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Abstract

In this work, we propose different formulations and gradient-based algorithms for deter-
ministic and stochastic bilevel problems with conflicting objectives in the lower level. Such
problems have received little attention in the deterministic case and have never been studied
from a stochastic approximation viewpoint despite the recent advances in stochastic methods
for single-level, bilevel, and multi-objective optimization.

To solve bilevel problems with a multi-objective lower level, different approaches can be
considered depending on the interpretation of the lower-level optimality. An optimistic for-
mulation that was previously introduced for the deterministic case consists of minimizing the
upper-level function over all non-dominated lower-level solutions. In this paper, we develop
new risk-neutral and risk-averse formulations, address their main computational challenges,
and develop the corresponding deterministic and stochastic gradient-based algorithms.

1 Introduction

In bilevel multi-objective optimization (BMO), at least one of the two levels of the bilevel
problem has multiple objectives and can be modeled using the formulation

i F,
e g Ful®:)

st. reX (1.1)

y € argmin  Fy(z,y).
yeY (z)

The upper-level (UL) and lower-level (LL) objective functions F, : R" x R™ — RP and Fy :
R"™ x R™ — R? are given by F,, = (f},..., fi) and Fy = (f},..., f}), with f} and fg real-valued
functions for all i € {1,...,p} and j € {1,...,q}, respectively, and p > 1 or ¢ > 1. In this
general formulation, the UL variables x are subjected to UL constraints (z € X) and the LL
variables y are subjected to LL constraints (y € Y (z)); however, for the rest of this paper,
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it is assumed that the LL variables are unconstrained (i.e., Y (z) = R™). The set X will be
assumed closed and convex, which allows us to obtain feasible points with respect to the UL
constraints by taking orthogonal projections onto X. In general, when at least one of the two
levels is a multi-objective optimization problem, we can use the name bilevel multi-objective
optimization [13, 14, 37]. When a multi-objective problem only arises in one of the two levels,
one also finds the terminology semivectorial bilevel optimization [9].

Bilevel multi-objective optimization problems arise in applications related to defense, renew-
able energy systems, and fair machine learning. In the defense sector, a bilevel multi-objective
problem for facility location was proposed in [25] to prevent an adversary from entering a ter-
ritory by relocating wireless sensors in order to maximize the exposure of the attacker to the
sensors (single-objective UL problem) and minimize the conflicting objectives given by the sen-
sor relocation time and the total number of sensors (multi-objective LL problem). In [28], the
authors propose a bilevel formulation to minimize the environmental impact of renewable energy
systems and the resulting government expenditure (multi-objective UL problem) and the energy
cost paid by the end users (single-objective LL problem). Bilevel optimization has recently been
adopted to solve fair machine learning (ML) problems [24, 33, 34|, where the goal is to minimize
the prediction error on a validation dataset by training an ML model to avoid discriminatory
predictions against people with sensitive attributes. To ensure accurate and fair prediction
outcomes in real-life decision-making applications, accuracy and fairness loss functions must
be jointly considered, thus leading to bilevel problems where both UL and LL problems are
multi-objective.

In this paper, we consider bilevel multi-objective optimization problems with a multi-objective
lower level (BMOLL), which can be obtained from problem (1.1) by considering p = 1 and ¢ > 1.
Hence, the problem to solve is

L - fulz,y)

st. e X (1.2)

y € argmin  Fy(z,y),
yeER™

where the UL objective function f, : R™ x R™ — R is real-valued. Throughout the paper, we
assume f, to be continuously differentiable and all the functions fg , with 7 € {1,...,q}, to be
twice continuously differentiable. We will formalize these assumptions in Section 4. Note that
denoting W : R” = R™ as the set-valued mapping representing the optimal solutions of the LL
problem (we will identify this as the set of weak LL Pareto minimizers in Section 3), one can
reformulate (1.2) as follows:

U309 X \\/s 1.
zeRr”r}lyneRm {fulz,y) |z € X, y € ¥(x)}, (1.3)

where the notation “min” with double quotes is used in the literature to denote the ambiguity
arising when there are multiple LL optimal solutions [9, 38]. Since the LL problem has conflict-
ing objectives, given x € X, a single optimal solution must be determined among the set ¥(x),
and several criteria can be considered that potentially lead to different solutions of the bilevel
problem. In the deterministic case, researchers have focused on optimistic formulations, exclud-
ing all those cases where the solution determined among the set of LL. Pareto optimal points is
not the most favorable for the UL problem.



As opposed to bilevel problems with UL and LL single-objective functions [4, 6, 7, 18, 19, 21,
39] (see also [3, 19, 26] for recent reviews), gradient-based methods for bilevel multi-objective
problems have received less attention in the literature. Deterministic approaches for bilevel
optimization with multi-objective LL problems have been proposed in [1, 9, 29, 30], where the LL
problem is transformed into a single-objective problem by weighting the LL objective functions
according to the weighted-sum approach that is utilized in multi-objective optimization [12].
The weights are then included among the UL optimization variables. Problems with multi-
objective UL and LL problems (p, g > 1) have been addressed in [36], which uses the e-constraint
method [12] at both levels to obtain a single-objective bilevel problem. To the best of our
knowledge, the only stochastic gradient-based algorithm for bilevel multi-objective problems
has been proposed in [20], where multiple objectives are considered at the upper level. We point
out that the problem solved in [20] is significantly different from problem (1.1) since in [20] there
are multiple LL problems and each UL objective function only depends on the optimal solution
of one LL problem. Moreover, in [20], the authors do not attempt to determine the UL Pareto
front and consider a robust formulation of the UL problem to minimize the maximum optimal
value among all the UL objective functions.

As an alternative to the known optimistic formulation developed for (1.2), we propose new
risk-neutral and risk-averse formulations, address their computational challenges, and develop
their corresponding deterministic and stochastic gradient descent algorithms. Both formulations
are inspired by looking at y as a parameter, rather than as a variable. In the risk-neutral case,
we minimize a new function describing the mean of the UL function over an z-dependent set of
optimal LL solutions. We propose a formulation that is tractable (by rather taking the mean
over LL weights) and can lead to efficient algorithms (by sampling the weights). The risk-averse
case requires using the extension of Danskin’s Theorem to the case where the maximum is taken
over an z-dependent efficient solution set.

This paper is organized as follows. We first review the bilevel stochastic gradient method
in Section 2 (for a single objective in both the UL and LL). In Section 3, we introduce basic
definitions, results, and general assumptions. We describe the known optimistic formulation
for (1.2) in Section 4. The new risk-neutral and risk-averse formulations for (1.2), as well as
the corresponding gradient-based algorithms, are introduced in Sections 5 and 6, respectively.
Numerical results for synthetic bilevel problems with a multi-objective lower level are reported in
Section 7, which also describes the practical implementations of the proposed methods. Finally,
we draw some concluding remarks in Section 8, in particular how to develop the casesp > 1,g =1
and p,q > 1 from known building blocks.

2 A review of bilevel stochastic gradient methods

Bilevel optimization with multi-objective upper or lower levels is based on (or uses as a reference)
the bilevel single-objective (BO) case (p = ¢ = 1), which can be modeled using the formulation

min fulz,y)

z€R™, yeR™
st. re X
y € argmin  fy(z,y).
yeER™



In BO problems, the goal of the UL problem is to minimize the UL objective function f, :
R™ x R™ — R over the UL variables z, which are subjected to UL constraints (x € X), and LL
variables y, which are subjected to being an optimal solution of the LL problem. The goal
of the LL problem is to minimize the LL objective function f; : R” x R™ — R over the LL
variables y.

Assuming that there exists a unique solution y(x) to the LL problem for all z € X, prob-
lem BO is equivalent to a problem posed solely in terms of the UL variables =, and is given
by

;IelllRl}l f(x) = fulz,y(z)) st. zeX.

Recalling the assumptions that f, is continuously differentiable, f, twice continuously dif-
ferentiable, and further assuming sz fe(z,y(z)) to be non-singular, the gradient of f at x can
be obtained from the well-known adjoint (or hypergradient) formula

Vi = Vafu= Vi fe(Vyy f) ' Vy fu, (2.1)

where all gradients and Hessians on the right-hand side are evaluated at (x,y(x)). The steepest
descent direction for f at x is denoted by d(z,y(x)) = —V f(z). To obtain the adjoint formula,
one can apply the chain rule to f,(z,y(x)), which leads to Vf = V,f, + VyV, f,. Then, the
Jacobian Vy(x) € R™ " can be derived from the LL first-order necessary optimality condi-
tions V,, fe(x,y(x)) = 0 by applying the chain rule to both sides of this equation with respect
to . The LL optimal solution function y(-) is continuously differentiable due to the implicit
function theorem [35]. The equation resulting from the application of the chain rule is given
by V2, fe+V2,fiVy" = 0 (where all gradients and Hessians are evaluated at (z,y(x))), which
leads to Vy = =VZ, fo(Vz, fo) 7'

In Algorithm 1, we report a general framework for the bilevel stochastic gradient (BSG)
method [19] for stochastic BO problems. Such a framework will be adapted to develop different
algorithms for the BMOLL problem considered in this paper. We adopt & to denote the
random variables used to obtain stochastic estimates for UL and LL gradients and Hessians. An
initial point (zg,yo) and a sequence of positive scalars {ay} are required as input. In Step 1,
any appropriate optimization method can be applied to obtain an approximate LL solution ¢ by
solving the LL problem to a specified degree of accuracy. In Step 2, one computes an approximate
negative BSG d(xk, Jk, &), defined by the adjoint gradient in (2.1), to update the UL variables.
In Step 3, the vector z is updated by choosing a step size taken from the sequence of positive
scalars {ax}. When X is a closed and convex constrained set different from R”, an orthogonal
projection of xy + oy d(xk, Yk, &) onto X is required (such a projection can be computed by
solving a convex optimization problem). Regarding the stepsize sequence {ay}, popular options
in the stochastic gradient literature are fixed or decaying stepsize sequences [2].



Algorithm 1 Bilevel Stochastic Gradient (BSG) Method

Input: (z9,y0) € R” x R™, {a} }x>0 > 0.

For £k =0,1,2,... do
Step 1. Obtain an approximation g to the LL optimal solution y(zy).
Step 2. Compute a negative BSG d(z, Gk, &k )-
Step 3. Compute zy1 = Px(xx + o d(k, Uk, Ek))-

End do

As usual in the stochastic gradient literature [2], due to the lack of reasonable stopping cri-
teria for stochastic algorithms, we do not include a stopping condition in Algorithm 1 (and in
any of the algorithms developed in this paper). The convergence theory for the BSG method
developed in [19] comprehensively covers several inexact settings, including the inexact solution
of the LL problem and the use of noisy estimates of the gradients and Hessians involved. The
convergence rates of the BSG method have been derived in [19] under the assumptions of non-
convexity, strong convexity, and convexity of the true objective function f. The convergence
theory of the algorithms introduced for the smooth case (i.e., optimistic and risk-neutral formu-
lations in Sections 4-5, respectively) can be obtained as an extension of the convergence results
presented in [19]. The development of the convergence theory for the non-smooth case (i.e.,
risk-averse formulation in Section 6) is left for future work.

3 Basic definitions, results, and general assumptions

Given z € X, let us now focus on the multi-objective optimization problem given by the LL
problem in (1.2). When the LL objective functions are conflicting, minimizing one objective
results in worse values for at least one other objective. Therefore, there is typically no single
optimal solution that minimizes all objective functions simultaneously. In such cases, one is
interested in obtaining a set of points where the value of one objective cannot be improved
without deteriorating the values of the other objectives. Points with this property are called
strict/weak Pareto minimizers (or efficient or non-dominated points) and are introduced in
Definitions 1-2 below, which adapt the standard definitions in [12] to the LL problem of (1.2).

Definition 1 (LL Pareto dominance) Given any two points {y1,y2} C R™, we say that y1
dominates yo if Fy(x,y1) < Fy(x,y2) componentwise. Moreover, we say that y1 weakly domi-
nates ya if Fy(x,y1) < Fy(x,y2) componentwise and Fy(x,y1) # Fy(z,y2).

Definition 2 (LL Pareto minimizer) A point y. € R™ is a strict Pareto minimizer for
the LL problem of (1.2) if no other point y € R™ exists such that y. is weakly dominated
by y. A point y. € R™ is a weak Pareto minimizer if no other point § € R exists such that y,
1s dominated by .

Let Ps(x) denote the set of strict LL Pareto minimizers and P(z) the set of weak LL Pareto
minimizers. We wish to highlight that P(z) represents ¥(x) from (1.3). Mapping the set P(x)
into the objective space R? leads to the LL Pareto front, which is defined as {Fy(z,y) : y €
P(z)}. Note that Definition 2 implies that Ps(x) C P(x).



To compute a Pareto front, one can use scalarization techniques to reduce a multi-objective
problem into a single-objective one, which can then be solved using classical optimization ap-
proaches [12, 31]. One popular scalarization technique is the weighted-sum method, which
consists of weighting the objective functions into a single objective 2521 A f](z,y), where \;
are non-negative weights, for all j € {1,...,q}. A necessary and sufficient condition for weak LL
Pareto optimality based on the weighted-sum method is included in Proposition 3.1 below, along
with a sufficient condition for equivalence between Ps(x) and P(z). We refer to [12, 17, 31] for
the proof of such a proposition.

Proposition 3.1 Let the LL objective functions f}(z,-),..., f}(z,) be convex for all z €
X. Then, y. € P(x) if and only if there exist weights A\j > 0, for all j € {1,...,q}, not
all zero, such that y. € argmingcgm Z?:l )\jfg(x,y). Moreover, if the LL objective func-
tions f}(x,),..., fl(z,") are strictly convez for a certain x € X, then Py(z) = P(z).

For the remainder of the paper, we require Assumption 3.1 below.

Assumption 3.1 The LL objective functions f}(x,), ..., fi(z,-) are strictly convez for all x €
X. Further, the set P(z) is non-empty for all v € X.

Under Assumption 3.1, it is clear from Proposition 3.1 that P(x) = Ps(z). The following
remark characterizes the non-emptiness of P(z).

Remark 3.1 In the case Y (x) = R™ considered in this paper, we point out that P(x) # () if the
LL objective functions f}(z,-),. .. , fi(x, ) are uniformly convex, which further implies that P(x)
is also compact. When Y (z) # R™, we have that Ps(x) # () (and thus P(x) # 0) if the set Y (z)
is compact and non-empty, in which case P(x) is also compact.

4 The known optimistic formulation
The so-called optimistic formulation of problem (1.2) corresponds to the problem

- Ju(z,y)

st. ze X (4.1)
y € P(z),

where the set of LL optimal solutions is given by the set of weak LL Pareto minimizers P(x).
In accordance with Proposition 4.1 below, one can prove that problem (4.1) is equivalent to

v, 1B g Tu(@)
st. ze X, AeA (4.2)
y € argmin  fo(z, \,y) := )\TFg(x,y),
yeR™
where A denotes the simplex set, i.e.,
q
A=qXERT | Y N=1X>0Vie{l,....q} . (4.3)
j=1



Given (z,\) € X X A, let ®(z,\) = {y € R™ | y € argmin cgm fo(7,\,y)} denote the set of
optimal solutions to the LL problem in (4.2). The equivalence between problems (4.1) and (4.2)
is stated below (assuming implicitly that each problem admits an optimal solution).

Proposition 4.1 Let Assumption 3.1 hold. If (Z,y) is an optimal solution to problem (4.1),
then, for all A\ € A such that §j € ®(F,)\), the point (T, \,y) is an optimal solution to prob-
lem (4.2). Moreover, if (Z,\,7) is an optimal solution to problem (4.2), then (Z,¥) is an optimal
solution to problem (4.1).

Proof. Let (Z,7) be an optimal solution to problem (4.1). We have (Z,7) € X x P(Z)
and f,(Z,9) < fu(z,y) for all (z,y) € X x P(x). Assume that there exists A\ € A with ¢ €

d(z, )\0) such that (Z,\°, %) is not an optimal solution to problem (4.2). Therefore, there ex-
ists (2,\) € X x A, with § € ®(&, \), such that f,(Z,7) > fu(&,§). Note that from Proposi-
tion 3.1, since g € <I>(a: )), it follows that § € P(&#), which implies that (z,7) is a feasible point
for problem (4.1). All these facts contradict the optimality of (z,y) for problem (4.1).

Vice versa, let (Z,),%) be an optimal solution to problem (4.2). We have (Z,)) € X x A,
with § € ®(z,\), and fu(Z,7) < fulz,y) for all (z,\) € X x A, with y € ®(x,)\). From
Proposition 3.1, since § € ®(z, ), it follows that 4 € P(Z), which implies that (z,7) is a
feasible point for problem (4.1). Assume that (Z,y) is not an optimal solution to problem (4.1).
Therefore, there exists (2,9) € X x P(Z) such that f,(Z,y) > fu(Z,9). From Proposition 3.1,
since §j € P(&), there exists A € A such that § € ®(&, A), which implies that (&, A, 7) is a feasible
point for problem (4.2). All these facts contradict the optimality of (z, ), %) for problem (4.2).
O

Note that the LL objective function in problem (4.2) is fo(z, \,y) = 321 )\jfg(a:,y),
where A € A. Hence, problem (4.2) is a bilevel problem where both levels are single-objective
functions and can be solved by applying the BSG method introduced in Section 2 (when the func-
tions are stochastic). Let us denote the optimal solution of the LL problem in (4.2) by y(z, A).
For the calculation of the BSG direction, we require Assumption 4.2 below, which ensures the
existence of y(z,\) for all A\ € A. To do this, we formally assume a certain smoothness of the
functions we are dealing with.

Assumption 4.1 The UL function f, is once continuously differentiable and all the LL func-
tions fg, with j € {1,...,q}, are twice continuously differentiable.

We remark that Assumptions 3.1 and 4.1 together imply that the Hessians sz fg (z,y), for
all j € {1,...,q}, are positive definite for all x € X.

Further, we also assume the existence of a solution to the LL problem. We state here this
requirement for both the optimistic and risk-neutral formulations together (although we formally
introduce the risk-neutral case in Section 5) to avoid repetition. It bears mentioning that this
assumption does not encompass the risk-averse case here, as it requires a different approach,
which we introduce in Section 6.

Assumption 4.2 (Existence of LL solution) For any x € X and A € A, there exists a
point y(x, ) such that V, fo(x, X, y(z, X)) = ?:1 ANV fl(z,y(x,\)) = 0. Moreover, the stochas-
tic estimates of the Hessians ngfg (z,y), forallj € {1,...,q}, are positive definite at all points.



Given the strict convexity of the LL functions imposed in Assumption 3.1, it then becomes
clear under Assumption 4.2 that the point y(z, A) is the unique solution of the LL problem.

Let fopr(xz,\) = fu(z,y(x,N)), with OPT standing for optimistic. By applying the chain
rule to fy(z,y(x,\)), one obtains the gradient vectors

Vaforr = Vafu+ VayVyfu, Vafort = VayVyfu. (4.4

To calculate the Jacobian Vy(z,\) € RMTO*m e take derivatives with respect to x
and A on both sides of the LL first-order necessary optimality conditions V, fi(x, A, y(z,\)) =
2321 NjVy fl(z,y(z,\)) = 0, yielding the equations

Vo fo+ Vo, fiVay' =0, Vo fi+ Vi, fiVay' = 0. (4.5)

Again, the differentiability of y(-) with respect to x and X is a consequence of the implicit
function theorem [35]. Under Assumption 4.2, we can obtain V,y and V,y from (4.5) and plug
their values into (4.4), which leads to

Veforr = Vafu— Vo, fo(Noy fO) 7 Vy fu, Vaforr = =V3,fe(Vo, f) ' Vyfu,  (4.6)

where all gradients and Hessians are evaluated at (z,y(z,\)). Note that

q q
- i T
V2, fe =Y _NVE L Vi fe=Y NVafl Vfe= (Yl Vyff) (4.7)
1 1

Therefore, from (4.6)—(4.7), one can obtain the adjoint gradient V fopr by concatenating the
subvectors V. fopT and V) fopT into a single vector. In the stochastic case, all the gradients and
Hessians on the right-hand sides of (4.6) can be replaced by corresponding stochastic estimates.

In Algorithm 2, we introduce a bilevel stochastic gradient method to solve the optimistic
formulation of problem (1.2), given by problem (4.2). Note that the main differences between
Algorithm 2 and the classical BSG method reported in Algorithm 1 are Step 2, where one now
computes a (negative) BSG d (zk, Ak, Uk, {k) to approximate —V fopr = —(VaforT, VaforT),
and Step 3, where the orthogonal projection is now applied to the A variables as well.

Algorithm 2 BSG-OPT Method

Input: (xo, A0, yo) € R” x R? x R™, {Oék}kzo > 0.

For £ =0,1,2,... do

Step 1. Obtain an approximation g to the LL optimal solution y(zx, A).

Step 2. Compute a negative BSG d(xg, Ak, Uk, &k )-

Step 3. Compute (xk+1,)\k+1) = PXA((xk:,)\k:) + oy d(xk,)\k,gjk,gk)), where Pxa
projects the z and A variables onto the feasible regions X and A, respectively.
End do

Note that, in principle, every point y € P(z) can be considered an LL optimal solution.
Different LL Pareto points have a different impact on the UL objective function and, accordingly,
they can lead to different optimal solutions to the bilevel problem. However, by using the
optimistic formulation (4.2), only the LL Pareto point that is most favorable for the UL objective
function is selected among all the points y € P(z). Thus, we will now consider new alternative
approaches to the optimistic formulation (4.2).



5 A new risk-neutral formulation

In this section, we introduce a new formulation for problem (1.2). To gain intuition, suppose
that the set of weak LL Pareto minimizers is the same for all feasible values of z, i.e., P(z) = P
for all x € X. By interpreting y as a parameter, one can consider the parametric optimization
problem

mingern fu(xa y)

with y € P, 5.1
S.t. rzeX } Y ( )

which can be addressed by considering two approaches in addition to the optimistic one. The
risk-neutral approach assumes that y is a random vector with a probability distribution defined
over P and considers the formulation

min By [fu(o,5)]. (52)
where E, p denotes the expected value that is taken with respect to the distribution of y over
the domain P. The objective function of problem (5.2) can be approximated by using a sample
mean, and the resulting problem can be solved by applying the SG method.

In the risk-neutral formulation for the general case with P(x), given z and assuming that y
is a random vector with a probability distribution defined over P(x), the problem to solve is

min By p) [fu(@,y)]- (5.3)

Under Assumption 3.1, we consider a companion problem to (5.3) that will provide us with

a tractable solution procedure. In particular, assuming that A is a continuous random vector

with a probability distribution defined over A (defined in (4.3)), the problem we will consider
instead is

min Eyop [fu(z,y(x,\))], (5.4)

zeX

where y(x, \) now denotes the optimal solution of the problem

o, Fy(z,y) "X, (5.5)
Again, Assumptions 3.1, 4.1, and 4.2 all together imply that (5.5) has a unique solution.
Under Assumptions 3.1, 4.1, and 4.2, one can also calculate the BSG direction for the
risk-neutral formulation. In practice, one can consider a finite set Agny = {\!,.. AN }CA
that corresponds to a fine-scale discretization of A, with RN standing for risk-neutral. The
corresponding set of weak LL Pareto minimizers is {y(z, A!),...,y(z, \N)} C P(z). Therefore,
problem (5.4) can be approximated as

N
;Iél)f(l frn(x Z z,y(z, X)) . (5.6)

Note that the gradient of the objective function in (5.6) is given by

V fan(x Z V fin(z (5.7)



where fin(2) = fu(z,y(z, X)) for all i € {1,...,N}.
By applying the chain rule to f,(x,y(z, \)), one obtains

Viin = Vafu+ Vey(z, XYV, fu. (5.8)

Then, the Jacobian V,y(z, \?) € R?*™ can be calculated through the first-order LL Pareto nec-
essary optimality condition Z?:l A;-Vy fl(z,y(xz, A")) = 0, where )\j» denotes the j-th component
of the vector ¢, for all i € {1,...,N}. In particular, by taking the derivative of both sides
of this equation with respect to x, using the chain rule and the implicit function theorem, we
obtain .

Xi (V200 + V2, 1V ay(a, )T ) = 0, (5.9)
=1

J

where all Hessians are evaluated at (z,y(x,A")). We recall here that Assumptions 3.1 and 4.1
together imply that any convex combination of the Hessians Vf/yfg (z,y), j € {1,...,q}, is
positive definite, and thus non-singular. Equation (5.9) yields

-1

q q
Vay(z, N) = — | YNV A [ D NVe | forallie{l,...,N}. (5.10)
j=1 j=1

Plugging (5.10) into (5.8), one obtains
-1

q q
Vign = Vafu— | DXNVILHE IV A Vyfa, (5.11)
j=1 j=1

where all gradients and Hessians on the right-hand side are evaluated at (x,y(x,\?)). In the
stochastic case, all the gradients and Hessians on the right-hand side of (5.11) can be replaced
by corresponding stochastic estimates.

Since the number of elements in Agn can be significantly large, one can apply SG to solve
problem (5.6) by randomly choosing a set of samples (i.e., a mini-batch) from Agyn. Denoting
a mini-batch as Ag = {\,...,A\9} C Agn, where Q is the mini-batch size, the correspond-
ing sample set of LL Pareto minimizers {y(x, A\!),...,y(z,\?)} can be used to compute a SG
for VfRN in (5.7).

In Algorithm 3, we introduce a bilevel stochastic gradient method to solve the risk-neutral
interpretation of problem (1.2) given by the formulation (5.6). We adopt (&;)x to denote the
random variables used to obtain stochastic estimates for the UL and LL gradients and Hessians,
for all i € {1,...,Q}. For the sake of simplicity, at Steps 2-3, we denote g = {(7(zx, M) | i€
[, Q}} and & = {(€)x | i € {1,...,Q}}.
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Algorithm 3 BSG-RN Method

Input: z¢ € R”, {ak}kzo > 0.
For £k =0,1,2,... do

Step 1. Obtain a mini-batch {\',..., X9} and determine {f(zy;, AR A9) Y to
approximate the LL Pareto optimal points {y(z, )\1) oo y(og, A9

Step 2. Obtain a negative BSG d(zg, §(xx, \), (&) ) to approximate —V fin (@) for
alli € {1,...,Q} and compute d(z, i, &) = (1/Q) X2y d(wr, §(zr, V), (€:)k)-

Step 3. Compute zy11 = Px(x) + oy d(xk, Uk, §k))-
End do

6 A new risk-averse formulation

In this section, we introduce another new formulation for problem (1.2). Again, to gain intuition,
suppose P(z) = P for all + € X, and consider problem (5.1). The risk-averse (or robust or
pessimistic) formulation is given by the problem

TR Sl w)
which can be reformulated as minyex fra(x) by introducing fra(z) = maxycp fu(z,y), with
RA standing for risk-averse. Since fga is nonsmooth, one can solve such a problem by applying a
stochastic subgradient algorithm, where a subgradient can be obtained from the subdifferential
of fra at x. Based on Danskin’s Theorem [8], such a subdifferential is given by 0fgra(z) =

conv{Vy fu(2,y) | y € Yo(2)}, where Yo(x) = {y € P | fu(z,§) = maxyep fu(2,y)}.
In the risk-averse formulation for the general case with P(x), the problem to solve is

u 6.1
min max fulz,y), (6.1)

which can be reformulated as mingex fra(r) by introducing fra(z) = maxyepn) ful,y).
Under Assumptions 3.1 and 4.1, let us specify P(z) algebraically by using the LL first-order
necessary and sufficient conditions for Pareto optimality (see Proposition 3.1) as follows:

q
P(z) = {y €R™ |3\ € Asuch that Y AV, fl(z,y) =03 (6.2)
j=1

In accordance with Proposition 6.1 below (where we will implicitly assume the well defined-
ness of each problem), one can prove that Problem (6.1) is equivalent to the problem

min max w(T,y), 6.3
mip oo Ju(@,y) (6.3)
where
P(x) = < (y,\) e R™" xR? | A € A and Z)\jvyfg(x,y) =0,. (6.4)
j=1
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Problem (6.3) can be reformulated as mingex fra(z) by introducing the function fral(z) =
MaX, \)ep(z) fu(z,y). The optimization problem defining fra(z) can be written as

max  fu(z,y)

yER™, AR
s.t. )\qE A, (6.5)
Z )\jvyfg(w, y) = 0.
j=1
Note that from the definitions of P(z) and P(z) in (6.2) and (6.4), respectively, we have
y € P(z) if and only if (y, \) € P(x) for some X € A. (6.6)

Proposition 6.1 z is an optimal solution of problem (6.1) if and only if T is an optimal solution
of problem (6.3).

Proof. Let Z be an optimal solution of problem (6.1). Therefore, we can write fra (%) < fra(Z)
for all Z € X or, equivalently, f,(Z,9) < fu(%,7) for all € X, where § € argmax,c p(z) fu(Z,y)
and § € argmaxycp(z) fu(Z,y). Now, assume that Z is not a minimizer of the outer mini-
mization problem in (6.3). Then, there exists a point # € X such that fra(Z) > fra(&) or,
equivalently, f,(Z,y) > fu(Z,9), with g € argmax, \ycp; fu(x y). From (6.6) and from the
fact that the objective function of the inner max1m1zat10n problem in (6.3) does not depend
on A, it follows that § € argmax,cp(z) fu(Z,y). Therefore, fra(Z) > fra(2), which contradicts
the optimality of Z for problem (6. 1)

Now, let Z be an optimal solution of problem (6.3). Therefore, fra(Z) < fra(Z) for all & € X
or, equivalently, f,(Z,y) < fu.(Z,7y) for all z € X, where T € argmax, \ e p(z fu(x y) and § €
argmax(y NeP@G fu(az y). Again, from (6.6) and from the fact that the obJectlve function of the
inner max1m1zat10n problem in (6.3) does not depend on A, we have § € argmax,cpz) fu(Z, ).
Therefore, fra(z) < fra(Z) for all # € X, which shows that z is an optimal solution for
problem (6.1). O

For the calculation of a BSG direction, and under Assumption 4.1, we start by introducing
the Lagrangian function of problem (6.5) as L(z,y,),2) = fu(z, y) + 2] A+ 25( LA —
,ZF )‘vafz (z,7)), where z; € RY and zp € R™*! are the vectors of Lagrange multlphers
associated with the inequality and equality constraints, respectively. We will assume below the
satisfaction of the first-order KKT conditions and the linear independence of the gradients of
the active constraints (LICQ) [32] for problem (6.5).

Assumption 6.1 For all x € X, there exists a (y(x),\(x)) satisfying the first-order KKT
conditions for problem (6.5) with associated multipliers (z1(z),zg(x)) such that the LICQ is
satisfied.

Based on [15, Corollary 4.11], under Assumption 6.1 and additionally requiring P(z) to be
non-empty and compact, the subdifferential of fra at z is given by

Ofra(e) = conv{ViL(z,y(x), \(z), z(z,y(2), \(2))) | (y(2), \(x)) € Yo(x)},  (6.7)
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where Yo(x) = {(5(2), A(@)) € P(2) | fule,5(2)) = max, cpiey fule0)} and 2(2,y(2), @)
is the unique optimal vector of Lagrange multipliers (the uniqueness is a trivial consequence
of Assumption 6.1). One can ensure the compactness of P(z) from (6.6) by noticing that A is
compact and requiring P(z) to be compact, which can be satisfied as suggested in Remark 3.1.
The non-emptyness of P(z) (assumed in Assumption 3.1 for P(x)) is ensured similarly; see also
Remark 3.1. Note that the gradient of the Lagrangian with respect to z is given by

q
VoL(x,y, M, 2) = Vafulz,y) + > NVa,fl(z,y)ze. (6.8)
j=1

Equation (6.8) can be used in (6.7), where Yy(z) is given by the solutions (7(z), A(z)) of prob-
lem (6.5). In the stochastic case, all the gradients and Hessians on the right-hand side of (6.7)-
(6.8) can be replaced by corresponding stochastic estimates. When using stochastic estimates,
the subdifferential (6.7) is denoted as df, (z).

In Algorithm 4, we introduce a bilevel stochastic subgradient method to solve the risk-averse
formulation of problem (1.2) given by problem (6.1). We adopt & to denote the random variables
used to obtain stochastic estimates for UL and LL gradients and Hessians.

Algorithm 4 BSG-RA Method

Input: zg € R”, {ak}kZO > 0.

For £k =0,1,2,... do
Step 1. Obtain an approximation (g, ) to a solution (y(zx), A(zx)) of problem (6.5).
Step 2. Select a negative stochastic subgradient d(xy, g, e, &) € —6ng(xk).
Step 3. Compute x4 = PX($k + g d(mk, Yker Mks fk))

End do

7 Numerical experiments

All code was written in Python and the experimental results were obtained on a desktop com-
puter (32GB of RAM, Intel(R) Core(TM) i9-9900K processor running at 3.60GHz).*

7.1 Our practical methods

In the numerical experiments, we tested Algorithms 2—4 with both exact and stochastic Hessians
in deterministic and stochastic settings, respectively. The resulting algorithms are referred to
as BSG-OPT-H, BSG-RN-H, and BSG-RA-H, where the “H” stands for the Hessian matrix.
To deal with the inverse matrix in (4.6), one could solve the linear system given by the adjoint
equation ( ?:1 )\jvzyfg)u = V, fu for the variables 11, and then calculate V fopr from V, f,, —
(ng fo)p and Vy fopr from —(V%\y feo)p. A similar approach could be used to handle the inverse
term in (5.11). Due to the small dimensions of the problems that we tested (n,m < 50), in BSG-
OPT and BSG-RN, the adjoint systems are solved by factorizing the matrices Z?Zl )\jvzy fg

and E?:l )\;VZy fg , respectively. In practice, when the dimensions of the problems are large,

*All the code for our implementation is available at https://github.com/GdKent/BMOLL_OPT_RN_RA.
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Problem | n | m | Ref. for LL LL Objective Functions Bound on z;

1 n| n | JOS1 [23] fi(z,y) = %Z?:l x2y? [—2, 0]
filwy) = 3 3 (@ — 2)*(yi — 2)°
2 a || SPL[22) | fi(zy) = 2 [(x = 12 + (2 — i)’ (2,3
f2 @, y) =0 [(yi — 3)% + (21 — )]
3 nln GKV1 fHz,y) = sy Hyy — Sy " Hyz [—00,0] or [0, 0]
fi(a,y) = 3y  Hsy + 5y " Hex

Table 1: Test problems (7 is an arbitrary positive scalar).

one can solve the adjoint systems via the linear conjugate gradient method until non-positive
curvature is detected. In Step 1 of BSG-OPT and BSG-RN, we apply either gradient descent (in
the deterministic setting) or stochastic gradient descent (in the stochastic setting) for a certain
budget of iterations. The number of iterations increases by 1 every time the difference of the UL
objective function between two consecutive iterations is less than a given threshold. Such an
increasing accuracy strategy has been used successfully in the BSG method presented in [19]. In
Step 1 of BSG-RA, we solve problem (6.5) by applying the trust-region algorithm for nonlinear
constrained problems proposed in [5].

7.2 Results for bilevel problems with a multi-objective lower level

The set of problems that we tested are bilevel instances where the upper level is a quadratic
single-objective problem and the lower level is a multi-objective problem. In particular, given h; €
R™, ho € R™, a symmetric positive definite matrix Ho € R™*", and a matrix H; € R™*™, we
solve the general problem

1 1
min fu(zy) = hiz+hyy+ s’ Hiy+ sa'’ Hax,
reR™ 2 2

st. y €argmin Fo(z,y) = (fi (z,y), 7 (2,9)),
yeR™

(7.1)

where the LL objective functions considered in the experiments are specified in Table 1, along
with the reference for the LL problem, the number of UL and LL variables (i.e., n and m,
respectively), and the bounds on each UL variable x;. The first two LL objective functions that
we consider in our experiments, JOS1 [23] and SP1 [22], are both separable functions, i.e., they
can be written as a sum of terms such that each variable only appears in one of the terms.
As a result, the third LL objective, which we will refer to as GKV1, leads to a more general
multi-objective optimization problem that can be either separable or non-separable depending
on the Hy, Ho, H3, and Hys matrices that are chosen.

In all the numerical experiments, we considered the same dimension at both the upper and
lower levels (i.e., n = m = n, with n positive scalar) and we set H; and Hj in (7.1) equal to
identity matrices. The initial points were randomly generated according to a uniform distribution
defined within the bounds specified in the last column of Table 1. We compared all the algorithms
by using either a line search (LS) or a fixed stepsize (FS) at both the UL and LL problems.
We also considered a decaying stepsize but this led to worse performance and, therefore, we
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do not report the corresponding results. Recalling the set Agn introduced in Section 5, when
running BSG-RN on problems with dimension 7 > 1, we use N = 500 and Q = 20 (see
Figure 5 for a comparison of the results obtained for different values of Q). When 1 = 1, we
use N = @ = 500. For BSG-OPT and BSG-RN, we implemented an increasing accuracy strategy
for the LL problem by using f,, difference thresholds of 0.1 and 0.9, respectively, and a maximum
number of LL iterations equal to 30. Note that one could also consider an increasing accuracy
strategy for BSG-RA to gradually improve the approximation of the solution of problem (6.5)
obtained in Step 1 of Algorithm 4. In this paper, for the practical algorithm considered for
BSG-RA, we solve problem (6.5) by using the version of the trust-region method developed in [5]
available in the SciPy library [40], with default parameters. In the figures, when comparing the
algorithms in terms of iterations, we plot the true function values fopr and fry for BSG-OPT
and BSG-RN and an accurate approximation of the true function fry for BSG-RA.

We considered three sets of experiments corresponding to three different settings for the LL
problem: deterministic separable case, deterministic non-separable case, and stochastic non-
separable case. In the latter case, the UL problem is considered stochastic as well.

Deterministic separable LL case. In this case, we consider LL objective functions that are
separable, i.e., all the problems from Table 1. In Problem 3, we set Hs, Hy, Hs, and Hg equal to
identity matrices and we consider the bounds on z; given by [—00,0]. In (7.1), we set h; and ho
equal to vectors of ones (except for Problem 3, where each element of hy is equal to 3). For the
problems in this case, we consider 7 = 1, which allows us to visualize the solution space in two
dimensions for a more direct interpretation of the results.

Figures 1-3 show the results obtained by Algorithms 2—4 when a backtracking Armijo line
search [32] at both the UL and LL problems and exact Hessians are used. The UL line search
ensures a sufficient decrease of an accurate approximation of the true functions fopr, frRN,
and fra. We denote the UL optimal solutions found by BSG-OPT, BSG-RN, and BSG-RA
as TopT, TRN, and xra, respectively. Moreover, we denote the optimal solutions of the prob-
lems minye p(zopr) fu(Zopr, y) and maxyepizy ) fu(TrA,Y) as yopT and yra, respectively. In
each of these figures, in the upper left-hand plot, we compare the values of the true func-
tions fopr, frn, and fra achieved by each algorithm in terms of iterations. In the upper
right-hand plot, we compare the sets {(z*,y) | y € P(z)}, where z* denotes the UL optimal
solution determined by each algorithm (i.e., * € {zopT,ZrN,ZRA}), and we also report the
contour lines of the UL objective function. In the lower plots, we compare the Pareto fronts
between the LL objective functions obtained for each UL optimal solution in {xopT, *RN, TRA },
and we refer to the points (ffl, ff) evaluated at (xopT,yopr) and (Tra,yra) as the optimistic
and pessimistic Pareto points, respectively. Note that the optimistic Pareto front dominates
both the risk-neutral and risk-averse Pareto fronts in all the figures, although the three fronts
correspond to different UL variable values. We point out that all the algorithms were able to
find the optimal solutions to Problems 1-3.

Deterministic non-separable LL case. In this case, we consider Problem 3 from Table 1
with n = 50, H3 and Hs equal to randomly generated symmetric positive definite matrices, Hy
and Hg equal to identity matrices, and bounds on z; given by [0,00]. In (7.1), the components
of the vectors hy and ho have been randomly generated according to a uniform distribution
between —5 and 0 and between —3 and 0, respectively. The results obtained are shown in
Figure 4, where the relative positions of the curves are consistent with the ones in Figures 1-3.

15



5
—— BSG-OPT-H LS 37
—— BSG-RN-H LS RA|YRA)
4 BSG-RA-H LS 2
14
3 . \ \
Q \\ \ Xorr. Vor
2 > -1 \\ \ | / / -
|
-2\ \\“ [ —
1 N
M \ |
U |
3N \\\\\ i /
\
o Y {(xopr, y) 1y €P(x0pT) }
\ « {0, Y):y €Pxan)}
-5 {(Xra, ¥):y € P(Xpa)}
Iy . . . . . I OID .
0 1 2 3 4 5 -3 -2 -1 0 1 2
Iterations X
60 »  Optimistic Pareto Front
«  Optimistic Pareto Point
o Risk-Neutral Pareto Front
509 Risk-Averse Pareto Front
. » Risk-Averse Pareto Point
40
Qs 30
204
.- .'-
L)
“ .\ ...“..\
04 \ em— -
0 2 2 6 3 o 12 14 16

8
1
fi

Figure 1: Results for Problem 1 in the deterministic separable LL case (for 7 in Table 1 equal
to 1). In the upper-left plot, the vertical axis represents the values of fopr, frn, and fra.
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Figure 2: Results for Problem 2 in the deterministic separable LL case (for 7 in Table 1 equal
to 1). In the upper-left plot, the vertical axis represents the values of fopr, frn, and fra.
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Figure 3: Results for Problem 3 in the deterministic separable LL case (for 7 in Table 1 equal
to 1). In the upper-left plot, the vertical axis represents the values of fopr, frn, and fra.

Figure 5 shows the results when BSG-RN is run with N = 500 and @ € {10,20,40,500} in
terms of iterations and time. The results in Figure 5 were also obtained by computing the 95%
confidence intervals produced over 10 randomly generated starting points. Note that the starting
point does not seem to have an impact on the convergence of the algorithms here. Further, one
can also see that randomly sampling a set of () samples from Agry leads to the same optimal
function value as using the entire set Agn and, therefore, confirms the validity of the approach.

Stochastic non-separable LL case. Note that problem (7.1) is deterministic. To investigate
the numerical performance of the stochastic methods considered in the experiments, we com-
pute stochastic gradient and Hessian estimates by adding Gaussian noise with mean 0 to each
corresponding deterministic gradient (i.e., Vy fu, Vyfu, Vafe, Vyfe) and Hessian (i.e., Viy fe,
V?/y fe). The values of the noise standard deviation were chosen from the set {0, 1,2} for the gra-
dients and {0,0.1,0.2} for the Hessians. It is well known that Hessians require larger estimation
batches than gradients when considering stochastic settings [2, Section 6.1.1]. We compared all
the algorithms by using the best UL and LL stepsizes found for each of them, which were 0.1
for the UL (1 for BSG-RN) and 0.001 for the LL. Such stepsizes were obtained by performing
a grid search over the set {1,0.1,0.01,0.001} for the UL and the set {0.01,0.001,0.0001} for
the LL. We averaged all the results over 10 trials by using different random seeds and displayed
the corresponding 95% confidence intervals. Figure 6 shows that as the value of the standard
deviation increases, the performance of all the algorithms gets worse. Further, one can also see
that BSG-RN exhibits higher robustness to the noise than BSG-OPT and BSG-RA.
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Figure 4: Results for Problem 3 in the deterministic non-separable LL case (for 7 in Table 1
equal to 50). In the left plot, the vertical axis represents the values of fopr, frN, and fra.
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8 Concluding remarks

In this paper we focused on BMOLL problems (upper-level single-objective and lower-level
multi-objective) for which we developed new risk-neutral and risk-averse formulations for both
the deterministic and stochastic cases and extended the application of the optimistic formulation
to the stochastic case. We also developed corresponding gradient-based algorithms.

Other problems that can be considered in bilevel multi-objective optimization are ones with
multiple objective functions at the UL problem or at both the UL and LL problems. To ad-
dress such cases, one can assemble together known approaches from multi-objective and bilevel
optimization, as mentioned in Subsections 8.1-8.2 below.

8.1 The multi-objective single-objective case

To develop a gradient-based algorithm for problem (1.1) with p > 1 and ¢ = 1, one can consider
the equivalent formulation

;Ielﬁéll Fu(z,y(z)) s.t. z € X, (8.1)
where y(z) denotes the solution of the LL problem. Note that this is essentially a multi-objective
problem where the variables y are given by y(z). Therefore, one can draw inspiration from the
multi-gradient method developed for deterministic and stochastic multi-objective optimization,
for which one knows how to calculate steepest descent directions (i.e., multi-gradients) [11, 16]
and stochastic multi-gradients [10, 27]. In (8.1), the resulting multi-gradients are given by adjoint
multi-gradients. Denoting the current iterate as x and the adjoint gradients of the individual UL
objective functions f'(z) = fi(x,y(x)) as Vfi(z), with i € {1,...,p}, the adjoint multi-gradient
can be obtained by first solving the QP subproblem

2
st.  dEA, (8.2)

min
JERP

p
> 6V i)
i=1

where A ={§ e RP: 3P |6, =1,0; >0Vi€ {1,...,p}} denotes the simplex set (note that A
is a subset of RP and, therefore, is a different simplex set from A introduced in (4.3), which is a
subset of R?). Then, the negative adjoint multi-gradient is given by — >-?_, 67V f*(x), where &}
is the optimal solution of problem (8.2). In the stochastic case, all the gradients and Hessians
in the p adjoint gradients used in problem (8.2) are replaced by their corresponding stochastic

estimates.

8.2 The multi-objective multi-objective case

To address problem (1.1) with p > 1 and ¢ > 1, one can introduce optimistic, risk-neutral, and
risk-averse formulations by following similar approaches to the ones described in Sections 4—
6. In particular, one can use an adjoint multi-gradient method to solve the UL problem (see
Subsection 8.1) and consider optimistic, risk-neutral, and risk-averse formulations to address
the LL problem in the general case P(x). In the optimistic and risk-neutral cases, the resulting
algorithms differ from each other in terms of the gradients V f¢(x) used in the QP subproblem
(which is (8.2) in the LL single-objective case), for all i € {1,...,p}. More specifically, in the op-
timistic case, the vector of weights A € R%, which is associated with the LL objective functions,
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is included among the UL variables, and the adjoint gradients of the individual objective func-
tions f&pp (2, A) = fi(z,y(z,\)) are given by V fipp = (Vafopr, Vafopr)- In the risk-neutral
case, each individual objective function is given by fiy(z) = (1/N) Zi\;l fi(z,y(z,A")), and
the resulting gradients are Vfiy(z) = (1/N) SV Vi (), where fEK () = fi(z,y(z, \Y))
for all : € {1,...,p} and t € {1,..., N}. Developing an algorithm for the risk-averse case by
following the approach introduced in Section 6 leads to a constrained problem like (6.5) with
multiple objective functions. Solving such a problem requires an algorithm for multi-objective
constrained problems and, therefore, further research is needed to make the resulting algorithm
efficient, robust, and scalable.
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