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Abstract

In many derivative-free optimization algorithms, a sufficient decrease condition decides
whether to accept a trial step in each iteration. This condition typically requires that the
potential objective function value decrease of the trial step, i.e., the true reduction in the
objective function value that would be achieved by moving from the current point to the
trial point, be larger than a multiple of the squared stepsize. When the objective function
is stochastic, evaluating such a condition accurately can require a large estimation cost.

In this paper, we frame the evaluation of the sufficient decrease condition in a stochastic
setting as a hypothesis test problem and solve it through a sequential hypothesis test. The
two hypotheses considered in the problem correspond to accepting or rejecting the trial step.
This test sequentially collects noisy sample observations of the potential decrease until their
sum crosses either a lower or an upper boundary depending on the noise variance and the
stepsize. When the noise of observations is Gaussian, we derive a novel sample size result,
showing that the effort to evaluate the condition explicitly depends on the potential decrease,
and that the sequential test terminates early whenever the sufficient decrease condition is
away from satisfaction. Furthermore, when the potential decrease is Θ(δr) for some r ∈ (0, 2],
the expected sample size decreases from Θ(δ−4) to O(δ−2−r).

We apply this sequential test sampling framework to probabilistic-descent direct search.
To analyze its convergence rate, we extend a renewal-reward supermartingale-based conver-
gence rate analysis framework to an arbitrary probability threshold. By doing so, we are able
to show that probabilistic-descent direct search has an iteration complexity of O(n/ϵ2) for
gradient norm. Our numerical experiments indicate the superiority of sequential hypothesis
testing over fixed sampling when dealing with the evaluation of stochastic sufficient decrease
conditions.

1 Introduction

In this paper, we consider an unconstrained optimization problem of the form

min
x∈Rn

f(x),
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where the function values of the objective function f : Rn → R are not available directly.
Instead, we have access to F (x, ξ) as a noisy observation of f(x), where ξ is a random variable.
We assume that the observed noise is unbiased

Eξ[F (x, ξ)] = f(x). (1.1)

We also assume that the derivatives of f are not available or that the cost of computing them is
unaffordable. Furthermore, the objective function f is assumed to be continuously differentiable
and bounded from below by f∗. Its gradient ∇f is assumed to be Lf -Lipschitz continuous.
The non-availability of derivatives is a common scenario in many simulation-based optimization
applications and is the main subject of derivative-free optimization (DFO). In DFO, the only
information available about f is through zeroth-order oracles (in our case, stochastic zeroth-
order oracles), and the cost of querying the zeroth-order oracle is expensive. The goal of DFO
is to achieve good solutions with few zeroth-order oracle queries.

Trust-region, direct-search, and line-search methods are three popular classes of algorithms
in DFO. Trust-region methods build local surrogate models of f and compute trial steps and
decide its acceptance using those models, while direct search explores the space directly via a set
of search directions or points, without explicit models. In the middle of the spectrum between
with and without models, line-search methods approximate the steepest descent direction using
finite differences and searches along it. For a more comprehensive understanding of these classes
of DFO methods, interested readers are encouraged to consult sources such as, e.g., [8, 19]. Most
instances of these algorithms rely on a decrease condition to ensure that each step taken by the
algorithm makes meaningful progress toward reducing the objective function. In particular,
probabilistic-descent direct search is a direct-search algorithm proposed in [15], that instead
of using a positive spanning set (see, for example, [8]) to ensure a descent direction (which
may require at least n+1 function evaluations), incorporates randomness into the algorithm to
obtain a descent direction probabilistically using only one point. It is shown in [15] that, when
the objective function is deterministic, this algorithm has a zeroth-order oracle complexity of
O(n/ϵ2) for gradient norm. In this paper, we consider probabilistic-descent direct search for
the purpose of applying sequential hypothesis testing to the evaluation of sufficient decrease
conditions in stochastic DFO.

1.1 A brief literature review of stochastic derivative-free optimization

We start by giving a brief overview of the main results in the literature on stochastic derivative-
free optimization. To our knowledge, they all require, under the standard assumption of noise
exhibiting finite variance, a sample size of Θ(δ−4) function estimates per iteration, where δ is a
stepsize or a trust-region radius (see, e.g., [23] and references therein for further details on this
matter).

A trust-region method is designed in [18] to address optimization problems involving noisy
objective functions. The authors establish convergence guarantees under conditions where the
objective function f exhibits adequate smoothness properties (specifically, possessing a Lipschitz
continuous gradient) and when the noise is independently drawn from a distribution with zero
mean and finite variance. ASTRO-DF, proposed in [24] and refined in [17], is an adaptive sam-
pling trust-region method designed for objective functions that maintain Lipschitz continuous
gradients and can be accessed through a Monte Carlo oracle. The framework in [24] assumes
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noise that is independently distributed with zero mean, finite variance, and a bounded 4νth
moment (where ν ≥ 2), and develops an almost sure convergence result.

Furthermore, [7] provides another significant contribution by examining a trust-region algo-
rithm for unconstrained stochastic optimization. This work focuses on random models derived
from a smooth objective function using stochastic observations of either the function itself or its
gradient. The convergence analysis and rates for such methodologies are further detailed in [5]
using martingale theory, which is applicable to a wide class of stochastic algorithms including
direct search. The theoretical frameworks developed in [5, 6, 7] represent extensions of the prob-
abilistic trust-region DFO approach originally outlined in [3] for deterministic functions. Each
of these trust-region algorithms requires functions to possess some level of smoothness (such as
Lipschitz continuous gradients) and relies on the ability to construct probabilistically accurate
gradient approximations.

A comprehensive review of stochastic direct-search variants is provided in the survey [12,
Chapter 4] for both smooth and non-smooth objective functions. StoMADS, proposed in [2], is
a stochastic variant of the mesh adaptive direct search (MADS) algorithm. StoMADS generates
an asymptotically dense set of search directions and is proved in [2] using martingale theory to
converge to a Clarke stationary point of a locally Lipschitz continuous function with probability
one. In another line of research, the work in [11] considers stochastic direct-search methods
of directional type and presents its convergence rate analysis by utilizing the supermartingale-
based framework in [5]. In [23], a new probabilistic tail-bound condition for function estimation
is introduced under which stochastic direct-search and trust-region methods are shown to con-
verge globally. Reduction in sample complexity is obtained under stronger assumptions than the
standard finite noise variance. More specifically, under a bounded q/(1−q) moment assumption,
using cδq with q ∈ (1, 2] as a threshold for decrease in the acceptance test, the authors give a
O(δ−2q) sample complexity. Furthermore, under the assumption of using a common number gen-
erator framework and correlated errors (satisfied when, e.g., the noise is modeled as a Gaussian
process), the authors give a O(δ2−2q) instead. As noted in [23, Remark 5.1], the improvement
in the number of samples per iteration does not however necessarily lead to a reduction in the
overall computational cost of the considered algorithmic frameworks. More specifically, using
a decrease threshold of cδq, while reducing the number of samples needed to certify a step,
it increases the iteration complexity. In fact, in the case of smooth objectives with stochastic
oracles, an iteration complexity of O(nϵ−q/(q−1)) for gradient norm, with q ∈ (1, 2], was proved
in [12] for a direct-search scheme similar to the one given in [23].

It is finally important to highlight that all the methods mentioned above are fixed-sampling
schemes, which always pay the worst-case cost. This basically means that, in order to satisfy
the assumptions needed for convergence, one always needs to take the prescribed number of
samples, no matter how obvious the decision is. In [1], the authors gave a sequential sampling
strategy for a stochastic direct-search scheme for which a sequential hypothesis test has also
been given. They claim a O((log T )
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3 ) regret bound with respect to a sample budget T for

smooth and strongly convex objectives, which would translate, neglecting the polylog term, into
an overall complexity of O(nϵ−6) for the gradient norm.

1.2 Our contribution

In Section 2, we introduce a new way of testing the satisfaction of a sufficient decrease condition
in stochastic derivative-free optimization by framing it as a hypothesis test problem and solving
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it through the means of a sequential hypothesis test. The test makes a decision between two
hypotheses, essentially corresponding to accepting or rejecting the sufficient decrease condition,
outputting the probabilities of making correct and incorrect decisions. For the purpose of es-
tablishing a standard non-convex iteration complexity result, such probabilities need to satisfy
certain bounds dependent on the algorithmic stepsize to ensure enough correctness. Specifically,
this test sequentially collects noisy observations of the potential decrease, by calling a zeroth-
order oracle (at the current and trial points) until their sum crosses either a lower or an upper
bound depending on the function variance and the stepsize. When the function noise is Gaus-
sian, we show that the size of the sample required to estimate the decrease drops significantly
when the potential decrease is far from a multiple of the square of the stepsize, in which case
we observe an early termination of the test. Furthermore, when the potential decrease is Θ(δr)
for some r ∈ (0, 2], we show that the expected sample size decreases from the known Θ(δ−4) to
O(δ−2−r).

In Section 3, we apply this sequential test sampling framework to probabilistic-descent direct
search when the function is stochastic. We first show that the expected decrease of an auxiliary
merit function is sufficiently large when compared with the square of the stepsize and that the
stepsize does not approach zero at non-stationary points. We then extend an existing renewal-
reward supermartingale-based convergence rate analysis framework to a general case where the
probability defining the Bernoulli process in (B.1) is arbitrary. Finally, we conclude that the
iteration complexity of probabilistic-descent direct search is O(n/ϵ2). In Section 4, our numerical
results indicate the superiority of the sequential hypothesis test against a fixed sample test in
evaluating the sufficient decrease condition when the function is stochastic.

The use of our sequential test sampling framework, guarantees a similar iteration complexity
as the deterministic case while guaranteeing, under the Gaussian noise assumption, a reduced
sample complexity with respect to the standard sample complexity obtained considering the
finite variance noise assumption. Furthermore, the sequential test sampling guarantees more
flexibility than fixed-sampling schemes. In fixed-sample approaches, such as those considered
in [23], the same order of samples must indeed be taken at every iteration to satisfy the required
convergence conditions, even when the trial step is clearly acceptable or clearly unacceptable,
thus leading to potentially waste in terms of function evaluations. On the other side, the
sequential test dynamically adapts the number of samples to the given scenario. Hence, when the
decrease is clearly above or below the acceptance threshold, the test terminates after generating
just a small number of samples. This way of adapting the number of generated samples gives
a reduction of the expected per-iteration cost and provides a more efficient alternative to fixed-
sampling strategies that always require, as mentioned before, the worst-case sample complexity.

2 Sequential hypothesis testing framework for stochastic DFO

A hypothesis test problem is a statistical framework used to decide between two competing
hypotheses about a population based on observed samples. Two hypotheses are called the
null hypothesis H0 and the alternative hypothesis H1. This problem is widely investigated in
statistical inference.

Sequential hypothesis testing is a statistical method that uses sequential hypothesis tests to
solve hypothesis test problems. It has a long history, which, according to its pioneer Wald [26],
may date back to the work [9] of Dodge and Romig in 1929. Sigmund [25] points out that
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sequential hypothesis testing was developed to solve hypothesis test problems more efficiently,
which also happens to be our goal.

In fact, many nonlinear optimization algorithms accept steps at a given iteration based on
the satisfaction of a decrease condition on the value of the objective function. In derivative-free
optimization, such a condition consists of imposing a simple decrease or a sufficient decrease on
the objective function related to the size of a step. We are going to apply sequential hypothesis
testing to enhance the satisfaction of the sufficient decrease condition when the function is
stochastic.

2.1 Testing a sufficient decrease condition

Denote the current iterate of a DFO algorithm by x, the current stepsize by δ, and the current
candidate point by x + δd, where d is a certain direction. Suppose that the candidate point
x+ δd is accepted if the sufficient decrease condition

f(x)− f(x+ δd)− cδ2 ≥ 0 (2.1)

is satisfied. Our goal is to reformulate its evaluation as a hypothesis test problem which can be
used by the algorithm at stake.

For this purpose, denote by F (x, ξx) one random observation of f(x) and by F (x + δd, ξd)
one random observation of f(x + δd). The notation ξx and ξd is used to clarify that F (x, ξx)
and F (x+ δd, ξd) are sampled independently. Let us define a random variable

Y = cδ2 − (F (x, ξx)− F (x+ δd, ξd)). (2.2)

We have from the unbiased noise assumption (1.1) that

E[Y ] = cδ2 − (f(x)− f(x+ δd)) . (2.3)

Since we do not know whether the sufficient decrease condition (2.1) is satisfied, it follows from
(2.3) that two hypotheses to be considered in an algorithm are

H0 : E[Y ] ≤ 0

H1 : E[Y ] > 0.

Now it becomes clear that our hypothesis test problem is to decide whether the mean of a random
variable is positive or not through observations. Since we are not directly interested in the value
of E[Y ], our hypothesis test problem is different from a parameter estimation problem. A very
accurate estimate of E[Y ] can be a burden when E[Y ] is far from 0. If the first few observations
tell us that E[Y ] may be far from 0, then we may not want to obtain a very accurate estimate
of it.

2.2 The hypothesis test problem and sequential hypothesis tests

To illustrate how to test the sufficient decrease condition in a sequential hypothesis testing
framework, we first state our hypothesis test problem.
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Problem 2.1 (Hypothesis test problem) Let Y be a random variable. The mean of the
random variable Y is denoted by µ ∈ R and is unknown. The hypothesis test problem is to
decide between two hypotheses

H0 : µ ≤ 0

H1 : µ > 0

on the basis of m independent observations Y 1, . . . , Y m drawn from Y , where m is a random
variable called stopping rule and defined on every sample ω = (Y 1, Y 2, . . .).

Then we give the definition of a sequential hypothesis test, which is adopted from [28].

Definition 1 (Sequential hypothesis test) A sequential hypothesis test consists of a stop-
ping rule m(ω) and a decision rule to decide H0 or H1 in a hypothesis test problem.

A sequential hypothesis test is usually expected to end with a finite number of observations
almost surely. We give the following definition with respect to this property.

Definition 2 We say that a sequential hypothesis test ends properly if

P (m(ω) < ∞) = 1. (2.4)

Finally, for Problem 2.1, we give the following definition regarding the accuracy property of
a given sequential hypothesis test.

Definition 3 (C-accurate sequential hypothesis test) For Problem 2.1, we say that a se-
quential hypothesis test is C-accurate if its error probabilities satisfy

P (H1 is accepted |µ ≤ 0) ≤ 1

2
(2.5)

P (H0 is accepted |µ > 0) ≤ C

µ
. (2.6)

Two important properties of a sequential hypothesis test are its probability of accepting each
hypothesis and its expected number of observations used or expected sample size. For j = 0, 1,
we define that the acceptance region Sj = {ω : Hj is accepted} of a sequential hypothesis test is
the sample set where Hj is accepted. We denote the expected sample size by Eµ[m] = E[m|µ]
and the probability of accepting Hj by Pµ(Sj) = P (Sj |µ) for j = 0, 1, when the mean of Y has
the value of µ. If µ > 0, then Pµ(S0) is the error probability in (2.6). Similarly Pµ(S1) is the
error probability in (2.5) when µ ≤ 0.

A C-accurate sequential hypothesis test draws inferences of the mean of a random variable
and delivers accuracy conditions (2.5) and (2.6) for its error probabilities. Conditions (2.5) and
(2.6) represent a certain level of accuracy requirement for the error of the solution of Problem
2.1 and will be used in Section 3 to prove a convergence rate or complexity result.
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2.3 The proposed sequential hypothesis test

Now we propose a sequential hypothesis test (see Test 2.1) for Problem 2.1 and study its prop-
erties.

Test 2.1 (A sequential hypothesis test)
Specify {al} and {bl} such that al, bl ∈ [−∞,∞], and al ≥ bl for each l.
Repeat for l = 1, 2, . . .
Draw a new i.i.d. observation Y l from Y .

Until
∑l

i=1 Y
i ≥ al or

∑l
i=1 Y

i ≤ bl.
Record the number of used samples with m(ω) = l.
Decide that H0 is true if

∑m
i=1 Y

i ≤ bm.
Decide that H1 is true if

∑m
i=1 Y

i ≥ am.

Therefore, Test 2.1 continues to draw observations from Y until one of the two termination
conditions is satisfied. To check whether Test 2.1 fits the definition of a sequential hypothesis
test, we notice that the stopping rule in Test 2.1 is

m(ω) = inf{l ≥ 1 :
l∑

i=1

Y i ≥ al or

l∑
i=1

Y i ≤ bl}.

Then Test 2.1 decides thatH0 orH1 is accepted based on which termination condition is satisfied.
Specifically, it decides that H0 is true if

∑m
i=1 Yi is smaller than bm and that H1 is true if

∑m
i=1 Yi

is larger than am.
To see the generality of Test 2.1, we notice that a sampling procedure with a predetermined

fixed sample size at each iteration, which is what most stochastic DFO algorithms employ, is
also an instance of Test 2.1. We describe such a sampling procedure in the following test.

Test 2.2 (A test with fixed sample size m)
Draw m i.i.d. observation Y 1, Y 2, . . . , Y m from Y .
Decide that H0 is true if

∑m
i=1 Y

i ≤ 0.
Decide that H1 is true if

∑m
i=1 Y

i > 0.

We can easily check that Test 2.2 is an instance of Test 2.1, by choosing the parameters in
Test 2.2 as al = ∞ and bl = −∞ for l < m and am = bm = 0. Test 2.2 is usually referred to as a
fixed sample size hypothesis test in the literature of statistics. It can be shown through Markov’s
inequality that Test 2.2 delivers the accuracy condition (2.6) when at least m = σ2C−2 samples
are used. When C is Θ(δ2), which is commonly required in stochastic DFO, Test 2.2 requires a
sample set of size Θ(δ−4), which is known to be what most stochastic DFO algorithms need per
iteration for standard convergence and convergence rates. This may further explain that most
stochastic DFO algorithms using Test 2.2 require a sample size of Θ(δ−4) per iteration.

To make sure that condition (2.4) holds and Test 2.1 ends properly, we need to choose {al}
and {bl} such that

P ({bl ≤
l∑

i=1

Yi ≤ al, ∀l}) = 0. (2.7)
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Notice that
∑l

i=1 Yi is a one-dimensional random walk with i.i.d. increments. If {al} and {bl}
are two bounded sequences and Y is not almost surely zero, then condition (2.7) holds, and
hence also (2.4).

Test 2.1 is C-accurate if we choose the appropriate parameters {al} and {bl} such that
conditions (2.5) and (2.6) hold. To investigate when condition (2.5) holds, the following lemma
tells us that Pµ(Sj) of any Test 2.1 is monotone with respect to µ. The proof consists of two
steps. In the first step, given any ∆µ > 0 and any sequential test Test 2.1, we define an ancillary
sequential hypothesis test, called Test 2.1*, such that Pµ+∆µ(Sj) = Pµ(S̃j), where Sj and S̃j are
the acceptance regions of Hj in Test 2.1 and Test 2.1* accordingly. In the second step, we note
that Test 2.1* makes each sample harder for H0 and easier for H1 than Test 2.1, and therefore,
that Pµ(S̃0) ≤ Pµ(S0) and Pµ(S̃1) ≥ Pµ(S1).

Lemma 2.1 Consider Problem 2.1 and a sequential test Test 2.1, whose acceptance regions are
Sj, for j = 0, 1. Then Pµ(S0) is non-increasing with respect to µ and Pµ(S1) is non-decreasing
with respect to µ.

Proof. It suffices to prove Pµ(S0) ≥ Pµ+∆µ(S0) and Pµ(S1) ≤ Pµ+∆µ(S1) for any ∆µ > 0.
For the purpose of the proof, we define an ancillary sequential hypothesis test in the form of
Test 2.1, called Test 2.1*, by selecting parameters {al − l∆µ} and {bl − l∆µ}, where {al} and
{bl} are the parameters of the given Test 2.1. Denote its acceptance region by S̃j and its sample
size by m̃.

We first prove that Pµ+∆µ(Sj) = Pµ(S̃j). For each ω = (y1, y2, . . .), we make a change of
variable and define ω̃ = (ỹ1, ỹ2, . . .) = (y1 −∆µ, y2 −∆µ, . . .). From the definition of Test 2.1*,
it follows that m(ω) = m̃(ω̃) and ω ∈ Sj if and only if ω̃ ∈ S̃j . It also follows from this change
of variable that Pµ+∆µ(Sj) = Pµ(S̃j).

It then suffices to prove that Pµ(S̃0) ≤ Pµ(S0) and Pµ(S̃1) ≥ Pµ(S1). From the definition of
S0 and S̃0, we have S̃0 ⊆ S0 and Pµ(S̃0) ≤ Pµ(S0). Similarly, we have S̃1 ⊇ S1 and Pµ(S̃1) ≥
Pµ(S1). □

Lemma 2.1 tells us that Pµ(S1) is non-decreasing, which implies that the left-hand side
of (2.5) is non-decreasing and admits its maximum when µ = 0. Hence to satisfy condition (2.5),
it suffices to make sure that the maximum of the left-hand side of (2.5) is no larger than 1/2.
We formalize this reasoning in the following lemma.

Lemma 2.2 For any sequential test Test 2.1, one has that (2.5) holds if and only if

P (H1 is accepted |µ = 0) ≤ 1

2
. (2.8)

Proof. We have, by definition, Pµ(S1) = P (S1 |µ) = P (H1 is accepted |µ). Then it follows
from Lemma 1 that P (H1 is accepted |µ) is non-decreasing with respect to µ

P (H1 is accepted |µ ≤ 0) ≤ P (H1 is accepted |µ = 0).

So, as a function of µ, P (H1 is accepted |µ ≤ 0) reaches its maximum when µ = 0. There-
fore, (2.5) holds if and only if P (H1 is accepted |µ = 0) ≤ 1/2. □

Lemma 2.2 gives us an equivalent condition (2.8) for (2.5) when Test 2.1 is used. One way
of ensuring (2.5) through the satisfaction of (2.8) is when the probability density function ϕµ(y)
of Y is symmetric and al + bl = 0 for each l > 0.
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Lemma 2.3 Assume that ϕµ(µ + y) = ϕµ(µ − y) for any y. Select al and bl in Test 2.1 such
that al + bl = 0 holds for each l > 0. Then (2.5) holds.

Proof. The symmetry of the probability density function ϕµ(y) and al + bl = 0 implies
P (H1 is accepted |µ = 0) = 1/2. Then (2.8) holds and condition (2.5) follows from Lemma
2.2. □

Now we focus our attention on the satisfaction of condition (2.6). When we use Test 2.1 in
the context of stochastic DFO algorithms, the value of C in (2.6) can be small, and so we need
to investigate how large a sample size needs to be for the satisfaction of (2.6). We will show
in the next subsection that, if Y in Problem 2.1 follows a Gaussian distribution, we can select
parameters in Test 2.1 so that condition (2.6) holds.

2.4 Sample size in the Gaussian case

In this subsection, we assume that Y in Problem 2.1 follows a Gaussian distribution. Let
ϕµ(y) = (2πσ2)−1/2 exp (−(y − µ)2/(2σ2)) be the probability density function of Y . We notice
that, when Y is Gaussian, Test 2.1 with constant parameters is equivalent to a sequential
probability ratio test in [26]. We will specify the parameters in Test 2.1 so that Test 2.1 is
C-accurate. Then we approximate its expected number of observations Eµ[m].

We first select constant parameters in Test 2.1 as al = −bl = c0 for each l, where c0 > 0 is
a real number. Lemma 2.3 shows that condition (2.5) is valid. Furthermore, in the Gaussian
case, Test 2.1 is equivalent to a sequential probability ratio test in [26], which has four real
number parameters A > 1, 0 < B < 1, θ0, and θ1 > θ0, given that our parameter satisfies
c0 = σ2 logA/(θ1 − θ0) and −c0 = σ2 logB/(θ1 − θ0).

For this sequential probability ratio test, Wald bounded the left-hand side of condition (2.6)
in [26, (3.42)], and it follows that

P (H0 is accepted |µ > 0) ≤ A−h,

where h denotes 2µ/(θ1 − θ0). We can use his result for our Test 2.1 because of the equivalence
between the two tests. Since we have equivalently c0 = σ2 logA/(θ1 − θ0), we can express A
with respect to c0 as A = exp (c0(θ1 − θ0)/σ

2). After substituting h and A, we have for Test 2.1
that

P (H0 is accepted |µ > 0) ≤ e−
2c0

σ2 µ.

It then follows from Proposition 2 in Appendix A with x = µ/C that, given C > 0, we can select
c0 ≥ σ2/(2eC) so that for any µ > C, we have exp(−2c0µ/σ2) ≤ C/µ. Therefore, by setting
parameters al = −bl = c0 ≥ σ2/(2eC) in Test 2.1, we can ensure that condition (2.6) holds and
Test 2.1 is C-accurate in the Gaussian case.

Calculating the exact value of the expected sample size is more elaborate. Wald [27] gave an
approximate expected sample size in the Gaussian case. For parametersA = exp (c0(θ1 − θ0)/σ

2),
B = 1/A, and c0 = σ2/(2eC) in [27, (3:43)] and in [27, (3:57)], the number is as follows

Eµ[m] ≈ σ2

2eCµ

e
µ
eC − 1

e
µ
eC + 1

. (2.9)
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To help clarify it, it follows from Proposition 1 in Appendix A with x = µ/(eC) that we can
bound (2.9) as follows

σ2

2eCµ

e
µ
eC − 1

e
µ
eC + 1

≤ σ2

4e2C2
min

(
1,

eC

|µ|

)
. (2.10)

In the context of stochastic DFO algorithms, the level of accuracy is C = sδ2 (for some
constant s > 0) and µ = cδ2 − (f(x)− f(x+ δd)). After we substitute these values of C and µ
into (2.10), we obtain the following proposition.

Proposition 2.1 When evaluating the sufficient decrease condition (2.1) in a stochastic DFO
algorithm using Test 2.1, if Y = cδ2 − (F (x, ξx) − F (x + δd, ξd)) is Gaussian with variance σ2

and al = −bl = σ2/(2esδ2), then one needs an expected sample size approximately bounded by

σ2

4e2s2
δ−4min

(
1,

esδ2

|cδ2 − (f(x)− f(x+ δd))|

)
(2.11)

so that Test 2.1 is sδ2-accurate.

Proposition 2.1 gives us a novel sample size result, which explicitly depends on the potential
decrease f(x) − f(x + δd). Here we offer some interpretation and insight on the novel sample
size quantity (2.11). Since min(a, b) is smaller than both the first term a and the second term b,
it is clear from the first term that this quantity is O(δ−4). Therefore, the sample size in Test 2.1
is at least not larger than in Test 2.2 with respect to the power of δ. From the second term,
the quantity (2.11) is O(δ−2/|cδ2 − (f(x) − f(x + δd))|). In fact, when the potential decrease
f(x) − f(x + δd) is Θ(δ), the quantity (2.11) drops to O(δ−3). Combining both terms, on the
one hand, the quantity (2.11) achieves its maximum when f(x)−f(x+δd) is close to cδ2, where
it becomes difficult to distinguish the true hypothesis. On the other hand, Test 2.1 stops early
and this quantity decreases significantly whenever f(x) − f(x + δd) is far from cδ2, in which
case the ratio esδ2/|cδ2 − (f(x)− f(x+ δd))| becomes small. This happens frequently when the
algorithm is far from stationarity and f(x)− f(x+ δd) is Θ(δ). Such an early termination effect
and sample size advantage are commonly seen in the sequential hypothesis test theory [25, 27].

3 Convergence rate of probabilistic-descent direct search

In this section, to handle the stochastic setting, we propose a version of probabilistic-descent
direct search in which its sufficient decrease condition is tested in a sequential hypothesis testing
framework, through a sequential hypothesis test that ends properly and is C-accurate, where
C > 0 is given at the beginning of each algorithm iteration. Before we introduce the algorithm,
we formally state the assumption that such a sequential hypothesis test can be developed for
any given C > 0.

Assumption 3.1 For any C > 0, there exists a C-accurate sequential hypothesis test for Prob-
lem 2.1 that ends properly.

For the rest of this section, we will assume that Assumption 3.1 is satisfied. Probabilistic-descent
direct search in stochastic setting is stated in Algorithm 1. The value of C is chosen as a multiple
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of ∆2
k, where ∆k is the stepsize, so C varies in each iteration and becomes small when ∆k does.

A Ck-accurate sequential hypothesis test will determine whether a candidate point is accepted
(and the stepsize increased) or rejected (and the stepsize decreased).

Algorithm 1 Probabilistic-descent direct search based on sequential hypothesis testing

1: Initialization. Choose an initial point x0, an initial stepsize δ0, c > 0, θ ∈ (0, 1), γ ∈ (1,∞).
2: for k = 0, 1, · · · do
3: Uniformly select a random direction Dk from the unit sphere.
4: The candidate point is then Xk + ∆kDk. Perform a c∆2

k(1 − θ2)/2(γ2 − θ2)-accurate
sequential hypothesis test for Problem 2.1 with the random variable Yk = c∆2

k−(F (Xk, ξ
x)−

F (Xk +∆kDk, ξ
d)) (which requires estimating σ). The result of this test declares either H0

or H1 accepted.
5: if H0 is accepted, then
6: The candidate point is accepted. Set Xk+1 = Xk +∆kDk and ∆k+1 = γ∆k.
7: else
8: The candidate point is rejected. Set Xk+1 = Xk and ∆k+1 = θ∆k.
9: end if

10: end for

We need to introduce some notation to develop a convergence rate for Algorithm 1. Let us
denote the decision result of the sequential hypothesis test at iteration k by

Ak = 1{H0 is accepted at iteration k}.

In Algorithm 1, the directions Dk and the decisions Ak are random. Denote the probability
space of Algorithm 1 by (Ω,F , P ). As a consequence of the randomness of Dk−1 and Ak−1, the
current point Xk and the stepsize ∆k are also random quantities. Let Φk = f(Xk)− f∗ + η∆2

k,
where η > 0 is a real number. To formalize conditioning on the past, let Fk denote the σ-algebra
generated by D0, . . . , Dk−1 and A0, . . . , Ak−1 and let Fk+1/2 denote the σ-algebra generated by
D0, . . . , Dk and A0, . . . , Ak−1. Under this definition of Fk and Fk+1/2, we have the following
conclusions: ∆k, Xk, and Φk are Fk-measurable; ∆k, Xk, Φk, and Dk are Fk+1/2-measurable;
∆k, Xk, Φk, Dk, and Ak are Fk+1-measurable.

To analyze Algorithm 1, we start by noting that the unbiased noise Assumption (1.1) implies

E[Yk|Fk+1/2] = c∆2
k − (f(Xk)− f(Xk +∆kDk)), (3.1)

where Yk was defined in Step 4 of Algorithm 1. Denote S1
k = {ω : f(Xk)−f(Xk+∆kDk) ≥ c∆2

k}
and S2

k = {ω : f(Xk)−f(Xk+∆kDk) < c∆2
k}, which are two disjoint Fk+1/2-measurable events.

It follows from (3.1) that S1
k = {ω : E[Yk] ≤ 0} and S2

k = {ω : E[Yk] > 0}. We can then rewrite
(2.5) and (2.6) in the context of Algorithm 1 in the following way

P (Ak = 0|Fk+1/2, S
1
k) ≤

1

2
(3.2)

P (Ak = 1|Fk+1/2, S
2
k) ≤

c∆2
k(1− θ2)/2(γ2 − θ2)

c∆2
k − (f(X)− f(Xk +∆kDk))

. (3.3)

Note that E[Yk] plays here the role of µ in (2.5) and (2.6).
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Our main goal is to bound the number of iterations Tϵ defined as follows

Tϵ = inf{k ≥ 0 : ∥∇f(Xk)∥ ≤ ϵ}. (3.4)

The first lemma tells us that the expected value decrease of Φk is bounded below by ν∆2
k, where

ν > 0 is a real number.

Lemma 3.1 Let Assumption 3.1 hold and Φk = f(Xk) − f∗ + η∆2
k. Then there exist η =

c
γ2−θ2

> 0 and ν = c
2

1−θ2

γ2−θ2
such that for all k we have

E[Φk − Φk+1|Fk] ≥ ν∆2
k.

Proof. We start by proving E[Φk − Φk+1|Fk+1/2] ≥ ν∆2
k. Note that ∆k, Xk, and Dk are

Fk+1/2-measurable. We express E[Φk − Φk+1|Fk+1/2] in terms of P (Ak = 1|Fk+1/2) as follows

E[Φk − Φk+1|Fk+1/2] = E[f(Xk) + η∆2
k − f(Xk+1)− η∆2

k+1|Fk+1/2]

= E[
(
f(Xk) + η∆2

k − f(Xk+1)− η∆2
k+1

)
1(Ak = 1)|Fk+1/2]

+ E[
(
f(Xk) + η∆2

k − f(Xk+1)− η∆2
k+1

)
1(Ak = 0)|Fk+1/2]

= (f(Xk)− f(Xk +∆kDk) + η(1− γ2)∆2
k)P (Ak = 1|Fk+1/2)

+ η(1− θ2)∆2
kP (Ak = 0|Fk+1/2).

Since P (Ak = 0|Fk+1/2) = 1− P (Ak = 1|Fk+1/2), we have

E[Φk − Φk+1|Fk+1/2] = (f(Xk)− f(Xk +∆kDk) + η(θ2 − γ2)∆2
k)P (Ak = 1|Fk+1/2)

+ η(1− θ2)∆2
k

= (f(Xk)− f(Xk +∆kDk)− c∆2
k)P (Ak = 1|Fk+1/2)

+ c
1− θ2

γ2 − θ2
∆2

k.

Note that S1
k = {ω : f(Xk) − f(Xk + ∆kDk) ≥ c∆2

k} and S2
k = {ω : f(Xk) − f(Xk +

∆kDk) < c∆2
k} are two disjoint Fk+1/2-measurable events such that S1

k ∪ S2
k = Ω. We prove

E[Φk − Φk+1|Fk+1/2] ≥ ν∆2
k for these two scenarios separately.

Case 1. First we consider the case S1
k = {ω : f(Xk)− f(Xk +∆kDk) ≥ c∆2

k} and it follows
from P (Ak = 1|Fk+1/2) ≥ 0 that

E[Φk − Φk+1|Fk+1/2, S
1
k ] ≥ c

1− θ2

γ2 − θ2
∆2

k ≥ ν∆2
k.

Case 2. Otherwise, we consider S2
k = {ω : f(Xk) − f(Xk + ∆kDk) < c∆2

k}. Then (3.3)
guarantees

P (Ak = 1|Fk+1/2, S
2
k) ≤

c∆2
k(1− θ2)/2(γ2 − θ2)

c∆2
k − (f(Xk)− f(Xk +∆kDk))

.

It follows that

E[Φk − Φk+1|Fk+1/2, S
2
k ] =(f(Xk)− f(Xk +∆kDk)− c∆2

k)P (Ak = 1|Fk+1/2, S
2
k) + c

1− θ2

γ2 − θ2
∆2

k

≥(c
1− θ2

γ2 − θ2
− c

2

1− θ2

γ2 − θ2
)∆2

k = ν∆2
k.
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Since S1
k and S2

k partition Ω and are Fk+1/2-measurable, we conclude that

E[Φk − Φk+1|Fk+1/2] ≥ ν∆2
k.

Note that ∆k is Fk-measurable. It follows from the tower property of conditional expectation
that

E[Φk − Φk+1|Fk] = E[E[Φk − Φk+1|Fk+1/2]|Fk]

≥ E[ν∆2
k|Fk] = ν∆2

k.

□

Now we need to guarantee that the directions used in Algorithm 1 are of descent type with
a sufficiently large probability. To do so, we need to generate a direction for which

κk =
−∇f(Xk)

⊤Dk

∥∇f(Xk)∥∥Dk∥

is sufficiently large. Note that the denominator of κk will not be zero because we will assume that
k < Tϵ, where Tϵ was defined in (3.4). From [15, Lemma B.2], it turns out that if Dk = {Dk} is
uniformly generated from a unit sphere, the direction Dk will be enough descent (κk ≥ 1/(7

√
n))

for a sufficiently large probability.

Lemma 3.2 For k < Tϵ, it holds for τ ∈ [0,
√
n] that

P (κk ≥ τ√
n
|Fk) ≥

1

2
− τ√

2π
.

For simplicity we select τ = 1
7 and it holds for k < Tϵ that

P (κk ≥ 1

7
√
n
|Fk) ≥

3

7
.

Proof. See [15, Lemma B.2], where the result holds for any k. □

The next step in the convergence theory is to ensure that for each k < Tϵ, if Dk is an
at least 1/(7

√
n)-descent direction and the stepsize ∆k is smaller than a certain δϵ, then the

sufficient decrease condition is satisfied at iteration k. To do so, we need another assumption
on the objective function, which is common in the DFO literature.

Assumption 3.2 Suppose that the objective function f is bounded from below on Rn. Suppose
that f is smooth and its gradient ∇f is Lipschitz continuous with constant Lf .

The next lemma is a consequence of assuming that f is smooth and its gradient ∇f is
Lf -Lipschitz continuous.

Lemma 3.3 Let Assumption 3.2 hold. For all k < Tϵ, if κk ≥ 1
7
√
n
and ∆k ≤ δϵ =

2
7Lf+14c

ϵ√
n
,

then

f(Xk)− f(Xk +∆kDk) ≥ c∆2
k. (3.5)

13



Proof. It is known (see, for example, [22, Lemma 1.2.3]) that Assumption 3.2 implies for any
x, y from Rn that

f(x)− f(y) ≥ ∇f(x)T (x− y)−
Lf

2
∥x− y∥2.

After substituting x = Xk and y = Xk +∆kDk, and using ∥Dk∥ = 1, we obtain

f(Xk)− f(Xk +∆kDk) ≥ −∇f(Xk)
⊤(∆kDk)−

Lf

2
∆2

k

= κk∥∇f(Xk)∥∆k −
Lf

2
∆2

k. (3.6)

It then follows from κk ≥ 1
7
√
n
, ∥∇f(Xk)∥ > ϵ, ∆k ≤ δϵ, and the definition of δϵ that

κk∥∇f(Xk)∥∆k ≥ ϵ

7
√
n
∆k ≥ c∆2

k +
Lf

2
∆2

k. (3.7)

Combining (3.6) with (3.7) gives us (3.5). □

Lemma 3.3 gives a sufficient condition for the sufficient decrease condition to be satisfied.
The next lemma gives a constant lower bound on the probability of accepting H0 when the
stepsize ∆k is smaller than δϵ. The proof relies on both the probability of having an at least
1/(7

√
n)-descent direction (Lemma 3.2) and the conditional probability of correctly identifying

sufficient decrease (given by condition (3.2)).

Lemma 3.4 Let Assumptions 3.1–3.2 hold. For any ϵ > 0 and k < Tϵ, it holds

P (Ak = 1|Fk, {∆k ≤ δϵ}) ≥
3

14
. (3.8)

Proof. Note that ∆k and Xk are Fk-measurable. It follows from event inclusion that

P (Ak = 1|Fk, {∆k ≤ δϵ}) ≥ P ({Ak = 1} ∩ {κk ≥ 1

7
√
n
}|Fk, {∆k ≤ δϵ}).

Then it follows from conditional probability formula P (E1E2|E3) = P (E1|E2E3)P (E2|E3) that

P (Ak = 1|Fk, {∆k ≤ δϵ}) ≥ P ({Ak = 1} ∩ {κk ≥ 1

7
√
n
}|Fk, {∆k ≤ δϵ})

=P (Ak = 1|Fk, {κk ≥ 1

7
√
n
} ∩ {∆k ≤ δϵ}) · P (κk ≥ 1

7
√
n
|Fk, {∆k ≤ δϵ}). (3.9)

From Lemma 3.2, since ∆k is Fk-measurable, we know that

P (κk ≥ 1

7
√
n
|Fk, {∆k ≤ δϵ}) ≥

3

7
. (3.10)

From Lemma 3.3 we have{
{κk ≥ 1

7
√
n
} ∩ {∆k ≤ δϵ}

}
⊆ {f(Xk)− f(Xk +∆kDk) ≥ c∆2

k} = S1
k . (3.11)
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From (3.2) we have

P (Ak = 1|Fk+1/2, S
1
k) >

1

2
. (3.12)

Together with the knowledge that both events in (3.11) above are Fk+1/2-measurable, (3.12)
implies

P (Ak = 1|Fk+1/2, {κk ≥ 1

7
√
n
} ∩ {∆k ≤ δϵ}) >

1

2
.

Using the tower property of conditional expectation, it follows that

P (Ak = 1|Fk, {κk ≥ 1

7
√
n
} ∩ {∆k ≤ δϵ})

= E[P (Ak = 1|Fk+1/2, {κk ≥ 1

7
√
n
} ∩ {∆k ≤ δϵ})|Fk, {κk ≥ 1

7
√
n
} ∩ {∆k ≤ δϵ}]

> E[
1

2
|Fk, {κk ≥ 1

7
√
n
} ∩ {∆k ≤ δϵ}]

=
1

2
. (3.13)

Applying (3.10) and (3.13) to (3.9) yields (3.8). □

The rest of the rate derivation makes use of the result [5, Theorem 2] which is rederived in
the Appendix for a general probability p > 1/2 (see Theorem B.3). This result requires defining
a submartingale Wk to model the behavior of the stepsize, which we now do in the context of
Algorithm 1. Denote W0 = 0. For k ≥ 0, let Wk+1 be a Bernoulli random variable taking values
log γ or log θ with probabilities described next. For k ≥ Tϵ, the probabilities are

P (Wk+1 = log γ|Fk) =
3

14

P (Wk+1 = log θ|Fk) =
11

14
.

For k < Tϵ, when ∆k > δϵ, the probabilities are

P (Wk+1 = log γ|Fk, {∆k > δϵ}) =
3

14

P (Wk+1 = log θ|Fk, {∆k > δϵ}) =
11

14
.

For k < Tϵ, when ∆k ≤ δϵ and Ak = 0, we define Wk+1 = log θ with probability one

P (Wk+1 = log γ|Fk, {∆k ≤ δϵ} ∩ {Ak = 0}) = 0 (3.14)

P (Wk+1 = log θ|Fk, {∆k ≤ δϵ} ∩ {Ak = 0}) = 1.

For k < Tϵ, when ∆k ≤ δϵ and Ak = 1, the probabilities are

P (Wk+1 = log γ|Fk, {∆k ≤ δϵ} ∩ {Ak = 1}) = 3

14

1

P (Ak = 1|Fk, {∆k ≤ δϵ})
(3.15)

P (Wk+1 = log θ|Fk, {∆k ≤ δϵ} ∩ {Ak = 1}) = 1− 3

14

1

P (Ak = 1|Fk, {∆k ≤ δϵ})
.
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Note that these last two probabilities are well defined because of Lemma 3.4. It then follows
from (3.14), (3.15), and the formula of total probability that for k < Tϵ

P (Wk+1 = log γ|Fk, {∆k ≤ δϵ}) =
3

14

P (Wk+1 = log θ|Fk, {∆k ≤ δϵ}) =
11

14
.

Then we can conclude that for any k > 0

P (Wk+1 = log γ|Fk) =
3

14

P (Wk+1 = log θ|Fk) =
11

14
.

To be able to apply Proposition B.3 in Appendix B, the next step is to verify Assump-
tions B.1–B.2. The validity of Assumption B.2 results from Lemma 3.1, where ν∆2

k plays the
role of h(∆k) in Assumption B.2. To complete the convergence theory, it remains to show the
validity of Assumption B.1, which provides a lower bound for Wk+1 when k < Tϵ, by ensuring
that if the stepsize ∆k+1 is smaller than a threshold (in our context this threshold is ∆ϵ = δϵθ),
then the stepsize ∆k+1 must be no less than ∆k exp (Wk+1).

Lemma 3.5 One has for all k

1(k < Tϵ)∆k+1 ≥ 1(k < Tϵ)min
(
∆ke

Wk+1 , δϵθ
)
. (3.16)

Proof. Note that it follows from Algorithm 1 and the definition of Ak that Ak = 0 if and only
if ∆k+1/∆k = θ. When k < Tϵ and ∆k ≤ δϵ, since we have set Wk+1 = log θ with probability
one when Ak = 0, it turns out that, with probability one, whenever the value of log(∆k+1/∆k)
is log θ, one has Wk+1 = log θ. When Ak = 1, ∆k+1/∆k = γ, and k < Tϵ, Wk+1 can take the
values log γ and log θ. Then we conclude that when k < Tϵ and ∆k ≤ δϵ, one has

log(∆k+1/∆k) ≥ Wk+1. (3.17)

Note that ∆k+1 < δϵθ implies ∆k < δϵ, which in turn implies ∆k+1 ≥ ∆ke
Wk+1 when k < Tϵ

because of (3.17). We have covered all possible cases, and the proof is concluded. □

We are now ready to apply Theorem B.3 to Algorithm 1 with Φ0 = f(x0)− f∗ + ηδ20 .

Theorem 3.6 Let Assumptions 3.1–3.2 hold. Let θ and γ be chosen such that 3 log γ+11 log θ >
0. Then

E[Tϵ] ≤ 1 +
14 log γ

3 log γ + 11 log θ

(γ2 − θ2)(f(X0)− f∗) + c∆2
0

c
2(1− θ2)θ2

(7Lf + 14c)2

4

n

ϵ2
.

Theorem 3.6 ensures an expected worst-case complexity bound of O(n/ϵ2) for Algorithm 1.

4 A numerical experiment

In this section, we will report the numerical performance of Test 2.1 against Test 2.2 in an exper-
iment running probabilistic-descent direct search under Gaussian noise. Recall from Section 2.3
that Test 2.1 is a sequential hypothesis test and Test 2.2 is a fixed sample test. Specifically,
we ran Algorithm 1 with Test 2.1 or Test 2.2 to solve its hypothesis test problem, given a total
budget of 10000 sample evaluations.
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4.1 Experiment setup

We used 38 problems suggested in [13] from the CUTEst dataset [14, 16], which exhibit different
features in terms of non-linearity, non-convexity, and partial separability. For each problem,
we generated problem instances with different dimensions, which gives us a problem set of 91
problem instances in total. Please see Table 4.1 for the problem names and corresponding
dimensions of our problem set. To inject noise in the objective functions, we selected the noise
term F (X, ξ)− f(x) to follow an independent identically distributed Gaussian distribution with
variance σ2 ∈ {0.01, 1}. Our choice of additive Gaussian noise is consistent with the assumption
of Proposition 2.1. Other choices are certainly possible, and we discuss them in Section 5. For
performance evaluation, we used data profiles [20] and performance profiles [10], selecting the
tolerance parameter, which defines a problem being solved, as τ = 0.1. Each problem instance
was ran 10 times in the experiment and considered as 10 problem instances in all the profiles.

Name Dimension Name Dimension

ARGLINA 10, 50, 100 ARGTRIGLS 10, 50, 100
ARWHEAD 100 BDEXP 100
BOXPOWER 10, 100 BROWNAL 10, 100

COSINE 10, 100 CURLY10 100
DIXON3DQ 10, 100 DQRTIC 10, 50, 100
ENGVAL1 2, 50, 100 EXTROSNB 5, 10, 100
FLETBV3M 10, 100 FLETCBV3 10, 100
FLETCHBV 10, 100 FLETCHCR 10, 100
FREUROTH 2, 10, 50, 100 INDEFM 10, 50, 100
MANCINO 10, 20, 30, 50, 100 MOREBV 10, 50, 100
NONCVXU2 10, 100 NONCVXUN 10, 100
NONDIA 10, 50, 100 NONDQUAR 100

PENALTY2 10, 50, 100 POWER 10, 50, 100
QING 100 QUARTC 25, 100

SENSORS 10, 100 SINQUAD 5, 50, 100
SCURLY10 10, 100 SCURLY20 100
SPARSINE 10, 50, 100 SPARSQUR 10, 50, 100
SSBRYBND 10, 50, 100 TRIDIA 10, 50, 100
TRIGON1 10, 100 TOINTGSS 10, 50, 100

Table 4.1: Names and corresponding dimensions of the 91 CUTEst problem instances in the
problem set.

We now specify the parameters of Algorithm 1. We used the initial point provided by CUTEst
dataset, chose the initial stepsize δ0 = 1, and selected c = 0.5. However, the choice of θ ∈ (0, 1)
and γ ∈ (1,∞) can greatly affect the performance of the algorithm. Note that it is required
from Theorem 3.6 that 3 log γ + 11 log θ > 0, otherwise, the stepsize δ of Algorithm 1 may still
converge to 0 even when the iterates approach a non-stationary point. We also notice that the
sample size per iteration increases rapidly as the stepsize δ decreases to 0. This phenomenon
occurs for both Test 2.1 and Test 2.2, and is more severe in Test 2.2 with a sample size of
Θ(δ−4). For the purposes of both algorithm performance and a fair comparison, we want to
select a large θ so that the stepsize may stay away from 0 unless necessary. Based on the above
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observations, we selected θ = 0.95 and γ = 1.3 in our numerical experiment when using either
Test 2.1 or Test 2.2. We tried different θ and γ when the algorithm uses either tests and observed
no significant changes in the relative performance of the methods.

To choose the parameters in Test 2.1 and Test 2.2, let us suppose that at an iteration k of
Algorithm 1, σ2

k is the variance of Yk, or at least a known upper bound thereof. The number
Ck = c∆2

k(1 − θ2)/2(γ2 − θ2) in Algorithm 1 is known at each iteration k. For Test 2.2, we
selected the fixed sample size m = σ2

kC
−2
k . For Test 2.1, we selected the test lower and upper

bounds al = −bl = σ2
k/(2eCk).

4.2 Experiment results

The results are reported in Figures 4.1 and 4.2 for the two noise variances. We tried larger
budgets, different values of τ in the profiles, and smaller variances, but we observed no significant
changes in the relative performance of the methods. For both cases, it can be clearly seen that
using the sequential test (Test 2.1) outperforms using the fixed sample test (Test 2.2). The
performance gap increases as the noise variance increases.

Figure 4.1: Performance and data profiles for Algorithm 1 using sequential test (Test 2.1) or
fixed sample test (Test 2.2) for noise variance σ2 = 1 for the problem set of Table 4.1.

Figure 4.2: Performance and data profiles for Algorithm 1 using sequential test (Test 2.1) or
fixed sample test (Test 2.2) for noise variance σ2 = 0.01 for the problem set of Table 4.1.

5 Concluding remarks

In this paper, we introduced sequential hypothesis testing for solving a stochastic DFO problem.
Specifically, we formulated the evaluation of the sufficient decrease condition (2.1) as a hypoth-
esis test problem (Problem 2.1) and solved it through a sequential hypothesis test (Test 2.1).
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Given an additive Gaussian noise assumption, we estimated the sample size of Test 2.1 in
Proposition 2.1, which indicated a possible early termination under a reduced sample size. In
particular, when the potential decrease f(x)− f(x+ δd) is Θ(δr) for some r ∈ (0, 2], we showed
that the expected sample size can decrease from the literature’s Θ(δ−4) to O(δ−2−r). We ap-
plied the sequential test framework to probabilistic-descent direct search and derived an iteration
complexity of O(nϵ−2) in Theorem 3.6. Our numerical results showed that the use of sequential
hypothesis test (Test 2.1) significantly outperforms the use of its fixed sample counterpart.

The sampling procedure in the form of Test 2.2 is widely used in many stochastic DFO
algorithms. It is referred to in the literature of statistics as a hypothesis test with a fixed sample
size. In contrast, a sequential hypothesis test uses a random sample size, which can be regarded
as a relaxation of a fixed sample size, to allow early termination of the test when the hypothesis
test problem is not difficult (in our case, when the mean µ of Y in (2.2) is far from 0). From this
point of view, a test with a fixed sample size is some form of a restricted sequential hypothesis
test. Therefore, sequential tests are generally expected to use less samples than their fixed
sample size counterparts for equally good performance.

We would like to make two observations regarding the noise setting considered in this paper.
The first one is that, in our numerical results in Section 4, we only show that Test 2.1 performs
well in a relatively limited setting where the noise is additive Gaussian. However, we can still
use Test 2.1 for other noise types as long as an upper bound of the noise variance of Y is known.
Regardless of the distribution of Y , the random walk

∑
i Y

i is typically approximated by a
Brownian motion process in the study of sequential analysis [25, Chapter 3.1]. Therefore, we
believe that Test 2.1 will still work well for other noises beyond Gaussian. The other observation
is that, in this paper, we assumed knowledge of the noise variance or at least an upper bound of
it. For a more practical algorithmic implementation, we may need to estimate the noise variance
using some estimation techniques (see, for instance, [4, 21]).
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A Appendix (Auxiliary results)

Proposition A.1 Let A > 1 be a real number. Then Ax−1
x(Ax+1) ≤

logA
2 holds for any x ∈ R.

Proof. To prove Ax−1
x(Ax+1) ≤ logA

2 for any x ∈ R, since A−x−1
−x(A−x+1)

= Ax−1
x(Ax+1) is a symmetric

function, it suffices to prove it when x ≥ 0. We rearrange and rewrite it as follows

xAx logA+ x logA+ 2− 2Ax ≥ 0.

The derivatives of g(x) = xAx logA+ x logA+ 2− 2Ax are

g′(x) = (xAx logA+ 1−Ax) logA

g′′(x) = (xAx logA)(logA)2 ≥ 0.

It follows that g′(x) is non-decreasing and g′(x) ≥ g′(0) = 0. Then g(x) is non-decreasing and
g(x) ≥ g(0) = 0. □
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Proposition A.2 Let t > 0 be a real number. Then 1
tx ≤ 1

x holds for any x ≥ 1 if and only if

t ≥ e
1
e .

Proof. Since 1
tx ≤ 1

x holds for x = 2, we only need to consider t ≥
√
2. Define f(x) = tx − x.

Its derivatives are f ′(x) = tx log t − 1 and f ′′(x) = tx(log t)2 > 0. The solution x∗ of f ′(x) = 0
is x∗ = − log log t

log t . If x∗ ≤ 1, then f(x) achieves a minimum over [1,∞) at x = 1. We can verify
that f(1) > 0. If x∗ ≥ 1, then f(x) achieves a minimum over [1,∞) at x∗. The minimum value
is f(x∗) = 1+log log t

log t . Therefore, we have that f(x) ≥ 0 holds for any x ∈ [1,∞) if and only if

t ≥ e
1
e . □

B Appendix (Renewal–Reward Martingale Process)

We begin by describing how our Algorithm 1 can be analyzed through the lens of a renewal-
reward process. A renewal event is said to occur within Algorithm 1 whenever the stepsize meets
or exceeds a predetermined threshold, denoted by ∆ϵ. We will show that, after one renewal, the
next renewal will happen in a finite time interval, and this expected returning time is constant.
Each of these renewal events is associated with a random reward, whose expectation is bounded
below by a positive function h(∆ϵ). Once defined in this way, the total accumulated reward
across multiple renewals can be viewed as a submartingale that grows through these random
increments. Since the total available reward is bounded, we will be able to deduce an expected
stopping time for the algorithm mechanism. This line of analysis, which treats the underlying
process as a renewal-reward martingale, was first developed in [5], where it was used to establish
the expected global convergence rate of a stochastic trust-region method.

To adapt the framework [5] to our Algorithm 1, we need to remove one of the assumptions
from [5, Assumption 1(ii)], which originally stipulated that p > 1/2. We also need to show
that the main result in [5, Theorem 2] still holds under more general conditions where the
sequence Wk+1 can take any positive and negative values a and b, respectively, instead of ±1 as
the authors used in [5].

Consider a stochastic process {(Φk,∆k)} defined on some probability space, where Φk takes
values in the interval [0,∞) and ∆k takes values in the interval (0,∞), for all k ≥ 0. Let {Wk}
be another sequence of random variables defined on the same probability space as {(Φk,∆k)},
initialized by W0 = 0. For all k ≥ 0, the conditional distribution of Wk+1, given the σ-algebra
Fk generated by {(Φ0,∆0,W0), . . . , (Φk,∆k,Wk)}, is described by

P (Wk+1 = a|Fk) = p,

P (Wk+1 = b|Fk) = 1− p,
(B.1)

where a > 0 and b < 0 are two constants and p is the probability of taking the value a. When
a = 1 and b = −1, this construction coincides with the specific case discussed in [5]. From the
above definition, it follows that {Wk} are mutually independent and Wk is also independent
of the sequence {(Φj ,∆j)}k−1

j=0 for all k. Lastly, let {Tϵ}ϵ>0 be a family of stopping times with
respect to {Fk}k≥0, parameterized by some quantity ϵ > 0. As in [5], we impose the following
assumptions on {(Φk,∆k)} and Tϵ when k < Tϵ.
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Assumption B.1 There exists a constant ∆ϵ > 0 such that the following holds for all k ≥ 0

1(k < Tϵ)∆k+1 ≥ 1(k < Tϵ)min(∆ke
Wk+1 ,∆ϵ),

where Wk+1 satisfies E[Wk+1|Fk] > 0 (which means p(a− b) + b > 0).

Assumption B.2 There exists a nondecreasing function h(·) : [0,∞) → (0,∞) such that

E(Φk − Φk+1|Fk)1(k < Tϵ) ≥ h(∆k)1(k < Tϵ).

Assumption B.1 tells us that for k < Tϵ, the stepsize ∆k tends to increase and return to
the threshold ∆ϵ when it is smaller than ∆ϵ. Assumption B.2 tells us that for k < Tϵ, the
stochastic process Φ0 − Φk+1 acts like a submartingale and the expected martingale difference
E(Φk − Φk+1|Fk) is at least h(∆k).

In order to define a renewal process, we first define an auxiliary process {Zk}∞k=0 by letting
Z0 = log ∆ϵ

∆0
and setting

Zk+1 = min(Zk +Wk+1, log
∆ϵ

∆0
),

or, equivalently,

∆0e
Zk+1 = min(∆0e

Zk+Wk+1 ,∆ϵ).

We then define the renewal process {An}∞n=0 by letting A0 = 0 and setting An = inf{m > An−1 :
Zm = log ∆ϵ

∆0
}. From Assumption B.1, we have that

1(k < Tϵ)∆k+1 ≥ 1(k < Tϵ)min(∆ke
Wk+1 ,∆ϵ) ≥ 1(k < Tϵ)∆0e

Zk+1 ,

where we have used a simple inductive argument to obtain the second inequality. The interarrival
times of this renewal process are defined for all n ≥ 1 by

τn = An −An−1.

The first main step in the analysis will be to bound the expected value of the interarrival
time τn (see Lemma B.2). For this purpose, one needs to bound E[τ̄ ], where τ̄ = inf{n ≥ 0 :
Z̄n ≥ 0}, using the structure of the process Wk (see Lemma B.1 below).

Lemma B.1 Let Assumption B.1 hold. Define the process Z̄0 = b < 0, Z̄k+1 = Z̄k +Wk+1 for
all k ≥ 0. Then

E[τ̄ ] ≤ a− b

pa− pb+ b
. (B.2)

Proof. For ease of notation, let k ∧ τ̄ = min{k, τ̄} and v = p(a− b) + b > 0. Note that

E[Wk+1|Fk] = v. (B.3)

Consider the stochastic process defined by R0 = Z̄0 and for k ≥ 1

Rk = Z̄k∧τ̄ −
k∧τ̄−1∑
j=0

v.
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We first prove that E[Rk+1|Fk] = Rk, which means Rk is a martingale with respect to {Fk}.
To see this, we first note that

Rk+1 −Rk = Z̄(k+1)∧τ̄ − Z̄k∧τ̄ −
(k+1)∧τ̄−1∑

j=0

v +
k∧τ̄−1∑
j=0

v

and

E[Rk+1 −Rk|Fk] = E[(Rk+1 −Rk)1(τ̄ > k)|Fk] + E[(Rk+1 −Rk)1(τ̄ ≤ k)|Fk]. (B.4)

We now show that E[Rk+1 −Rk|Fk] = 0. First, since ((k ∧ τ̄)− ((k + 1) ∧ τ̄))1(τ̄ ≤ k) = 0, we
have

E[(Rk+1 −Rk)1(τ̄ ≤ k)|Fk] = E

Z̄(k+1)∧τ̄ − Z̄k∧τ̄ −
(k+1)∧τ̄−1∑

j=0

v +
k∧τ̄−1∑
j=0

v

1(τ̄ ≤ k)|Fk


= E [0 · 1(τ̄ ≤ k)|Fk]

= 0. (B.5)

Secondly, from Z̄k+1 = Z̄k +Wk+1 and (B.3), we have

E[(Rk+1 −Rk)1(τ̄ > k)|Fk] =E

Z̄(k+1)∧τ̄ − Z̄k∧τ̄ −
(k+1)∧τ̄−1∑

j=0

v +
k∧τ̄−1∑
j=0

v

1(τ̄ > k)|Fk


=E

[(
Z̄k+1 − Z̄k − v

)
1(τ̄ > k)|Fk

]
=E [(Wk+1 − v)1(τ̄ > k)|Fk]

=0. (B.6)

After summing up (B.5) and (B.6), since Rk is Fk-measurable, we have from (B.4) that

E[Rk+1|Fk] = Rk.

Since Rk is a martingale with respect to {Fk}, we immediately have E[Rk] = R0. Note that
Z̄k∧τ̄ ≤ a for each k ≥ 0 due to the definition of τ̄ and Wk. We then obtain from the definition
of Rk that

E

(k∧τ̄)−1∑
j=0

v

 = E[Z̄k∧τ̄ ]− E[Rk] ≤ a−R0 = a− b. (B.7)

Now, due to v > 0 and k being eventually larger than τ̄ , observe that

0 <

(k∧τ̄)−1∑
j=0

v ↗
τ̄−1∑
j=0

v

as k → ∞. Note that this conclusion holds even on the event {τ̄ = ∞}. Therefore, by the
monotone convergence theorem and (B.7),

E

τ̄−1∑
j=0

v

 = lim
k→∞

E

(k∧τ̄)−1∑
j=0

v

 ≤ a− b.
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Finally, using Wald’s identity, we have

E[τ̄ ]v = E

τ̄−1∑
j=0

v

 ≤ a− b,

which implies (B.2) and concludes the proof. □

We will use the upper bound for the constant E[τ̄ ] in the above lemma to give an upper
bound for the constant E[τn].

Lemma B.2 Let Assumption B.1 hold. Let τn be defined as before. Then for all n,

E[τn] = p+ (1 + E[τ̄ ])(1− p). (B.8)

Proof. Note that E[τn] = E[E[τn|ZAn−1 ]] = E[E[τ1|Z0]] = E[τ1] and it suffices to verify this
proposition for n = 1.

By conditioning on W1, we have that

E[τ1] = 1 · P (W1 = a) + (1 + E[τ̄ ])P (W1 = b).

This identity follows because the distribution of τ1 conditioned on Z1 = log ∆ϵ
∆0

+ b is the same
as the distribution of τ̄ . Thus, we simplify this expression to conclude that (B.8) holds. □

The following proposition is proved in [5, Theorem 2] with E[τn] = p/(2p−1). The argument
in [5, Theorem 2] works for any constant E[τn] and there is no need to repeat the proof here.

Theorem B.3 Let Assumptions B.1–B.2 hold. Then

E[Tϵ − 1] ≤ E[τn] ·
Φ0

h(∆ϵ)
,

where Φ0 is a given positive number, E[τn] satisfies (B.2), and h is a given function in Assump-
tion B.2.
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