
The limitation of neural nets for approximation and optimization

T. Giovannelli∗ O. Sohab† L. N. Vicente‡

October 19, 2024

Abstract

We are interested in assessing the use of neural networks as surrogate models to approx-
imate and minimize objective functions in optimization problems. While neural networks
are widely used for machine learning tasks such as classification and regression, their appli-
cation in solving optimization problems has been limited. Our study begins by determining
the best activation function for approximating the objective functions of popular nonlinear
optimization test problems, and the evidence provided shows that ReLU and SiLU exhibit
the best performance on both training and testing data. We then analyze the accuracy of
function value, gradient, and Hessian approximations for such objective functions obtained
through interpolation/regression models and neural networks. When compared to inter-
polation/regression models, neural networks can deliver competitive zero- and first-order
approximations (at a high training cost) but underperform on second-order approximation.
However, it is shown that combining a neural net activation function with the natural basis
for quadratic interpolation/regression can waive the necessity of including cross terms in the
natural basis, leading to models with fewer parameters to determine. Lastly, we provide
evidence that the performance of a state-of-the-art derivative-free optimization algorithm
can hardly be improved when the gradient of an objective function is approximated using
any of the surrogate models considered, including neural networks.

1 Introduction

In recent years, machine learning (ML) models have been used to enhance optimization algo-
rithms with the goal of improving their performance. One popular approach is to use ML models
to approximate the objective function being minimized. These models, called surrogate models,
can learn from past evaluations of the objective function and predict its value for new inputs (see
the review in [71]). Using surrogate models can be particularly useful for optimization problems
where each evaluation of the objective function is time-consuming or computationally expensive,
like in simulation-based optimization or derivative-free optimization (DFO) [2, 20, 22, 45]. Once
an accurate and computationally cheap surrogate model is built, one can evaluate such a model
instead of the true objective function to reduce the number of objective function evaluations,
thus improving optimization efficiency. Another approach is to use ML models to learn the

∗Department of Industrial and Systems Engineering, Lehigh University, Bethlehem, PA 18015-1582, USA
(tog220@lehigh.edu).

†Department of Industrial and Systems Engineering, Lehigh University, Bethlehem, PA 18015-1582, USA
(ous219@lehigh.edu).

‡Department of Industrial and Systems Engineering, Lehigh University, Bethlehem, PA 18015-1582, USA
(lnv@lehigh.edu).

1

optimization process itself. These models can iteratively learn from past optimization runs and
predict the best algorithmic steps and hyperparameters of methods applied to solve a given
problem. For example, in [15, 66], the authors train recurrent neural networks to learn the up-
date steps of gradient-based and derivative-free optimization algorithms. Such networks are then
used to predict the next point to evaluate without adding to the number of objective function
and gradient evaluations.

For the scope of this paper, among all the different types of ML models, we focus on artificial
neural networks. Such networks consist of interconnected nodes (also called neurons) that are
organized into layers, typically consisting of an input layer, one or more hidden layers, and an
output layer [31]. The inputs to the network are fed into the input layer, and then they are
passed through the hidden layers, where each neuron receives inputs from the previous layer,
computes a weighted sum of inputs, and then outputs the result to the next layer after applying
an activation function. The output layer produces the final output of the network. Among all
the different types of artificial neural networks, we consider feedforward neural networks, where
the inputs are processed in a forward direction only, without any feedback connections.

The ultimate goal of this paper is to assess the use of neural networks as surrogate models for
approximation and optimization purposes. Neural networks have gained significant popularity
as surrogate models in engineering applications [13, 52, 57, 58, 70]. However, we are not aware of
any papers evaluating the accuracy of the approximations produced by neural networks or using
neural networks within optimization algorithms to approximate the objective function being
minimized. For assessing the performance of neural networks, we choose to compare them against
models built through interpolation or regression, including quadratic models [5, 10, 17, 18, 19, 20,
79] and interpolation models based on radial basis functions [14, 35, 51], which have successfully
been used for approximation and optimization. To conduct our study, we consider popular
nonlinear optimization test problems with different features in terms of linearity, convexity, and
separability. It is important to note that our focus in this paper is both on the local and global
behavior of the approximations provided by the surrogate models considered. In particular, we
are interested in the accuracy of gradient and Hessian approximations for a given point in the
domain and in the accuracy of function value approximations across a larger set of points.

The main contributions of this paper can be summarized as follows:

1. Determine the best activation function of neural networks used to approximate the ob-
jective functions of popular nonlinear optimization test problems. The evidence provided
shows that ReLU and SiLU exhibit the best performance on both training and testing
data (see Section 2). Our aim is not to determine an activation function designed for a
specific optimization problem. Instead, we aim to find an activation function that per-
forms well across a wide range of problems. Note that optimization problems have not
been previously used to assess activation functions, as researchers developing new acti-
vation functions typically limit experiments to classification or regression tasks, where
neural networks are used to predict labels or responses. For classification tasks, popular
datasets such as MNIST and CIFAR are frequently used [11, 16, 41, 50, 78]. For regression
tasks, fewer studies have been conducted, and most of them either focus on applications
arising in fields like chemistry and biology [64, 78] or consider determining approximate
solutions to partial differential equations using physics-informed approaches [39]. Some
papers also investigate activation functions in reinforcement learning tasks [25, 78], where
neural networks are used to learn an optimal policy.

2

2. Analyze the accuracy of the function value, gradient, and Hessian approximations for the
objective functions in the test problems obtained using interpolation/regression models,
including quadratic models and interpolation models based on radial basis functions, and
neural networks. The evidence provided shows that the interpolation/regression mod-
els provide better accuracy when they are used for second-order approximations. Neural
networks are competitive in terms of function evaluations required for zero- and first-
order approximations (although at a high training cost) but perform below interpola-
tion/regression models in terms of second-order approximations. Interestingly, the results
also show that combining an activation function with the natural basis for quadratic inter-
polation/regression can waive the necessity of including cross terms in the natural basis,
leading to models with fewer parameters to determine (see Section 3).

3. Present evidence that the performance of a state-of-the-art DFO algorithm can hardly be
improved when the gradient of the objective functions in the test problems is approximated
using any of the surrogate models considered, including neural networks (see Section 4).
When doing finite-difference BFGS, it seems that no surrogate modeling helps, including
a magical/search step based on surrogate optimization.

In addition to such contributions, we include a discussion in Section 5 to generalize the numerical
results obtained in our paper and provide key takeaway messages.

Throughout the paper, we focus on unconstrained optimization problems with a continuously
differentiable objective function f : Rn → R, namely,

min
x∈Rn

f(x). (1.1)

The derivatives of f will be computed for assessing the accuracy of the approximations provided
by surrogate models. However, they will be assumed unavailable when solving problem (1.1) in
Section 4.

All the computational experiments described in this paper were run on a Linux server
with 32 GB of RAM and an AMD Opteron 6128 processor running at 2.00 GHz. For our
implementation, we used the PyTorch library available in Python [59] and the code is pub-
licly available on GitHub.∗ Throughout this document, k will be the index used to denote
the iterations and ∥ · ∥ will be the Euclidean norm. Moreover, given a positive scalar ∆,
B(x; ∆) = {y ∈ Rn : ∥y − x∥ ≤ ∆} will denote a closed ball in Rn of radius ∆ > 0.

2 Best activation function for approximation

In ML applications, neural networks are widely used for function approximation tasks, such
as regression and classification. Activation functions play a critical role in the performance of
a neural network model, affecting its ability to approximate functions appearing in complex
models. In this section, we provide a review of popular activation functions in ML (see Subsec-
tion 2.1) and determine the best activation function for approximating the objective functions
of popular nonlinear optimization test problems (see Subsection 2.2).

∗https://github.com/sohaboumaima/BasesNNApproxForOpt.git

3

https://github.com/sohaboumaima/BasesNNApproxForOpt.git

2.1 Review of popular activation functions in machine learning

Let us denote the activation function used in a neuron of a neural network as s: R → R. Although
linear activation functions can be considered (i.e., s(z) = z), the activation functions used in
practice apply a nonlinear transformation to the inputs of the corresponding neurons. ReLU [41],
ELU [16], SiLU [25], Sigmoid [64, 65, 67], and Tanh [42] are some of the most commonly used
activation functions in neural networks, and their properties are reviewed below.

ReLU is defined by s(z) = max{0, z} and is the recommended activation function for modern
neural networks [31, Chapter 6]. Although ReLU is not differentiable at z = 0, this is usually
not problematic in practice since it is unlikely that the derivative of g needs to be precisely
evaluated at z = 0 because of numerical errors. Even if such a derivative needs to be evaluated
at z = 0, software implementations usually provide the left derivative (which is 0) or the right
derivative (which is 1) without raising any issues [31, Chapter 6]. Smooth approximations
of ReLU include ELU, defined by s(z) = z for z > 0 and s(z) = α(ez − 1) for z ≤ 0, where
α > 0, and SiLU, defined by s(z) = z/(1 + e−z). Another smooth variant is Softplus [24, 80],
which is given by s(z) = log(1 + ez). However, although Softplus is differentiable everywhere,
its use is discouraged because ReLU is still more likely to lead to better results [29].

The main drawback of ReLU is that it can suffer from the “dying ReLU” problem, which
occurs when neurons output 0 because of their negative inputs and become permanently inactive
during training [47]. To overcome such an issue, [49] proposed LeakyReLU, which is defined
by s(x) = max{0.01z, z}. The non-negative slope of LeakyReLU for all z < 0 allows neurons
to contribute to the network’s output even if their inputs are negative. In practice, such an
activation function performs comparably to ReLU and, occasionally, it may perform better.
An improvement to LeakyReLU is Parametric ReLU [36, 77], where the slope for z < 0 is a
parameter that needs to be learned while training a neural network. ELU and SiLU are known
to be robust to the dying ReLU issue [40].

Sigmoid and Tanh have been used extensively in the past but have become largely replaced
by ReLU and its variants. Sigmoid, defined by s(z) = 1/(1 + e−z), maps each input to [0, 1]

and is often used to approximate probabilities. Tanh, defined by s(z) = ez−e−z

ez+e−z , is a rescaled
version of Sigmoid that maps input values to [−1, 1]. By following a common convention [31],
we will refer to Sigmoid and Tanh as the sigmoidal activation functions because they are both
s-shaped. The main limitation of the sigmoidal activation functions is that they exhibit slow
convergence or get stuck at points that are far from optimality. The reason for this behavior is
that both Sigmoid and Tanh become flat when z is very positive or very negative, which leads to
derivatives that are close to 0, preventing gradient-based algorithms from making good progress
at each iteration (in the ML literature, this issue is referred to as the vanishing gradient problem
or the saturation problem). While Tanh can perform better than Sigmoid in some cases, it still
suffers from the vanishing gradient problem for large (positive or negative) input values. For
this reason, the use of Sigmoid and Tanh as activation functions is discouraged [31, Chapter 6].
As opposed to the sigmoidal activation functions, ReLU and its variants have derivatives equal
to 1 for z > 0, and this allows gradient-based algorithms to make significant progress in the
minimization of the objective function at each iteration.

Recently, some papers have explored combinations of activation functions or have proposed
new activation functions that try to replicate the best properties of ReLU and its variants, Sig-
moid, and Tanh. In [50], two approaches to automatically learn the best linear combination of
activation functions during the training phase are proposed. In [78], the authors propose a differ-

4

entiable universal activation function with 5 trainable parameters that allow it to approximate
the most commonly used activation functions in ML. In [11], activation functions are represented
as nodes of a computation graph, and evolutionary search and gradient descent are then used to
determine the general form of the best activation function and its parameters, respectively. One
of the potential drawbacks of using activation functions with trainable parameters is that it can
result in overfitting the training data, leading to poor performance on unseen data. Another
potential downside is the extra computational cost of training the model. Since the additional
parameters need to be learned during training, the computational complexity and time required
for training the model can increase [36, 68]. Therefore, in the numerical experiments reported
in Subsection 2.2 below, we do not consider activation functions with trainable parameters and
we only focus on ReLU, ELU, SiLU, Sigmoid, and Tanh.

2.2 Numerical experiments

We conducted experiments to compare the performance of ReLU, ELU, SiLU, Sigmoid, and Tanh
in the approximation of test functions from two sets of nonlinear unconstrained optimization
problems available in the CUTEst library [32]. A first set is composed of 38 problems with user-
defined dimensions (in all the experiments reported in this paper, we considered n ∈ {20, 40, 60}),
and a second set is composed of 53 functions with dimensions ranging from 2 to 50. The first set
includes problems with different features in terms of non-linearity, non-convexity, and partial
separability (see Table 1 in Appendix A for the names of such problems). The second set was
selected from [34] and contains problems for which negative curvature was detected by running
one of the second-order methods reported in [4] (see Table 2 in Appendix A for the names and
corresponding dimensions of such problems).

To determine the best activation function for approximation, we used a neural network as a
surrogate model for the objective function of each test problem. The weights of the neural net-
work are denoted as w ∈ Rnw . For each test problem, we trained the neural network to minimize
the mean squared error between the objective function f(x) and the surrogate function fNN(x;w)
over the points xi in a training dataset D = {(xi, f(xi)) | i ∈ {0, . . . , N}}. Therefore, we solved
the following training problem

min
w∈Rnw

L(w;D) =
1

N

N∑
i=0

(f(xi)− fNN(x
i;w))2, (2.1)

where L(w;D) denotes the empirical risk function over the dataset D, which is given by the
mean squared error. Problem (2.1) was solved five times for each test problem to assess the
performance of ReLU, ELU, SiLU, Sigmoid, and Tanh as activation functions in the hidden
layers of the neural network used as a surrogate model (in the output layer, a linear activation
function was used). In addition to the training dataset D, we also considered a testing dataset
to assess the performance of the surrogate model on data that was not used for training.

To aggregate the results over all the test problems, we used performance profiles [23, 53],
which are briefly reviewed in this paragraph. Given a set of solvers S and a set of problems P,
let tp,s > 0 be the performance measure of the solver s ∈ S when applied to solve the problem p ∈
P. For each solver, we can compute the performance profile ρs(α) as follows

ρs(α) =
1

|P|
size{p ∈ P | rp,s ≤ α},

5

where rp,s is the performance ratio, defined as

rp,s =
tp,s

min{tp,s | s ∈ S}
.

When a solver s fails to satisfy the convergence test on a problem p, we set rp,s = 2 max
p∈P,s∈S

rp,s.

One can plot ρs(α) as a curve over α. The solver associated with the highest curve is the one
with the best performance in terms of the metric chosen. In particular, the solver with the
highest value of ρs(1) is the best in terms of efficiency, while the one with the highest value
of ρs(α), for large α, is the best in terms of robustness.

In this subsection, we assume that a neural network equipped with an activation function in
the hidden layers plays the role of a solver. Considering the five activation functions above (i.e.,
ReLU, ELU, SiLU, Sigmoid, and Tanh) leads to five different neural networks. When using the
training dataset, for each test problem p, the performance measure tp,s is given by the number
of iterations required for the training of each neural network s to achieve a point w that satisfies
the following convergence test

L(w0;D)− L(w;D) ≥ (1− τ)(L(w0;D)− LL(D)), (2.2)

where τ > 0 is a convergence tolerance, w0 is the initial vector of weights for each neural network,
and LL(D) is the lowest value of L(w;D) obtained by any neural network in S. When using
the testing dataset, tp,s represents the number of iterations required to satisfy the convergence
test (2.2) with the empirical risk function evaluated over the testing dataset.

The numerical results of our experiments were obtained using the two simplest feedforward
neural network architectures that led to the best results among the five considered neural net-
works. Such architectures are listed as follows

• Varying numbers of nodes: 3 hidden layers with decreasing numbers of nodes given by 64m
for the first hidden layer, 32m for the second hidden layer, and 16m for the third hidden
layer,† where m = 1 if n ∈ [1, 20], m = 2 if n ∈ (20, 40], m = 3 if n ∈ (40, 60], with n
denoting the dimension of a test problem.

• Fixed numbers of nodes: 2 hidden layers with 4n nodes for each layer,‡ where n denotes
the dimension of a test problem.

For ReLU, ELU, and SiLU, the best architecture was the one with varying numbers of nodes.
For Sigmoid and Tanh, the best architecture was the one with fixed numbers of nodes. The
reasons why we focused on simple neural network architectures are outlined in Section 5 among
the key takeaway messages of our paper. Here, we anticipate that in Section 4, we will use
neural networks as surrogate models within derivative-free optimization (DFO) algorithms to
approximate the objective function being minimized. Using more complex architectures would
require a larger number of training points for the neural network surrogate to achieve satisfactory
accuracy, a scenario we aim to avoid to preserve the efficiency of the optimization algorithm.

†We also tried configurations with 32m nodes in the first hidden layer, 16m nodes in the second hidden layer,
and 8m nodes in the third hidden layer, but they performed worse.

‡We also tried configurations with 2 hidden layers and either n, 2n, 3n, or 4n nodes for each layer and with 3
hidden layers and either n or 2n nodes for each layer, but they performed worse.

6

Figure 1: Performance profiles on the training dataset for n = 20 (first row), n = 40 (second
row), and n = 60 (third row) with τ = 10−2 and τ = 10−5 for five neural networks with different
activation functions on the set of 38 problems from CUTEst.

7

Figure 2: Performance profiles on the training dataset with τ = 10−2 and τ = 10−5 for five
neural networks with different activation functions on the set of 53 problems from CUTEst.

We trained the five networks resulting from the five activation functions by using Adam
optimizer [43] with 300 epochs. We employed a dynamic learning rate adjustment strategy.
Specifically, we used the ReduceLROnPlateau callback, a popular technique in deep learning [1],
which led to better performance than using fixed or other decaying stepsize strategies. The
learning rate was reduced by a factor of 0.8 when the empirical risk function over the testing
dataset ceased to decrease, indicating a potential convergence slowdown. We configured the
callback by setting the mode parameter equal to ‘min’, as we aimed to minimize the testing
empirical risk function. Additionally, a patience value of 15 epochs was set, which defines
the number of epochs with no improvement on the testing empirical risk function before the
learning rate reduction is triggered. The training dataset D was composed of N1 = N + 1 =
(n+1)(n+2)/2 points randomly generated according to a uniform distribution in a ball B(x0; 1),
where x0 is the initial point provided by CUTEst, and we refer to Section 3 (where we will see
that (n+ 1)(n+ 2)/2 is the number of points required for determined quadratic interpolation).
The testing dataset was composed of 0.2(n+ 1)(n+ 2)/2 points randomly generated according
to a uniform distribution in the same ball B(x0; 1) used for the training dataset. We have no
interest in exploring variations in the training dataset size for the following reasons. As already
mentioned, in Section 4, we conduct a comparison between a DFO algorithm using a neural
network surrogate and the same algorithm using an interpolation/regression surrogate. Although
interpolation/regression models have been extensively studied in the DFO literature due to their
strong performance [5, 10, 17, 18, 19, 20, 79], there are no studies investigating the performance of
a neural network surrogate trained over the specific number of points required for deterministic
quadratic interpolation. Therefore, a key question is whether a neural network can achieve
comparable performance to a quadratic interpolation model when the number of training points
is approximately equal to the number of points required for deterministic quadratic interpolation.

The minibatch size for training was equal to 16, 32, and 64 for the dimensions 20, 40, and 60,
respectively, for the first set of problems. For the second set, we selected the minibatch as the
closest power of 2 to 0.05 times the size of the dataset. To ensure practicality and avoid extreme
values, we constrained the mini-batch size to a minimum of 2 and a maximum of 64. The value
of w0 was initialized using specific weight initialization techniques tailored to the activation
function used. For ReLU and its variants, we applied the He initialization [37] method. For

8

Figure 3: Performance profiles on the testing dataset for n = 20 (first row), n = 40 (second
row), and n = 60 (third row) with τ = 10−2 and τ = 10−5 for five neural networks with different
activation functions on the set of 38 problems from CUTEst.

9

Figure 4: Performance profiles on the testing dataset with τ = 10−2 and τ = 10−5 for five neural
networks with different activation functions on the set of 53 problems from CUTEst.

Sigmoid and Tanh, we utilized Xavier/Glorot initialization [30]. These initialization strategies
were chosen to address the challenges associated with each activation function and promote
stable and efficient training.

For numerical stability and consistency, we normalized both the training dataset D and the
testing dataset. This involved shifting each sample by −x0 and scaling each sample by ∆ =
max1≤i≤N ∥xi − x0∥. As a result, the transformed dataset was contained within a ball of radius
one centered at the origin, ensuring that at least one point lies on the boundary of the ball:{

0,
x1 − x0

∆
, . . . ,

xN − x0

∆

}
⊂ B(0; 1). (2.3)

Note that normalizing a dataset can help mitigate the impact of the vanishing gradient issue
(see [38]). To use the scaling and shifting in (2.3), we solved the training problem (2.1) by
replacing the function fNN in L(w;D) with

f̂NN(x;w) = fNN((x− x0)/∆;w). (2.4)

Similarly, we used (2.4) when evaluating the empirical risk function at points in the testing
dataset.

The numerical results are reported in Figures 1–2 for the training dataset and Figures 3–
4 for the testing dataset. The values of τ were chosen from {10−2, 10−5}. Regardless of the
dimension n, ReLU, ELU, and SiLU have superior performance compared to the sigmoidal
activation functions on both sets of test problems in terms of both efficiency (see the value
of ρs(1)) and robustness (see the value of ρs(α) for large α). SiLU achieves the best performance
on the testing dataset for both values of τ , followed by ELU and ReLU. On the training data,
ReLU performs best on the set of 38 problems but is outperformed by both SiLU and ELU
on the set of 53 problems. From these figures, we can also see that the sigmoidal activation
functions are not good activation functions for approximation, which is consistent with what is
commonly observed in classification tasks, where the performance of ReLU and its variants is
often found to be superior [11]. To provide further insights into the accuracy yielded by ReLU
and its variants, we include Figures 5–8, which report box plots that illustrate the values of the
normalized root mean square error (RMSE) obtained over a set of problems for each activation

10

Figure 5: Normalized RMSE for ReLU, ELU, and SiLU on the training dataset for n = 20 (first
row), n = 40 (second row), and n = 60 (third row) on the set of 38 problems from CUTEst.

Figure 6: Normalized RMSE for ReLU, ELU, and SiLU on the training dataset on the set of 53
problems from CUTEst.

function. We recall that in a box plot, the horizontal line within the rectangle is the median of
the set of values, while the upper and lower lines denote the medians of the upper and lower
halves of the same set of values, respectively. The circles represent outliers. The RMSE for
a vector of weights w is given by the square root of L(w;D), as defined in problem (2.1). To
generate the box plots in Figures 5–8, we first compute the minimum RMSE value obtained
during the training of a neural network for each optimization problem. Then, we limit the range
of such RMSE values to [0, 1000] for the first set of problems (for each activation function, 3
to 7 out of 38 problems fall outside this range), and [0, 5000] for the second set of problems
(for each activation function, 8 to 9 out of 53 problems fall outside this range), thus excluding
extreme outliers. Subsequently, we normalize the obtained values across all problems for each
activation function. The plots show that ReLU exhibits slightly better performance than ELU
and SiLU on the training and testing datasets on both sets of problems. Such a result does
not contradict the observations from the performance profiles in Figures 1–4, where SiLU is
shown to outperform ReLU on the testing dataset. The reason is that performance profiles take
into account the number of iterations required to achieve a vector of weights that satisfies the
convergence test (2.2), while Figures 5–8 simply illustrate the distribution of normalized RMSE
values for each activation function.

11

Figure 7: Normalized RMSE for ReLU, ELU, and SiLU on the testing dataset for n = 20 (first
row), n = 40 (second row), and n = 60 (third row) on the set of 38 problems from CUTEst.

Figure 8: Normalized RMSE for ReLU, ELU, and SiLU on the testing dataset on the set of 53
problems from CUTEst.

3 The limitation of neural nets for approximation

We start this section by reviewing the basic concepts of polynomial interpolation and regres-
sion in Subsection 3.1. Then, we show that using the composition of an activation function
with the natural basis can lead to better approximations of function values, gradients, and Hes-
sians compared to the natural basis (see Subsection 3.2). Lastly, we assess the accuracy of the
function value, gradient, and Hessian approximations obtained when using neural networks (see
Subsection 3.3).

3.1 Review of polynomial interpolation and regression

Polynomial interpolation and regression models are frequently used in DFO methods to approx-
imate computationally expensive objective functions in black-box problems by using polynomi-
als [5, 17, 18, 19, 20, 60, 74]. If the number of sample points used to build an interpolation
model is less than its degrees of freedom, the resulting model is underdetermined, and such
a situation may arise when functions are too expensive to allow collecting a large number of
function values. If there are more sample points than degrees of freedom, one can use a regres-
sion model (overdetermined interpolation), which is particularly useful when function values are
noisy. If the sample size matches the number of degrees of freedom, the interpolation model is
determined. The nonlinear class of models that is often used for both polynomial interpolation
and regression are quadratics [5, 17, 61, 62, 75]. As opposed to linear models, quadratic models
are able to capture the curvature of the function being approximated.

12

Let us denote as Pd
n the space of polynomials of degree less than or equal to d in Rn.

Let q1 = q + 1 be the dimension of this space, and let ϕ = {ϕ0(x), ϕ1(x), . . . , ϕq(x)} be a basis
for Pd

n (each ϕj(x), with j ∈ {0, . . . , q}, is referred to as a basis function). Since ϕ is a basis
in Pd

n, given real scalars αj , any polynomial m(x) ∈ Pd
n can be written as m(x) =

∑q
j=0 αjϕj(x).

The most common polynomial basis is the natural basis ϕ̄, which is the basis of polynomials in
the Taylor expansion

ϕ̄ = {1, x1, x2, . . . , xn, x21/2, x1x2, . . . , xd−1
n−1xn/(d− 1)!, xdn/d!}. (3.1)

Throughout this section, we refer to Y = {y0, y1, . . . , yN} ⊂ Rn as a sample set, which is a set
of N1 = N + 1 points where the objective function is evaluated. In the linear case (i.e., d = 1),
the dimension of Pd

n is q1 = n + 1. In the quadratic case (i.e., d = 2), the dimension of Pd
n

is q1 = (n+ 1)(n+ 2)/2. Underdetermined quadratic interpolation models are based on sample
sets of size N1 such that n+1 < N1 < (n+1)(n+2)/2. Quadratic regression models are based
on sample sets of size N1 > (n+1)(n+2)/2. When N1 = (n+1)(n+2)/2, one has determined
quadratic interpolation.

Let us now formally describe the optimization problems arising in polynomial interpolation
and regression. Denoting the function to approximate as f : Rn → R, let f(Y) represent the
vector whose elements are f(yi), with i ∈ {0, . . . , N}. The goal of polynomial interpolation is to
determine the coefficients α0, . . . , αq of a polynomial m(x) such that m(yi) =

∑q
j=0 αjϕj(y

i) =

f(yi), for all i ∈ {0, . . . , N}, see [19]. To ensure that m(x) interpolates the function f at the
points in Y , one can solve the following linear system, written in matrix form

M(ϕ, Y)αϕ = f(Y), (3.2)

where

M(ϕ, Y) =

ϕ0

(
y0
)

ϕ1

(
y0
)

· · · ϕq

(
y0
)

ϕ0

(
y1
)

ϕ1

(
y1
)

· · · ϕq

(
y1
)

...
...

...
...

ϕ0

(
yN

)
ϕ1

(
yN

)
· · · ϕq

(
yN

)
 , αϕ =

α0

α1
...
αq

 , and f(Y) =

f(y0)
f(y1)

...
f(yN)

 .

The goal of polynomial regression is to determine the coefficients α0, . . . , αq of a polyno-
mial m(x) to solve system (3.2) in the least-squares sense by minimizing ∥M(ϕ, Y)αϕ− f(Y)∥2,
see [18]. When N = q, interpolation and regression yield the same results. Following [20], we say
that a sample set Y is poised for polynomial interpolation in Rn if M(ϕ, Y) is square (N = q)
and non-singular. We say that a sample set Y is poised for polynomial least-squares regression
in Rn if M(ϕ, Y) has full-column rank.

For numerical reasons, it is convenient to shift Y by −y0 so that the new set {0, y1 −
y0, . . . , yN −y0} contains the origin. In optimization methods based on polynomial interpolation
or regression, the current best iterate is usually selected as such a point y0, see [20]. As in (2.1)–
(2.3), one can then scale the resulting sample set by ∆ = max1≤i≤N ∥yi−y0∥ so that the new set
is contained in a ball of radius one centered at the origin, with at least one point on the boundary
of the ball B(0; 1). Throughout this paper, when using interpolation or regression, we will use
such a shifting and scaling. Note that this can be achieved by introducing a polynomial m̂(x)
such that

m̂(x) = m((x− y0)/∆) (3.3)

13

and then performing interpolation or regression on the original sample set to ensure m̂(yi) =
f(yi), i ∈ {0, . . . , N}, exactly (in the interpolation case) or in the least-squares sense (in the
regression case).

3.2 The use of an activation function as a basis function

In this subsection, we explore the use of bases obtained from the composition of the basis
functions in the natural basis (3.1) with an activation function s : R → R. We focus on the
quadratic case (i.e., d = 2 in (3.1)), which is widely used in practice [5, 17, 61, 62, 75]. The first
type of basis§ we consider is given by

ϕ̃ = {1, x1, x2, . . . , xn, x21/2, s(x1x2), . . . , s(xn−1xn), x
2
n/2}, (3.4)

which is obtained from the natural basis (3.1) by applying s to each cross-term xixj , with {i, j} ⊆
{1, . . . , n} and i ̸= j. The second type of basis is obtained from (3.4) by removing the cross-terms
xixj and adding extra terms s(xi), for all i ∈ {1, . . . , n}, leading to

ϕ̂ = {1, x1, x2, . . . , xn, s(x1), s(x2), . . . , s(xn), x21/2, . . . , x2n/2}. (3.5)

We point out that we also considered the bases that can be obtained from (3.4) and (3.5) by
applying s to each quadratic term x2i /2, with i ∈ {1, . . . , n}. However, we have not included
them in this paper as they did not show any improvement in performance compared to the
natural basis.

In order to have a benchmark to compare bases (3.4) and (3.5) with, we considered a third
type of basis consisting of radial basis functions (RBFs) [14, 35, 51]. Such an RBF basis can be
written as follows

ˆ̂ϕ = {h(∥x− y0∥), h(∥x− y1∥), . . . , h(∥x− yN∥), 1, x1, . . . , xn}, (3.6)

where h : R → R and we are using constant and linear terms as suggested in [20]. Some
of the most popular radial basis functions are cubic h(z) = z3, Gaussian h(z) = e−(z2/ρ2),
multiquadric h(z) = (z2 + ρ2)(3/2), and inverse multiquadric h(z) = (z2 + ρ2)−(1/2), where ρ2

is a positive constant. When using basis (3.6), given vectors of real scalars denoted as λ =
(λ0, λ1, . . . , λN) and γ = (γ0, γ1, . . . , γn), the resulting model becomes m(x) =

∑N
j=0 λjh(∥x −

yj∥) +
∑n

j=0 γjpj(x), where each pj(x) represents one of the constant and linear terms in (3.6).
To determine the coefficients of such a model, it is common to solve the solve the following linear
system [20, 45] [

Φ P
P⊤ 0

] [
λ
γ

]
=

[
f(Y)
0

]
, (3.7)

where Φij = h(∥yi − yj∥), for all i, j ∈ {0, 1, . . . , N}, and Pij = pj(y
i), for all i ∈ {0, 1, . . . , N}

and j ∈ {0, . . . , n}. The system (3.7) ensures that the interpolation conditions m(yi) = f(yi)
are satisfied for all i ∈ {0, . . . , N} and enforces

∑N
i=0 λipj(y

i) = 0, for all j ∈ {0, . . . , n}. In
accordance with our notation in (3.3) for interpolation and regression, we will refer to a scaled
and shifted model using radial basis functions as m̂(x).

§Note that although (3.4) and (3.5) are motivated from the natural basis for the space of polynomials P2
n,

they do not form bases for such a space due to the use of an activation function. Moreover, (3.5) has only 3n+1
elements.

14

Note that the number of degrees of freedom in m(x) when using basis (3.5) is 3n+1, which is
less than the number required for determined quadratic interpolation (i.e., (n+1)(n+2)/2). The
same remark applies to m̂(x), defined in (3.3). Since we want to test bases (3.4) and (3.5) using
a sample set of dimension (n+1)(n+2)/2 for both, we need to solve a determined interpolation
problem when using (3.4) and a regression problem when using (3.5). Therefore, we will refer
to m̂(x) as an interpolation model when using (3.4) and as a regression model when using (3.5).
When using the RBF basis (3.6), we will refer to the resulting model m̂(x) as an interpolation
model.

To assess the performance of bases (3.4) and (3.5) for interpolation and regression, respec-
tively, and basis (3.6) for interpolation, we used the same sets of test problems considered in
Section 2 and listed in Tables 1 and 2 of Appendix A. Here, we are interested in assessing the
ability of the proposed basis functions to locally approximate the function f by using an in-
terpolation/regression model m̂(x) as a surrogate model of f . To perform this assessment, we
compared the function value, gradient, and Hessian approximations obtained using bases (3.4)
and (3.5) for different choices of the activation s and basis (3.6) equipped with Gaussian radial
basis functions. Similar to the experiments for Section 2, we built the sample set Y by randomly
generating N1 = (n+ 1)(n+ 2)/2 points according to a uniform distribution in a ball B(x0; 1),
where x0 is the initial point provided by CUTEst.

The results of our numerical experiments are illustrated in Figures 9 and 10, which report box
plots that allow us to compare the natural basis (3.1), bases (3.4) and (3.5) when the activation
function s is either ReLU, ELU, SiLU, Sigmoid, or Tanh, and basis (3.6). In particular, Figure 9
corresponds to the set of 38 problems (with n = 20), while Figure 10 pertains to the set of 53
problems. Recalling the definition of m̂(x) in (3.3), the y-axis of the upper plot in Figures 9
and 10 represents the value of the following metric

|m̂− f | :=
|m̂(x0)− f(x0)|

max{|m̂(x0)|, |f(x0)|}
, (3.8)

where the max function is used in the denominator to avoid a division by zero when either m̂(x0)
or f(x0) is equal to zero (in the experiments, such terms are never both equal to zero). Such
a metric evaluates the function value approximation error by comparing the value of f at the
initial point provided by CUTEst with the value of m̂ at the same point. We adopted similar
metrics to evaluate the gradient and Hessian approximation errors. Specifically, the y-axes of
the middle and lower plots in Figures 9 and 10 represent the values of

∥∇m̂−∇f∥ :=
∥∇m̂(x0)−∇f(x0)∥

max{∥∇m̂(x0)∥, ∥∇f(x0)∥}
(3.9)

and

∥∇2m̂−∇2f∥ :=
∥∇2m̂(x0)−∇2f(x0)∥

max{∥∇2m̂(x0)∥, ∥∇2f(x0)∥}
, (3.10)

respectively. In all the plots, the x-axis corresponds to the natural basis (3.1), the bases derived
from (3.4) and (3.5), and basis (3.6) according to the following notation:

15

Figure 9: Comparison of |m̂− f |, ∥∇m̂−∇f∥, and ∥∇2m̂−∇2f∥ among different bases for the
set of 38 problems listed in Table 1 of Appendix A.

1: (3.1),
2: (3.4) with ReLU,
3: (3.4) with ELU,
4: (3.4) with SiLU,
5: (3.4) with Sigmoid,
6: (3.4) with Tanh,
7: (3.5) with ReLU,
8: (3.5) with ELU,
9: (3.5) with SiLU,
10: (3.5) with Sigmoid,
11: (3.5) with Tanh,
12: (3.6).

Each box plot illustrates the values of a metric from (3.8)–(3.10) obtained over all the problems
considered in the corresponding figure. To compute the box plots, we restrict the values of
metrics (3.8)–(3.10) to the range [0, 5] in order to exclude extreme outliers. In the figures, we
limit the y-axis to the range [0, 1].

Figure 9 shows that the bases derived from (3.5) allow one to obtain the most accurate
model m̂ in terms of function value, gradient, and Hessian approximations on the set of 38
problems. Basis (3.6) exhibits a similar performance to (3.5) in terms of function value approxi-
mation, but it is significantly worse in terms of gradient and Hessian approximations. Note that
the values of metrics (3.8)–(3.10) obtained using the bases derived from (3.4) are comparable
to those achieved using the natural basis (3.1), and we can observe that both (3.1) and (3.4)
lead to quite inaccurate function value, gradient, and Hessian approximations (this is somehow
expected given that the radius of the ball is equal to 1, and we observed that the inaccuracy
reduces if we take a smaller ball).

16

Figure 10: Comparison of |m̂− f |, ∥∇m̂−∇f∥, ∥∇2m̂−∇2f∥ among different bases for the set
of 53 problems listed in Table 2 of Appendix A.

When considering the set of 53 problems, Figure 10 shows that (3.1) and (3.4) have similar
performance to (3.5) in terms of function value, gradient, and Hessian approximations. There-
fore, such results suggest that the cross-terms xixj in (3.1) and (3.4) might not be necessary,
regardless of the presence of negative curvature in the functions being approximated. We recall
that employing a sample set of size N1 to assess the performance of both (3.4) and (3.5) required
us to solve a fully determined interpolation problem when using (3.4) and a regression problem
when using (3.5). Similar to (3.1) and (3.4), basis (3.6) performs quite well in terms of function
value and gradient approximations, but it is not able to capture curvature information with the
same level of accuracy. We point out that we repeated the analysis by replacing x0 with points
located between the origin and x0 itself, and this did not change our conclusions.

Our conclusion is that the use of activation functions in quadratic interpolation and regression
seems to waive the necessity of including cross terms.

3.3 The use of neural networks for approximation

In this subsection, we assess the accuracy of the function value, gradient, and Hessian approx-
imations obtained when using a neural network as a surrogate model of the function f . In
particular, we considered five neural networks, each equipped with either ReLU, ELU, SiLU,
Sigmoid, or Tanh in the hidden layers (in the output layer, a linear activation function is
used). To conduct this analysis and ensure a fair comparison with the numerical results ob-
tained for the interpolation/regression model in Subsection 3.2, we constructed the training
dataset D = {(xi, f(xi)) | i ∈ {0, . . . , N}} using the same approach that we employed to build
the sample set Y . Specifically, we randomly generated N1 = N + 1 = (n + 1)(n + 2)/2 points
according to a uniform distribution in a ball B(x0; 1), where x0 is once again the initial point
provided by CUTEst. Then, after applying the shifting and scaling described in (2.3), we solved
problem (2.1) for each neural network. For the details of the neural network architecture and

17

Figure 11: Comparison of |f̂NN − f |, ∥∇f̂NN − ∇f∥, and ∥∇2f̂NN − ∇2f∥ among different
activation functions for the set of 38 problems listed in Table 1 of Appendix A.

the training process, we refer to Subsection 2.2.
Figure 11 corresponds to the set of 38 problems (with n = 20), while Figure 12 pertains to the

set of 53 problems. To compare the function values, gradients, and Hessians of a neural network
surrogate with those of the function f , we use similar metrics to (3.8)–(3.10). In particular,
recalling the definition of the neural network surrogate f̂NN in (2.4), we consider

|f̂NN − f | :=
|f̂NN(x

0)− f(x0)|
max{|f̂NN(x0)|, |f(x0)|}

, (3.11)

∥∇f̂NN −∇f∥ :=
∥∇f̂NN(x

0)−∇f(x0)∥
max{∥∇f̂NN(x0)∥, ∥∇f(x0)∥}

, (3.12)

∥∇2f̂NN −∇2f∥ :=
∥∇2f̂NN(x

0)−∇2f(x0)∥
max{∥∇2f̂NN(x0)∥, ∥∇2f(x0)∥}

. (3.13)

Figure 11 reports box plots that illustrate the comparison of metrics (3.11)–(3.13) among
different activation functions for the set of 38 problems. In particular, the upper and middle
plots in Figure 11 show that ReLU and its variants are the activation functions that yield the
highest accuracy in terms of function value and gradient approximations, while the sigmoidal
functions exhibit lower accuracy. Note that the value of metric (3.12) is significantly large when
using the sigmoidal activations. Indeed, for most of the problems, the approximate gradients
obtained using the sigmoidal activations were observed to be close to the null vector due to the
vanishing gradient problem, despite the use of the shifting and scaling in (2.3). The lower plot in
Figure 11 shows that the considered neural networks were not able to accurately approximate the
curvature of any objective function regardless of the activation function used, with the exception
of SiLU, which shows the best performance. The limitation in capturing curvature information
was somehow expected for ReLU, which is a piecewise-linear function with no curvature, but it

18

Figure 12: Comparison of |f̂NN − f |, ∥∇f̂NN − ∇f∥, and ∥∇2f̂NN − ∇2f∥ among different
activation functions for the set of 53 problems listed in Table 2 in Appendix A.

is less obvious for the sigmoidal activations. The upper and middle plots in Figure 12 confirm
that ReLU and its variants are the best activation functions to approximate the function values
and gradients on the set of 53 problems as well. The lower plot in Figure 12 demonstrates that
although none of the activation functions provides very accurate Hessian approximations, SiLU
exhibits a superior ability to capture curvature information.

4 The limitation of neural nets for optimizing without deriva-
tives

The aim of this section is to enhance the performance of a state-of-the-art derivative-free opti-
mization (DFO) algorithm when the gradient of the objective functions of the test problems in
Tables 1 and 2 of Appendix A is approximated using the surrogate models considered in Sec-
tions 2 and 3, including neural networks. DFO is a well-studied area in the field of mathematical
optimization that deals with solving problems where each evaluation of the objective function
is time-consuming or computationally expensive [2, 20, 22, 45]. Recent research in DFO has
shown that combining a Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton update step
with a finite-difference (FD) gradient allows obtaining strong performance in the minimization
of a smooth and noiseless objective function by taking advantage of the curvature of such a
function [6, 8, 69].

In Subsection 4.1, we will present the BFGS update step with FD gradient, as well as its
surrogate-based version, as part of the general class of methods called Full-Low Evaluation

(FLE), which will be briefly mentioned below and reviewed in Appendix B. FLE methods have
been proposed in [9] and can be used to minimize a function f without using its derivatives,
which makes this class of algorithms suitable to solve problem (1.1). In Subsection 4.2, we will
report the results of our numerical experiments, where we used surrogate models to enhance the

19

performance of a practical FLE method.

4.1 The use of a surrogate model for optimizing without derivatives

We will start this subsection by describing the k-th iteration of the BFGS update step with FD
gradient in Algorithm 1, and then we will present its surrogate-based version in Algorithm 2
below. The direction explored in Algorithm 1 is given by pk = −Hkgk, where gk is the ap-
proximation of the gradient ∇f(xk) obtained using a forward FD scheme at the k-th iterate xk
and Hk is the BFGS approximation of the Hessian inverse ∇2f(xk). In particular, the i-th
component of gk is given by

[gk]i =
f(xk + hkei)− f(xk)

hk
, ∀i ∈ {1, . . . , n}, (4.1)

where hk is the FD parameter and ei ∈ Rn is the i-th canonical vector (see Step 1 for the
use of (4.1) in Algorithm 1). To compute Hk, one needs first to determine sk = xk − xk−1

and yk = gk − gk−1 (see Step 2). Then, if s⊤k yk ≥ ε∥sk∥∥yk∥, with ε > 0, one can set

Hk =

(
I −

sky
⊤
k

y⊤k sk

)
Hk−1

(
I −

yks
⊤
k

y⊤k sk

)
+

sks
⊤
k

y⊤k sk
, (4.2)

and Hk = Hk−1 otherwise (see Step 3). The condition on the scalar product s⊤k yk is necessary
to maintain the positive definiteness of Hk. At the first iteration, one possible choice is H0 =
(y⊤0 s0)/(y

⊤
0 y0)I, which ensures similarity in size between H0 and ∇2f(x0)

−1, see [56].
Once the direction pk has been computed at Step 4, one can obtain the next iterate by

performing a line search at Steps 5–6 and setting xk+1 = xk + βkpk at Step 7, where βk is the
value of β > 0 that satisfies the following sufficient decrease condition by backtracking from a
positive initial stepsize β̄

f(xk + βpk) ≤ f(xk) + cβg⊤k pk, with c ∈ (0, 1). (4.3)

The sufficient decrease condition (4.3), which is typical in nonlinear optimization, allows one to
obtain stepsizes that are neither too large nor too small [56].

Algorithm 1 FLE (only showing the FD-BFGS step)

Input: Iterates xk−1 and xk, ε > 0, backtracking parameters β̄ > 0 and τ ∈ (0, 1).

1: Compute the FD gradient gk by using (4.1).

2: Set sk = xk − xk−1 and yk = gk − gk−1.

3: If s⊤k yk ≥ ε∥sk∥∥yk∥, set Hk according to (4.2), else Hk = Hk−1.

4: Compute the direction pk = −Hkgk and set β = β̄ for the backtracking line-search.

5: While (4.3) is false do
6: Set β = τβ.
7: Set βk = β and xk+1 = xk + βkpk.

Output: Iterate xk+1.

20

Note that computing (4.1) requires n additional function evaluations per iteration. Rather
than incurring such a cost, we propose to build a surrogate model of the objective function f at
each iteration k and use its gradient as the approximate gradient gk for the BFGS update step.
Such a model can be fitted to points in the current dataset Dk = {(xi, f(xi)) | i < k}, consisting
of pairs (xi, f(xi)) associated with function evaluations done at the past iterations. As the
algorithm progresses and more points are collected, the accuracy of the model in approximating
the objective function improves over the iterations. Since the cost of the FD approximation
in (4.1) depends on n, the benefit of using the gradient of the model instead of the FD gradient
is higher on large-scale optimization problems.

As a surrogate model, we consider either an interpolation or regression model, such as the
ones obtained through bases (3.4), (3.5), and (3.6) proposed in Subsection 3.2, or a neural
network, like the ones used in Subsection 3.3. When employing an interpolation or regression
model, the sample set used at iteration k, denoted by Yk, can be obtained as a subset of
the points xi in the current dataset Dk, i.e., Yk ⊆ {xi | (xi, f(xi)) ∈ Dk}. When using a
neural network, one can consider the entire Dk as a training set. The limitation of using an
interpolation or regression surrogate in the FD-BFGS step in Algorithm 1 is that the points
generated during the backtracking line search in steps 4–7 are aligned along the direction pk
and, therefore, the resulting sample set Yk might not be well poised. The limitation of using
a neural network surrogate is that the points generated during the backtracking line search
might not be sufficient to get an accurate approximation of the objective function, and more
points need to be collected. To overcome the above limitations, one can take advantage of a
direct-search step to collect additional points that are more evenly distributed throughout the
space.

In fact, in our experiments, we consider the class of FLE methods, which combines the
FD-BFGS step in Algorithm 1 with a direct-search step [9]. FLE methods exhibit state-of-
the-art performance by leveraging two types of iterations: on the one hand, Full-Eval (FE)
iterations are effective in the smooth, non-noisy case but require a large number of function
evaluations (this is Algorithm 1); on the other hand, Low-Eval (LE) iterations are cheaper in
terms of function evaluations and are effective in the noisy and/or non-smooth case. The details
of the LE step (direct search) are unnecessary for our discussion as well as the switches from FE
to LE and viceversa (see Appendix B).

The version of Algorithm 1 equipped with a surrogate model is given in Algorithm 2 and is
denoted as FLE-S, where the ‘S’ stands for surrogate. FLE-S enables the use of the surrogate
when the cardinality of Dk reaches ζ(n+ 1)(n+ 2)/2, where ζ > 0. The dataset Dk includes all
points used in the calculation of the FD gradient up to the current iteration (see Step 1). All
the points generated in the LE step (direct search) are also included in Dk (see Appendix B).
When employing an interpolation or regression surrogate, among all the points generated in
the line search at Steps 8–9, we only include the first one in Dk to avoid adding points that
are aligned (see Step 11). When using a neural network surrogate, all the points generated in
the line search are added to Dk (again, see Step 11). At Step 2, we generate an extra point
according to a uniform distribution defined over a ball centered at the current iterate and with
radius 0.1, i.e., B(xk; 0.1), and we add such a point to Dk. Then, at Step 3, when employing
an interpolation or regression surrogate, a model can be built by quadratic interpolation or
regression or fitting radial basis functions to the current sample set Yk. When using the neural
network surrogate, all the points in Dk can be used for training the model.

21

Algorithm 2 FLE-S (only showing the FD-BFGS step with surrogate)

Input: Iterates xk−1 and xk, ε > 0, ζ > 0, backtracking parameters β̄ > 0 and τ ∈ (0, 1),
dataset Dk.

1: If |Dk| < ζ(n+ 1)(n+ 2)/2, compute the FD gradient gk by using (4.1), and add all points
used in the calculation of the FD gradient to Dk.

Else
2: Add a point uniformly generated on B(xk; 0.1) to Dk.
3: Build an interpolation or regression surrogate or train a neural network surrogate.
4: Set gk equal to the gradient of the surrogate.

5: Set sk = xk − xk−1 and yk = gk − gk−1.

6: If s⊤k yk ≥ ε∥sk∥∥yk∥, set Hk according to (4.2), else Hk = Hk−1.

7: Compute the direction pk = −Hkgk and set β = β̄ for the backtracking line-search.

8: While (4.3) is false do
9: Set β = τβ.

10: Set βk = β, xk+1 = xk + βkpk.
11: When using an interpolation or regression surrogate, among all the points generated in the

line search at Steps 8–9, add the first one to Dk. When using a neural network surrogate,
add all of these points to Dk.

Output: Iterate xk+1.

4.2 Numerical experiments

We used both sets of test problems listed in Tables 1 and 2 of Appendix A to compare the
default version of the FLE algorithm against its version equipped with a model. In particular,
we compared the results obtained by FLE with those obtained by FLE-S when using the natural
basis (3.1), basis (3.5) with Sigmoid activation, the RBF basis (3.6), and neural networks with
ReLU and SiLU as surrogates. We did not select basis (3.4) because it has a similar performance
to the natural basis (3.1), as discussed in Subsection 3.2. When using basis (3.5), we chose
Sigmoid due to its slightly superior performance in the numerical results in Subsection 3.2.
When using the neural network surrogates, we chose ReLU and SiLU as activation functions
because the numerical results in Subsection 3.3 show that they are effective in approximating
gradients, with SiLU being the best at capturing curvature information.

At Step 3 of Algorithm 2, when employing the natural basis (3.1), basis (3.5), or RBF ba-
sis (3.6), we built a model on the sample set Yk, which consisted of all the points xi from Dk in the
ball B(xk; 0.1γ), with γ = 1.1j , where j ∈ Z is the smallest integer such that B(xk; 0.1γ) contains
at least (n+1)(n+2)/2 points. Therefore, the resulting sample set was Yk = {xi | (xi, f(xi)) ∈
Dk and xi ∈ B(xk; 0.1γ)}. When using the neural network surrogate, all the points in Dk were
used for training the model. For the details of the neural network architecture and the algo-
rithm used for training, we refer to Subsection 2.2. We trained the network using a learning rate
of 10−2, which was chosen by performing a grid search over the set {10−1, 10−2, 10−3, 10−4}.
Regarding the training process, we implemented the following rule for our experiments. The
first time the surrogate model is called, the training consists of 5 epochs. Then, only 1 epoch

22

is used to avoid an excessive increase in the computational cost. Regarding the value of the
parameter ζ in Step 1 of Algorithm 2, we set ζ = 1 when employing the natural basis (3.1),
basis (3.5), or basis (3.6), and ζ = 0.2 when using the neural network surrogate. Note that the
choice of ζ = 1 for the interpolation/regression surrogate implies that FLE-S begins constructing
the model once there are enough points to perform at least a determined quadratic interpolation.

Figures 13 and 14 show the performance profiles with τ = 10−2 and τ = 10−5 on the sets
of 38 and 53 problems, respectively. For each test problem p ∈ P, the performance measure tp,s
is given by the number of function evaluations required by each solver s ∈ S to achieve a point x
that satisfies the following convergence test

f(x0)− f(x) ≥ (1− τ)(f(x0)− fL),

where x0 is the starting point for the problem p and fL is the smallest value of f obtained
by any solver in S. Although FLE requires n function evaluations more than FLE-S at each
iteration when the model is enabled, FLE-S is not able to outperform FLE regardless of the
type of surrogate used. Note that on the set of 38 problems, when the size of the problems
becomes larger and τ = 10−2, FLE-S with the neural network surrogate tends to be more
efficient than FLE, but this is not enough to achieve the same performance as FLE in terms of
robustness. Moreover, when using τ = 10−5, the performance of such an FLE-S significantly
deteriorates both in terms of efficiency and robustness. One can also observe that on both sets
of test problems, FLE-S equipped with the neural network surrogate is outperformed by FLE-S
equipped with the interpolation/regression surrogate in terms of robustness. We point out that
using a more complex architecture for the neural network surrogate would require more training
points to achieve accurate approximations, and so the neural network surrogate would still not
be competitive against the default FLE.

5 Concluding remarks and takeaway messages

In this paper, we assessed the use of neural networks as surrogate models to approximate and
minimize objective functions in optimization problems. To conduct this analysis, we considered
two sets of popular nonlinear optimization test problems. The first set consists of 38 problems
with different features (non-linearity, non-convexity, partial separability), while the second set
consists of 53 problems whose objective functions have been observed to have negative curvature.
In Section 2, we compared the performance of neural networks equipped with ReLU, ELU, SiLU,
Sigmoid, and Tanh in approximating the objective functions in the two sets of test problems
on training and testing datasets. We found that ReLU and SiLU exhibit the best performance
on both sets of problems, with ReLU achieving low RMSE values on both training and testing
data, and SiLU ensuring superior efficiency and robustness on the testing data, as evidenced by
performance profiles.

In Section 3, we compared the function values, gradients, and Hessians of the objective
functions in the two sets of test problems with those of surrogate models obtained through
interpolation or regression and neural networks. The numerical results of Subsection 3.2 demon-
strate that the composition of an activation function with the natural basis can lead to better
function value and gradient approximations than both the natural basis and the RBF basis (3.6),
by applying quadratic regression with basis (3.5) (which does not contain the cross-terms xixj).
This suggests that an activation function can waive the necessity of including cross terms in

23

Figure 13: Performance profiles for n = 20 (first row), n = 40 (second row), and n = 60 (third
row) with τ = 10−2 and τ = 10−5 on the set of 38 problems listed in Table 1 of Appendix A.

24

Figure 14: Performance profiles with τ = 10−2 and τ = 10−5 on the set of 53 problems listed in
Table 2 of Appendix A.

the natural basis. Quadratic interpolation with basis (3.4) does not lead to any significant im-
provement compared to the natural basis. On problems with negative curvature, all the bases
provide similar performance in terms of function value, gradient, and Hessian approximations.
The numerical results of Subsection 3.3 show that a neural network surrogate provides better
function value and gradient approximations when ReLU or its variants are used as activation
functions, while the Hessian approximations are highly inaccurate regardless of the activation
function used, with the exception of SiLU.

In Section 4, we aimed to enhance the performance of the FLE method by using a surro-
gate model to approximate the objective function gradient in the FD-BFGS update step. This
approach allows one to avoid calculating an FD gradient, which requires n additional function
evaluations at each iteration. As a surrogate model, we tested the interpolation/regression sur-
rogates obtained from the natural basis (3.1), basis (3.5), and RBF basis (3.6), and a neural
network surrogate. None of the resulting algorithms was able to significantly enhance the per-
formance of the default FLE method. The neural network surrogate was observed to be less
robust than the interpolation/regression surrogates, although it exhibited higher efficiency when
dealing with larger problem sizes. We point out that we also conducted experiments to test the
use of the surrogates as replacements for the objective function in the line search at Steps 8–9
of Algorithm 2 and the addition of a search step where the surrogate is minimized to deter-
mine a better iterate. However, these experiments did not result in a good performance for
the algorithms equipped with surrogate models. In particular, we observed that neural network
surrogate models are flat in regions where the network has not seen any data points during
training, posing a significant challenge in optimizing such surrogates effectively. Therefore, we
decided to omit the corresponding numerical results from the paper.

We conclude this section with some key takeaway messages that can explain the limitations
of the algorithms equipped with surrogate models in Section 4. The neural network architec-
tures considered in our paper and described in Subsection 2.2 were intentionally kept simple.
Using more complex architectures would require a larger number of training points for the neural
network surrogate to achieve satisfactory accuracy. By the time enough points are collected, an
algorithm without surrogates would likely have already produced a satisfactory solution, thus
nullifying the advantages of using a neural network surrogate (first key takeaway), which
was already known when using interpolation or regression models. While Subsections 3.2–3.3

25

demonstrate that interpolation/regression models and neural networks can yield satisfactory
approximations of function values and gradients when sample and training points are uniformly
distributed on a unit sphere, such an accuracy diminishes when sample and training points col-
lected during optimization are not symmetrically distributed around the current iterate, which is
often the case. In such a situation, the quality of the resulting approximations declines (second
key takeaway). Finally, the numerical results on the set of 38 problems in Subsection 4.2
indicate that the performance of the algorithms equipped with surrogate models does not tend
to significantly improve as the dimension increases. This observation is due to the fact that
while using a surrogate model reduces the number of function evaluations, higher dimensions re-
quire a larger number of training points to achieve satisfactory performance, and this outweighs
the benefits gained from the reduction in function evaluations with the surrogate (third key
takeaway). Such three takeaway messages offer new or consolidated insights into the inherent
limitations of surrogate models used within DFO algorithms, which pose challenges that are
difficult to overcome. These challenges are particularly significant for neural network surrogates
due to their requirement for a large number of training points to achieve satisfactory perfor-
mance. The conclusions of our analysis may change when addressing problems involving noisy
objective function values, and we leave the exploration of such a research avenue for future work.

Acknowledgments

This work is partially supported by the U.S. Air Force Office of Scientific Research (AFOSR)
award FA9550-23-1-0217 and the U.S. Office of Naval Research (ONR) award N000142412656.

Declarations

Conflict of interest The authors have no relevant financial or non-financial interests to dis-
close.

Data availability

The authors confirm that the data supporting the findings of this study are available within the
article.

References

[1] A. Al-Kababji, F. Bensaali, and S. Prasad Dakua. Scheduling techniques for liver seg-
mentation: ReduceLRonPlateau Vs OneCycleLR. arXiv e-prints, art. arXiv:2202.06373,
February 2022.

[2] C. Audet and W. Hare. Derivative-Free and Blackbox Optimization. Springer Series in
Operations Research and Financial Engineering. Springer, Cham, 2017. With a foreword
by John E. Dennis Jr.

[3] C. Audet and J. E. Dennis Jr. Mesh adaptive direct search algorithms for constrained
optimization. SIAM J. Optim., 17:188–217, 2006.

26

[4] C. P. Avelino, J. M. Moguerza, A. Olivares, and F. J. Prieto. Combining and scaling descent
and negative curvature directions. Math. Program., 128:285–319, 2011.

[5] A. S. Bandeira, K. Scheinberg, and L. N. Vicente. Computation of sparse low degree inter-
polating polynomials and their application to derivative-free optimization. Math. Program.,
134:223–257, 2012.

[6] A. S. Berahas, R. H. Byrd, and J. Nocedal. Derivative-free optimization of noisy functions
via quasi-newton methods. SIAM J. Optim., 29:965–993, 2019.

[7] A. S. Berahas, L. Cao, and K. Scheinberg. Global convergence rate analysis of a generic
line search algorithm with noise. SIAM J. Optim., 31:1489–1518, 2021.

[8] A. S. Berahas, L. Cao, K. Choromanski, and K. Scheinberg. A theoretical and empirical
comparison of gradient approximations in derivative-free optimization. Found. Comput.
Math., 22:507–560, apr 2022.

[9] A. S. Berahas, O. Sohab, and L. N. Vicente. Full-low evaluation methods for derivative-free
optimization. Optim. Methods Softw., 38:386–411, 2023.

[10] A. Bhaduri, D. Brandyberry, M. D. Shields, P. Geubelle, and L. Graham-Brady. On the
usefulness of gradient information in surrogate modeling: Application to uncertainty prop-
agation in composite material models. Probabilistic Engineering Mechanics, 60:103024,
2020.

[11] G. Bingham and R. Miikkulainen. Discovering parametric activation functions. arXiv
e-prints, art. arXiv:2006.03179, June 2020.

[12] A. J. Booker, J. E. Dennis Jr., P. D. Frank, D. B. Serafini, V. Torczon, and M. W. Trosset.
A rigorous framework for optimization of expensive functions by surrogates. Structural and
Multidisciplinary Optimization, 17:1–13, 1998.

[13] M. Boresta, T. Giovannelli, and M. Roma. Managing low–acuity patients in an emergency
department through simulation–based multiobjective optimization using a neural network
metamodel. Health Care Management Science, pages 1–21, 06 2024.

[14] M. D. Buhmann. Radial basis functions: Theory and implementations. Cambridge Mono-
graphs on Applied and Computational Mathematics. Cambridge University Press, 2003.

[15] Y. Chen, M. W. Hoffman, S. Gomez Colmenarejo, M. Denil, T. P. Lillicrap, M. Botvinick,
and N. de Freitas. Learning to learn without gradient descent by gradient descent. arXiv
e-prints, art. arXiv:1611.03824, November 2016.

[16] D. Clevert, T. Unterthiner, and S. Hochreiter. Fast and accurate deep network learning by
exponential linear units (ELUs). arXiv e-prints, art. arXiv:1511.07289, November 2015.

[17] A. R. Conn and Ph. L. Toint. An algorithm using quadratic interpolation for unconstrained
derivative free optimization. In G. Di Pillo and F. Gianessi, editors, Nonlinear Optimization
and Applications, pages 27–47. Plenum Publishing, New York, 1996.

27

[18] A. R. Conn, K. Scheinberg, and L. N. Vicente. Geometry of sample sets in derivative free
optimization: Polynomial regression and underdetermined interpolation. IMA J. Numer.
Anal., 28:721–748, 2008.

[19] A. R. Conn, K. Scheinberg, and L. N. Vicente. Geometry of interpolation sets in derivative-
free optimization. Math. Program., 111:141–172, 2008.

[20] A. R. Conn, K. Scheinberg, and L. N. Vicente. Introduction to Derivative-Free Optimization.
MPS/SIAM Book Series on Optimization, SIAM, Philadelphia, USA, 2009.

[21] A. R. Conn, K. Scheinberg, and L. N. Vicente. Global convergence of general derivative-
free trust-region algorithms to first- and second-order critical points. SIAM J. Optim., 20:
387–415, 2009.

[22] A. L. Custódio, K. Scheinberg, and L. N. Vicente. Chapter 37: Methodologies and software
for derivative-free optimization. In Advances and Trends in Optimization with Engineering
Applications, pages 495–506. SIAM, 2017.

[23] E. D. Dolan and J. J. Moré. Benchmarking optimization software with performance profiles.
Math. Program., 91, 1 2002.

[24] C. Dugas, Y. Bengio, F. Bélisle, C. Nadeau, and R. Garcia. Incorporating second-order
functional knowledge for better option pricing. In T. Leen, T. Dietterich, and V. Tresp,
editors, Advances in Neural Information Processing Systems, volume 13. MIT Press, 2000.

[25] S. Elfwing, E. Uchibe, and K. Doya. Sigmoid-Weighted linear units for neural network
function approximation in reinforcement learning. arXiv e-prints, art. arXiv:1702.03118,
February 2017.

[26] G. Fasano, J. L. Morales, and J. Nocedal. On the geometry phase in model-based algorithms
for derivative-free optimization. Optim. Methods Softw., 24:145–154, 2009.

[27] G. Fasano, G. Liuzzi, S. Lucidi, and F. Rinaldi. A linesearch-based derivative-free approach
for nonsmooth constrained optimization. SIAM J. Optim., 24:959–992, 2014.

[28] T. Giovannelli, G. Liuzzi, S. Lucidi, and F. Rinaldi. Derivative-free methods for mixed-
integer nonsmooth constrained optimization. Comput. Optim. Appl., 82:293–327, 2022.

[29] X. Glorot, A. Bordes, and Y. Bengio. Deep sparse rectifier neural networks. In Geoffrey
Gordon, David Dunson, and Miroslav Dud́ık, editors, Proceedings of the Fourteenth Inter-
national Conference on Artificial Intelligence and Statistics, volume 15 of Proceedings of
Machine Learning Research, pages 315–323, Fort Lauderdale, FL, USA, 11–13 Apr 2011.
PMLR.

[30] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedfor-
ward neural networks. In Proceedings of the thirteenth international conference on artificial
intelligence and statistics, pages 249–256. JMLR Workshop and Conference Proceedings,
2010.

[31] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016. http:

//www.deeplearningbook.org.

28

http://www.deeplearningbook.org
http://www.deeplearningbook.org

[32] N. Gould, D. Orban, and P. Toint. CUTEst: A constrained and unconstrained testing
environment with safe threads for mathematical optimization. Comput. Optim. and Appl.,
60:545–557, 2015.

[33] S. Gratton, C. W. Royer, L. N. Vicente, and Z. Zhang. Direct search based on probabilistic
descent. SIAM J. Optim., 25:1515–1541, 2015.

[34] S. Gratton, C. Royer, and L. N. Vicente. A decoupled first/second-order steps technique for
nonconvex nonlinear unconstrained optimization with improved complexity bounds. Math.
Program., 179:1–28, 09 2018.

[35] H.-M. Gutmann. A radial basis function method for global optimization. J. Global Optim.,
19:201–227, 2001.

[36] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers: Surpassing human-level
performance on ImageNet classification. arXiv e-prints, art. arXiv:1502.01852, February
2015.

[37] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification. In Proceedings of the IEEE
international conference on computer vision, pages 1026–1034, 2015.

[38] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by re-
ducing internal covariate shift. In Francis Bach and David Blei, editors, Proceedings of the
32nd International Conference on Machine Learning, volume 37 of Proceedings of Machine
Learning Research, pages 448–456, Lille, France, 07–09 Jul 2015. PMLR.

[39] A. D. Jagtap and G. E. Karniadakis. How important are activation functions in regression
and classification? A survey, performance comparison, and future directions. arXiv e-prints,
art. arXiv:2209.02681, September 2022.

[40] I. Jahan, Md. F. Ahmed, Md. O. Ali, and Y. M. Jang. Self-gated rectified linear unit for
performance improvement of deep neural networks. ICT Express, 9:320–325, 2023. ISSN
2405-9595.

[41] K. Jarrett, K. Kavukcuoglu, M. Ranzato, and Y. LeCun. What is the best multi-stage archi-
tecture for object recognition? In 2009 IEEE 12th International Conference on Computer
Vision, pages 2146–2153, 2009.

[42] B. L. Kalman and S. C. Kwasny. Why tanh: Choosing a sigmoidal function. In [Proceedings
1992] IJCNN International Joint Conference on Neural Networks, volume 4, pages 578–581
vol.4, 1992.

[43] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv e-prints, art.
arXiv:1412.6980, December 2014.

[44] T. G. Kolda, R. M. Lewis, and V. Torczon. Optimization by direct search: New perspectives
on some classical and modern methods. SIAM Rev., 45:385–482, 2003.

[45] J. Larson, M. Menickelly, and S. M. Wild. Derivative-free optimization methods. Acta
Numer., 28:287–404, 2019.

29

[46] G. Liuzzi, S. Lucidi, F. Rinaldi, and L. N. Vicente. Trust-region methods for the derivative-
free optimization of nonsmooth black-box functions. SIAM J. Optim., 29:3012–3035, 2019.

[47] L. Lu. Dying ReLU and initialization: Theory and numerical examples. Communications
in Computational Physics, 28:1671–1706, June 2020.

[48] S. Lucidi and M. Sciandrone. On the global convergence of derivative-free methods for
unconstrained optimization. SIAM J. Optim., 13:97–116, 2002.

[49] A. L. Maas, A. Y. Hannun, and A. Y. Ng. Rectifier nonlinearities improve neural network
acoustic models. In Proc. ICML, volume 30, page 3. Atlanta, Georgia, USA, 2013.

[50] F. Manessi and A. Rozza. Learning combinations of activation functions. arXiv e-prints,
art. arXiv:1801.09403, January 2018.

[51] D. B. McDonald, W. J. Grantham, W. L. Tabor, and M. J. Murphy. Global and local
optimization using radial basis function response surface models. Applied Mathematical
Modelling, 31:2095–2110, 2007.

[52] M. C. Messner. Convolutional neural network surrogate models for the mechanical proper-
ties of periodic structures. Journal of Mechanical Design, 142, 10 2019.

[53] J. J. Moré and S. M. Wild. Benchmarking derivative-free optimization algorithms. SIAM
J. Optim., 20:172–191, 2009.

[54] J. J. Moré and S. M. Wild. Estimating computational noise. SIAM J. Sci. Comput., 33:
1292–1314, 2011.

[55] J. J. Moré and S. M. Wild. Estimating derivatives of noisy simulations. ACM Trans. Math.
Softw., 38, apr 2012.

[56] J. Nocedal and S. J. Wright. Numerical Optimization. Springer-Verlag, Berlin, second
edition, 2006.

[57] I. Pan, M. Babaei, A. Korre, and S. Durucan. Artificial neural network based surrogate
modelling for multi-objective optimisation of geological CO2 storage operations. Energy
Procedia, 63:3483–3491, 2014. 12th International Conference on Greenhouse Gas Control
Technologies, GHGT-12.

[58] V. Papadopoulos, G. Soimiris, D.G. Giovanis, and M. Papadrakakis. A neural network-
based surrogate model for carbon nanotubes with geometric nonlinearities. Computer
Methods in Applied Mechanics and Engineering, 328:411–430, 2018.

[59] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani,
S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala. Pytorch: An imperative style,
high-performance deep learning library. In Advances in Neural Information Processing
Systems 32, pages 8024–8035. Curran Associates, Inc., 2019.

[60] M. J. D. Powell. On the Lagrange functions of quadratic models that are defined by
interpolation. Optim. Methods Softw., 16:289–309, 2001.

30

[61] M. J. D. Powell. UOBYQA: Unconstrained optimization by quadratic approximation. Math.
Program., 92:555–582, 2002.

[62] M. J. D. Powell. Least Frobenius norm updating of quadratic models that satisfy interpo-
lation conditions. Math. Program., 100:183–215, 2004.

[63] M. J. D. Powell. The NEWUOA software for unconstrained optimization without deriva-
tives. Technical Report DAMTP 2004/NA08, Department of Applied Mathematics and
Theoretical Physics, University of Cambridge, 2004.

[64] F. J. Richards. A flexible growth function for empirical use. Journal of Experimental
Botany, 10:290–301, 1959.

[65] F. Rosenblatt. The perceptron: A probabilistic model for information storage and organi-
zation in the brain. Psychological Review, 65:386–408, 1958.

[66] Y. Ruan, Y. Xiong, S. Reddi, S. Kumar, and C. Hsieh. Learning to learn by zeroth-order
oracle. arXiv e-prints, art. arXiv:1910.09464, October 2019.

[67] D. E. Rumelhart, G. E. Hinton, and R. J Williams. Learning representations by back-
propagating errors. Nature, 323:533–536, 1986.

[68] S. Scardapane, M. Scarpiniti, D. Comminiello, and A. Uncini. Learning activation functions
from data using cubic spline interpolation. arXiv e-prints, art. arXiv:1605.05509, May 2016.

[69] H. J. M. Shi, M. Q. Xuan, F. Oztoprak, and J. Nocedal. On the numerical performance
of finite-difference-based methods for derivative-free optimization. Optim. Methods Softw.,
38:289–311, 2023.

[70] K. Slimani, M. Zaaf, and T. Balan. Accurate surrogate models for the flat rolling process.
International Journal of Material Forming, 16, 03 2023.

[71] J. V. Soares do Amaral, J. A. Barra Montevechi, R. de Carvalho Miranda, and W. T.
de Sousa Junior. Metamodel-based simulation optimization: A systematic literature review.
Simulation Modelling Practice and Theory, 114:102403, 2022.

[72] V. Torczon. On the convergence of pattern search algorithms. SIAM J. Optim., 7:1–25,
1997.

[73] L. N. Vicente and A. L. Custódio. Analysis of direct searches for discontinuous functions.
Math. Program., 133:299–325, 2012.

[74] S. M. Wild, R. G. Regis, and C. A. Shoemaker. ORBIT: Optimization by radial basis
function interpolation in trust-regions. SIAM J. Sci. Comput., 30:3197–3219, 2008.

[75] D. Winfield. Function and Functional Optimization by Interpolation in Data Tables. PhD
thesis, Harvard University, USA, 1969.

[76] D. Winfield. Function minimization by interpolation in a data set. J. Inst. Math. Appl.,
12:339–347, 1973.

31

[77] B. Xu, N. Wang, T. Chen, and M. Li. Empirical evaluation of rectified activations in
convolutional network. arXiv e-prints, art. arXiv:1505.00853, May 2015.

[78] B. Yuen, M. T. Hoang, X. Dong, and T. Lu. Universal activation function for machine
learning. Scientific Reports, 11:18757, September 2021.

[79] M. Zaborski and J. Mańdziuk. LQ-R-SHADE: R-SHADE with quadratic surrogate model.
In Artificial Intelligence and Soft Computing: 21st International Conference, ICAISC 2022,
Zakopane, Poland, June 19–23, 2022, Proceedings, Part I, page 265–276, Berlin, Heidelberg,
2023. Springer-Verlag.

[80] H. Zheng, Z. Yang, W. Liu, J. Liang, and Y. Li. Improving deep neural networks using
softplus units. In 2015 International Joint Conference on Neural Networks (IJCNN), pages
1–4, 2015.

A Appendix: Test Problems from CUTEst

Tables 1 and 2 below list the two sets of nonlinear unconstrained optimization problems from
the CUTEst library [32] used throughout the paper and described in Subsection 2.2.

ARGLINA ARGTRIGLS ARWHEAD BDEXP
BOXPOWER BROWNAL COSINE CURLY10
DQRTIC DIXON3DQ ENGVAL1 EXTROSNB
FLETBV3M FLETCBV3 FLETCHBV FLETCHCR
FREUROTH INDEFM MANCINO MOREBV
NONCVXU2 NONCVXUN NONDIA NONDQUAR
PENALTY2 POWER QING QUARTC
SENSORS SINQUAD SCURLY10 SCURLY20
SPARSINE SPARSQUR SSBRYBND TRIDIA
TRIGON1 TOINTGSS

Table 1: Names of the 38 CUTEst problems with user-defined dimensions in the first set.

B Appendix: Full-Low Evaluation Methods

In DFO, two main algorithmic paradigms are employed when designing numerical algorithms,
namely, directional andmodel-based approaches [20]. In directional algorithms, a set of directions
is generated to determine a point that guarantees a (possibly sufficient) decrease condition of
the objective function among a set of polling points, which are obtained from the current iterate
by considering certain stepsizes along these directions. When only objective function values
are used, without approximating the gradients or constructing models, the resulting algorithms
are referred to as directional direct-search methods [3, 12, 28, 33, 44, 72]. Such algorithms are
able to converge even when applied to problems with a non-smooth objective function [3, 73].
Within this class of methods, one can consider deterministic variants [44, 72] or probabilistic
ones [33]. Deterministic variants rely on positive spanning sets of vectors, where at least one

32

Name Dimension Name Dimension Name Dimension

ALLINITU 4 BARD 3 BIGGS6 6
BOX3 3 BROYDN7D 10 BRYBND 10
CUBE 2 DENSCHND 3 DENSCHNE 3
DIXMAANA1 15 DIXMAANB 15 DIXMAANC 15
DIXMAAND 15 DIXMAANE1 15 DIXMAANF 15
DIXMAANG 15 DIXMAANH 15 DIXMAANI1 15
DIXMAANJ 15 DIXMAANK 15 DIXMAANL 15
ENGVAL2 3 ERRINROS 25 EXPFIT 2
FMINSURF 16 GROWTHLS 3 GULF 3
HAIRY 2 HATFLDD 3 HATFLDE 3
HEART6LS 6 HEART8LS 8 HELIX 3
HIELOW 3 HIMMELBB 2 HIMMELBG 2
HUMPS 2 KOWOSB 4 LOGHAIRY 2
MARATOSB 2 MEYER3 3 MSQRTALS 4
MSQRTBLS 9 OSBORNEA 5 OSBORNEB 11
PENALTY3 50 SNAIL 2 SPMSRTLS 28
STRATEC 10 VIBRBEAM 8 WATSON 12
WOODS 4 YFITU 3

Table 2: Names and corresponding dimensions of the 53 CUTEst problems in the second set.

of them is a descent direction. Probabilistic variants use randomly generated directions that
are probabilistically descent. To determine the value of the stepsize, DFO algorithms can use
line searches along a prespecified set of directions [27, 48] or along directions that are obtained
by applying an FD scheme to approximate the gradient of the objective function [6, 7]. In
noisy settings, such approximations can be unreliable unless careful estimation of the noise is
considered [54, 55].

In model-based algorithms, a model of the objective function is built by using function values
at previous iterates or at points randomly sampled [17, 21, 26, 46, 63, 76]. Such methods rely
on interpolation or regression techniques and use basis functions such as quadratic polynomials
or radial basis functions. The resulting models can be used as a local approximation of the
objective function to capture its curvature. A drawback of model-based algorithms is that
their performance gets worse as the number of variables increases because of the dense linear
algebra of the interpolation and the ill-conditioning of the sample sets [19]. Moreover, noisy and
non-smooth settings remain a challenge for such algorithms.

The FLE method introduced in Section 4 combines the benefits of both directional and
model-based algorithms and exhibited superior overall performance compared to interpolation-
based methods and combinations of these techniques with direct search [9]. In the FLE method,
the first iteration is of FE type and is given by Algorithm 1. An FE iteration is no longer deemed
successful when the stepsize βk becomes too small, i.e.,

β < λρ(αk), (B.1)

where λ > 0 and ρ(αk) is a forcing function depending on the stepsize used in LE iterations,
denoted as αk. In such a case, one switches to an LE iteration, which consists of a direct-search
step.

33

The schema of an LE iteration is reported in Algorithm 3. At each iteration, the stepsize αk

is required to satisfy the following sufficient decrease condition

f(xk + αkdk) ≤ f(xk)− ρ(αk), (B.2)

where ρ(αk) is the same forcing function used in (B.1) and dk ∈ Dk is a polling direction. In the
practical FLE method proposed in [9], the set of polling directions Dk is given by a direction d ∈
Rn uniformly generated on the unit sphere of Rn and its negative, i.e., D = [d,−d]. An LE
iteration is deemed successful when a stepsize satisfying (B.2) is found. One can switch from
an LE iteration to an FE iteration when the number of unsuccessful consecutive LE iterations
becomes greater than the number of line-search backtracks done in the previous FE iteration.

Algorithm 3 Low-Eval Iteration: Direct Search

Input: Iterate xk and stepsize αk. Direct-search parameters λ ≥ 1 and θ ∈ (0, 1).

1: Generate a finite set Dk of non-zero polling directions.
2: If (B.2) is true for some dk ∈ Dk, set xk+1 = xk + αkdk and αk+1 = λαk.
3: Else set xk+1 = xk and αk+1 = θαk.
4: Decide if tk+1 = Low-Eval or if tk+1 = Full-Eval.

Output: tk+1, xk+1, and αk+1.

For the values of the parameters of the FLE method used in the experiments reported in
Section 4, we refer to the practical FLE algorithm in [9].

34

	Introduction
	Best activation function for approximation
	Review of popular activation functions in machine learning
	Numerical experiments

	The limitation of neural nets for approximation
	Review of polynomial interpolation and regression
	The use of an activation function as a basis function
	The use of neural networks for approximation

	The limitation of neural nets for optimizing without derivatives
	The use of a surrogate model for optimizing without derivatives
	Numerical experiments

	Concluding remarks and takeaway messages
	Appendix: Test Problems from CUTEst
	Appendix: Full-Low Evaluation Methods

