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Abstract. In the application of data clustering to human-centric decision-
making systems, such as loan applications and advertisement recommen-
dations, the clustering outcome might discriminate against people across
different demographic groups, leading to unfairness. A natural conflict
occurs between the cost of clustering (in terms of distance to cluster cen-
ters) and the balance representation of all demographic groups across the
clusters, leading to a bi-objective optimization problem that is noncon-
vex and nonsmooth. To determine the complete trade-off between these
two competing goals, we design a novel stochastic alternating balance
fair k-means (SAfairKM) algorithm, which consists of alternating classi-
cal mini-batch k-means updates and group swap updates. The number of
k-means updates and the number of swap updates essentially parameter-
ize the weight put on optimizing each objective function. Our numerical
experiments show that the proposed SAfairKM algorithm is robust and
computationally efficient in constructing well-spread and high-quality
Pareto fronts both on synthetic and real datasets.

Keywords: k-means Clustering · Unsupervised Machine Learning · Data
Mining · Fairness · Bi-Objective Optimization · Pareto Front.

1 Introduction

Clustering is a fundamental task in data mining and unsupervised machine learn-
ing with the goal of partitioning data points into clusters, in such a way that data
points in one cluster are very similar and data points in different clusters are
quite distinct [16]. It has become a core technique in a huge amount of applica-
tion fields such as feature engineering, information retrieval, image segmentation,
targeted marketing, recommendation systems, and urban planning. Data clus-
tering problems take on many different forms, including partitioning clustering
like k-means and k-median, hierarchical clustering, spectral clustering, among
many others [8, 16]. Given the increasing impact of automated decision-making
systems in our society, there is a growing concern about algorithmic unfairness,
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which in the case of clustering may result in discrimination against minority
groups. For instance, females may receive proportionally fewer job recommen-
dations with high salary [13] due to their under-representation in the cluster of
high salary recommendations. Such demographic features like gender and race
are called sensitive or protected features, which we wish to be fair with respect
to.

Related work An extensive literature work studying algorithmic fairness has been
focused on developing universal fairness definitions and designing fair algorithms
for supervised machine learning problems. Among the broadest representative
fairness notions proposed for classification and regression tasks are disparate im-
pact [6] (also called demographic parity [10]), equalized odds [19], and individual
fairness [15], based on which the fairness notions in clustering were proposed
accordingly. There are a number of classes of fairness definitions proposed and
investigated for the clustering task [1, 11, 12, 18, 23, 27]. The most widely used
fairness notion is called balance. It was proposed by [12], and it has been ex-
tended in several subsequent works [7, 20, 30]. As a counterpart of the disparate
impact concept in fair supervised machine learning, balance essentially aims at
ensuring that the representation of protected groups in each cluster preserves
the global proportion of each protected group.

Depending on the stage of clustering in which the fairness requirements are
imposed, the prior works on fair clustering are categorized into three families,
namely pre-processing, in-processing, and post-processing. A large body of the
literature work [5, 12, 20, 30] falls into the pre-processing category. The whole
dataset is first decomposed into small subsets named fairlets, where the desired
balance can be guaranteed. Any resulting solution from classical clustering algo-
rithms using the set of fairlets will then be fair. Chierichetti et al. [12] focused on
the case of two demographic groups and formulated explicit combinatorial prob-
lems (such as perfect matching and minimum cost flow problems) to decompose
the dataset into minimal fair sets defining the fairlets. Their theoretical analysis
gave strong guarantees on the quality of the fair clustering solutions for k-center
and k-median problems. Following that line of work, Backurs et al. [5] embed-
ded the whole dataset into a hierarchical structure tree and improved the time
complexity of the fairlet decomposition step from quadratic to nearly linear time
(in the dataset size). Schmidt et al. [30] introduced the notion of fair coresets
and proposed an efficient streaming fair clustering algorithm for k-means. They
introduced a near-linear time algorithm to construct coresets that helps reduce
the input data size and hence speeds up any fair clustering algorithm. Huang et
al. [20] further boosted the efficiency of coresets construction and made a gen-
eralization to multiple non-disjoint demographic groups for both k-means and
k-median.

On the contrary, post-processing clustering methods [3, 7, 22, 29] modify the
resulting clusters from classical clustering algorithms to improve fairness. For
example, Bera et al. [7] proposed a fair re-assignment problem as a linear re-
laxation of an integer programming model given the clustering results from any
vanilla k-means, k-median, or k-center algorithms. They showed how to derive a
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(ρ+2)-approximation fair clustering algorithm from any ρ-approximation vanilla
clustering algorithm within a theoretical bound of fairness constraints violation.
Moreover, their framework works for datasets with multiple and potentially over-
lapping demographic groups. Lastly, in-processing methods incorporate the fair-
ness constraints into the clustering process [2, 24, 32]. Our approach falls into
this category and allows for the determination of the trade-offs between clus-
tering costs and fairness. To our knowledge, the only such other in-processing
approach is the one of Ziko et al. [32], where the clustering balance is approx-
imately measured by the KL-divergence and imposed as a penalty term in the
fair clustering objective function. The penalty coefficient is then used to control
the trade-offs between clustering cost/fairness.

Our contribution The partitioning clustering model, also referred to as the
center-based clustering model, consists of selecting a certain numberK of centers
and assigning data points to their closest centers. In this paper, we will focus
on the well-known k-means model, and we will introduce a novel fair clustering
algorithm using the balance measure. The main challenge of the fair clustering
task comes from the violation of the assignment routine, which then indicates
that a data point is no longer necessarily assigned to its closest cluster. The
higher the balance level one wants to achieve, the more clustering cost is added
to the final clustering. Hence, there exists a natural conflict between the fairness
level, when measured in terms of balance, and the classical k-means clustering
objective.

We explicitly formulate the trade-offs between the k-means clustering cost
and the fairness as a bi-objective optimization problem, where both objectives
are written as nonconvex and nonsmooth functions of binary assignment vari-
ables defining point assignments in the clustering model (see (2) further below).
Our goal is to construct an informative approximation of the Pareto front for
the proposed bi-objective fair k-means clustering problem, without exploring
exhaustively the binary nature of the assignment variables. The most widely
used method in solving general bi-objective optimization problems is the so-
called weighted-sum method [17]. There, one considers a set of single objective
problems, formed by convex linear combinations of the two functions, and (a por-
tion of) the Pareto front might be approximated by solving the corresponding
weighted-sum problems. However, this methodology has no rigorous guarantees
due to the nonconvexity of both objective functions. Also, the non-smoothness of
the fairness objective poses an additional difficulty to the weighted-sum method,
as one function will be smooth and the other one no. Moreover, even ignoring the
nonconvexity and non-smoothness issues, the two objectives, namely the cluster-
ing cost and the clustering balance, can have significantly different magnitudes.
One can hardly preselect a good set of weights corresponding to decision-makers’
preferences to capture a well-spread Pareto front.

Therefore, we were motivated to design a novel stochastic alternating bal-
ance fair k-means (SAfairKM) algorithm, inspired from the classical mini-batch
k-means algorithm, which essentially consists of alternatively taking pure mini-
batch k-means updates and swap-based balance improvement updates. In fact,
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the number of k-means updates (denoted by na) and the number of swap updates
(denoted by nb) play a role similar to the weights in the weighted-sum method,
parameterizing the efforts of optimizing each objective. In the pure mini-batch
k-means updates, we focus on minimizing the clustering cost. A mini-batch of
points is randomly drawn and assigned to their closest clusters, after which
the set of centers are updated using mini-batch stochastic gradient descent. In
the swap-based balance improvement steps, we aim at increasing the overall
clustering balance. For this purpose, we propose a simple swap routine that is
guaranteed to increase the overall clustering balance by swapping data points
between the minimum balance cluster and a target well-balanced cluster. Simi-
larly to the k-means updates, the set of centers are updated using the batch of
data points selected to swap. While the k-means updates reproduce the stochas-
tic gradient descent directions for the clustering cost function, the swap updates
can be seen as taking steps along some increasing directions for the clustering
balance objective (not necessarily the best ascent direction).

We have evaluated the performance of the proposed SAfairKM algorithm
using both synthetic datasets and real datasets. To endow SAfairKM with the
capability of constructing a Pareto front in a single run, we use a list of non-
dominated points updated at every iteration. The list is randomly generated at
the beginning of the process. At every iteration, and for every point in the cur-
rent list, we apply SAfairKM for all considered pairs of (na, nb). For each pair
(na, nb), one does na k-means updates and nb swap updates. At the end of each
iteration, we remove from the list all dominated points (those for each there ex-
ists another one with higher clustering cost and lower clustering balance). Such
a simple mechanism is also beneficial for excluding bad local optima, considering
that the two objectives are nonconvex. We will present the full trade-offs between
the two conflicting objectives for four synthetic datasets and two real datasets. A
numerical comparison with the fair k-means algorithm proposed in [32] further
confirms the robustness and efficiency of the proposed algorithm in constructing
informative and high-quality trade-offs.

2 The mini-batch k-means algorithm

In the classical k-means problem, one aims to choose K centers (representatives)
and to assign a set of points to their closest centers. The k-means objective is
the sum of the minimum (squared Euclidean) distance of all points to their
corresponding centers. Given a set of N points P = {xp}Np=1, where xp is the
non-sensitive feature vector, the goal of clustering is to assign N points to K
clusters identified by K centroids C = [c1, . . . , cK ]⊤. Let [M ] denote the set of
positive integers up to M for any M ∈ N. The k-means clustering problem is
formulated as the minimization of a nonsmooth function of the set of centroids:

min fKM
1 (C) =

1

2

N∑
p=1

min
k∈[K]

∥xp − ck∥2. (1)
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Since each data point is assigned to the closest cluster, theK cluster centroids are
implicitly dependent on the point assignments. Let sp,k ∈ {0, 1} be an assignment
variable who takes the value 1 if point xp is assigned to cluster k, and 0 otherwise.
For simplicity, we denote sk, k ∈ [K], as an N -dimensional assignment vector
for cluster k, and sp, p ∈ [N ], as a K-dimensional assignment vector for point
xp. Let X ∈ RN×d be the data matrix stacking N data points of dimension d
and eN ∈ RN be an all-ones vector. Then one can compute each centroid using
ck = X⊤sk/e

⊤
Nsk.

In practice, Lloyd’s heuristic algorithm [26], also known as the standard batch
k-means algorithm, is the simplest and most popular k-means clustering algo-
rithm, and converges to a local minimum but without worst-case guarantees [21,
31]. The main idea of Lloyd’s heuristic is to keep updating theK cluster centroids
and assigning the full batch of points to their closest centroids.

In the standard batch k-means algorithm, one can compute the full gradient
of the objective function (1) with respect to k-th center by ∇ckf

KM
1 (C) =∑

xp∈Ck
(ck − xp), where Ck, k ∈ [K], is the set of points assigned to cluster

k. Whenever there exists a tie, namely a point that has the same distance to
more than one cluster, one can randomly assign the point to any of such clusters.
A full batch gradient descent algorithm would iteratively update the centroids
by ct+1

k − ctk = αt
k

∑
xp∈Ck

(xp − ck),∀k ∈ [K], where αt
k > 0 is the step size. Let

N t
k be the number of points in cluster k at iteration t. It is known that the full

batch k-means algorithm with αt
k = 1/N t

k converges to a local minimum as fast
as Newton’s method, with a superlinear rate [9].

The standard batch k-means algorithm is proved to be slow for large datasets.
Bottou and Bengio [9] proposed an online stochastic gradient descent (SGD)
variant that takes a gradient descent step using one sample at a time. Given a
new data point xp to be assigned, a stochastic gradient descent step would look
like ct+1

k = ctk+αt
k(xp−ctk) if xp is assigned to cluster k. While the SGD variant

is computationally cheap for large datasets, it finds solutions of lower quality
than the batch algorithm due to the stochasticity. The mini-batch version of the
k-means algorithm uses a mini-batch sampling to lower stochastic noise and, in
the meanwhile, speed up the convergence. The detailed mini-batch k-means is
given in Algorithm 1.

3 A new stochastic alternating balance fair k-means
method

3.1 The bi-objective balance k-means formulation

Balance [12] is the most widely used fairness measure in the literature of fair
clustering. Consider J disjoint demographic groups. Let Vj represent the set of
points in demographic group j ∈ [J ]. Then, vp,j takes the value 1 if point xp ∈ Vj .
We denote vj as an N -dimensional indicator vector for the demographic group
j ∈ [J ]. The balance of cluster k is formally defined as bk = minj ̸=j′ v

⊤
j sk/v

⊤
j′sk ≤

1,∀k ∈ [K], which calculates the minimum ratio among different pairs of pro-
tected groups. The overall clustering balance is the minimum balance over all
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Algorithm 1 Mini-batch k-means algorithm

1: Input: The set of points P and an integer K.

2: Output: The set of centers C = {c1, . . . , cK}.
3: Randomly select K points as initial centers.

4: for t = 0, 1, 2, . . . do

5: Randomly sample a batch of points Bt.

6: for k = 1, . . . ,K do

7: Identify the set of points Bk
t ⊆ Bt whose closest center is ck.

8: Nk = Nk + |Bk
t |.

9: ck = ck + 1
Nk

∑
xp∈Bk

t
(xp − ck).

clusters, i.e., b = minKk=1 bk. The higher the overall balance, the fairer the clus-
tering.

By the definition of cluster balance given above, the balance function can be
easily computed only using the assignment variables. The k-means objective (1)
can be rewritten as a function of the assignment variables as well. Hence, one
can directly formulate the inherent trade-off between clustering cost and balance
as a bi-objective optimization problem, i.e.,

min (f1(s),−f2(s)) s.t.

K∑
k=1

sp,k = 1,∀p ∈ [N ], s ∈ {0, 1}N×K , (2)

where s is the binary-valued assignment matrix with column vectors sk, k ∈ [K],
and row vectors sp, p ∈ [N ], and

f1(s) =
1

N

K∑
k=1

N∑
p=1

sp,k∥xp − ck∥2, with ck =
X⊤sk
e⊤Nsk

=

∑N
p=1 xpsp,k∑N
p=1 sp,k

,

f2(s) = min
k∈[K]

min
j ̸=j′

j,j′∈[J]

v⊤j sk

v⊤j′sk
.

The two constraints in (2) ensure that one point can only be assigned to one clus-
ter. Note that both objectives are nonconvex functions of the binary assignment
variables.

3.2 The stochastic alternating balance fair k-means method

We propose a novel stochastic alternating balance fair k-means clustering algo-
rithm to compute a nondominated solution on the Pareto front. We will use a
simple but effective alternating update mechanism, which consists of improving
either the clustering objective or the overall balance, by iteratively updating
cluster centers and assignment variables. Specifically, every iteration of the pro-
posed algorithm contains two sets of updates, namely pure k-means updates
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and pure swap-based balance improvement steps. The pure k-means updates
were introduced in Section 2, and will consist of taking a certain number of
stochastic k-means steps. In the balance improvement steps, a certain batch of
points is selected and swapped between the minimum balanced cluster and a
target well-balanced cluster.

Balance improvement steps At the current iteration, let Cl be the cluster with
the minimum balance. Then Cl is the bottleneck cluster that defines the overall
clustering balance. Without loss of generality, we assume that bl = |Cl∩V1|/|Cl∩
V2|, which then implies that the pair of demographic groups (V1, V2) forms a key
to improve the balance of cluster Cl, as well as the overall clustering balance. In
terms of the assignment variables, we have

b = bl =
v⊤1 sl
v⊤2 sl

=

∑N
p=1 vp,1sp,l∑N
p=1 vp,2sp,l

. (3)

One way to determine a target well-balanced cluster Ch is to select it as the one
with the maximum ratio between V1 and V2, i.e.,

h ∈ argmaxk∈[K]

{
v⊤1 sk/v

⊤
2 sk, v

⊤
2 sk/v

⊤
1 sk

}
. (4)

Another way to determine such a target cluster is to select a cluster Ch that is
closest to Cl, i.e.,

h ∈ argmink∈[K],k ̸=l ∥ck − cl∥. (5)

We call the target cluster computed by (4) a global target and the one selected
by (5) a local target. Using a global target cluster makes the swap updates more
efficient and stable in the sense that the target cluster is only changed when
the minimum balanced cluster changes. Instead, swapping according to the local
target leads to less increase in clustering costs.

To improve the overall balance, one swaps a point in cluster Cl belonging to
V2 with a point in cluster Ch belonging to V1. Each of these swap updates will
guarantee an increase in the overall balance. The detailed stochastic alternating
balance fair k-means clustering algorithm is given in Algorithm 2. At each itera-
tion, we alternate between taking k-means updates using a drawn batch of points
(denote the batch size by na) and “swap” updates using another drawn batch of
points (denote the batch size by nb). The generation of the two batches is inde-
pendent. The choice of na and nb influences the nondominated point obtained
at the end, in terms of the weight put into each objective.

Instead of randomly selecting points to swap in line 11 of Algorithm 2, in
our experiments we have used a more accurate swap strategy by increasing the
batch size. Basically, we randomly sample a batch of points from Cl ∩ V2 (resp.
Ch ∩ V1) and select xp (resp. x′

p) as the one closest to Ch (resp. Cl). The batch
size could be increased as the algorithm proceeds. Our numerical experiments
show that the combination of local target clusters and the increasingly accurate
swap strategy result in better numerical performance.
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Algorithm 2 Stochastic alternating balance fair k-means clustering (SAfairKM)

algorithm

1: Input: The set of points P , an integer K, and parameters na, nb.

2: Output: The set of clustering labels ∆ = {δ1, . . . , δN}, where δp ∈ [K].

3: Randomly initialize labels {δ1, . . . , δN} and a set of counters {N1, . . . , NK}. Com-

pute k-means centers {c1, . . . , cK} and balances {b1, . . . , bK} for all clusters.

4: for t = 1, 2, . . . do

5: Randomly sample a batch of na points Bt ⊆ P without replacement.

6: for xp ∈ Bt do

7: Decrease the counter Nδp = Nδp − 1 for the previous clustering label.

8: Identify its closest center index ip. Update clustering label δp = ip.

9: Increase the counter Nδp = Nδp + 1 and center cδp = cδp + 1
Nδp

(xp − cδp).

10: for r = 1, 2, . . . , nb do

11: Identify Cl, Ch, and the pair of demographic groups (V1, V2) according to (3)

and (5).

12: Randomly select points xp ∈ Cl ∩ V2 and xp′ ∈ Ch ∩ V1.

13: Swap points: set δp = h and δp′ = l.

14: Update centers cl = cl +
1
Nl

(xp′ − cl) and ch = ch + 1
Nh

(xp − ch).

15: Update balance for clusters Cl and Ch.

One could have converted the bi-objective optimization problem (2) into a
weighted-sum function using the weights associated with the decision-maker’s
preference. However, optimizing such a weighted-sum function hardly reflects
the desired trade-off due to significantly different magnitudes of the two objec-
tives. Moreover, the existing k-means algorithm frameworks, including Lloyd’s
heuristic algorithm, are not capable of directly handling the weighted-sum ob-
jective function. In our proposed SAfairKM algorithm, the pair (na, nb) plays a
role similar to the weights in the weighted-sum method.

4 Numerical experiments

4.1 Pareto front SAfairKM algorithm

In our implementation3, to obtain a well-spread Pareto front, we frame the
SAfairKM algorithm into a Pareto front version using a list updating mecha-
nism. See Algorithm 3 for a detailed description. In the initialization phase, we
specify a sequence of pairs of the number of k-means updates and swap updates
W = {(na, nb) : na + nb = ntotal, na, nb ∈ N0}, and we generate a list of random
initial clustering labels L0. Then we run Algorithm 2 for a certain number of

3 Our implementation code is available at https://github.com/sul217/SAfairKM. All
the experiments were conducted on a MacBook Pro Intel Core i5 processor.
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iterations (q = 1 in our experiments) parallelly for each label in the current list
Lt, resulting in a new list of clustering labels Lt+1. At the end of each iteration,
the list is cleaned up by removing all the dominated points from Lt+1. Using this
algorithm, the list of nondominated points is refined towards the true real Pareto
front. The process can be terminated when either the number of nondominated
points is greater than a certain budget (1500 in our experiments) or when the
total number of iterations exceeds a certain limit (depending on the size of the
dataset).

Algorithm 3 Pareto-Front SAfairKM Algorithm

1: Generate a list of starting labels L0. Select parameter q ∈ N and a sequence of
pairs W = {(na, nb) : na + nb = ntotal, na, nb ∈ N0}.

2: for t = 0, 1, . . . do
3: Set Lt+1 = Lt.
4: for each clustering label ∆ in the list Lk+1 do
5: for (na, nb) ∈ W do
6: Apply q iterations of Algorithm 2 starting from ∆ using the parameters

(na, nb).
7: Add the final output label to the list Lt+1.
8: Remove all the dominated points from Lt+1: for each label ∆ in the list Lt+1

do
9: If ∃ ∆′ ∈ Lt+1 such that f1(∆

′) < f1(∆) and f2(∆
′) > f2(∆) hold, remove ∆.

To the best of our knowledge, the only approach in the literature providing
a mechanism of controlling trade-offs between the two conflicting objectives was
suggested by [32] and briefly described in Appendix A. Their approach (here
called VfairKM) consists of solving (6) for different penalty coefficients µ, re-
sulting in a set of solutions from which we then remove dominated solutions to
obtain an approximated Pareto front. To ensure a fair comparison, we select a
set of penalty coefficients evenly from 0 to an upper bound µmax, which is deter-
mined by pre-experiments such that the corresponding fairness error is less than
0.01 or no longer possibly decreased when further increasing its value. In some
cases, we found that VfairKM is not able to produce a fairer clustering outcome
when the penalty coefficient is greater than µmax due to numerical instability.

In addition, we compare the Pareto fronts computed by SAfairKM with the
fair k-means solution obtained from the postprocessing fair assignment approach
proposed in [7] (marked as FairAssign). In [7], the fairest clustering solution is
computed by first using a standard clustering algorithm and then applying the
so-called fair assignment procedure. Such a fair assignment procedure consists
of solving a linear programming relaxation of an integer programming problem,
followed by an iterative rounding procedure to satisfy the bound constraints
βj ≤ |Ck ∩ Vj |/|Ck| ≤ γj ,∀j ∈ [J ], k ∈ [K], where βj ∈ [0, 1] and γj ∈ [0, 1]
are lower and upper fairness bounds respectively. In our case, however, and in
order to get the fairest solution, we set βj = γj = |Vj |/N which is exactly
the proportion of demographic group j in the input dataset. Finally, we also
present as benchmarks the k-means solutions obtained by both the state-of-
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the-art Lloyd’s algorithm (denoted as VanillaKM) and the mini-batch k-means
algorithm (denoted as MinibatchKM). Both VanillaKM and MinibatchKM were
equipped with the well-known k-means++ initialization [4].

4.2 Numerical results

Trade-offs for synthetic datasets We randomly generated four synthetic datasets
from Gaussian distributions, and their demographic compositions are given in
Figure 2 of Appendix B. Each synthetic dataset has 400 data points in the
R2 space and two demographic groups (J = 2) marked by black/circle and
purple/triangle.

Using the list update mechanism (described by Algorithm 3), we are able
to obtain a well-spread Pareto front with comparable quality for each of the
synthetic datasets. Recall that we are minimizing the clustering cost and max-
imizing the clustering balance. The closer the Pareto front is to the upper left
corner, the higher its quality. In particular, Figure 1 (a) gives the approximated
Pareto front for the Syn unequal ds2 dataset with K = 2, which confirms the
natural conflict between the clustering cost and the clustering balance. One can
see that the VfairKM algorithm is not able to output any trade-off information
as it always finds the fairest solution regardless of the value of µ. Due to the
special composition of this dataset, the Pareto front generated by SAfairKM is
disconnected (the point around (1.25, 0.35) is both VfairKM and SAfairKM).
Results for the other three synthetic datasets are given by Figures 3-6 in Ap-
pendix B. For all the synthetic datasets, the left end point on the Pareto front
given by SAfairKM is consistent with the solution of VanillaKM. On the right
end of the Pareto fronts, the fair solution given by FairAssign is dominated by
the fairest solution identified by our approach.

Trade-offs for real datasets Two real datasets Adult [25] and Bank [28] are
taken from the UCI machine learning repository [14]. The Adult dataset con-
tains 32, 561 samples. Each instance is characterized by 12 nonsensitive features
(including age, education, hours-per-week, capital-gain, and capital-loss, etc.).
For the clustering purpose, only five numerical features among the 12 features
are kept. The demographic proportion of the Adult dataset is [0.67, 0.33] in terms
of gender (J = 2), which corresponds to a dataset balance of 0.49. The Bank
dataset contains 41, 108 data samples. Six nonsensitive numerical features (age,
duration, number of contacts performed, consumer price index, number of em-
ployees, and daily indicator) are selected for the clustering task. Its demographic
composition in terms of marital status (J = 3) is [0.11, 0.28, 0.61], and hence the
best clustering balance one can achieve is 0.185.

For the purpose of a faster comparison, we randomly select a subsample of
size 5000 from the original datasets and set the number of clusters to K = 10.
The resulting solutions from the five algorithms are given in Figure 1 (b)-(c).
For both datasets, SAfairKM is able to produce more spread-out Pareto fronts
which capture a larger range of balance, and hence provide more complete trade-
offs between the two conflicting goals. In terms of Pareto front quality (meaning
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dominance of one over the other), SAfairKM also performs better than VfairKM.
In fact, we can see from Figure 1 (b)-(c) that the Pareto fronts generated by
SAfairKM dominate most of the solutions given by VfairKM and FairAssign.
Also, the left end of the Pareto front generated by SAfairKM is much closer to
the solution given by VanillaKM than VfairKM. The Pareto fronts corresponding
to K = 5 are also given in Figure 7 of Appendix B. Overall, SAfairKM results in
a Pareto front of higher spread and slightly lower quality than VfairKM for the
Adult dataset, while the Pareto front output from SAfairKM has better spread
and higher quality for the Bank dataset.
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(a) Syn unequal ds2 (K = 2).
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Fig. 1: Pareto fronts: SAfairKM: 400 iterations for Syn unequal ds2, 2500 itera-
tions for Adult, and 8000 iterations for Bank, 30 starting labels, and 4 pairs of
(na, nb); VfairKM: µmax = 0 for Syn unequal ds2, µmax = 3260 for Adult, and
µmax = 2440 for Bank.

Performance in terms of spread and quality of Pareto fronts SAfairKM is able
to generate more spread-out and higher-quality Pareto fronts regardless of the
data distribution (see the trade-off results for the four synthetic datasets). The
robustness partially comes from the list update mechanism which establishes a
connection among parallel runs starting from different initial points and pairs
(na, nb), and thus helps escape from bad local optima.

Table 1: Average CPU times per nondominated solution.
Dataset SAfairKM VfairKM Dataset SAfairKM VfairKM

Syn equal ds1 0.80 1.06 Adult (K = 10) 18.52 40.43
Syn unequal ds1 0.81 0.98 Bank (K = 10) 59.12 76.29
Syn equal ds2 0.70 1.29 Adult (K = 5) 14.88 15.08
Syn unequal ds2 0.80 0.10 Bank (K = 5) 11.97 50.31

Performance in terms of computational time Since the two algorithms (SAfairKM
and VfairKM) generally produce Pareto fronts of different cardinalities, we eval-
uate their computational efforts by the average CPU time spent per computed
nondominated solution (see Table 1). Our algorithm was shown to be clearly
more computationally efficient than VfairKM.
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5 Concluding remarks

We have investigated the natural conflict between the k-means clustering cost
and the clustering balance from the perspective of bi-objective optimization,
for which we designed a novel stochastic alternating algorithm (SAfairKM). A
Pareto front version of SAfairKM has efficiently computed well-spread and high-
quality trade-offs, when compared to an existing approach based on a penaliza-
tion of fairness.

Note that a balance improvement routine for the SAfairKM algorithm could
be derived to handle more than one demographic group. One might formulate
a multi-objective problem with the clustering cost being one objective and the
balance corresponding to each protected attribute (e.g., race and gender) writ-
ten as separate objectives. The balance measured using each attribute can be
improved via alternating swap updates with respect to each balance objective.

A Description of an existing approach for comparison

The authors in [32] considered the fairness error computed by the Kullback-
Leibler (KL)-divergence, and added it as a penalized term to the classical clus-
tering objective. When using the k-means clustering cost, the resulting problem
takes the form:

min f1(s) + µ

N∑
k=1

DKL(U∥Pk) s.t.

K∑
k=1

sp,k = 1,∀p ∈ [N ], (6)

where DKL is the KL divergence between the desired demographic proportion
U = [uj , j ∈ [J ]] (usually specified by the demographic composition of the whole
dataset) and the marginal probability Pk = [P(j|k) = s⊤k vj/eN

⊤sk, j ∈ [J ]].
The penalty coefficient µ associated with the fairness error is the tool to control
the trade-offs between the clustering cost and the clustering balance. To solve
problem (6) for a fixed µ ≥ 0, the authors in [32] have developed an optimization
scheme based on a concave-convex decomposition of the fairness term.

B More numerical results
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Fig. 2: Demographic composition of four synthetic datasets.
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Fig. 3: Syn equal ds1 data: SAfairKM: 400 iterations, 10 starting labels, and 3
pairs of (na, nb); VfairKM: µmax = 202.
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Fig. 4: Syn unequal ds1 data: SAfairKM: 400 iterations, 10 starting labels, and
3 pairs of (na, nb); VfairKM: µmax = 223.
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Fig. 5: Syn equal ds2 data: SAfairKM: 400 iterations, 10 starting labels, and 3
pairs of (na, nb); VfairKM: µmax = 60.
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Fig. 6: Syn unequal ds2 data: SAfairKM: 400 iterations, 10 starting labels, and
3 pairs of (na, nb); VfairKM: µmax = 0.
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Fig. 7: Pareto fronts for K = 5: SAfairKM: 2500 iterations for Adult and 1500
iterations for Bank, 30 starting labels, and 4 pairs of (na, nb); VfairKM: µmax =
6190 for Adult and µmax = 4790 for Bank.
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