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Abstract

Managing all the mobility and transportation services with autonomous vehicles for users
of a smart city requires determining the assignment of the vehicles to the users and their
routing in conjunction with their speed. Such decisions must ensure low emission, efficiency,
and high service quality by also considering the impact on traffic congestion caused by other
vehicles in the transportation network.

In this paper, we first propose an abstract trilevel multi-objective formulation architec-
ture to model all vehicle routing problems with assignment, routing, and speed decision
variables and conflicting objective functions. Such an architecture guides the development
of subproblems, relaxations, and solution methods. We also propose a way of integrating
the various urban transportation services by introducing a constraint on the speed variables
that takes into account the traffic volume caused across the different services. Based on the
formulation architecture, we introduce a (bilevel) problem where assignment and routing are
at the upper level and speed is at the lower level. To address the challenge of dealing with
routing problems on urban road networks, we develop an algorithm that alternates between
the assignment-routing problem on an auxiliary complete graph and the speed optimization
problem on the original non-complete graph. The computational experiments show the ef-
fectiveness of the proposed approach in determining approximate Pareto fronts among the
conflicting objectives.

1 Introduction

In this paper, we propose an innovative integrated transportation model for the management
of possibly all vehicles traveling on the streets and roads of a city, which are assumed to have
different levels of autonomy (with or without a driver) that allow velocity to be controlled or
imposed. Our main goal is to provide an optimization model that can be used to effectively
manage mobility and transportation within a city by adopting a green logistics perspective and
pursuing efficiency and service quality. The integrated model introduced in this work will qualify
the cities implementing the proposed transportation network as smart.
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The achievement of our goal will be enabled by the recent (and future) advances in infor-
mation and location-sensitive technologies, which facilitate acquiring the necessary high-quality
(granular) data for supporting the decision-making process for vehicles traveling on the streets
and roads of a smart city. Several definitions of smart city have been proposed in the literature
(see, e.g., Nam and Pardo (2011), Bronstein (2009), and Wenge et al. (2014)) and a universal
characterization cannot be provided since smart cities involve different types of features that
vary based on the specific context considered (Karvonen et al. (2018)). In general, the phrase
smart city refers to cities provided with technological infrastructure based on advanced data pro-
cessing that pursue several goals, such as a more efficient city governance, a better life quality for
citizens, increasing economic success for businesses, and a more sustainable environment (Yin
et al. (2015)).

In our paper, we focus on smart cities with intelligent transportation systems (see Xiong
et al. (2012) for a survey). In particular, all the smart cities provided with technologies for
real-time transportation data acquisition fit within the scope of our work. However, we point
out that the process leading to the acquisition of such technologies, which requires a multitude of
social, political, and economic factors involving public-private partnerships and local authorities,
is omitted from this paper. The importance of the role played by mobility and transportation
in smart cities is highlighted in many works (Yin et al. (2015)). For instance, in Tang et al.
(2019), four different groups of smart cities are identified based on a cluster analysis of cities
around the world, and one of them gathers cities adopting smart transportation systems. The
goal of such systems is to control traffic congestion by public transportation, car sharing, and
self-driving cars. In Arroub et al. (2016), the urban congestion is seen as a challenge arising
from the persistent need of citizens to use their private cars. A solution proposed to alleviate
such a problem requires smart control of the traffic in the existing road infrastructure to ensure
a sustainable transportation, which is exactly the goal of our paper.

A crucial tool for managing transportation in smart cities is the concept of urban artificial
intelligence (AI) (Cugurullo (2020)). Among the examples of urban AI, self-driving cars and city
brains represent two important categories. In particular, the author points out that the number
of cities where autonomous cars are allowed to drive is increasing (see also Acheampong and
Cugurullo (2019)), and these also include cars with the highest level of autonomy, when no human
input or supervision are required. A city brain is a digital platform applied to the management
of a city, including urban transportation, where the goal is to control traffic lights and flows
of vehicles by using advanced data collected throughout the city. In this paper, we assume
that our integrated model is used by a city brain for the urban transportation management of
autonomous vehicles. However, the development of the features of such a platform is left for
future work.

The presence of autonomous vehicles in a transportation network allows for the determina-
tion of the assignment of vehicles to users and their routing in conjunction with their speed,
thus increasing the complexity of the decision-making process, which is naturally formulated
as a hierarchy of three levels (assignment, routing, and speed). Transportation and mobility
solutions should be determined with low environmental impact but, at the same time, with high
efficiency for service providers and high service quality for users, leading to conflicting goals
which need to be optimized simultaneously. Moreover, decisions unilaterally made in one com-
ponent or part of the network can have a strong impact on the overall system. Consequently, the
optimal solutions of the single components considered separately are different from the solutions
obtained when such interaction is taken into account, thus requiring a proper integration of the
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network components. Finally, the current modeling techniques for assignment-routing problems
are based on assumptions that are not satisfied on urban road networks and, therefore, require
innovative solution methodologies. We aim at developing a future-oriented integrated assign-
ment, routing, and speed system for roadway mobility and transportation with environmental,
efficiency, and service goals. Such a system would allow bringing green accountability to users
of the transportation network by using the integrated model proposed in this paper to assess the
environmental impact of their transportation activities across a city. This paper represents an
instrumental building block towards this main system and where we make the following three
main contributions.

A trilevel multi-objective formulation architecture for vehicle routing prob-
lems with speed optimization

We propose an innovative formulation architecture to decompose every Vehicle Routing Prob-
lem (VRP) with speed optimization into three levels, each addressing one of the following vehicle-
related decisions: assignment to users, routing to accommodate all the requests, and speed along
each segment of the route∗. In particular, our paper extends the bilevel formulation developed
by Marinakis et al. (2007) to propose a trilevel multi-objective formulation for a VRP with speed
optimization (referred to as a VRP/speed problem). Such an architecture allows a comprehen-
sive understanding of the overall problem complexity, guides the development of subproblems,
relaxations, and solution methods, and provides new insights into VRP/speed problems. In this
paper, we use the trilevel multi-objective architecture to formulate a (bilevel) VRP/speed prob-
lem (where upper level is assignment-routing and lower level is speed), develop a corresponding
optimization method, and identify and report the trade-offs among the three considered goals.

Integration among all the different transportation problem components in a
smart city

The transportation services arising in an urban transportation network can be modeled through
a proper VRP variant. All the frameworks, models, and methods proposed in the literature
address the different transportation services arising in a city independently, without any attempt
to consider such services as parts of the same system. Several studies in the literature considered
modeling a general framework accounting for as many transportation services as possible. For
example, Vidal et al. (2014) proposed a unified model capable of separately describing different
transportation problem components (later referred to as components). However, the goal of Vidal
et al. (2014) was to propose a general-purpose optimization algorithm that can quickly provide
efficient solutions to different problems, each related to a transportation service. In contrast, our
paper aims to develop a new general model, where different transportation components (such as
personal trips, freight transportation, ride-sharing, car-pooling, dial-a-ride, and vehicle sharing)
can be integrated into a comprehensive optimization framework. In this regard, we propose
a VRP/speed formulation for a specific problem component, which is sufficient to fully address
the integration among all the components. In particular, in such a formulation, an innovative

∗Note that although controlling the speed in roadway transportation is considered an impractical task (see,
e.g., Vidal et al. (2020)), considering smart and autonomous vehicles allows one to take into account speed
decisions.
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constraint on the speed variables is used to model the impact of the traffic congestion caused
by routing decisions (made in other components) on the component under consideration.

Use of non-complete graphs for vehicle routing problems with speed optimiza-
tion

Using non-complete graphs is essential to address a VRP/speed problem on urban road networks.
However, to find the value of the speed variables for each edge in the network, we cannot directly
resort to commonly used approaches for non-complete graphs (which build a complete graph
by combining the edges in the shortest path between two customer nodes into a single edge).
Therefore, we propose an approach that computes an approximate solution to the assignment-
routing (upper level) problem on the road network by first solving such a problem on an auxiliary
complete graph. This mechanism allows one to use existing VRP methods for complete graphs,
without the need to formulate the assignment-routing problem on the non-complete graph,
where some of the classical VRP constraints are most likely infeasible. Then, considering the
approximate assignment-routing solution as a parameter, we develop a formulation for the speed
optimization (lower level) problem on a non-complete graph. It is important to remark that VRP
with green-oriented objectives and speed optimization is well-known in the literature (Bektas
and Laporte (2011)). However, considering such a problem on a road network represents, to the
best of our knowledge, a novel contribution, thus requiring a new solution methodology.

1.1 Organization of this paper

This paper is organized as follows. Section 2 provides a general overview of the main opti-
mization models adopted to solve transportation problems on complete graphs and road net-
works. The trilevel multi-objective formulation architecture is described in Section 3. Section 4
presents an innovative constraint to model the integration among all the different transporta-
tion components. In Section 5, the trilevel multi-objective architecture is used to formulate a
(bilevel) VRP/speed problem on a non-complete graph and an optimization method is developed
to solve such a problem. The computational experiments are described in Section 6. Finally, in
Section 7 we draw some concluding remarks and we outline several ideas for future work.

2 Literature review

2.1 Optimization models for transportation on complete graphs

Transportation services across a city have been widely studied within the field of Operations
Research (see, e.g., Kim et al. (2015) and Cattaruzza et al. (2017)). Optimization problems
related to such services are variants of the basic VRP, where a fleet of vehicles is used to deliver
goods to a set of customer nodes. Two important decisions are considered: assigning groups of
customers to each vehicle and defining the corresponding route.

The Pickup and Delivery Problem (PDP) is a VRP variant where people or objects need
to be transported from an origin to a destination (examples of PDPs are ride-sharing, carpool
problem, dial-a-ride problem, and vehicle-sharing). Classical VRPs and PDPs can be combined
in the so-called people and freight integrating transportation problems, which deal with the
integration of passenger and freight transportation. Their objective is to increase the occupancy
rate by letting the spare seats in the vehicles be used to transport goods (see, e.g., Beirigo et al.
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(2018), Chen et al. (2018), Li (2016), and Ghilas et al. (2013)). In this way, each vehicle can
carry passengers, goods, or both of them.

The pollution-routing problem, introduced by Bektas and Laporte (2011), extends the classi-
cal VRP by taking into account not only the traveled distance between origin and destination,
but also the fuel consumed and the emissions generated by the vehicles. The aim is to find a
proper route and speed for each vehicle, allowing customers’ requests to be met, by minimizing
the overall operational and environmental cost, while respecting time windows and capacity con-
straints (see, e.g., Kramer et al. (2014), Qian and Eglese (2014), Fukasawa et al. (2018), Nasri
et al. (2018), and Sung and Nielsen (2020)). More challenging problems arise when the stochas-
tic (Ritzinger et al. (2016), Oyola et al. (2016a), Oyola et al. (2016b), Eshtehadi et al. (2017)),
dynamic (Pillac et al. (2013), Berbeglia et al. (2010)), and multi-objective (Garćıa Nájera and
Bullinaria (2009), Ghoseiri and Ghannadpour (2010), Demir et al. (2014a), Kumar et al. (2016))
versions are taken into account. When route is considered fixed and the only variable is the ve-
hicle speed, the problem is called the speed optimization problem (see Fagerholt et al. (2010)).
The problem considered in our paper can be included in the class of pollution-routing problems
because the environmental-impact objective is considered together with speed optimization.

In the literature, few works address a VRP (on a complete graph) by adopting a multi-level
formulation, and all of them propose a bilevel problem (see, e.g., Gupta et al. (2015), Marinakis
et al. (2007), Marinakis and Marinaki (2008), and Ma and Xu (2014)). In particular, in Gupta
et al. (2015) and Marinakis et al. (2007), the authors use an assignment-routing formulation to
solve a classical VRP. Similarly, Marinakis and Marinaki (2008) propose two nested optimization
levels to deal with a VRP integrated with a facility location problem but, in contrast with
Gupta et al. (2015) and Marinakis et al. (2007), the objective functions involved in each level
are conflicting with each other. In our paper, we take advantage of the hierarchical structure
at stake by proposing an optimization method that alternates between the assignment-routing
problem and the speed optimization problem until a satisfactory solution is returned. Differently
from the bilevel approach of Gupta et al. (2015), which extends the work of Marinakis et al.
(2007) to the bi-objective case by considering efficiency and service quality in each level, we also
account for the environmental impact as a third objective.

2.2 Optimization models for transportation on road networks

When considering road networks and, consequently, non-complete graphs (i.e., graphs that do
not contain an edge for every pair of nodes), routing problems face additional challenges be-
cause key assumptions are not satisfied (see, e.g., Fleischmann (1985), Cornuéjols et al. (1985),
Ben Ticha et al. (2018), Ben Ticha et al. (2021b)). In particular, only a subset of nodes are
customers since most of the nodes are associated with cross-roads, which do not have a demand
to meet. Therefore, only some nodes need to be visited by the vehicles involved in the problem,
which is in contrast with the traditional VRP formulations considering each node in the graph
as a customer. Moreover, it may not be possible to find a route that visits nodes and edges
only once, thus leading to problems with an empty feasible set. Recently, exact approaches to
solve routing problems on a subset of nodes have been proposed in Raeesi and Zografos (2019)
and Boyacı et al. (2021) for VRP, Rodŕıguez-Pereira et al. (2019) for the traveling salesman
problem (TSP), and Ben Ticha et al. (2021a) for the shortest path problem. Such papers belong
to the stream of works focusing on the so-called Steiner TSP, which was addressed for the first
time by Fleischmann (1985) and Cornuéjols et al. (1985).
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Figure 1: Diagram illustrating the trilevel optimization problem for each transportation com-
ponent.

On road networks, arcs may be associated with several attributes (distance, cost, time, etc.),
and this implies that the shortest path does not coincide with the cheapest or quickest path.
Therefore, an additional approach consists of representing the related non-complete graph by
using a multigraph (see, e.g., Garaix et al. (2010) and Ben Ticha et al. (2019)), which allows
for multiple arcs between each pair of nodes to account for the best paths associated with each
attribute. The computational efficiency of multigraphs has been questioned in Letchford et al.
(2014) and reaffirmed in Ben Ticha et al. (2017). Instead of resorting to a multi-graph, Zografos
and Androutsopoulos (2008) and Huang et al. (2006) define their VRPs on a road-network,
and then propose heuristic procedures that aggregate the attributes associated with each arc.
They transform the original graph into a complete one by shortest paths, which is similar to the
approach adopted in our work.

Finally, it is important to mention the class of problems known as arc routing problems
(Corberán and Laporte (2015)), which are based on road networks and, unlike VRPs, the demand
is located along the edges of the network. As pointed out in Ben Ticha et al. (2018), the main
difference between arc routing problems and VRPs on road networks is that in the former the
demand is associated with a large subset of arcs, while in the latter the demand is only on a
small subset of nodes.

3 A new trilevel multi-objective formulation architecture for
vehicle routing problems with speed optimization

The management of transportation services in smart cities is naturally formulated as an in-
tegrated trilevel multi-objective VRP/speed problem. Figure 1 presents the main features of
the resulting trilevel formulation, which is particularized in Problem (3.2) below. The three
hierarchical levels involved in such a problem are repeated for all the P possible transportation
services. In particular, for each component i ∈ P, given a set of vehicles, the Upper-Level (UL)
problem determines the optimal assignment of users to such vehicles, represented by a vector ai

of binary variables. Solving the UL problem requires computing the optimal route associated
with each feasible assignment ai. In fact, given the number of available vehicles and the users
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assigned to them (this means that ai is a parameter), the Middle-Level (ML) problem finds an
optimal route for each vehicle, represented by a vector ri of binary variables. Solving the ML
problem requires, in turn, computing the speed (represented by a vector vi of real variables)
of the given vehicle on each segment of the given route. To this aim, for each possible route
(ri is now handled as a parameter as well), the vehicle speed vi is determined by solving the
corresponding Lower-Level (LL) problem.

Problem (3.2) depends on several data parameters, among which we highlight r−i and w.
In particular, since the routing decisions ri made in each component affect the overall traffic
congestion along the streets (and vi as a consequence), we introduce the following parameters

r−i := (rj | j ∈ {1, . . . ,P} and j ̸= i) (3.1)

to address the interplay among the different P components, i.e., how routing decisions made in
one problem affect the settings in others. The uncertain parameter w accounts for uncertain
factors like the weather or unforeseen events. Furthermore, w can account for the randomness in
traffic congestion caused by users that decide not to share their GPS data for privacy concerns
(therefore, they are not included in any component).

min
{ai,ri,vi | i∈{1,...,P}}

F i(ai, ri, vi; r−i, w)

s.t. f i(ai, ri, vi; r−i, w) ≤ 0

ri ∈ argmin
ri,vi

Gi(ai, ri, vi; r−i, w)

s.t. gi(ai, ri, vi; r−i, w) ≤ 0

vi ∈ argmin
vi

H i(ai, ri, vi; r−i, w)

s.t. hi(ai, ri, vi; r−i, w) ≤ 0.

(3.2)

Since the task of the integrated model is to accommodate competing goals to achieve societal
benefits, all of the three problems have a multi-objective nature. Accordingly, each objective
function is a vector-valued function having three scalar-valued functions as components, each
related to one of the three categories of objectives: (i) generating a low impact on the environ-
ment; (ii) increasing efficiency in providing the transportation services; (iii) meeting requests of
users by providing high quality. Functions f i, gi, and hi represent the constraints.

The advantage of considering first such a complex trilevel formulation is to comprehensively
understand the overall problem complexity and guide the development of subproblems or re-
laxations and of efficient solution methods. The three levels can be considered separately in a
hierarchical order, choosing the most suitable optimization method for each one. Alternatively,
the UL and ML problems can be combined into a single one, leading to the following bilevel
problem

min
{ai,ri,vi | i∈{1,...,P}}

U i(ai, ri, vi; r−i, w)

s.t. ui(ai, ri, vi; r−i, w) ≤ 0
(3.3)

vi ∈ argmin
vi

Li(ai, ri, vi; r−i, w)

s.t. ℓ i(ai, ri, vi; r−i, w) ≤ 0,
(3.4)
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where the (upper level) problem (3.3) is an assignment-routing problem and the (lower level)
problem (3.4) is a speed optimization problem.

4 Integration among different transportation components on a
road network

We now describe the approach proposed to model the integration among the different trans-
portation components. In the urban transportation literature, volume-delay functions (VDFs)
are commonly used to describe the fundamental relationships between average speed (km/hour)
or travel time (hour) on the one hand and traffic flow (vehicles/hour) or density (vehicles/km)
on the other hand (Kucharski and Drabicki (2017); Paszkowski et al. (2021)). One of the most
widely adopted VDFs is the BPR function proposed by the Bureau of Public Roads (1964). To
the best of our knowledge, the work by Mugayskikh et al. (2018) is the only one using the BPR
function in a VRP problem (without speed optimization). While Mugayskikh et al. (2018) has
used such a formula to compute the travel time as a function of the traffic flow, Kucharski and
Drabicki (2017) have derived an expression to compute the approximate average speed v on a
street as a function of the traffic density. In particular, such an expression is given by

v =
v0

1 + γ (k/kmax)η
, (4.1)

where v0 is the free-flow speed (when there is no traffic congestion), k is the traffic density
(number of vehicles per unit distance), kmax is the traffic density when the street is at full
capacity, and γ and η are positive parameters. To keep notation simple, we will use the same k
and kmax to denote numbers of vehicles instead of densities.

We now want to propose an approximate reformulation of (4.1) to relate the average speed on
each edge of a non-complete graph to the routing decisions made in other problem components.
The non-complete graph associated with a road network is denoted by G = (N,E), where N is
the set of nodes representing all the locations relevant for making decisions (which includes not
only customer nodes, but also road intersections and connections), while E is the set of directed
edges connecting pairs of nodes in N. For the sake of simplicity, we will omit the argument i
associated with the component under consideration, and we will use the argument j to denote
the parameters that represent the routing decisions made in the other problem components,
according to the notation used in (3.1). Let rq n1 n2 be a binary variable equal to 1 if vehicle
q ∈ V traverses (n1, n2) ∈ E. For each component j ∈ {1, . . . ,P}, with j ̸= i, we denote the
corresponding routing parameters as rjq n1 n2 . Let kn1 n2 be the number of vehicles traversing
edge (n1 n2) ∈ E that are not controlled by component i, i.e.,

kn1 n2 =
P∑

j=1, j ̸=i

∑
q∈Vj

rjq n1 n2
+ ωn1 n2 . (4.2)

In (4.2), the first term is given by the sum of the routing parameters associated with the other
problem components. The second term, represented by ωn1 n2 , is a non-negative integer random
parameter representing the number of vehicles traversing the edge (n1, n2) that are not included
in any component (e.g., vehicles assigned to users who do not want to share their GPS data
for privacy concerns). Moreover, we define kmax

n1 n2
as the maximum number of vehicles that can
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traverse edge (n1, n2) at the same time, which can be estimated dividing dn1 n2 by the average
length of the vehicles in the smart city streets.

Denoting the varying speed bounds on edge (n1, n2) as v
min
n1 n2

and vmax
n1 n2

, introduced for the
sake of clarity, the speed upper bound is affected by the traffic congestion according to the
relation

vmax
n1 n2

= max

{
vmaxlim
n1 n2

(
1 + γ

(
kn1 n2

kmax
n1 n2

)η)−1

, vminlim
n1 n2

}
, (4.3)

which is inspired by (4.1). The speed lower bound vmin
n1 n2

is set equal to vminlim
n1 n2

for all (n1, n2) ∈ E.
To ensure kn1 n2 ≤ kmax

n1 n2
, one should also include the following constraint∑
q∈V

rq n1 n2 + kn1 n2 ≤ kmax
n1 n2

, ∀(n1, n2) ∈ E. (4.4)

In (4.3), the maximum speed limit vmaxlim
n1 n2

plays the same role as the free-flow speed in (4.1).
In particular, such a speed limit is decreased based on the ratio between kn1 n2 and kmax

n1 n2
.

Therefore, the more vehicles traverse an edge, the slower the speed on that edge is. The max
function is used to ensure that the speed upper bound vmax

n1 n2
is greater than the minimum

speed limit vminlim
n1 n2

. Since in practice vehicles may traverse a given edge at different times, the
maximum speed resulting from formula (4.3) gives a pessimistic upper bound on the actual
speed of vehicles. To make such an upper bound less pessimistic, one could adopt a periodic
or sensitivity re-optimization approach (see, e.g., Pillac et al. (2013) and Agatz et al. (2012))
to ensure that real-time values of the routing parameters rjqn1n2 in (4.2) are used (which is
reasonable in a futuristic smart city context). One could also consider a smaller value of γ in
formula (4.3) (by estimating it from empirical data).

Note that since each vehicle can be controlled by a transportation component and (4.2)–(4.4)
allow for the integration of all the transportation components, our approach is able to potentially
manage all the vehicles in a city (we use the word potentially because the vehicles represented
by ωn1 n2 cannot be controlled as they are not included in any component).

5 Formulating and solving an integrated VRP/speed model for
freight transportation on a road network

The transportation services (also called problem components) arising in a smart city can be
categorized into VRPs, PDPs, or a combination of the two (People and Freight Integrating
Transportation Problems (PFITP)). Although PDPs can be considered variants of the classi-
cal VRP, we denote as VRPs all the problem components where a set of customers wait at fixed
locations for the delivery of orders, while with PDPs we refer to the components characterized
by people or objects that need to be picked up at their origins and dropped off at their destina-
tions. In our paper, we provide an integrated formulation for a VRP/speed problem concerning
a specific VRP-type component, i.e., freight transportation, which is sufficient to illustrate all
our contributions.

After introducing the notation used to formulate an integrated (bilevel) VRP/speed model
for freight transportation on a road network (Subsection 5.1), we describe the environmental,
efficiency, and service objective functions (Subsection 5.2). Then, we present the assignment-
routing problem (Subsection 5.3) and the speed optimization problem (Subsection 5.4) that are

9



Figure 2: Diagram of the approach proposed to solve a VRP/speed problem on a road network
(non-complete graph).

obtained by decomposing a VRP/speed problem on a non-complete graph according to upper
and lower level problems in (3.3)–(3.4). Finally, to solve the VRP/speed problem considered, we
propose an optimization algorithm that alternates between the assignment-routing problem on
an auxiliary complete graph and the speed optimization problem on the original non-complete
graph (Subsection 5.5). The resulting approach is illustrated in Figure 2.

5.1 Notation for an integrated VRP/speed model for freight transportation

Tables 1–2 introduce the sets, parameters, functions, and optimization variables required to
formulate an integrated VRP/speed model for freight transportation. Throughout this section,
the following notation is used to denote the vectors of assignment, routing, and speed variables:

a := (aq n | q ∈ V, n ∈ Nsub),

r :=
(
(rq n1 n2 | q ∈ V, (n1, n2) ∈ E), (rrepq n1 n2

| q ∈ V, (n1, n2) ∈ E)
)
,

v :=
(
(vq n1 n2 | q ∈ V, (n1, n2) ∈ E), (arriq n | q ∈ V, n ∈ N)

)
,

(5.1)

where (u,v) is adopted to denote the concatenation of two vectors u and v. We will use the
superscript C when the vectors defined in (5.1) refer to a problem defined on a complete graph.

We point out that each customer node in the set Nsub ⊆ N is associated with a demand DEMn

for a product (for simplicity, we assume single commodity), with n ∈ Nsub. Only the nodes
in Nsub need to be visited by the vehicles involved in the problem, as opposed to the traditional
VRP formulations considering each node in the graph as a customer node (see Subsection 2.2).

5.2 Environmental, efficiency, and service objective functions

Objective function (5.2) below represents the environmental impact, which is given by the to-
tal generated emissions (TGE). Objective function (5.3) below represents the efficiency, which
is given by the total setup cost (TSC), total driving time (TDT), and maximum driving dis-
tance (MDD). To compute TSC, we have included a copy of the depot in the set N (denoted
as cop) and the edge (dep, cop) in the set E, and we have replaced all the edges (dep, n) in E
with (cop, n) to ensure that a vehicle visits the copy after leaving the depot and before visiting
other nodes. This ensures that the setup cost is only paid once for each vehicle regardless of the
number of times the copy of the depot is visited. To compute MDD, we consider the total num-
ber of times each edge (n1, n2) in E is traversed, which is given by the sum of rq n1 n2 and rrepq n1 n2 .
Objective function (5.4) below represents the service quality, which is given by the late arrival
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N Set of nodes representing all the locations relevant for making decisions.
Nsub Subset of N composed of customer nodes (Nsub ⊆ N).
E Set of directed edges connecting pairs of nodes in N.
Esub Set of directed edges connecting each pair of customer nodes in Nsub, i.e.,

{(n1, n2) ∈ Nsub ×Nsub | n1 ̸= n2}.
V Set of available vehicles, i.e., {1, . . . ,VEH}, with VEH maximum number of vehicles.
Nq(r) Set of nodes visited by vehicle q ∈ V based on the routing vector r, i.e.,

{n ∈ N | rq n n̄ = 1 for some (n, n̄) ∈ E}.
Nq

sub(a) Set of customer nodes visited by vehicle q ∈ V based on the assignment vector a, i.e.,
{n ∈ Nsub | aq n = 1}.

Eq(r) Set of edges traversed by vehicle q ∈ V based on the routing vector r, i.e.,
{(n1, n2) ∈ E | rq n1 n2 = 1}.

Eq
ord(r) Ordered set of the edges in E (possibly repeated) traversed by vehicle q ∈ V

based on the routing vector r.

Eq
sub(r

C) Set of edges in Esub traversed by vehicle q ∈ V based on a routing vector rC

defined on a complete graph, i.e., {(n1, n2) ∈ Esub | rCq n1 n2
= 1}.

SPq(n̄1, n̄2) Sequence of edges in E corresponding to the weighted shortest path on the
non-complete graph for vehicle q ∈ V between n̄1 ∈ Nsub and n̄2 ∈ Nsub, n̄1 ̸= n̄2.

P Number of transportation services (problem components).
dn1 n2

Length of the edge (n1, n2) ∈ E.

vmaxlim
n1 n2

Maximum speed limit on the edge (n1, n2) ∈ E.

vminlim
n1 n2

Minimum speed limit on the edge (n1, n2) ∈ E.
dep Node in N corresponding to the depot.
cop Node in N corresponding to a copy of the depot (it can be visited more than once).
fq(v) Speed-dependent function computing the emissions (per unit distance)

generated by vehicle q ∈ V when traveling at speed v.
rjq n1 n2

Binary parameter equal to 1 if vehicle q from component j
traverses edge (n1, n2) ∈ E, with j ∈ {1, . . . ,P} and j ̸= i.

ωn1 n2
Positive integer random parameter representing the number of vehicles traversing
the edge (n1, n2) ∈ E that are not included in any component.

kn1 n2 Number of vehicles traversing the edge (n1, n2) ∈ E not controlled by component i.
kmax
n1 n2

Maximum number of vehicles that can traverse edge (n1, n2) ∈ E at the same time.

vmax
n1 n2

Speed upper bound on the edge (n1, n2) ∈ E.
vmin
n1 n2

Speed lower bound on the edge (n1, n2) ∈ E.

d
SPq

n̄1 n̄2
Length of the weighted shortest path SPq(n̄1, n̄2):

∑
(n1,n2)∈SPq(n̄1,n̄2)

dn1n2 .

eqn1 n2
Cost of the edge (n1, n2) ∈ E for vehicle q ∈ V.

e
SPq

n̄1 n̄2
Cost of the weighted shortest path SPq(n̄1, n̄2):

∑
(n1,n2)∈SPq(n̄1,n̄2)

en1n2
.

Cq Capacity of vehicle q ∈ V.
SCq Setup cost of vehicle q ∈ V.
DEMn Demand of customer n ∈ Nsub.
[an, bn] Time window for delivery at customer n ∈ Nsub.
pn Penalty cost incurred when customer n ∈ Nsub is visited out of the time window.

cq1(p, r) Function that returns the p-th element of Eq
ord(r), with p ∈ {1, . . . , |Eq

ord(r)|}.
cq2(n, p, r) Function that reads Eq

ord(r) to count the number of times node n ∈ N
has been visited by vehicle q ∈ V until the edge associated with the p-th
element is traversed.

cq3(n1, n2, n̄1, n̄2) Function that reads the weighted shortest path SPq(n̄1, n̄2) to count the number
of times edge (n1, n2) ∈ E is visited by vehicle q ∈ V in SPq(n̄1, n̄2).

Table 1: List of sets, parameters, and functions used in the integrated VRP/speed model for
freight transportation.
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aq n Binary variable equal to 1 if vehicle q ∈ V is assigned to customer n ∈ Nsub.
rq n1 n2

Binary variable equal to 1 if vehicle q ∈ V traverses (n1, n2) ∈ E.
rrepq n1 n2

Integer variable representing the number of times that vehicle q ∈ V
traverses (n1, n2) ∈ E after the first time.

vq n1 n2
Speed of vehicle q ∈ V on the edge (n1, n2) ∈ E.

tq n1 n2 Time spent by vehicle q ∈ V to traverse (n1, n2) ∈ E.
emisq n1 n2 Emissions generated by vehicle q ∈ V to traverse (n1, n2) ∈ E.
arriq n Non-negative real variable representing the arrival time of vehicle q ∈ V at

node n ∈ N when it is visited for the i-th time, with i = cq2(n, p, r), ∀q ∈ V,
n ∈ Nq(r), and p ∈ {1, . . . , |Eq

ord(r)|}.

Table 2: List of optimization variables used in the integrated VRP/speed model for freight
transportation.

cost (LAC) and maximum arrival time (MAT), where the non-negative real variable arr1q n rep-
resents the arrival time of vehicle q ∈ V at node n ∈ N when it is visited for the first time. We
point out that in the computational experiments the terms in objective functions (5.3)–(5.4) are
normalized to avoid numerical issues due to their different units of measurement.

Environmental impact: TGE (5.2)

Efficiency: TSC+TDT+MDD (5.3)

Service quality: LAC+MAT (5.4)

TGE =
∑
q∈V

∑
(n1,n2)∈E

emisq n1 n2 TSC =
∑
q∈V

SCq rq dep cop

TDT =
∑
q∈V

∑
(n1,n2)∈E

tq n1 n2 MDD = max
q∈V

 ∑
(n1,n2)∈E

(rq n1 n2 + rrepq n1 n2
) dn1 n2


LAC =

∑
q∈V

∑
n∈Nsub

max{arr1q n − bn, 0} pn MAT = max
n∈Nsub
q∈V

{arr1q n}

Note that the max functions used in the objective functions (5.3)–(5.4) can be linearized
using additional non-negative variables (i.e., z, u, w), re-writing MDD, LAC, and MAT as

MDDℓin = w, LACℓin =
∑
q∈V

∑
n∈Nsub

zq n pn, MATℓin = u, (5.5)

and considering the following constraints.

w ≥
∑

(n1,n2)∈E

(rq n1 n2 + rrepq n1 n2
) dq n1 n2 , ∀q ∈ V (5.6)

zq n ≥ arr1q n − bn, ∀q ∈ V, n ∈ Nsub (5.7)

u ≥ arr1q n, ∀q ∈ V, n ∈ Nsub (5.8)

For the rest of the paper, in similar situations where max functions appear, one can linearize
them as it was done in (5.5)–(5.8).

12



5.3 The assignment-routing problem

When considering road networks, which are represented by non-complete graphs, the stan-
dard VRP/speed formulations based on complete graphs can easily lead to infeasible problems
since feasible assignment-routing-speed solutions may not exist. In particular, each customer
node may be visited by more than one vehicle and/or more than once by the same vehicle.
Moreover, a vehicle may need to both visit some nodes (including the depot) and traverse some
edges more than once.

In the assignment-routing problem, we minimize objective functions (5.2)–(5.4) to determine
an assignment-routing solution (a, r) on a non-complete graph G(N,E). The resulting vector of
routing variables r is associated with a sequence of edges in E that starts and ends at the depot
and possibly visits nodes and edges more than once. According to the notation introduced in
Table 1, let Eq

ord(r) ⊆ E be an ordered set of the edges (possibly repeated) traversed by vehicle q,
where edges are sorted based on the order in which they are traversed along the route given
by r. We can now introduce two functions based on Eq

ord(r). Function cq1(p, r) returns the p-th
element of Eq

ord(r), with p ∈ {1, . . . , |Eq
ord(r)|}, while function cq2(n, p, r) reads Eq

ord(r) to count
the number of times node n has been visited by vehicle q until the edge associated with the p-th
element is traversed. Moreover, we define the optimization variable arriq n as the arrival time of
vehicle q at node n when it is visited for the i-th time, i.e.,

arriq n ≥ 0, with i = cq2(n, p, r), ∀q ∈ V, n ∈ Nq(r), p ∈ {1, . . . , |Eq
ord(r)|}. (5.9)

By considering the speed variables as parameters, we can write the assignment-routing problem
on the non-complete graph G(N,E) as a particular case of problem (3.3) for our choice of freight
transportation component (we use “(NC)” to denote that we are here considering a non-complete
graph):

Assignment-Routing (NC): U1 = TGE, U2 = TSC+TDT+MDD, and U3 = LAC+MAT.

Constraint function u is given by (5.11)–(5.21) below,

where each vq n1 n2
is a positive parameter.

(5.10)

Constraint (5.11) below ensures that each customer node is assigned to at least one vehicle
(not necessarily just one). Constraint (5.12) below ensures that the demand assigned to a
vehicle does not exceed the vehicle capacity. Constraints (5.13) and (5.14) below ensure that
each customer node is visited at least once by the assigned vehicle. Constraint (5.15) below
ensures that all the vehicles in V are used and their routes start at the depot. Constraint (5.16)
below requires flow conservation at each node. Constraint (5.17) below is analogous to (4.4) and
accounts for integration with other components. Constraints (5.18) and (5.19) below compute
the travel time and generated emissions for each edge, considering the total number of times
the edge is traversed. In particular, recalling that vq n1 n2 is a positive parameter, dn1n2/vq n1 n2

represents the time required to travel along the edge (n1, n2), while fq(vq n1 n2) dn1 n2 computes
the emissions generated along the same edge. Constraint (5.20) below extends the classical
precedence constraint to the case with nodes visited more than once.∑

q∈V
aq n ≥ 1, ∀n ∈ Nsub (5.11)

∑
n∈Nsub

aq nDEMn ≤ Cq, ∀q ∈ V (5.12)

13



∑
(n1,n2)∈E

(rq n1 n2 + rrepq n1 n2
) ≥ aq n1 , ∀q ∈ V, n1 ∈ Nsub (5.13)

∑
(n1,n2)∈E

(rq n1 n2 + rrepq n1 n2
) ≥ aq n2 , ∀q ∈ V, n2 ∈ Nsub (5.14)

rq dep cop = 1, ∀q ∈ V (5.15)∑
(n1,n2)∈Esub

(rq n1 n2 + rrepq n1 n2
)−

∑
(n2,n1)∈Esub

(rq n2 n1 + rrepq n2 n1
) = 0, ∀q ∈ V, n2 ∈ Nsub (5.16)

∑
q∈V

rq n1 n2 + kn1 n2 ≤ kmax
n1 n2

, ∀(n1, n2) ∈ E (5.17)

tq n1 n2 = (rq n1 n2 + rrepq n1 n2
) dn1 n2/vq n1 n2 , ∀q ∈ V, (n1, n2) ∈ E (5.18)

emisq n1 n2 = (rq n1 n2 + rrepq n1 n2
) dn1 n2 fq(vq n1 n2), ∀q ∈ V, (n1, n2) ∈ E (5.19)

arriq n1
− arrjq n2

+ tq n1 n2 ≤ M(1− rq n1 n2),

with i = cq2(n1, p, r), j = cq2(n2, p, r), (n1, n2) = cq1(p, r)

∀q ∈ V and p ∈ {1, . . . , |Eq
ord(r)|} (5.20)

aq n̄ ∈ {0, 1}, rq n1 n2 ∈ {0, 1}, rrepq n1 n2
∈ Z+, tq n1 n2 ∈ R, emisq n1 n2 ∈ R,∀q ∈ V,

n̄ ∈ Nsub, (n1, n2) ∈ E, and arriq n1
, arrjq n2

≥ 0 in (5.20) ∀q ∈ V, p ∈ {1, . . . , |Eq
ord(r)|}

(5.21)

In our approach, to obtain an approximate assignment-routing solution for problem (5.10), we
first solve the assignment-routing problem on an auxiliary complete
graph G(Nsub,Esub) with set of nodes given by Nsub and set of edges given by Esub = {(n1, n2) ∈
Nsub × Nsub | n1 ̸= n2}. The procedure used to build such an auxiliary complete graph is
described in Algorithm 1. At Step 1 of Algorithm 1, for all q ∈ V and (n1, n2) ∈ E, the
emissions generated along an edge (emisq n1 n2) and the time to traverse an edge (tq n1 n2) are
computed by using emisq n1 n2 = dn1 n2fq(vq n1 n2) and tq n1 n2 = dn1 n2/vq n1 n2 . Moreover, each
edge (n1, n2) ∈ E of the original non-complete graph is assigned a cost eqn1n2 given by a convex
combination of the emissions emisq n1 n2 , the time tq n1 n2 , and the edge length dn1n2 (in the
computational experiments, these three terms are normalized to avoid numerical issues due to
their different units of measurement). Details on the selection of the weights σj used in Step 1
are provided in Section 6. Let us define a weighted shortest path on the non-complete graph
between two customer nodes as a sequence of edges in E denoted by SPq(n̄1, n̄2), with q ∈ V

and {n̄1, n̄2} ⊆ Nsub, such that no other path with a total cost lower than e
SPq

n̄1 n̄2
exists (see

Table 1). The non-complete graph is transformed into a complete graph by considering the
weighted shortest paths between each pair of customer nodes as the edges of the complete graph
(such weighted shortest paths can be computed efficiently at Step 2 by using a shortest path
algorithm, e.g., the Dijkstra algorithm proposed in Dijkstra (1959)).

Since we are dealing with a multi-objective problem, computing the costs of the edges in the
original non-complete graph by considering multiple criteria (i.e., distance, time, and emissions)
ensures that the weighted shortest paths between each pair of customer nodes do not favor one
objective function over the others. The procedure of combining the costs of the edges for each
criterion into single costs is known as the weighted-sum method, which is one of the solution
techniques that can be used to solve the multi-criteria shortest path problem (see, e.g., Sonnier
(2006); Mote et al. (1991); Henig (1986)). We note that this procedure eliminates the need for
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Figure 3: Example showing the approach used to obtain an auxiliary complete graph from a
non-complete graph when considering one vehicle. The non-complete graph G(N,E) reported
in (a) is transformed into the complete graph G(Nsub,Esub) in (b) solely based on the customer
nodes.

multigraphs, which are one of the modeling techniques used to deal with the multi-criteria nature
of shortest path problems or vehicle routing problems on road networks (see Subsection 2.2).
We conclude the description of Algorithm 1 by pointing out that in the auxiliary complete
graph G(Nsub,Esub) returned as output, the length of an edge (n̄1, n̄2) ∈ Nsub is d

SPq

n̄1 n̄2
, which

changes based on the vehicle considered.

Algorithm 1

Input: vq n1 n2 and dn1n2 , for all q ∈ V and (n1, n2) ∈ E, and non-negative weights σj ,
with j ∈ {1, 2, 3}, such that

∑3
j=1 σj = 1.

Step 1. For all q ∈ V and (n1, n2) ∈ E, compute emisq n1 n2 = dn1 n2fq(vq n1 n2),
tq n1 n2 = dn1 n2/vq n1 n2 , and the cost eqn1n2 = σ1 emisq n1 n2 + σ2 tq n1 n2 + σ3 dn1n2 .

Step 2. For all q ∈ V, n̄1 ∈ Nsub, and n̄2 ∈ Nsub, with n̄1 ̸= n̄2, obtain SPq(n̄1, n̄2) by
applying a shortest path algorithm to find the path in G(N,E) with minimum cost.

Return: G(Nsub,Esub), where each (n̄1, n̄2) ∈ Esub is associated with a set of shortest
paths SPq(n̄1, n̄2), one for each vehicle q ∈ V.

The approach proposed to build the auxiliary complete graph is illustrated in Figure 3,
where we assume that the costs of the edges for each criterion in the original non-complete
graph in (a) have already been combined into single costs. The non-complete graph in (a),
denoted as G(N,E), represents a small road network with single vehicle where the depot is
labeled as 0, the customer nodes are denoted as 1, 3, and 8, and all the edges are assumed
to have a unitary cost except (2, 3), for which eq2 3 = 4. To transform such a graph into the
complete graph G(Nsub,Esub) in (b), we need to compute the weighted shortest paths between
the depot and each customer node and between each pair of customer nodes, which are reported
in Table 3 along with their costs. Although this approach can be computationally expensive when
the number of nodes in the original graph is large as compared to the number of edges, as is the
case for urban road networks, we pursue this strategy since in our case only a relatively small
subset of nodes are customers and, therefore, the resulting complete graph can be computed
relatively quickly.

After building the auxiliary complete graph G(Nsub,Esub), standard VRP techniques can be
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n̄1, n̄2 SPq(n̄1, n̄2) e
SPq

n̄1 n̄2

0, 8 {(0, 6), (6, 7), (7, 8)} 3
8, 0 {(8, 6), (6, 0)} 2
0, 3 {(0, 5), (5, 3)} 2
3, 0 {(3, 5), (5, 0)} 2
0, 1 {(0, 5), (5, 2), (2, 1)} 3
1, 0 {(1, 2), (2, 3), (3, 5), (5, 0)} 7
8, 3 {(8, 6), (6, 0), (0, 5), (5, 3)} 4
3, 8 {(3, 5), (5, 0), (0, 6), (6, 7), (7, 8)} 5
3, 1 {(3, 5), (5, 2), (2, 1)} 3
1, 3 {(1, 2), (2, 3)} 5
1, 8 {(1, 2), (2, 3), (3, 5), (5, 0), (0, 6), (6, 7), (7, 8)} 10
8, 1 {(8, 6), (6, 0), (0, 5), (5, 2), (2, 1)} 5

Table 3: Weighted shortest path and corresponding cost between the depot and each customer
node and between each pair of customer nodes in the non-complete graph G(N,E) considered
in Figure 3.

aCq n Binary variable equal to 1 if vehicle q ∈ V is assigned to customer n ∈ Nsub.

rCq n1 n2
Binary variable equal to 1 if vehicle q ∈ V traverses edge (n1, n2) ∈ Esub.

arrCq n Arrival time of vehicle q ∈ V at node n ∈ Nsub.

tCq n1 n2
Time spent by vehicle q ∈ V to traverse (n1, n2) ∈ Esub.

emisCq n1 n2
Emissions generated by vehicle q ∈ V to traverse (n1, n2) ∈ Esub.

Table 4: List of the optimization variables used in the formulation of the assignment-routing
problem on the auxiliary complete graph.

used to obtain an optimal assignment-routing on such a graph by solving problem (5.22) below
(“(C)” denotes that we are considering a complete graph), where the optimization variables are
the ones listed in Table 4. In such a problem, we assume that each vehicle can visit the nodes
(including the depot) and edges at most once.

Assignment-Routing (C): UC
1 = TGE, UC

2 = TSC + TDT+MDD, and UC
3 = LAC+MAT.

Constraint function uC is given by (5.23)–(5.32) below.

where each vq n̂1 n̂2
is a positive parameter.

(5.22)

TGE =
∑
q∈V

∑
(n1,n2)∈Esub

emisCq n1 n2
TSC =

∑
q∈V

SCq

∑
(dep,n)∈Esub

rCq dep n

TDT =
∑
q∈V

∑
(n1,n2)∈Esub

tCq n1 n2
MDD = max

q∈V

 ∑
(n1,n2)∈Esub

rCq n1 n2
d
SPq
n1 n2


LAC =

∑
q∈V

∑
n∈Nsub

max{arrCq n − bn, 0} pn MAT = max
n∈Nsub
q∈V

{arrCq n}
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Constraints (5.23)-(5.28) below are standard in the VRP literature and represent the user
assignment (each customer is served by one vehicle), capacity constraint (demand cannot exceed
vehicle capacity), route assignment (each customer is included in a route), starting flow (each
vehicle departs from the depot), and flow conservation (incoming flow is equal to outgoing flow).
Constraints (5.29) and (5.30) below compute the travel time and the generated emissions on each
edge of the weighted shortest paths between each pair of customer nodes (we recall that vq n̂1 n̂2

is a positive parameter). In (5.31) below, M is a sufficiently large positive constant, whose value
can be set equal to the sum of the largest values of arrCq n1

and tCq n1 n2
.∑

q∈V
aCq n = 1, ∀n ∈ Nsub (5.23)

∑
n∈Nsub

aCq nDEMn ≤ Cq, ∀q ∈ V (5.24)

∑
(n1,n2)∈Esub

rCq n1 n2
= aCq n1

, ∀q ∈ V, n1 ∈ Nsub (5.25)

∑
(n1,n2)∈Esub

rCq n1 n2
= aCq n2

, ∀q ∈ V, n2 ∈ Nsub (5.26)

∑
(dep,n)∈Esub

rCq dep n = 1, ∀q ∈ V (5.27)

∑
(n1,n2)∈Esub

rCq n1 n2
−

∑
(n2,n1)∈Esub

rCq n2 n1
= 0, ∀q ∈ V, n2 ∈ Nsub (5.28)

tCq n1 n2
= rCq n1 n2

∑
(n̂1,n̂2)∈SPq(n1,n2)

dn̂1 n̂2

vq n̂1 n̂2

, ∀q ∈ V, (n1, n2) ∈ Esub (5.29)

emisCq n1 n2
= rCq n1 n2

∑
(n̂1,n̂2)∈SPq(n1,n2)

dn̂1 n̂2 fq(vq n̂1 n̂2), ∀q ∈ V, (n1, n2) ∈ Esub (5.30)

arrCq n1
− arrCq n2

+ tCq n1 n2
≤ M(1− rCq n1 n2

), ∀q ∈ V, (n1, n2) ∈ Esub, n2 ̸= dep (5.31)

aCq n ∈ {0, 1}, rCq n1 n2
∈ {0, 1}, arrCq n ≥ 0, tCq n1 n2

∈ R, emisCq n1 n2
∈ R,

∀q ∈ V, n ∈ Nsub, (n1, n2) ∈ Esub (5.32)

Note that the assignment-routing problem (5.22) is solely composed of binary variables (the
variables tCq n1 n2

and emisCq n1 n2
are only introduced for the sake of clarity in the presentation of

the formulation).
After solving the auxiliary problem (5.22), an approximate solution (ã, r̃) for the original

assignment-routing problem (5.10) can be derived from the weighted shortest paths associated
with each edge in the optimal routing on the auxiliary complete graph. In the example illustrated
in Figure 3, assume that an optimal route for the VRP defined on the auxiliary complete
graph G(Nsub,Esub) is 0-8-3-1-0. Then, a route for the original non-complete graph G(N,E) can
be obtained by considering the weighted shortest paths between 0-8, 8-3, 3-1, and 1-0, which
leads to 0-6-7-8-6-0-5-3-5-2-1-2-3-5-0.

According to Table 1, given (n̄1, n̄2) ∈ Esub, the function cq3(n1, n2, n̄1, n̄2) reads SPq(n̄1, n̄2)
to count the number of times edge (n1, n2) ∈ E is visited by vehicle q ∈ V. Moreover, given an
optimal solution (āC, r̄C) to the assignment-routing problem (5.22), let Eq

sub(r̄
C) ⊆ Esub be the

set of edges on the auxiliary complete graph traversed by vehicle q, with q ∈ V, based on the

17



routing vector r̄C, i.e.,

Eq
sub(r̄

C) = {(n1, n2) ∈ Esub | r̄Cq n1 n2
= 1}.

For all q ∈ V, n ∈ Nsub, and (n1, n2) ∈ E, we can set

ãq n = āCq n,

r̃q n1 n2 =

{
1 if (n1, n2) ∈ SPq(n̄1, n̄2) for some (n̄1, n̄2) ∈ Eq

sub(r̄
C),

0 otherwise,

r̃repq n1 n2
=

 ∑
(n̄1,n̄2)∈Eq

sub(r̄
C)

cq3(n1, n2, n̄1, n̄2)

− 1.

(5.33)

Note that constraints (5.23)–(5.28) in the auxiliary assignment-routing problem (5.22) ensure
that constraints (5.11)–(5.16) in the original assignment-routing problem (5.10) are satisfied
at the point (ã, r̃) resulting from (5.33). In the formulation of problem (5.22), we do not
include a constraint enforcing (5.17) because it would not allow solving problem (5.22) by using
existing VRP methods, which are not designed to handle such a constraint. Therefore, to ensure
that constraint (5.17) evaluated at (ã, r̃) is satisfied for all q ∈ V and (n1, n2) ∈ E, we use a
penalization approach. In particular, when such a constraint is violated for some vehicles q̂ ∈ V
and edges (n̂1, n̂2) ∈ E, we solve the auxiliary assignment-routing (5.22) again by introducing
penalty terms in the objective function to ensure that the edges (n̂1, n̂2) will not be included in
the vehicle’s route, i.e.,

Φ(rCq̂ n̄1 n̄2
) =

+∞ if rCq̂ n̄1 n̄2
= 1,

0 if rCq̂ n̄1 n̄2
= 0,

(5.34)

where (n̄1, n̄2) ∈ Esub is such that (n̂1, n̂2) ∈ SPq(n̄1, n̄2).

5.4 The speed optimization problem

When solving the speed optimization problem, the assignment and routing variables on the non-
complete graph, represented by the vectors a and r, respectively, are considered parameters.
In particular, according to the notation introduced in Table 1, let Nq

sub(a) ⊆ N be the set of
customer nodes visited by vehicle q, with q ∈ V, based on the assignment vector a, i.e.,

Nq
sub(a) = {n ∈ Nsub | aq n = 1}.

Moreover, let Eq(r) ⊆ E be the set of edges traversed by vehicle q, with q ∈ V, based on the
routing vector r, i.e.,

Eq(r) = {(n1, n2) ∈ E | rq n1 n2 = 1}.

We can now write the speed optimization problem on the non-complete graph G(N,E) as a
particular case of problem (3.4) for our choice of freight transportation component

Speed (NC): L1 = TGE, L2 = TDT, and L3 = LAC+MAT.

ℓ is given by (5.36)–(5.41) below,

where rq n1 n2 and rrepq n1 n2
are binary parameters.

(5.35)
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The terms in the objective functions of problem (5.35) are defined in (5.2)–(5.4) (note that E
can be replaced by Eq(r) and Nsub can be replaced by Nq

sub(a)). Constraints (5.36)–(5.38) below
are analogous to (5.18)–(5.20). Constraints (5.39) and (5.40) below restrict the value of the
vehicle speed on each edge, where vmax

n1 n2
is given by (4.3), while vmin

n1 n2
is set equal to vminlim

n1 n2
for

all (n1, n2) ∈ Eq(r).

tq n1 n2 = (rq n1 n2 + rrepq n1 n2
) dn1 n2/vq n1 n2 , ∀q ∈ V, (n1, n2) ∈ Eq(r) (5.36)

emisq n1 n2 = (rq n1 n2 + rrepq n1 n2
) dn1 n2 fq(vq n1 n2), ∀q ∈ V, (n1, n2) ∈ Eq(r) (5.37)

arriq n1
− arrjq n2

+ tq n1 n2 ≤ M(1− rq n1 n2),

with i = cq2(n1, p, r), j = cq2(n2, p, r), (n1, n2) = cq1(p, r)

∀q ∈ V and p ∈ {1, . . . , |Eq
ord(r)|} (5.38)

vq n1 n2 ≤ vmax
n1 n2

, ∀q ∈ V, (n1, n2) ∈ Eq(r) (5.39)

vq n1 n2 ≥ vmin
n1 n2

, ∀q ∈ V, (n1, n2) ∈ Eq(r) (5.40)

vq n1 n2 ≥ 0, tq n1 n2 ∈ R, emisq n1 n2 ∈ R,∀q ∈ V, (n1, n2) ∈ Eq(r)

and arriq n1
, arriq n2

≥ 0 in (5.38) ∀q ∈ V, p ∈ {1, . . . , |Eq
ord(r)|} (5.41)

Note that all the optimization variables in the speed-optimization problem (5.35) are real-
valued. Given that constraints (5.36)–(5.37) are nonlinear, such a speed optimization problem
is a nonlinear constrained optimization problem.

5.5 An algorithm for assignment-routing-speed optimization

To solve the VRP/speed problem on road networks, we propose an optimization method that
alternates between the auxiliary assignment-routing problem (5.22) and the speed optimization
one (5.35). To handle the multiple objective functions in such problems, we use the weighted-
sum method (Ehrgott (2005), Miettinen (2012)). Therefore, given non-negative weights αi,
with i ∈ {1, 2, 3}, such objective functions are weighted into single-objective scalar functions,
i.e., U(a, r, v) =

∑3
i=1 αi Ui(a, r, v) and L(a, r, v) =

∑3
i=1 αi Li(a, r, v).

The schema of the proposed optimization method is reported in Algorithm 2, where we use
the notation introduced in (5.1). To keep track of the values of the variables across the iterations
in the two while loops, we use two subscripts, i.e., ak, j , rk, j , vk, j , where k refers to the outer
loop and j to the inner loop. Moreover, the number of vehicles available at iteration k is denoted
by VEHk.

Given an initial number of available vehicles VEH0 and an initial speed vector v0,0, the al-
gorithm performs an exhaustive enumeration over k until either the maximum number of outer
iterations kmax or the maximum number of customer nodes |Nsub| is reached. For each number
of vehicles, the algorithm runs an outer cycle until no change occurs in the assignment, routing,
and speed variables. At each outer iteration, an assignment-routing on the non-complete graph
is obtained transforming the original network into an auxiliary complete graph and determining
the optimal assignment-routing on such a graph by using standard VRP methods. The resulting
assignment-routing solution will be passed to the speed optimization problem as a parameter
in order to obtain a speed value for each edge traversed by the vehicle on the road network.
More specifically, given the current number of available vehicles VEHk and the current speed
vector vk,j , Step 2.1 builds an auxiliary complete graph based on the procedure described in
Algorithm 1. Step 2.2 determines āCk,j and r̄Ck,j by solving the assignment-routing problem on
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the auxiliary complete graph (5.22). Step 2.3 determines an approximate solution (ãk, j , r̃k, j)
to the assignment-routing problem (5.10) by applying (5.33). Step 2.4 determines ṽk,j by solv-
ing the speed optimization problem (5.35) given the assignment and routing determined at the
previous step. The outer loop proceeds until either the maximum number of inner iterations is
reached or the current solution is equal to the previous one, meaning that no further improve-
ment is possible. The final solution resulting from the application of the algorithm is denoted
as (ˆ̂ak, ˆ̂rk, ˆ̂vk).

Algorithm 2

Input: Initial number of vehicles VEH0 = 1, initial speed v0, 0, Nsub, k = 0, kmax, jmax,
ˆ̂U := +∞.

While k ≤ kmax and VEHk ≤ |Nsub| do
Step 1. Û := +∞, j = 1.
While j ≤ jmax and (ak, j , rk, j , vk, j) ̸= (ak, j−1, rk, j−1, vk, j−1) do

Step 2.1. Build an auxiliary complete graph based on the procedure described in
Algorithm 1.

Step 2.2. Obtain (āCk, j , r̄
C
k, j) by solving the assignment-routing problem (5.22) on

the auxiliary complete graph with fixed VEHk and vk, j .
Step 2.3. Obtain an approximate solution (ãk, j , r̃k, j) to the assignment-routing

problem (5.10) by applying (5.33).
Step 2.4. Obtain ṽk, j by solving the speed optimization problem (5.35) with fixed

ãk, j and r̃k, j . Set (ak, j , rk, j , vk, j) = (ãk, j , r̃k, j , ṽk, j).

Step 2.5. If U(ak, j , rk, j , vk, j) < Û .

Û := U(ak, j , rk, j , vk, j).
(âk, r̂k, v̂k) := (ak, j , rk, j , vk, j).

Step 2.6. j = j + 1.
End do
Step 3. If Û < ˆ̂U .

ˆ̂U := Û .
(ˆ̂ak, ˆ̂rk, ˆ̂vk) := (âk, r̂k, v̂k).

Step 4. VEHk+1 = VEHk + 1 and k = k + 1.
End do
Return: (ˆ̂ak, ˆ̂rk, ˆ̂vk).

6 Computational experiments

Two instances have been randomly generated from a dataset gathering hourly traffic information
in the New York City streets from 2010 to 2013 (with more than 95,500 nodes and 260,850 arcs),
which has been created by Donovan (2015). In particular, we consider a first instance (referred
to as small in the remainder of this section) consisting of a graph with 269 nodes, 656 edges,
and 10 customer nodes, and a second instance (indicated as large) based on a graph with 1130
nodes, 2703 edges, and 30 customer nodes. The small and large instances have been obtained by
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Figure 4: Small (left) and large (right) instances (retrieved from Google Maps (2023)). Cus-
tomers are represented by the big circles.

including all the nodes with longitude in [−73.970,−73.941] and latitude in [40.791, 40.810] and
all the nodes with longitude in [−73.970,−73.938] and latitude in [40.760, 40.840], respectively.

In all the experiments, the customer nodes in Nsub have been randomly generated from the
graphs. The time window upper bound bn for each node n ∈ Nsub has been set to 2/3 ∗ |Nsub| ∗
TS(dep, n), where TS(dep, n) denotes the time required to reach n from the depot by traveling
along the corresponding weighted shortest path at a speed of 10 miles/h (about 16.09 km/h),
which has resulted in tight windows. Since we are considering an urban setting, the maximum
speed limit vmaxlim

n1 n2
has been set to 25 miles/h (about 40.23 km/h), while the minimum speed

limit vminlim
n1 n2

has been set to 5 miles/h (about 8.05 km/h).
The demand parameter DEMn has been set to 0 for all n ∈ Nsub to omit the capacity

constraints from these experiments. Both the vehicle setup cost SCq and the cost for late
arrivals pn have been arbitrarily set to $100 for all q ∈ V and n ∈ Nsub. The parameter kmax

n1 n2
(see

Table 1) has been estimated dividing dn1 n2 by the average length of vehicles in a city, set to 4.5 m
(which is a reasonable assumption, according to Markevicius et al. (2017)). Finally, to model
the speed-dependent function fq computing the CO2 emissions per unit of distance (gram/km)
generated by a vehicle q ∈ V traversing an edge (n1, n2), we have used the following formula,
reported in Demir et al. (2014b):

fq(vq n1 n2) = 871− 16vq n1 n2 + 0.143v2q n1 n2
+ 32031/v2q n1 n2

,

where vq n1 n2 is in km/h.
The integration among the different transportation components is modeled through for-

mula (4.3) and constraint (4.4), which is analogous to constraint (5.17) used in the original
assignment-routing problem (5.10). We recall that to ensure that the approximate solution
obtained by applying (5.33) is feasible with respect to constraint (5.17), we adopt the penalty
term (5.34), which requires solving the auxiliary assignment-routing problem (5.22) with such
a penalty term in the objective function every time such a constraint is violated on the original
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non-complete graph. According to Kucharski and Drabicki (2017), γ = 1 and η = 2 are rea-
sonable values for the parameters used in formula (4.3) when considering urban road networks.
Denoting by i the current component, we handle the variables rjq n1 n2 in (4.3) and (4.4) as param-
eters, with j ∈ {1, . . . ,P} and j ̸= i. In particular, two cases are taken into account to represent
the total number of vehicles controlled by other components that traverse an edge (n1, n2). In
the first case, which we denote as 0%-cap, no vehicles controlled by other components traverse
the edge (n1, n2), while in the second one, denoted as 50%-cap, the number of such vehicles is
equal to 50% of the capacity of the edges (the word capacity is used to refer to kmax

n1 n2
, which is

the maximum number of vehicles that can traverse the edge at the same time). Recalling (4.2),
one has

P∑
j=1, j ̸=i

∑
q∈Vj

rjq n1 n2
=

{
0 (Case 0%-cap),

0.5 kmax
n1 n2

(Case 50%-cap),

for all (n1, n2) ∈ E.
We recall that in multi-objective optimization one is interested in obtaining a set of points

that cannot improve one objective without worsening the values of the other ones. Points with
this property are called Pareto optimal solutions (or non-dominated points). To obtain the
approximate Pareto fronts, the weighted-sum method with normalization has been applied to
all the terms in the objective functions U1, U2, and U3 of the original assignment-routing prob-
lem (5.10), all the terms in UC

1 , U
C
2 , and UC

3 for the auxiliary assignment-routing problem (5.22),
and all the terms in L1, L2, and L3 for the speed optimization problem (5.35). In particular,
given non-negative weights αi, with i ∈ {1, . . . , 6}, the problems considered in the experiments
are (6.1)–(6.3) below. Each term in the objective functions has been normalized using additional
weights wi or w̄i, with i ∈ {1, . . . , 6}, which represent the value of each term at the initial so-
lution, i.e., w1 = TGE(a0,0, r0,0, v0,0), w2 = TSC(a0,0, r0,0, v0,0), and similarly for the remaining
terms and for the weights w̄i.

Assignment-Routing (NC): U = α1

(
TGE

w1

)
+ α2

(
TSC

w2

)
+ α3

(
TDT

w3

)
+

α4

(
MDD

w4

)
+ α5

(
LAC

w5

)
+ α6

(
MAT

w6

)
.

Constraint function u is the same as problem (5.10).

(6.1)

Assignment-Routing (C): UC = α1

(
TGE

w̄1

)
+ α2

(
TSC

w̄2

)
+ α3

(
TDT

w̄3

)
+

α4

(
MDD

w̄4

)
+ α5

(
LAC

w̄5

)
+ α6

(
MAT

w̄6

)
.

Constraint function uC is the same as problem (5.22).

(6.2)

Speed (NC): L = α1

(
TGE

w1

)
+ α3

(
TDT

w3

)
+

α5

(
LAC

w5

)
+ α6

(
MAT

w6

)
.

Constraint function ℓ is the same as problem (5.35).

(6.3)
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In Algorithm 1, to construct an auxiliary complete graph, we determine weighted shortest
paths between each pair of customer nodes by applying the weighted-sum method (see, e.g., Son-
nier (2006); Mote et al. (1991); Henig (1986)), which consists of applying the classical shortest
path algorithms to the original non-complete graph after combining the costs of the edges for
each criterion into single costs. The weights σj , j ∈ {1, 2, 3}, used to combine the three criteria
at Step 1 of Algorithm 1 can be obtained from the weights αi, i ∈ {1, . . . , 6}, used to deal with
the objective functions of problems (6.1)–(6.3). In particular, denoting as emis0q n1 n2

, t0q n1 n2
,

and d0n1 n2
the values of the corresponding optimization variables at the initial solution of Al-

gorithm 2, for all q ∈ V and (n1, n2) ∈ E, we compute the costs at Step 1 of Algorithm 1 as
follows

eqn1n2
= σ1

(
emisq n1 n2

emis0q n1 n2

)
+ σ2

(
tq n1 n2

t0q n1 n2

)
+ σ3

(
dn1 n2

d0n1 n2

)
, (6.4)

where

σ1 =
ᾱ1∑3
j=1 ᾱj

σ2 =
ᾱ2∑3
j=1 ᾱj

σ3 =
ᾱ3∑3
j=1 ᾱj

and
ᾱ1 = α1 + α2, ᾱ2 = α2 + α3 + α5 + α6, ᾱ3 = α2 + α4.

Each ᾱj , j ∈ {1, 2, 3}, includes the weights αi of the objective functions i, i ∈ {1, . . . , 6}, that
are related to the criterion j (j = 1 for emissions, j = 2 for time, and j = 3 for distance). The
weight α2 of the objective functions TSC and TSC in problems (6.1)–(6.2) is included in all the
weights ᾱj because the total vehicle setup cost, which is related to the total number of vehicles,
affects all the three criteria. Note that the term dn1 n2/d

0
n1 n2

in (6.4) is equal to 1 since the
length of an edge is constant.

In the computational experiments, we have applied Algorithm 2 multiple times by consid-
ering 56 combinations of the weights αi. Among the solutions returned by the algorithm, we
eliminated the dominated points to obtain an approximation of the Pareto front. We point out
that although all the terms are considered in the experiments, in the plots we only report the
comparison of the approximate Pareto fronts among the conflicting terms in the environmental
impact and efficiency objective functions. The terms in the service quality objective function are
omitted from the figures since they have been observed not to be conflicting with the other ones.
In particular, the maximum driving distance (MDD), which is referred to as Max. Distance in
the figures, has been compared against the total generated CO2 emissions (TGE) (referred to
as Total Emissions), the total setup cost (TSC), and total driving time (TDT).

All tests were run on a Linux server with 32GB of RAM and an AMD Opteron 6128 processor
running at 2.00 GHz. Algorithms 1 and 2 have been implemented in Python 3.7. The assignment-
routing problem (Step 2.2 in Algorithm 2) has been solved by using OR-Tools 9.1 (Perron and
Furnon) with default options. To solve the speed optimization problem (Step 2.4), the interior
point method implemented in the solver IPOPT (Wächter and Biegler (2006)) has been used
with the parameter tol set to 10−2.

Deterministic case

In the deterministic case, the parameter ωn1 n2 in (4.3) has been set to 0 for all (n1, n2) ∈ Nsub.
Figures 5–6 show the comparison between the approximate Pareto fronts obtained for 0%-
cap and 50%-cap on the small and large instances. Such figures confirm that the integration
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Figure 5: Approximate Pareto fronts for the small instance.

Figure 6: Approximate Pareto fronts for the large instance.

among the transportation components has a significant impact on the objectives considered, as
illustrated in the plots. Once a set of objective function weights is given, the average CPU time
required by Algorithm 2 on the small instance is 641.36 s and on the large instance is 5272.76 s.
The majority of the time is due to the computation of an approximate solution for the speed
optimization problem. The development of a heuristic for speed optimization to reduce the
computational cost is left for future work.

From the plots related to the small instance, one can observe that reducing the number
of vehicles from 5 to 1 (which corresponds to a decrease in the vehicle setup cost from $500
to $100) leads to an increase of the maximum driving distance from 5.39 km to 9.03 km, which
allows achieving 51.09% (in the 0%-cap case) and 51.39% (in the 50%-cap case) savings in CO2

emissions and 51.25% (0%-cap) and 51.69% (50%-cap) savings in total driving time. Moreover,
the first and third plots show that without increasing the maximum driving distance, it is possible
to reduce the total emissions from 8.71 kg to 6.79 kg (0%-cap) and from 9.71 kg to 7.53 kg
(50%-cap) and the total driving time from 27.63 min to 21.15 min (0%-cap) and from 34.28 min
to 26.04 min (50%-cap). Note that using 5 vehicles does not lead to any significant improvement
in terms of maximum driving distance compared to the Pareto solution with 4 vehicles.

On the large instance, only solutions with a number of vehicles between $100 and $300
are Pareto optimal. Reducing such a number from 3 to 1 (which corresponds to a decrease
in the vehicle setup cost from $300 to $100) leads to an increase of the maximum driving
distance from 20.25 km to 34.01 km, and the savings that can be obtained are 51.15% (0%-cap)
and 39.08% (50%-cap) for CO2 emissions and 60.55% (0%-cap) and 38.93% (50%-cap) for total
driving time.
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Figure 7: Approximate Pareto fronts for the deterministic case and the stochastic one.

Stochastic case

In this subsection, we limit the analysis to the small instance and we consider the 50%-cap
case. We assume that the random variable ωn1 n2 in (4.2) has a Poisson distribution with
parameter λn1 n2 for all (n1, n2) ∈ Nsub. Different values of the parameter have been considered
based on the capacity of each edge, i.e., λn1 n2 = β kmax

n1 n2
with β ∈ {0.10, 0.15}.

Figure 7 shows the comparison of the approximate Pareto fronts obtained in the deterministic
and stochastic cases. In particular, in the stochastic case, both the CO2 emissions and total
driving time increase as compared to the deterministic case due to the decrease in speed caused
by traffic congestion, according to formula (4.3) and constraint (4.4). Reducing the number of
vehicles from 5 to 1 leads to 54.00% (β = 10%) and 53.71% (β = 15%) savings in CO2 emissions
and 56.52% (β = 10%) and 56.11% (β = 15%) savings in total driving time. The maximum
driving distance increases from 5.39 km to 9.03 km.

7 Concluding remarks and future work

In this paper, we laid the groundwork for the development of a green-oriented integrated sys-
tem aimed at managing mobility and transportation services within a smart city. In particular,
we proposed a new formulation architecture consisting of three nested optimization levels as-
sociated with assignment, routing, and speed decisions. To address the integration among all
the different transportation problem components, we developed an innovative constraint on the
speed variables (i.e., formula (4.3) and constraint (4.4)) that allows one to model the impact of
the traffic congestion caused by routing decisions made in other components on the component
considered (which is a VRP-type one in our paper). Based on the formulation architecture, we
developed formulations for the assignment-routing problem and the speed optimization one for
the chosen freight transportation component. The approach proposed to solve the VRP/speed
problem considered computes an approximate solution to the assignment-routing problem on
a non-complete graph (i.e., problem (5.10)) by first solving such a problem on an auxiliary
complete graph (i.e., problem (5.22)). The resulting algorithm (i.e., Algorithm (2)) alternates
between the auxiliary assignment-routing problem (5.22) and the speed optimization problem
on the non-complete graph (5.35).

The computational experiments show that the proposed approach is able to determine a set
of Pareto optimal solutions among the conflicting terms of the objective functions considered.
Moreover, the experimental results show the importance of considering the impact of different
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components due to traffic congestion. Therefore, the integrated model can be used as a decision
support tool to help find the best trade-off among competing criteria.

The development of concrete formulations for PDP and PFITP components and the analysis
of potential conflicts among the objective functions when such components are considered is
left for future work. Moreover, further research is needed to improve the proposed concrete
formulation for road networks by removing the assumption that the vehicle speed used on an
edge traversed more than once is the same as the first time the edge was traversed. Finally, an
additional avenue of research will be focused on the speed optimization problem, which has been
so far solved by using an algorithm that provides solutions with local convergence guarantees
but, at the same time, high computational cost. Although the use of an exact algorithm provides
us with a good solution in terms of vehicle speed given the assignment and routing decisions, in
practice the use of heuristic algorithms for speed optimization is needed to ensure a real-time
response.

To manage the transportation network and grant users access to the smart decision-making
system, one should develop an application for smart devices. Such an app would acquire data
from the users by asking them for the type of service they need (use their own vehicles, car
sharing, ride sharing, carpooling, etc.) and other relevant information (such as origin and des-
tination). Moreover, users will need to specify whether to concede the vehicle-related decisions
on assignment, routing, and speed to the app or make their own decisions based on private
objectives. The acquired data would then be used to feed the integrated optimization model
proposed in this paper.
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