL. ||Cy—1|| > @br—_1. In this case from (2.9) and (3.4) with k = k — 1 we get

Pred(sk—l; Pk—l) pl}_l H4Hck—1 H min{xs Hck—l H, rér_1}

(AVARNAYS

Pk—15135k—1HCk—1H

2
> pr—10K1305_1,

where r13 = St min{ssa,r}. Again we use pp_1 > 1, (2.8) and (3.9) with k = & — 1,

and this time the last two lower bounds on pred(sg_1;pr—1), and write

pr—1(Rsroks+Re k2 )87 _ [|sk—1l| n Pr1Fr k081 ]|Cre1ll llsk—1l|

sresictimas) | g

pred(sg—13p5—1) - pk_lomlgéi_l Pr—1r128,_1[[Cr_1]|
R5HOH3+R6HS+R70¢HO
< (o tROn ) (s, ).

a1 (1—m)okis
0r3tFKe HS-I-TWOZHO

Hence 6, = aq||sg-1]| > o = K14.
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The result follows by setting 6, = min{d,,in, K12, K14} O

The next result is needed also for the forthcoming Theorem 3.1.

LeMMA 3.9. Let the general assumptions hold. If ||WIV 0| + ||Ckll + 7% > €0l
for all k, then an acceptable step is always found in finitely many trial steps.

Proof. Let us prove the assertion by contradiction. Assume that for a given k,
zp = xy for all £ > k. This means that limg— 40 0 = 0 and all steps are rejected
after iteration k. See Steps 2.5 and 2.6 of Algorithm 2.1. We can consider the cases
|ICk|| < abdy and ||Ck|| > @by, where o satisfies (3.12), and appeal to arguments similar
to those used in Lemma 3.8 to conclude that in any case

ared(sg; pr)

— 1| < Ky56p, k> k

where k15 is a positive constant independent of the iterates. Since we are assuming
that limg_ 1 0r = 0, we have limy_ 4, ;%:3(% =1 and this contradicts the rules
that update the trust radius. See Step 2.5 of Algorithm 2.1. O
Now we finally can state our first asymptotic result.
THEOREM 3.1. Under the general assumptions, the sequence of iterates {xy}

generated by the Algorithm 2.1 satisfies

(3.16) liminf ([ Vol + 1Call + 7¢) = 0.

Proof. Suppose that there exists an ¢;,; > 0 such that HW,;‘FVxﬁkH—I—HCkH—I—’yk > €01
for all k.

At each iteration k either ||Cy|| < ady or ||Cg|| > ady, where a satisfies (3.12). In
the first case we appeal to Lemmas 3.6 and 3.8 and obtain

pred(sg; pr) > k1162

If ||Cgl| > ady, we have from pr > 1, (2.9), (3.4), and Lemma 3.8, that
g . 2
pred(sg; pr) > 5@ min{ksa, r}oz.

Hence there exists a positive constant 16 not depending on k such that pred(sg; pr) >
K1g. From Lemma 3.9, we can ignore the rejected steps and work only with successful
iterates. So, without loss of generality, we have

Ly, — Ly = ared(sg; pr) > mpred(sg; pr) > mikie.

Now, if we let k go to infinity, this contradicts the boundedness of {L;}. O

From this result we can state our global convergence result: existence of a limit
point of the sequence of iterates generated by the algorithm satisfying the second-
order necessary optimality conditions. This result generalizes those obtained for un-
constrained optimization by Sorensen [30] and Moré and Sorensen [23].

THEOREM 3.2. Let the general assumptions hold. Assume that W(z) and A(z)
are continuous functions and A\ = May) for all k.

If {x1} is a bounded sequence generated by Algorithm 2.1, then there exists a limit
point x,. such that

o ((z.)=0,
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o W(z)'Vf(z.) =0, and
o V2 Uz, N(2,)) is positive semi-definite on N (VC(z.)T).
Moreover, if AN(z.) is such that V {(z, AN(z.)) = 0 then z. satisfies the second—order
necessary optimality conditions.
Proof. Let {k;} be the index subsequence considered in (3.16). Since {ay,} is
bounded, it has a subsequence {zy, } that converges to a point z, and for which

(3.17) im (Wl |+ 1+ ,) = 0.
Now from this and the continuity of C(z), we get C'(z«) = 0. Then we use the
continuity of W(z) and V f(z) to obtain

W(z) 'V f(z,)=0.

Since Ai(-) is a continuous function, we can use (2.10), lim; 4., v, = 0, the
continuity of W(z), A(2), and of the second derivatives of f(z) and ¢;(z), i =1,...,m,
to obtain

M (W () V2l M)W () > 0.

This shows that V2 {(., A(z.)) is positive semi-definite on N(VC(z.)T). 0
The continuity of an orthogonal null space basis has been discussed in [1], [5], [16].
A class of nonorthogonal null space basis is described in Section 4.1.
The equation V (x4, A(z.)) = 0 is satisfied for consistent updates of the Lagrange
multipliers like the least-squares update (4.7) or the adjoint update (4.3).

4. Examples.

4.1. A class of discretized optimal control problems. We now introduce an
important class of ECO problems where we can find convenient matrices Wy, quasi-
normal components s, and multipliers \; satisfying all the requirements needed for
our analysis. The numerical solution of many discretized optimal control problems
involves solving the ECO problem

minimize f(y,u)

(4.1)
subject to C(y,u) =0,

where y € IR™, v € R"™" and = = (see [8], [19], [20]). The variables in y are

C)
U
the state variables and the variables in u are the control variables. Other applications
include parameter identification, inverse, and flow problems and design optimization.
In many situations there are bounds on the control variables, but this is not considered
here. Another interesting aspect of these problems is that VC($)T can be partitioned
as

where () is a square matrix of order m.
In this class of problems the following assumption traditionally is made:

The partial Jacobian C() is nonsingular and its inverse is uniformly

(4.2) bounded in .
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As a consequence of this, the columns of

form a basis for the null space of VC/(z)".
The usual choice for Ag in these problems is the so—called adjoint multipliers

(4.3) AL = —Cy(wk)_Tvyf(wk).

It follows directly from the continuity of VC'(z) and the uniformly boundedness of
Cy(z)~! that W(z) varies continuously with z. Furthermore A(z) = —C\(2)~1V, f(x)
is a continuous function of z with bounded derivatives.

Using the structure of the problem we can define the quasi-normal component s
(see references [8], [19], [20]) as

(4.4) L ( —.Cy(ap) 1 Cy ) 7

0
where
1 it ||Cy(2r) Okl < rép,
k= { m otherwise.

As we will see in Section 7, the quasi-normal component (4.4) satisfies a fraction of op-
timal decrease and hence a fraction of Cauchy decrease on the trust-region subproblem
for the linearized constraints.

Other choices for quasi-normal components are given in [20]. All these quasi—
normal components are of the form

(4.5) st = ( (Sg)y ) .

LemMa 4.1. If s} wverifies (4.5) and Ay is given by (4.3), then conditions (2.3)
and (2.8) are satisfied.
Proof. From (4.3) and (4.5) we can see that

Vs = 0 NECIAN 0
vk Vuf(er) + Culzr)T Mg 0

and condition (2.3) is trivially satisfied. Condition (2.8) follows from the existence of

bounded derivatives for A(z) = —C\,(2)"TV, f(z) in Q. a

4.2. The normal component and the least—squares multipliers. Consider
again the general ECO problem (1.1). If the component s of the step sj is orthogonal
to the null space of VCF, then it is a multiple of VCR(VCEVC,)™1Cy. If we also
require that s} lies inside the trust region of radius rdy, then it is given by

—VCk(VCgVCk)—le if \]VCk(VCgVCk)—le\] < rég,

4.6) s =
(o) {_kaCk(VCkTVCk)_le, otherwise,
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T(Sk
IVCr(VCIVC) 10k

given by (4.6), then it is called normal. As we will see in the Section 7, the normal
component (4.6) satisfies a fraction of optimal decrease and hence a fraction of Cauchy
decrease on the trust-region subproblem for the linearized constraints.

LEmMA 4.2. The quasi-normal component (4.6) and the least-squares update

where &, = If the quasi-normal component s} of the step is

(4.7) A= —(VCEVCe)~IveEv £,

satisfy conditions (2.3) and (2.8).
Proof. It can be easily confirmed that V,(Is? = 0. The condition (2.8) holds
since A(z) = —(VC(2)TVC(2))"'VC(2)TV f(2) has bounded derivatives in Q. 0

5. The behavior of the trust radius. In Sections 5 and 6 we no longer need
to consider that the tangential component 52 satisfies a fraction of optimal decrease
on the trust-region subproblem (2.5). It suffices to assume the fraction of Cauchy
decrease condition (2.4). We assume that the component s} satisfies conditions (2.1)
and (2.2).

We need to strengthen conditions (2.3) and (2.8) in the following way:

(5.1) Valisp < mol|Cull llsell,
(5.2) IAAK = [Akr1 = Akl < rallsell,
(5.3) lshll < willskll,

where x), 5, and k) are positive constants independent of the iterates. The choices
of s and A, suggested in Section 4 satisfy these requirements as well. See Lemmas
4.1 and 4.2 for the first two conditions. It is obvious that the normal component (4.6)
satisfy (5.3). The quasi-normal component (4.4) also satisfies (5.3) (see [35][Lemma
5.6.1]).

The next theorems show that if limg_ 1. 2 = z. and V2 {(z,, A(2.)) is positive
definite on M (VC(z,)7), then the penalty parameter pj, is uniformly bounded and
the trust radius ¢z is uniformly bounded away from zero.

THEOREM 5.1. Let the general assumptions hold and W(z) and A(x) be continu-
ous. If {x}} converges to x. and V2, {(z., A(z.)) is positive definite on N (VC(z,)T),
then {pr} is a bounded sequence.

Proof. First since V2_{(z., A(2.)) is positive definite on N (VC(z,)T) and V2 f(z),
Vie(x), i =1,...,m, W(z), and A(z) are continuous functions of z, there exists a
neighborhood NV (z4) of z. and a 4 > 0 such that for any = in N (z.),

M (W ()72, 0, (@)W (2)) > 7.
Since gt (st) — gt(0) < 0 we can write

[N e T - 1At
§(Sk)THk(5k) < —(s5p) gk < 155l 1gxll-

Thus for all k such that 23 € AM(a.) we have

14 T
Skl < skl N9l
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and this implies

2v
t 70—
(5.4) skl < 7\!%\!-

Now by using (3.5) and (5.4), we have for all k such that z; € N (z,), that

ae(sh) — qu(sk) = kollgel| min{r7||gkll, ksdr}
(5.5) -
> Rl
where k17 = %min %, 1/:-87« .

Now let [|[Ck]| < af||sx|| where the positive constant o is defined later. Using
similar arguments as in Lemma 3.2, it follows from (2.2), (5.1), (5.2), ||Ck|| < &/||sk||,
and Assumption A.4 that

(5.6) gx(0) = qx(s}) — ANL(VCi s+ Cr) 2 =il Cull [1sell,

where g = K} + rskia’ 4 Kb
From (2.2) and ||C|| < &'||sx|| we also get

2
lsall < (UsPI -+ sEl) ™ < 20127 + 251

< 2/ RF(|Ck| skl + 21IsE 12,

which together with (5.5) and (5.6) implies

pred(siip) > braallsell 4 (Srarllsell = (@'m3riz + 1o)IICK[) [l

(5.7) , . ,
+ o (ICkl12 = IV CEsi+ Cul?)

for all p > 0. We now need to impose the following condition on «':

K17
5.8 r< )
(5.8) @ = 4o’ k3R + 4K,

Now we set p = pg_1 in (5.7) and conclude that the penalty parameter does not
need to be increased if ||C|| < o'||sg|| (see Step 2.4 of Algorithm 2.1). Hence, if py, is
increased then [|Cy|| > &||sk|| holds, and by using (5.1)-(5.3) we obtain:

(5.9) gx(0) = qx(s}) = ANL(VCi s+ Cr) 2 =0l Cull [1sell,

with &y = K} + fvskik) + k5. Recall from the proof of Lemma 3.7 that if pj is
increased then

Pk . r _
2 allCullmin { wsl[Cull sl < (o + pra)lsel Il

which in turn implies

Rq . r T " — !
7mm K5Oy o PE S Kig+ pra = pr < p,.
0

This completes the proof of the Theorem. O
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THEOREM 5.2. Let the general assumptions hold and W(z) and A(x) be continu-
ous. If {x}} converges to x. and V2, {(z., A(z.)) is positive definite on N (VC(z,)T),
then 0y is uniformly bounded away from zero and eventually all iterations are success-
ful.

Proof. The proof of the theorem is based on the boundedness of {p;}. We consider
the cases ||Ck|| > o||sx|| and [|Ck|| < &'||sk||, where o satisfies (5.8).

If ||Ckl| > @'||sk], then from (2.7), (2.9), and (3.4), we find that

K .
(5.10) pred(sk; pr) = Pk-éiH(7kHIBJH{HSH(7kH7T5k} > prris||sel?,
where K15 = H‘*Ta/min{.%o/, /:—0} In this case it follows from (3.9), (5.10), and p > 1
that
ared(sy; skl I I
(5.11) GO | < (2 S0y 4 2
pred(sg; pr) K18 K18 K18

Now, suppose that ||Cy|| < &'||sg||. From (5.7) with p = p; we obtain
K
pred(si pr) > =" llsill”
Now we use (3.9) and pi < p. to get

ared(sg; ARskh  dRepx 4R P,
(5.12) M _ 1‘ < (L + i) H‘SkH 4 7P HCkH
pred(Sk; Pk) R17 R17 K17

It follows from Theorem 8.4 in [7] that
.. T .
liminf ([W]Volill +(1C]) = 0.

From this result, the continuity of C'(z), and the convergence of {z;} we obtain
Finally from (5.11), (5.12), and the limits limgp— o0 2k = x, limp_qoo Ap =
Azy), and limg_ 4o ||Ck|| = 0, we finally get

ared(sg; pr)
pred(sy; pr)

b

m
k—4oc0

which by the rules for updating the trust radius in Step 2.5 of Algorithm 2.1 shows
that é; is uniformly bounded away from zero. O

6. Local rate of convergence. In order to obtain q—quadratic local rates of
convergence, we require the reduced tangential component 52 to satisfy (2.4) and the
following condition:

(6.1) if [}, is positive definite and || H ' gx| < &y, then st = —H'gy.

6.1. Discretized optimal control formulation. Consider again problem (4.1)
and assume that this problem has the structure described in Section 4.1. We can now
use Theorem 5.2 to obtain a local rate of convergence.

THEOREM 6.1. Suppose that the ECO problem is of the form (4.1). Let the
general assumptions and assumption (4.2) hold and assume that {z} converges to x..
In addition to this, let 52, sp, and Ay be given by (6.1), (4.4) and (4.3).
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If V2, 0(x., \) is positive definite on N (VC(z,)T), where
Aw = —Cy(x*)_TVyf(ac*),

then xp converges q—quadratically to x..
Proof. 1t can be shown by appealing to Theorem 8.4 in [7] that V {(z., A,) = 0.
It follows from Theorem 5.2 that é; is uniformly bounded away from zero. Thus

there exists a positive integer k such that for all k& > k, 52 = —H;lgk and s} =
_ -1
( Cy(acg) C ) Now the rate of convergence follows from [19]. 0

6.2. Normal component and least—squares multipliers. Consider the gen-
eral ECO problem (1.1) again and suppose that the quasi-normal component is the
normal component (4.6) and Ay is given by (4.7).

We can now use Theorem 5.2 to obtain the desired local rate of convergence. It
is assumed that the orthogonal null-space basis is a continuous function of z.

THEOREM 6.2. Let the general assumptions hold and assume that {x} converges
to z,. In addition to this, let 52, sp, and A, be given by (6.1), (4.6), and (4.7).

If V2 (24, \y) is positive definite on N(VC(x,)T), where

A= = (VO(@)TVC(2) T VOV (),

then xp converges q—quadratically to x..

Proof. 1t can be shown by appealing to Theorem 8.4 in [7] that V {(z., A,) = 0.
It follows from Theorem 5.2 that é; is uniformly bounded away from zero. Thus
there exists a positive integer k such that for all k& > k, 52 = —H;lgk and s} =
~VCL(VCEVC)~'Cy. The q—quadratic rate of convergence follows from [18], [36].
d

7. The trust—region subproblem for the linearized constraints. In this
section we investigate a few aspects of the trust-region subproblem for the linearized
constraints

minimize 3||VCTs" + Ck|)?

(7.1) ‘
subject to ||s"|| < rég.

First we prove that the normal component (4.6) and the quasi-normal component
(4.4) always give a fraction of optimal decrease on this trust-region subproblem.
THEOREM 7.1. Let the general assumptions hold. Then:
(i) The normal component (4{.6) satisfies a fraction of optimal decrease on the
trust—region subproblem for the linearized constraints, i.e. there exists a posi-
tive constant 3] such that

(7.2) (Gl = IVCEsh + Coll? > B (IICklI? = IV CE st + Cill?)

where s is the optimal solution of (7.1).
(ii) In addition, assume assumption (4.2). The quasi-normal component (4.4)
satisfies the fraction of optimal decrease (7.2).
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Proof. (i) If [[VCL(VCEVCy)7 Ch|| < rék, then s solves (7.1), and the result
holds for any positive value of 57" in (0, 1]. If this is not the case, then

70y,

(73) NGl = IIVCE st + Cell® = &2 = GICKI? = Gl Crll® = ——[ICx].

V4qlVs

since HVCk(VC,{VCk)—leH S V4V5HCkH and fk S 1.
We also have

ICkI1* = IVCE s + Cxl? —2AVCrCr)T sy — (s)T(VORVOT)(s7)

< 2ua[|Cr] (155l + viIsill?
< 2wy || Crll + virér|sil]
< Quar + vivsr) k|| Crll,

since [|[VCL(VCEVC)TYICK] > 8, > ||st]]. Combining this last inequality with
(7.3) we get

1 *
ICHlP — IVCESE + Cil]> = 5 (10K = IV L5t + ),

2 2
vivs(2 4 vivs

and this completes the proof of (i).
(ii) If |Cy(zk)~TCx|| < rég then s solves (7.1), and (7.2) holds for any positive
value of p'. If this is not the case, we have

C e
IO = IV TR + Col? :uawww%wﬁ(zmﬁ k)+@W
(7.4) = (2= )| Cill?
7o}
> Thjcy,
10

where v1g is the uniform bound on ||C,(z)7!||. Now the rest of the proof follows as

in (i). 0

As a consequence of this theorem, we have immediately that the normal compo-
nent (4.6) and the quasi-normal component (4.4) give a fraction of Cauchy decrease
on the trust—-region subproblem for the linearized constraints.

To compute a step s that gives a fraction of optimal decrease on the trust-region
subproblem for the linearized constraints we can also use the techniques proposed in
[23], [28], [31].

In the next theorem we show that the trust-region subproblem (7.1), due to its
particular structure, tends to fall in the hard case in the latest stages of the algorithm.
This result is relevant in our opinion since the algorithms proposed in [23], [28], [31]
deal with the hard case.

The trust-region subproblem (7.1) can be rewritten as

minimize %C;{Ck + (VCLCp)Ts" + %(s”)T(VCkVC;f)(S”)

(7.5) '
subject to ||s"|| < rég.

The matrix VCkVCkT is always positive semi—definite and, under the general assump-
tions, has rank m. Let E(0) denote the eigenspace associated with the eigenvalue
0,i.e. Fr(0) = {vx € R": VCrVCFvp = 0}. The hard case is defined by the two

following conditions:
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(a) (vi)T(VCrCL) = 0 for all vy, in Ep(0) and

(b) (VORVCE + ul,) "'V CLCh|| < 76 for all u > 0.
THEOREM 7.2. Under the general assumptions, if limg_ o0 % = 0 then there
exists a ky, such that, for all k > ky,, the trust-region subproblem (7.5) falls in the hard

case as defined above by (a) and (b).
Proof. First we show that (a) holds at every iteration of the algorithm. If vy €
£4(0),

VCkVC;;ka = 0.
Multiplying both sides by (VCIVCy)~IVCTE gives us
chvk = 0.

Thus (vx)T(VCLCy) = 0 for all vy, in Ex(0).

Now we prove that there exists a kj, such that (b) holds for every k& > kj. Since
gr(p) = |(VCRVCF + 1ul,) 7tV CLCy|| is a monotone strictly decreasing function of y
for u > 0,

li <rd
Jim gi () < ré

is equivalent to gi(u) < réy, for all 4 > 0. Also, from the singular value decomposition
of V', we obtain

lim, ar(p) = || 11r8+(vckvc,{ + ul,)IVOLCH| = |[VOUVOEV O ).
> >

Hence gi(1) < 76; holds for all > 0 if and only if | VCL(VCIVCy) 1Ok < 764

Now since limg_ 4o % = 0, there exists a kj, such that [|Cy]| < U4Ty5 oy, Tor all
k > k. Thus [|[VC(VCEVCL)T Ok < vavs||Ck|| < 76k, for all k > ky, and this
completes the proof of the theorem. O

We complete this section with the following corollary.

COROLLARY T7.1. Under the general assumptions, if limy_. o, ||Ck|| = 0 and the
trust radius is uniformly bounded away from zero, then there exists a ky, such that, for
all k > ky, the trust-region subproblem (7.5) falls in the hard case as defined above by
(a) and (b).

Proof. If limy_ 4~ ||Ck|| = 0 and the trust radius is uniformly bounded away from
zero then limg_ 4o JJ%H = 0 and Theorem 7.2 can be applied. O

k

8. Concluding remarks. In Theorems 3.1 and 3.2 we have established global
convergence to a point satisfying the second-order necessary optimality conditions
for the general trust-region—based algorithm considered in this paper. In Theorem
5.2 we have proved that the trust radius is, under sufficient second—order optimality
conditions, bounded away from zero. With the help of this result we analyzed local
rates of convergence for different choices of steps and multipliers. We believe that
these results complement the theory developed by Dennis, El-Alem, and Maciel in [7]
that proves global convergence to a stationary point. We have also given a detailed
analysis of the trust-region subproblem for the linearized constraints.
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