
Loal Convergene of the AÆne-Saling Interior-Point Algorithmfor Nonlinear ProgrammingL. N. Viente �Otober 1, 1999AbstratThis paper addresses the loal onvergene properties of the aÆne-saling interior-pointalgorithm for nonlinear programming.The analysis of loal onvergene is developed in terms of parameters that ontrol the interior-point sheme and the size of the residual of the linear system that provides the step diretion.The analysis follows the lassial theory for quasi-Newton methods and addresses q-linear, q-superlinear, and q-quadrati rates of onvergene.Keywords. interior-point methods, aÆne saling, loal onvergene, nonlinear program-mingAMS subjet lassi�ations. 49M37, 90C06, 90C301 IntrodutionInterior-point methods have been intensively and suessfully applied to linear programming prob-lems, linear omplementarity problems, onvex programming problems and other related lassesof problems. For more general lasses of problems, the appliation and analysis of interior-pointmethods is ompliated by the presene of nonlinearity and nononvexity. In the following para-graphs, we will survey the researh arried in the �eld of interior-point methods for nonlinear andnononvex optimization problems.The loal onvergene theory for primal-dual interior-point methods has been established by El-Bakry et al [14℄, Martinez et al [21℄, and Yamashita and Yabe [29℄. A few authors have onsideredprimal-dual interior-point algorithms for whih they proved global onvergene (see the work byArgaez and Tapia [1℄, Conn et al [8℄, and Yamashita [28℄). The appliation of these algorithms todisretized optimal ontrol problems has also been subjet of study in the papers by Battermannand Heinkenshloss [2℄, Leibfritz and Sahs [19℄, Viente [26℄, and Wright [27℄. The reent papersby Gay, Overton, and Wright [16℄ and Vanderbei and Shanno [25℄ introdue and test globalizationstrategies for primal-dual interior-point algorithms.In the papers ited above, the step diretion for the interior-point method is de�ned in theprimal variables, in the multipliers orresponding to equality onstraints and in the multipliersorresponding to inequality onstraints. Other authors (Forsgren and Gill [15℄, Byrd et al [5℄, and�Departamento de Matem�atia, Universidade de Coimbra, 3000 Coimbra, Portugal. E-Mail: lviente�mat.u.pt.Support for this work has been provided by Centro de Matem�atia da Universidade de Coimbra, FCT, and PraxisXXI 2/2.1/MAT/346/94. 1



referenes therein) investigated interior-point methods where the diretion is de�ned only in the�rst two set of variables and an approximation is used to the multipliers orresponding to theinequality onstraints.On the other hand, aÆne-saling interior-point methods for nonlinear optimization were de-veloped by Coleman and Li (see, e.g., [3℄, [6℄, and [12℄) for minimization problems with simplebounds. The Coleman-Li aÆne saling inorporates dual information and relates to the Dikin-Karmarkar aÆne saling (see, e.g., [13℄, [18℄, [22℄, and [23℄). One attrative feature of aÆne-salinginterior-point methods is that they an be appropriately tailored to spei� lasses of problems.They have been applied to disretized optimal ontrol problems by Dennis et al [10℄ and to in�nitedimensional ontrol problems by Ulbrih and Ulbrih [24℄. They have also been applied to otherlasses of problems like quadrati programming and nonlinear minimization subjet to linear in-equality onstraints, but also to general nonlinear programming (Coleman and Li [7℄, Das [9℄, andLi [20℄). One other attrative aspet of aÆne-saling interior-point methods is that they exhibitstrong loal and global onvergene properties: In many of the papers ited above the aÆne-salingsheme has been ombined with the trust-region strategy and the resulting interior-point algorithmonverges globally to points satisfying �rst-order and seond-order neessary onditions. The paperby Heinkenshloss et al [17℄ ombines the saling with a projetion and establishes superlinear andquadrati onvergene without the strit omplementarity assumption.The paper by Viente [26℄ gives a uni�ed perspetive of primal-dual and aÆne-saling interior-point algorithms and introdues redued primal-dual interior-point methods.As far as the author is onerned, there is no general analysis of loal onvergene for aÆne-saling interior-point algorithms like the analysis given in the aforementioned papers [14℄, [21℄, [29℄for primal-dual interior-point methods. Our intention is to �ll this gap in the urrent paper byproviding a loal onvergene analysis of the aÆne-saling interior-point algorithm for nonlinearprogramming when seond-order derivatives are replaed by quasi-Newton updates and linear sys-tems are solved inexatly. We do not present any analysis of global onvergene or polynomiality.We start in Setion 2 by desribing the loal version of the aÆne-saling interior-point algorithm fornonlinear programming. The analysis will follow the approah given by Yamashita and Yabe [29℄for primal-dual interior-point algorithms, whih in turn relies on the theory developed by Broydenet al [4℄ and Dennis and Mor�e [11℄ for quasi-Newton methods. However, the tehnial results neededfor the analysis are obtained di�erently from [29℄ and they will be the subjet of a areful study inSetion 3. The results for linear, superlinear, and quadrati onvergene are stated in Setion 4.2 The aÆne-saling interior-point algorithmConsider a nonlinear programming problem written in the formminimize f(x)subjet to g(x) = 0 ;x � 0 ; (1)where x 2 IRn, f : 
 �! IR, g : 
 �! IRm, n and m are positive integers satisfying n > m, and 
is an open set of IRn. We will assume that the funtions f and g are twie Lipshitz ontinuouslydi�erentiable in 
.
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2.1 MotivationIf a point x is a loal minimizer for problem (1) and if it satis�es a given onstraint quali�ation (likethe regularity ondition to be desribed later), then x veri�es the Karush-Kuhn-Tuker �rst-orderneessary onditions, i.e., there exist � 2 IRm and z 2 IRn suh thatrx`(x; �)� z = 0 ; (2)g(x) = 0 ; (3)xi zi = 0 ; i = 1; : : : ; n ; (4)x; z � 0 ; (5)where `(x; �) = f(x) + �>g(x) and rx`(x; �) = rf(x) +rg(x)�.The aÆne-saling algorithm is based on the de�nition of the diagonal matrix D(x; �) whosediagonal elements are given by:�D(x; �)�ii = 8><>: (xi) 12 if (rx`(x; �))i � 0 ;1 if (rx`(x; �))i < 0 ;for i = 1; : : : ; n.Given the de�nition of this diagonal matrix, we an eliminate the multipliers z from the �rst-order neessary onditions. In fat, a point x satis�es the �rst-order neessary onditions if andonly if there exists � 2 IRm suh that D(x; �)2rx`(x; �) = 0 ; (6)g(x) = 0 ; (7)x � 0 : (8)The vetor funtion D(x; �)2rx`(x; �) is ontinuous, but not di�erentiable if (rx`(x; �))i = 0for some i 2 f1; : : : ; ng. If (rx`(x; �))i 6= 0, we will di�erentiate the i-th funtion in (6) using theprodut rule. For that purpose we introdue the diagonal matrix E(x; �) whose diagonal elementsare the produt of the derivative of the diagonal elements of D(x; �)2 and the omponents ofrx`(x; �): �E(x; �)�ii = 8><>: (rx`(x; �))i if (rx`(x; �))i > 0 ;0 otherwise ;for i = 1; : : : ; n. If (rx`(x; �))i = 0, we formally apply the produt rule assuming that the derivativeof (D(x; �)2)ii is zero.Given these onsiderations, the Newton step for (6)-(7) is omputed from the solution of thelinear system D(x; �)2r2xx`(x; �) +E(x; �) D(x; �)2rg(x)rg(x)> 0 !  �x�� ! = �  D(x; �)2rx`(x; �)g(x) ! ; (9)where r2xx`(x; �) = r2f(x) +Pmi=1 �ir2gi(x). 3



With the de�nitions of the matries D(x; �) and E(x; �) we an haraterize the strit om-plementarity ondition and the seond-order suÆient onditions in terms of the pair of variables(x; �). We de�ne �rst the set of indies A(x):A(x) = fi 2 f1; : : : ; ng : xi = 0g :The strit omplementarity ondition is satis�ed at a point x, with orresponding multipliers �and z satisfying the �rst-order neessary onditions (2)-(5), ifzi > 0 for all i 2 A(x)or, equivalently, if �E(x; �)�ii > 0 for all i 2 A(x) : (10)The seond-order suÆient onditions are given by (2)-(5) and the positive de�niteness ofr2xx`(x; �) on the subspaend 2 IRn : rg(x)>d = 0 ; di � 0 if i 2 A(x) ; and di = 0 if i 2 A(x) and zi > 0o :If the pair (x; �) satis�es strit omplementarity (see (10)), the seond-order suÆient onditionsare equivalent to (6)-(8) and the positive de�niteness ofD(x; �)r2xx`(x; �)D(x; �) +E(x; �) : (11)on the null spae of rg(x)>D(x; �).Finally, we address the regularity ondition. A feasible point x is regular if the matrix� rg(x) IA(x) �has full olumn rank, where IA(x) is a submatrix of the identity formed by olumns orrespondingto indies in A(x). For the loal onvergene of the algorithm addressed in this paper, we need thetwo following fats:1. If x is a regular point, then the matrix D(x; �)rg(x) has full olumn rank.2. If the regular point x, with orresponding multipliers �, is suh that the matrix (11) is positivede�nite, then the matrix D(x; �)r2xx`(x; �)D(x; �) +E(x; �) D(x; �)rg(x)rg(x)>D(x; �) 0 ! (12)is nonsingular.The proofs are given in [26, Prop. 3.3℄. Note that the matrix (12) is obtained from the linearsystem (9) that de�nes the Newton step and the hange of variables g�x = D(x; �)�1�x.We end this setion with the assumptions on problem (1) needed for the analysis. Let 
 be anopen set of IRn and x� a point in 
.Assumptions 2.11. The funtions f and g are twie Lipshitz ontinuously di�erentiable in 
.2. The point x� (with orresponding multipliers ��) is regular, veri�es the strit omplementarityondition, and satis�es the seond-order suÆient onditions.4



2.2 Algorithm and notationWe desribe next the main steps of the aÆne-saling interior-point algorithm. We use Hk torepresent a symmetri approximation to r2xx`k. The vetors e and ê are given bye = (1; : : : ; 1)> 2 IRn and ê = �e>; 0; : : : ; 0�> 2 IRn+m :We use subsripted indies to represent the evaluation of a funtion at a partiular point ofthe sequenes fxkg and f�kg. The vetor and matrix norms used are the `2 norms, k � kF is theFrobenius matrix norm, and k � kM is a given matrix norm.Algorithm 2.1 (AÆne-saling interior-point algorithm)1. Choose an initial point (x0; �0) with x0 > 0.2. For k = 0; 1; : : : do2.1 Compute an approximate solution (�xk;��k) to the linear system D2kHk +Ek D2krgkrg>k 0 !  �x�� ! = � D2krx`k � �kegk ! ; (13)given the approximation Hk to the Hessian matrix r2xx`(xk; �k) and �k > 0. (�k is aperturbation parameter for entralization purposes, see [14℄, [26℄, and [30℄.)2.2 Set �k = �kmini=1;:::;n n1; minn� (xk)i(�xk)i : (�xk)i < 0oo, where �k 2 [�̂ ; 1℄ and �̂ 2(0; 1).2.3 Set the new iterates: xk+1 = xk + �k�xk ; �k+1 = �k +��k :For the analysis, it is onvenient to use the following notations:wk =  xk�k ! ; �wk =  �xk��k ! ;�k =  �kIn 00 Im ! ; wk+1 = wk +�k�wk ;and Ak =  D2kHk +Ek D2krgkrg>k 0 ! :
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2.3 InexatnessThe linear system (13) an be solved inexatly, meaning that: D2kHk +Ek D2krgkrg>k 0 !  �xk��k ! = � D2krx`k � �kegk !+  r1kr2k ! ; (14)where rk =  r1kr2k !is the residual vetor. The analysis in this paper determines how fast the norm of the residual rkmust go to zero. We will also impose asymptoti onditions on the norm of the vetors1k = 0BBB� (r1k)1(xk)1...(r1k)n(xk)n 1CCCA :2.4 Di�erentiabilityThe step �wk an be seen as a Newton step on a system of Lipshitz ontinuously di�erentiablenonlinear equations. For this purpose, we onsider a point w� = (x�; ��) in the onditions of theAssumptions 2.1. Of importane for this disussion is the fat that w� satis�es the strit om-plementarity ondition (10) and the �rst-order neessary onditions (6)-(8). We de�ne a diagonalmatrix D[x�; ��; k℄(x; �) with diagonal elements given by
�D[x�; ��; k℄(x; �)�ii =

8>>>>>>>>>>>><>>>>>>>>>>>>:
(xi) 12 if (rx`(x�; ��))i > 0 ;(xi) 12 if (rx`(x�; ��))i = 0 and (rx`k)i � 0 ;1 if (rx`(x�; ��))i = 0 and (rx`k)i < 0 ;1 if (rx`(x�; ��))i < 0 ;for i = 1; : : : ; n. Given this de�nition, we an easily dedue the three following fats:1. The vetor funtion D[x�; ��; k℄(x; �)rx`(x; �) is Lipshitz ontinuously di�erentiable on thevariables x and �. The de�nition of the vetor funtion D[x�; ��; k℄(�; �) depends on (x�; ��)and (xk; �k). However, the de�nition of the i-th prinipal diagonal element ofD[x�; ��; k℄(x; �)is independent of (x; �).2. If wk is suÆiently lose to w�, thenD[x�; ��; k℄(xk; �k) = D(xk; �k) :To simplify notation, we de�neD�;k(x; �) = D[x�; ��; k℄(x; �) and D�;k = D�;k(xk; �k) :6



Thus we an write D2�;kHk +Ek D2�;krgkrg>k 0 !  �xk��k ! = � D2�;krx`k � �kegk !+  r1kr2k ! : (15)Introduing the notation A�;k =  D2�;kHk +Ek D2�;krgkrg>k 0 !and F�;k(w) = F�;k(x; �) =  D�;k(x; �)2rx`(x; �)g(x) ! ;we rewrite the quasi-Newton step �wk asA�;k�wk = �F�;k(wk) + �kê+ rk : (16)3. If rk = 0, Hk = r2xx`(xk; �k), and wk is suÆiently lose to w�, then �wk is the Newton stepfor D[x�; ��; k℄(x; �)rx`(x; �)� �ke = 0 ;g(x) = 0 ;at w = wk. ThusrF�;k(w) = rF�;k(x; �) =  D2�;k(x; �)r2xx`(x; �) +E(x; �) D2�;k(x; �)rg(x)rg>(x) 0 !and the Newton step �wk satis�esrF�;k(wk)�wk = �F�;k(wk) + �kê+ rk :3 Tehnial lemmasThe set of ative indies at x� is de�ned asA(x�) = fi 2 f1; : : : ; ng : (x�)i = 0g :Lemma 3.1 There exist positive numbers �, �1, �2, and �3 independent of k, suh that if kwk �w�k � �, �1k�wkk � 1, and �2k�wkk+ �3ks1kk � 1, thenj1� �kj � j1� �kj+ �k ��2k�wkk+ �3ks1kk� :
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Proof: If i =2 A(x�) and � � (x�)i2 then�(�xk)i(xk)i � �1k�wkk ;where �1 = maxn 2(x�)i : i =2 A(x�)o.If i 2 A(x�) and � is suÆiently small, then from the assumption (10) on strit omplementaritywe know that (Ek)ii � (E�)ii =2. On the other hand, from the �rst equation in (15)(�xk)i = ��D2�;kHk�xk�i(Ek)ii � �D2�;krgk��k�i(Ek)ii � �D2�;krx`k�i(Ek)ii + �k(Ek)ii + (r1k)i(Ek)ii :Thus, � (�xk)i(xk)i = (Hk�xk)i(Ek)ii + (rgk��k)i(Ek)ii � 1� �k(xk)i(Ek)ii � (r1k)i(xk)i(Ek)ii :Sine �k(xk)i (Ek)ii > 0we get �(�xk)i(xk)i � 1 + �2k�wkk+ �3ks1kk ;where �2 and �3 are positive onstants independent of k.A simple derivation yields j1� �kj � j1� �kj+ �k ����1� �k�k ���� : (17)If �k = �k then j1 � �kj � j1 � �kj and the proof is ompleted. If �k < �k, then the value of �kis determined by an index i for whih (�xk)i < 0. In this ase, we have two situations. Eitheri =2 A(x�), in whih ase� (xk)i(�xk)i � 1�1k�wkk � 1 � 1� �2k�wkk � �3ks1kk ; (18)or i 2 A(x�), in whih ase� (xk)i(�xk)i � 11 + �2k�wkk+ �3ks1kk � 1� �2k�wkk � �3ks1kk : (19)The proof is ompleted by ombining inequality (17) with the de�nition of �k, and the two inequal-ities (18) and (19). 2From this lemma and the form of the quasi-Newton step �wk given by (16), we an establishj1� �kj � j1� �kj+ �k ��2kA�1�;kk (kF�;kk+ �kkêk+ krkk) + �3ks1kk� ; (20)provided A�;k is nonsingular. This bound on 1 � �k is determinant for the analysis sine I � �kappears in the formula for wk+1 � w�:wk+1 � w� = wk � �kA�1�;k (F�;k(wk)� �kê� rk)� w�= (I � �k)(wk � w�) + �kA�1�;k (F�;k(w�)� F�;k(wk)�A�;k(w� � wk))+ �kA�1�;k (�kê+ rk) : (21)8



The matrix A�;k will be nonsingular and its norm bounded if wk is suÆiently lose to w� andHk is suÆiently lose to r2xx`(xk; �k), f. Lemma 3.2. The analysis for loal onvergene onsistsof bounding kwk+1 � w�k in terms of kwk � w�k (for q-linear and q-superlinear onvergene) orkwk � w�k2 (for q-quadrati onvergene). From the expressions (20) and (21), we observe thatthese bounds will depend on the following quantities:j1� �kj ; �k ; krkk ; ks1kk ;kF�;k(wk)� F�;k(w�)�rF�;k(w�)(wk �w�)k ;k(rF�;k(w�)�A�;k)(wk � w�)k :We an monitor the sizes of j1� �kj, �k, krkk, and ks1kk, foring these quantities to satisfy spei�asymptoti onditions.The term kF�;k(wk)�F�;k(w�)�rF�;k(w�)(wk�w�)k is bounded by a onstant times kwk�w�k2.If Hk = r2xx`(xk; �k) then (rF�;k(w�) � A�;k)(wk � w�) = 0 and the q-quadrati onvergene isahievable. In the ase where Hk is an approximation to r2xx`(xk; �k), we an expet q-linear orq-superlinear onvergene. The following lemma is important for the q-linear onvergene sineit determines that A�;k is lose to rF�;k(w�) provided wk is suÆiently lose to w� and Hk issuÆiently lose to r2xx`(xk; �k).Lemma 3.2 There exist positive numbers � and Æ suh that if kwk�w�k � � and kHk�r2xx`(x�; ��)k �Æ, then A�;k is nonsingular, kA�1�;kk � �4 ;and kA�;k �rF�;k(w�)k � �5(Æ + �) ;where �4 and �5 are positive onstants independent of k.Proof: We haveA�;k�rF�;k(w�) =  D�;k(wk)2Hk �D�;k(w�)2r2xx`� +Ek �E� D�;k(wk)2rgk �D�;k(w�)2rg�rg>k �rg>� 0 ! :Now, if we add and subtrat D�;k(wk)2r2xx`� in the 1; 1 blok and D�;k(wk)2rg� in the 1; 2 blok,we obtainkA�;k �rF�;k(w�)k2F � kD�;k(wk)2k2F kHk �r2xx`�k2F + kD�;k(wk)2 �D�;k(w�)2k2F kr2xx`�k2F+ kEk �E�k2F+ kD�;k(wk)2k2F krgk �rg�k2F + kD�;k(wk)2 �D�;k(w�)2k2F krg�k2F+ krg>k �rg>� k2F :Sine kD�;k(wk)2 �D�;k(w�)2k2F � kxk � x�k2 ; kEk �E�k2F � kxk � x�k2 ;and rg(x) is Lipshitz ontinuous, we getkA�;k �rF�;k(w�)k2 � �25(Æ2 + �2) � �25(Æ2 + �2 + 2Æ�) ;where �5 is positive and independent of k. The proof is omplete sine we know, from fat 2 (inSetion 2.1), that the matrix rF�;k(w�) is nonsingular. 29



4 Loal onvergeneThe results in this setion rely on the lassial theory of quasi-Newton methods (see the papersby Broyden, Dennis, and Mor�e [4℄ and Dennis and Mor�e [11℄) and orrespond to the results thatYamashita and Yabe [29℄ obtained for the loal version of the primal-dual interior-point algorithm.The proofs are similar and are omitted. The �rst result is the q-linear onvergene of the aÆne-saling interior-point algorithm. We require the approximation Hk to the Hessian to satisfy thebounded deterioration property (22). In the following theorems, if fakg and fbkg are sequenesof positive numbers, then ak = O(bk) is a notation for lim supk!+1 ak=bk < +1 and ak = o(1)represents lim supk!+1 ak = 0.Theorem 4.1 Suppose Assumptions 2.1 hold. Consider a sequene generated by Algorithm 2.1where 0 < �̂ � �k � 1 ; �k = O �kF�;k(wk)k1+�1� ;krkk = O �kF�;k(wk)k1+�1� ; and ks1kk = O �kF�;k(wk)k�2� ;and fHkg satis�es the bounded deterioration propertykHk+1 �r2xx`�kM � (1 + �1�k)kHk �r2xx`�kM + �2�k ; (22)with �k = maxfkwk+1 �w�k; kwk � w�kg :(The onstants �1, �2, �1, and �2 are positive.)For eah � 2 (1� �̂ ; 1) there exist an �(�) > 0 and a Æ(�) > 0 suh that if kw0�w�k � �(�) andkH0 �r2xx`�k � Æ(�), the sequene fwkg is well de�ned, onverges to w�, and the rate is q-linearwith onstant �, i.e., kwk+1 � w�k � �kwk � w�k :The haraterization of q-superlinearity is given by a Dennis-Mor�e ondition (see (23) below).Theorem 4.2 Suppose Assumptions 2.1 hold. Consider a sequene fwkg generated by Algorithm2.1 onverging q-linearly to w�, where1� �k = o(1) ; �k = O (kF�;k(wk)k) ;krkk = O (kF�;k(wk)k) ; and ks1kk = o(1) :The sequene fwkg onverges q-superlinearly to w� if and only iflimk!+1 k(Ak �rF�;k(w�))(wk+1 � wk)kkwk+1 � wkk = 0 :It is easy to prove that limk!+1 k(Hk �r2xx`�)(xk+1 � xk)kkxk+1 � xkk = 0 (23)implies limk!+1 k(Ak �rF�;k(w�))(wk+1 � wk)kkwk+1 � wkk = 0 :Finally, we state the q-quadrati onvergene of the aÆne-saling interior-point algorithm.10
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