
Worst Case Complexity of Direct Search under Convexity

M. Dodangeh∗ L. N. Vicente†

November 18, 2014

Abstract

In this paper we prove that the broad class of direct-search methods of directional type,
based on imposing sufficient decrease to accept new iterates, exhibits the same worst case
complexity bound and global rate of the gradient method for the unconstrained minimization
of a convex and smooth function.

More precisely, it will be shown that the number of iterations needed to reduce the norm
of the gradient of the objective function below a certain threshold is at most proportional
to the inverse of the threshold. It will be also shown that the absolute error in the function
values decay at a sublinear rate proportional to the inverse of the iteration counter.

In addition, we prove that the sequence of absolute errors of function values and iterates
converges r-linearly in the strongly convex case.

Keywords: Derivative-free optimization, direct search, worst case complexity, global rate, sufficient
decrease, convexity.

1 Introduction

In this paper we focus on directional direct-search methods applied to the minimization of a
real-valued, convex, and continuously differentiable objective function f , without constraints,

min
x∈Rn

f(x). (1)

In direct-search methods, the objective function is evaluated, at each iteration, at a finite number
of points. No derivatives are required. The action of declaring an iteration successful (moving
into a point of lower objective function value) or unsuccessful (staying at the same iterate) is
based on objective function value comparisons. Some of these methods are directional in the
sense of moving along predefined directions along which the objective function will eventually
decrease for sufficiently small step sizes (see, e.g., [3, Chapter 9]). Those of simplicial type
(see, e.g., [3, Chapter 8]), such as the Nelder-Mead method, are not considered here. There are
essentially two ways of globalizing direct-search methods (of directional type), meaning making
∗Department of Mathematics, University of Coimbra, 3001-501 Coimbra, Portugal (dodangeh@mat.uc.pt).

Support for this author was provided by FCT under the scholarship SFRH/BD/51168/2010.
†CMUC, Department of Mathematics, University of Coimbra, 3001-501 Coimbra, Portugal (lnv@mat.uc.pt).

Support for this research was provided by FCT under grants PTDC/MAT/116736/2010 and PEst-
C/MAT/UI0324/2011.

1

them convergent to stationary points independently of the starting point: (i) by integer lattices,
insisting on generating points in grids or meshes (which refine only with the decrease of the
step size), or (ii) by imposing a sufficient decrease condition, involving the size of the steps, on
the acceptance of new iterates. Although we derive our results for the latter strategy, we recall
that both share the essentials of this class of direct-search methods: the directional feature for
the displacements, and, as in any other direct-search technique, the fact that decisions in each
iteration are taken solely by comparison of objective function values.

The analyzes of global convergence of algorithms can be complemented or refined by deriving
worst case complexity (WCC) bounds for the number of iterations or number of function evalu-
ations, an information which becomes valuable in many instances. In terms of the derivation of
WCC bounds, Nesterov [11, Page 29] first showed that the steepest descent or gradient method
for unconstrained optimization takes at most O(ε−2) iterations (or gradient evaluations) to drive
the norm of the gradient of the objective function below ε ∈ (0, 1). Such a bound has been proved
sharp or tight by Cartis, Gould, and Toint [1]. There has been quite an amount of research on
WCC bounds for several other classes of algorithms in the non-convex case (see, e.g., [7, 9, 14]).

Derivative-free or zero-order methods have also been recently analyzed with the purpose of
establishing their WCC bounds. Vicente [17] has shown a WCC bound of O(ε−2) for the number
of iterations of direct-search methods (of directional type, when imposing sufficient decrease, and
applied to a smooth, possibly non-convex function), which translates to O(n2ε−2) in terms of
the number of function evaluations. Cartis, Gould, and Toint [2] have derived a WCC bound
of O(n2ε−3/2) for their adaptive cubic overestimation algorithm when using finite differences to
approximate derivatives. In the non-smooth case, using smoothing techniques, both Garmanjani
and Vicente [6] and Nesterov [12] established a WCC bound of approximately O(ε−3) iterations
for their zero-order methods, where the threshold ε refers now to the gradient of a smoothed
version of the original function.

Nesterov [11, Section 2.1.5] has also shown that the gradient method achieves an improved
WCC bound of O(ε−1) if the objective function is convex. For derivative-free optimization,
Nesterov [12] proved that his random Gaussian approach also attains (but now in expectation)
the O(ε−1) in the convex (smooth) case. It is thus natural to ask if one can achieve a similar
bound for deterministic zero-order methods, and direct search offers a simple and instructive
setting to answer such a question. In this paper, we will show that direct search can indeed
achieve a bound of O(ε−1) under the presence of convexity. The derived WCC bound measures
the maximum number of iterations required to find a point where the norm of the gradient of the
objective function is below ε, and, once again, it is proved for directional direct-search methods
when a sufficient decrease condition based on the size of the steps is imposed to accept new
iterates. As in the non-convex case, the corresponding maximum number of objective function
evaluations becomes O(n2ε−1).

In the convex case it is also possible to derive global rates for the absolute error in function
values when the solutions set is nonempty. Such an error is known to decay at a sublinear rate of
1/k for the gradient method when the function is convex. The rate is global since no assumption
on the starting point is made. We derive in this paper a similar rate for direct search. Note that
the random Gaussian approach [12] only achieves such a rate in expectation.

As in the gradient method, we also go one step further and show that the absolute error in
function values as well as in the iterates converges globally and r-linearly when the function is
strongly convex. Such a rate applies to the whole sequence of iterates and its derivation does
not require a monotone nonincrease of the step size (as it is the case of a similar r-linear rate

2

derived for direct search globalized using integer lattices by Dolan, Lewis, and Torczon [4]).
Our results are derived for convex functions where the supreme distance between any point

in the initial level set and the solutions set is bounded. Such property is satisfied when the
solutions set is bounded (including strongly convexity as a particular case), but it is also met in
several instances where the solutions sets are unbounded.

The structure of the paper is as follows. In Section 2, we briefly comment on the worst
case complexity (WCC) bounds and global rates of the gradient or steepest descent method.
In Section 3, we describe the class of direct search under consideration and provide the known
results (global asymptotics and WCC bounds) for the smooth (continuously differentiable) and
non-convex case. Then, in Section 4, we derive the global rate and WCC bound for such direct-
search methods in the also smooth but now convex case. The strongly convex case is covered in
Section 5. Some numerical experiments are reported in Section 6 to illustrate how the class of
direct-search methods studied in this paper compares to the random Gaussian approach in [12]
and the corresponding two-points improvement suggested in [5]. In Section 7 we draw some
concluding remarks based on the specifics of the material covered during the paper. We note that
the notation O(A) has meant and will mean a multiple of A, where the constant multiplying A
does not depend on the iteration counter k of the method under analysis (thus depending only on
f or on algorithmic constants which are set at the initialization of the method). The dependence
of A on the dimension n of the problem will be made explicit whenever appropriate. The vector
norms will be `2 ones. Given an open subset Ω of Rn, we denote by C1

ν(Ω) the set of continuously
differentiable functions in Ω with Lipschitz continuous gradient in Ω, where ν is the Lipschitz
constant of the gradient. We use the notation F(Ω) to represent the set of convex functions
defined on a convex set Ω. The intersection of both is denoted by F1

ν (Ω) = F(Ω) ∩ C1
ν(Ω),

where Ω is open and convex. Finally, since our functions will always be assumed continuously
differentiable, uniform and strong convexity are thus equivalent notions and from now on we will
talk only about strongly convex functions. The notation F1

ν,µ(Ω) will denote the subset of C1
ν(Ω)

formed by the strongly convex functions with constant µ > 0.

2 WCC of gradient-type methods

Given a starting point x0 ∈ Rn, the gradient or steepest descent method takes the form xk+1 =
xk − hk∇f(xk), where hk > 0 defines the step size. The algorithm can be applied whenever
the function f is continuously differentiable, and the well known fact that −∇f(xk) is a descent
direction provides the basis for the convergence properties of the method. The update of the
step size hk is also a crucial point in this class of minimization algorithms. There are improper
choices of the step size that make such gradient-type algorithms diverge [15, Chapter 3]. The
proper update of the step size is thus central in achieving global convergence (see, e.g., [11, 15]).

For a number of the well known strategies to update the step size, it is possible to prove that,
when f ∈ C1

ν(Rn), there is a constant C = C(ν) > 0 such

f(xk)− f(xk+1) ≥ C(ν)‖∇f(xk)‖2, (2)

where C(ν) is essentially a multiple of 1/ν, with ν the Lipschitz constant of the gradient of f ,
(being the multiple dependent on the parameters involved in the update of the step size; in [11,
Page 29], for instance, C(ν) = 1/(2ν) for hk = 1/ν). In such cases, assuming that f is also
bounded from below on Rn, one can show that the gradient method takes at most O(ε−2)

3

iterations to reduce the norm of the gradient below ε > 0 (see [11, Page 29]), to be more specific(
f(x0)− flow

C(ν)

)
1

ε2
.

The constant multiplying ε−2 depends thus only on ν, on the parameters involved in the update
of the step size, on and the lower bound flow for f in Lf (x0) = {x ∈ Rn : f(x) ≤ f(x0)}.

If, additionally, f is assumed convex, i.e., f ∈ F1
ν (Rn), then Nesterov [11, Section 2.1.5]

showed that one can achieve a better WCC bound in terms of the negative power of ε. First,
based on the geometric properties of smooth convex functions (essentially [11, Equation (2.1.7)]),
he proved, for simplicity using hk = 1/ν, that the absolute error in function values decays at a
sublinear rate of 1/k

f(xk)− f∗ ≤
2ν‖x0 − x∗‖2

k + 4
, (3)

where f∗ is the value of the function at a (global) minimizer (see [11, Corollary 2.1.2]), assumed
to exist. But then one can easily see, by repeatedly applying (2), that

2ν‖xk − x∗‖
k + 2

≥ f(xk)− f∗

≥ C(ν)‖∇f(xk)‖2 + f(xk+1)− f∗

≥ C(ν)

2k∑
`=k

‖∇f(x`)‖2 + f(x2k+1)− f∗

≥ C(ν)

2k∑
`=k

‖∇f(x`)‖2.

Again, C(ν) = 1/(2ν) when hk = 1/ν. The gradient method is then proved to only take at
most O(ε−1) iterations to achieve a threshold of ε on the norm of the gradient. The constant
multiplying ε−1 is essentially a multiple of ν‖x0 − x∗‖.

3 WCC of direct search

The direct-search method under analysis is described in Algorithm 3.1, following the presentation
in [3, Chapter 7]. The directional feature is presented in the poll step, where points of the form
xk + αkd, for directions d belonging to the positive spanning set Dk, are tested for sufficient
decrease (and by a positive spanning set we mean a set of nonzero directions that spans Rn with
non-negative coefficients). For this purpose, following the terminology in [10], ρ : (0,∞)→ (0,∞)
will represent a forcing function, i.e., a non-decreasing (typically continuous) function satisfying
limt↓0 ρ(t)/t = 0. Typical examples of forcing functions are ρ(t) = Ctp, for p > 1 and C > 0. The
poll step is successful if the value of the objective function is sufficiently decreased relatively to
the step size αk, in the sense that there exists dk ∈ Dk such that f(xk +αkdk) < f(xk)− ρ(αk),
in which case the step size is possibly increased. Failure in doing so defines an unsuccessful
iteration, and the step size is decreased by a factor strictly less than 1 that changes between two
bounds which need to be fixed during the course of the iterations. The search step is purposely
left open since it does not interfere in any of the convergence or complexity properties of the
algorithm, and it is solely used to improve the practical performance of the overall algorithm.

4

Algorithm 3.1 (Directional direct-search method)

Initialization
Choose x0 with f(x0) < +∞, α0 > 0, 0 < β1 ≤ β2 < 1, and γ ≥ 1.

For k = 0, 1, 2, . . .

1. Search step: Try to compute a point with f(x) < f(xk) − ρ(αk) by evaluating the
function f at a finite number of points. If such a point is found, then set xk+1 = x,
declare the iteration and the search step successful, and skip the poll step.

2. Poll step: Choose a positive spanning set Dk. Order the set of poll points Pk =
{xk + αkd : d ∈ Dk}. Evaluate f at the poll points following the chosen order. If
a poll point xk + αkdk is found such that f(xk + αkdk) < f(xk) − ρ(αk), then stop
polling, set xk+1 = xk + αkdk, and declare the iteration and the poll step successful.
Otherwise, declare the iteration (and the poll step) unsuccessful and set xk+1 = xk.

3. Mesh parameter update: If the iteration was successful, then maintain or increase
the step size parameter: αk+1 ∈ [αk, γαk]. Otherwise, decrease the step size parame-
ter: αk+1 ∈ [β1αk, β2αk].

In the poll step one may move opportunistically to the first point where sufficient decrease
was found or continue for complete polling where the point with the lowest function value is then
chosen.

When the objective function is bounded from below one can prove that there exists a subse-
quence of unsuccessful iterates driving the step size parameter to zero (see [10] or [3, Theorems 7.1
and 7.11 and Corollary 7.2]).

Lemma 3.1 Let f be bounded from below on Lf (x0) = {x ∈ Rn : f(x) ≤ f(x0)}. Then
Algorithm 3.1 generates an infinite subsequence K of unsuccessful iterates for which lim

k∈K
αk = 0.

Note that when the function f is convex and has a minimizer, it is necessarily bounded from
below.

To continue towards the global properties (asymptotic convergence and rates) for this class of
direct search, one must look at the key feature of a positive spanning set, its cosine measure [10].
Given a positive spanning set D, its cosine measure is given by

cm(D) = min
06=v∈Rn

max
d∈D

v>d

‖v‖‖d‖
.

Any positive spanning set has a positive cosine measure. This fact means for any non-zero vector,
in particular the negative gradient at a given point, there is at least one direction in D making
an acute angle with it. Such a property enables us to derive that the norm of the gradient is of
the order of the step size when an unsuccessful iteration occurs [4, 10] (see also [3, Theorem 2.4
and Equation (7.14)]).

5

Theorem 3.1 ([4, 10]) Let Dk be a positive spanning set and αk > 0 be given. Assume that ∇f
is Lipschitz continuous (with constant ν > 0) in an open set containing all the poll points in Pk.
If f(xk) ≤ f(xk + αkd) + ρ(αk), for all d ∈ Dk, i.e., the iteration k is unsuccessful, then

‖∇f(xk)‖ ≤ cm(Dk)
−1

ν
2
αk max

d∈Dk
‖d‖+

ρ(αk)

αk min
d∈Dk

‖d‖

 . (4)

It becomes then obvious that one needs to avoid degenerate positive spanning sets.

Assumption 3.1 All positive spanning sets Dk used for polling (for all k) must satisfy cm(Dk) ≥
cmmin and dmin ≤ ‖d‖ ≤ dmax for all d ∈ Dk (where cmmin > 0 and 0 < dmin ≤ dmax are con-
stants).

A first global asymptotic result is then easily obtained by combining Lemma 3.1 and The-
orem 3.1 (under Assumption 3.1), and ensures the convergence to zero of the gradient at a
subsequence of unsuccessful iterates. Moreover, we have the following WCC bounds in this
general non-convex, smooth setting [17].

Theorem 3.2 ([17]) Consider the application of Algorithm 3.1 when ρ(α) = Cαp, p > 1, C > 0,
and Dk satisfies Assumption 3.1. Let f be bounded from below in Lf (x0) and f ∈ C1

ν(Ω) where
Ω is an open set containing Lf (x0).

Under these assumptions, to reduce the norm of the gradient below ε ∈ (0, 1), Algorithm 3.1
takes at most

O((
√
nνε−1)p̂),

iterations, and at most

O(n(
√
nνε−1)p̂).

function evaluations, where p̂ = p
min(1,p−1) .

When p = 2, these numbers are of O(nν2ε−2) and O(n2ν2ε−2), respectively.
The constant in O(·) depends only on dmin, dmax, cmmin, C, p, β1, β2, γ, α0, and on the

lower bound of f in Lf (x0).

How the step size αk is updated impacts in several ways the WCC bounds given above for
Algorithm 3.1. In fact, the choice of C in the forcing function and the choice of the parameters
β1, β2, and γ in the step size updating formulas influence the constant in the bound (4). Increas-
ing C, for instance, will decrease the number of successful iterations [17, Theorem 3.1], possibly
leading to more unnecessary unsuccessful iterations and consequently more unnecessary function
evaluations. Increasing the value of the expansion factor γ ≥ 1 will increase the maximum num-
ber of unsuccessful iterations compared to the number of successful ones [17, Theorem 3.2], again
possibly leading to more unnecessary unsuccessful iterations and consequently more unnecessary
function evaluations. Setting γ = 1 leads to an optimal choice in this respect. One practical
strategy to accommodate γ > 1 is by considering an upper bound for the step size itself.

Assumption 3.2 There is a positive constant M such that αk ≤M for ∀k ≥ 0.

6

This is not a strong assumption at all since one can always pick a constant M > α0 and
then update the step size at successful iterations by αk+1 ∈ [αk,min{γαk,M}]. Under this
assumption Theorem 3.1 simplifies to the following:

Corollary 3.1 Consider ρ(αk) = Cαpk, p > 1, C > 0. Under the assumptions of Theorem 3.1
and Assumptions 3.1 and 3.2, if f(xk) ≤ f(xk+αkd)+ρ(αk), for all d ∈ Dk, i.e., the iteration k
is unsuccessful, then

‖∇f(xk)‖ ≤ cm−1
min

ν
2dmaxM + Cd−1

minM
p−1

Mmin(1,p−1)
αk

min(1,p−1). (5)

The step size upper bound M will appear thus in the upper bound for the gradient in
unsuccessful iterations. When p = 2, the upper bound on the gradient does not depends on M ,

‖∇f(xk)‖ ≤ cm−1
min

(ν
2
dmax + Cd−1

min

)
αk.

The analysis of worst case complexity for the convex case when p 6= 2 will, however, depend on
the upper bound M for the step size.

4 WCC of direct search for a class of convex functions

In this section, we will analyze the WCC of direct search when the objective function is smooth
and convex under the following assumption.

Assumption 4.1 The solutions set Xf
∗ = {x∗ ∈ Rn : x∗ is a minimizer of f} for problem (1)

is nonempty. The level set Lf (x) = {y ∈ Rn : f(y) ≤ f(x)} is bounded for some x or, if that is
not the case, supy∈Lf (x0) dist(y,Xf

∗) is still finite.

If Lf (x0) is bounded, then supy∈Lf (x0) dist(y,Xf
∗) is trivially finite.

Furthermore, it is known that when a convex function f is proper and closed (meaning semi-
continuous) the following property is true (see [16, Corollary 8.7.1]): if {x ∈ Rn : f(x) ≤ α} is
nonempty and bounded for some α, then it is bounded for all α. In particular, since we assume
that Xf

∗ is nonempty, Xf
∗ = Lf (x∗) for some x∗, and if Xf

∗ is bounded so is Lf (x0). Moreover, a
(finite, thus continuous) strongly convex function in Rn has a unique minimizer x∗, which then
makes Xf

∗ nonempty and bounded.
In conclusion, and generally speaking, strong convexity of f and boundedness of either Xf

∗
or Lf (x0) fulfill the above assumption and make supy∈Lf (x0) dist(y,Xf

∗) finite. Let

R = sup
y∈Lf (x0)

dist(y,Xf
∗).

Note that there are convex functions f such that supy∈Lf (x0) dist(y,Xf
∗) is finite but neither

f is strongly convex nor Lf (x) is bounded for any x, being such an instance the two-dimensional
function f(x, y) = y2. There are however some rare pathological instances where Assumption 4.1
does not hold (see the end of the paper).

Note also that assuming the finiteness of the longest distance from the initial level set to the
solutions set is unnecessary in the gradient method since it can be proved that for a constant step

7

size smaller than 2/ν the iterates satisfy ‖xk−x∗‖ ≤ ‖x0−x∗‖ (see Nesterov [11, Theorem 2.1.13]).
The lack of knowledge of the gradient makes the control of the longest distance to the solutions
set harder in direct search.

To avoid repeating the several assumptions in the statements of the results of this section we
will combine them in the following one.

Assumption 4.2 Consider the application of Algorithm 3.1 when ρ(t) = C tp, p > 1, C > 0,
and Dk satisfies Assumption 3.1. Let f ∈ F1

ν (Ω), where Ω is an open and convex set containing
Lf (x0). Let Assumption 3.2 (when p 6= 2) and Assumption 4.1 also hold.

We will make extensive use of the sets S(k0, j) and U(k0, j) to represent the indices of
successful and unsuccessful iterations, respectively, between k0 (including it) and j (excluding
it).

4.1 Global rate on function values

We will start by measuring the decrease obtained in the objective function until a given iteration
as a function of the number of successful iterations occurred until then. Recall that f∗ = f(x∗)

for some x∗ ∈ Xf
∗ and p̂ = p

min(1,p−1) ≥ 2 for p > 1.

Lemma 4.1 Let Assumptions 4.2 hold. Let k0 be the index of the first unsuccessful iteration
(which must exist from Lemma 3.1). Then Algorithm 3.1 generates a sequence {xk}k≥k0 such
that

(f(xk)− f∗)p̂−1 <
Rp̂

ω|S(k0, k)|
, (6)

where

ω = ωp̂gβ
p
1C, ωg =

2 cmminM
min(1,p−1)

νdmaxM + 2Cd−1
minM

p−1
, (7)

and |S(k0, k)| is the number of successful iterations between k0 (including it) and k.

Proof. Let U(k0, k) = {ki}mi=0 represent the set of unsuccessful iterations which occur
between iteration k0, inclusively, and iteration k. One has |S(k0, k)| = k− k0 −m− 1. Since all
iterations between km and k are successful and km is unsuccessful, we have that

f(xk) < f(xk−1)− Cαpk−1

...

< f(xkm+1)− C
k−1∑

j=km+1

αpj

≤ f(xkm+1)− C(k − km − 1)αpkm+1

≤ f(xkm)− βp1C(k − km − 1)αpkm .

Now, by Corollary 3.1,

f(xk) < f(xkm)− (k − km − 1)ω‖∇f(xkm)‖p̂. (8)

8

By applying a similar argument, but now starting from xki , i = m, . . . , 1, we deduce that

f(xki) < f(xki−1
)− (ki − ki−1 − 1)ω‖∇f(xki−1

)‖p̂. (9)

Denote ∆fi = f(xki) − f∗, for i = 0, . . . ,m and ∆fm+1 = f(xk) − f∗. Then, using the
property stated in [11, Equation (2.1.7)] for f ∈ F1

ν (Ω),

f∗ = f(xi∗)

≥ f(xki) + 〈∇f(xki), x
i
∗ − xki〉+

1

2ν
‖∇f(xi∗)−∇f(xki)‖

2

≥ f(xki) + 〈∇f(xki), x
i
∗ − xki〉,

where, for i = 0, . . . ,m, xi∗ is the projection of xki onto the solutions set Xf
∗ (which is convex

and closed since f is convex and continuous). Thus, using Assumption 4.1,

∆fi ≤ 〈∇f(xki), xki − x
i
∗〉

≤ ‖∇f(xki)‖‖xki − x
i
∗‖

≤ R‖∇f(xki)‖, i = 0, . . . ,m. (10)

By combining inequalities (8), (9), and (10) and setting here for simplicity km+1 = k, we
obtain, for i = 1, . . . ,m,m+ 1,

∆fi < ∆fi−1 −
ω

Rp̂
(ki − ki−1 − 1)∆f p̂i−1 < ∆fi−1. (11)

Hence, ∆fi−1/∆fi > 1, i = 1, . . . ,m,m + 1. Now we divide the first inequality in (11) by
∆fi∆fi−1, then use p̂ ≥ 2 and ∆fi−1 > ∆fm+1, and later ∆fi−1/∆fi > 1,

1

∆fi
>

1

∆fi−1
+

ω

Rp̂
(ki − ki−1 − 1)

∆f p̂−1
i−1

∆fi

>
1

∆fi−1
+
ω∆f p̂−2

m+1

Rp̂
(ki − ki−1 − 1)

∆fi−1

∆fi

>
1

∆fi−1
+
ω∆f p̂−2

m+1

Rp̂
(ki − ki−1 − 1). (12)

By summing the inequality (12) for i = 1, . . . ,m,m+ 1, we arrive at

1

∆fm+1
>

1

∆f0
+
ω∆f p̂−2

m+1

Rp̂
(km+1 − k0 −m− 1)

>
ω∆f p̂−2

m+1

Rp̂
(km+1 − k0 −m− 1),

or, equivalently,

(f(xk)− f∗)p̂−1 = ∆f p̂−1
m+1

<
Rp̂

ω(km+1 − k0 −m− 1)

=
Rp̂

ω(k − k0 −m− 1)
,

9

as we wanted to prove (since, remember, |S(k0, k)| = k − k0 −m− 1). �

Following [17, Theorem 3.2] one can also guarantee that the number of unsuccessful iterations
is of the same order as the number of successful ones.

Lemma 4.2 Let Assumptions 4.2 hold. Let k0 be the index of the first unsuccessful iteration
(which must exist from Lemma 3.1). Then Algorithm 3.1 generates a sequence {xk}k≥k0 such
that

|U(k0, k)| ≤
⌈
ω1|S(k0, k)|+ ω2 +

1

min(1, p− 1)
logβ2

(ωg
R

(f(xk)− f∗)
)⌉

, (13)

where

ω1 = − logβ2(γ), ω2 = logβ2(β1/αk0), (14)

ωg is given in (7), and |S(k0, k)| and |U(k0, k)| are the number of successful and unsuccessful
iterations between k0 (including it) and k, respectively.

Proof. Since f ∈ F1
ν (Ω) and Xf

∗ is non-empty, one has for each unsuccessful iteration ki
(with k0 ≤ ki ≤ k)

f(xk)− f∗ ≤ f(xki)− f∗ ≤ 〈∇f(xki), xki − x
i
∗〉,

where xi∗ is the projection of xki onto the solutions set Xf
∗ (which, again, is convex and closed

since f is convex and continuous). Then, from Assumption 4.1,

1

R
(f(xk)− f∗) ≤ ‖∇f(xki)‖. (15)

From Corollary 3.1 and the definition of ωg in (7), we have, for each unsuccessful iteration ki,
that

‖∇f(xki)‖ ≤ ω−1
g α

min(1,p−1)
ki

. (16)

As before, we can backtrack from any iteration j after k0 to the nearest unsuccessful iteration
(say k`, with k` ≥ k0) and, due to the step size updating rules, (16) implies then

αj ≥ β1(ωg‖∇f(xk`)‖)
1

min(1,p−1) , j = k0, k0 + 1, . . . , k

(which holds trivially from (16) if j is itself unsuccessful). Combining the above inequality
with (15) gives a lower bound for each step size αj

αj ≥ β1

(ωg
R

(f(xk)− f∗)
) 1

min(1,p−1)
, j = k0, k0 + 1, . . . , k.

On the other hand, one knows that either αj ≤ β2αj−1 or αj ≤ γαj−1. Hence, by induction,

αk ≤ αk0γ
|S(k0,k)|β

|U(k0,k)|
2 .

In conclusion one has

β1

(ωg
R

(f(xk)− f∗)
) 1

min(1,p−1) ≤ αk ≤ αk0γ
|S(k0,k))|β

|U(k0,k)|
2 ,

10

from which we conclude,

f(xk)− f∗ ≤
R

ωg

(
αk0
β1

γ|S(k0,k)|β
|U(k0,k)|
2

)min(1,p−1)

.

Now, since β2 < 1, the function logβ2(·) is monotonically decreasing, and one obtains (the
coefficient ω1 is nonnegative due to γ ≥ 1)

|U(k0, k)| ≤ ω1|S(k0, k)|+ ω2 +
1

min(1, p− 1)
logβ2

(ωg
R

(f(xk)− f∗)
)
.

�

Lemmas 4.1 and 4.2 lead to a sub-linear convergence rate for the absolute error in the function
values after the first unsuccessful iteration.

Theorem 4.1 Let Assumptions 4.2 hold. Let k0 be the index of the first unsuccessful iteration
(which must exist from Lemma 3.1). Then Algorithm 3.1 generates a sequence {xk}k≥k0 such
that

(f(xk)− f∗)p̂−1 <
κ1

k − κ2
, ∀k > κ2,

where

κ1 = (1− logβ2(γ))
Rp̂

ω
− logβ2(exp(1)),

κ2 =
f(x0)− f∗
Cαp0

+ logβ2

(
β1

αk0

)
+

1

min(1, p− 1)
logβ2

(ωg
R

[f(x0)− f∗]1−(p̂−1) min(1,p−1)
)
,

and ω and ωg are given in (7).

Proof. Due to the definition of k0 and the step size updating rules one has

k0Cαp0 ≤
k0−1∑
j=0

Cαpj <

k0−1∑
j=0

f(xj)− f(xj+1) = f(x0)− f(xk0)

and so
k0 <

f(x0)− f∗
Cαp0

. (17)

11

By applying Lemmas 4.1 and 4.2 and inequality (17) one has

k − f(x0)− f∗
Cαp0

< k − k0

= |Uk(k0, k)|+ |Sk(k0, k)|
≤ (1− logβ2(γ))|Sk(k0, k)|+ logβ2(β1/αk0)

+
1

min(1, p− 1)
logβ2

(ωg
R

(f(xk)− f∗)
)

≤ (1− logβ2(γ))
Rp̂

ω

1

(f(xk)− f∗)p̂−1
+ logβ2(β1/αk0)

+
1

min(1, p− 1)
logβ2

(ωg
R

(f(xk)− f∗)
)

= (1− logβ2(γ))
Rp̂

ω

1

(f(xk)− f∗)p̂−1
+ logβ2(β1/αk0)

+
1

min(1, p− 1)
logβ2

(ωg
R

(f(xk0)− f∗)
)

+
1

min(1, p− 1)
logβ2

(
f(xk)− f∗
f(xk0)− f∗

)
. (18)

Note that for any p > 1, one has p̂ ≥ 2 and so p̂ − 1 ≥ 1. Since 1/min(1, p − 1) is equal
to p̂ − 1 when 1 < p ≤ 2 and to 1 when p > 2, it holds 1/min(1, p − 1) ≤ p̂ − 1. From
(f(xk) − f∗)/(f(xk0) − f∗) ≤ 1 and β2 < 1, one has logβ2 ((f(xk)− f∗)/(f(xk0)− f∗)) ≥ 0. So,
from (18)

k − f(x0)− f∗
Cαp0

< (1− logβ2(γ))
Rp̂

ω

1

(f(xk)− f∗)p̂−1
+ logβ2(β1/αk0)

+
1

min(1, p− 1)
logβ2

(ωg
R

[f(xk0)− f∗]1−(p̂−1) min(1,p−1)
)

+ (p̂− 1) logβ2 (f(xk)− f∗) . (19)

Now, given ε̄ ∈ (0,∞),

(p̂− 1) logβ2(ε̄) = − logβ2(ε̄(1−p̂))

= − logβ2(exp(1)) ln(ε̄(1−p̂))

≤ − logβ2(exp(1))ε̄(1−p̂), (20)

where the last inequality follows from ln(x) ≤ x, x > 0.
Then, from (20) with ε̄ = f(xk)− f∗, one has

(p̂− 1) logβ2 (f(xk)− f∗) ≤ − logβ2(exp(1))
1

(f(xk)− f∗)p̂−1

and the proof is concluded by plugging this inequality in (19) and using k > κ2. �

12

4.2 WCC bounds

In the following lemma, by using the result of Lemma 4.1, we will derive an upper bound for the
number of successful iterations after the first unsuccessful one needed to achieve an iterate for
which the norm of the gradient is below a given threshold.

Lemma 4.3 Let Assumptions 4.2 hold. Let k0 be the index of the first unsuccessful iteration
(which must exist from Lemma 3.1). Given any ε ∈ (0, 1), assume that ‖∇f(xk0)‖ > ε and let k̄
be the first iteration after k0 such that ‖∇f(xk̄)‖ ≤ ε. Then, to achieve ‖∇f(xk̄)‖ ≤ ε, starting
from k0, Algorithm 3.1 takes at most |S(k0, k̄)| successful iterations, where

|S(k0, k̄)| ≤
⌈

2
R

ω
ε1−p̂ + 1

⌉
(21)

and ω is given in (7).

Proof. Let l, with k0 < l < k̄, be the index of a successful iteration occurring before k̄,
m+ 1 = |U(k0, k̄)| be number of unsuccessful iterations between k0 (including it) and k̄, m1 be
the number of unsuccessful iterations between k0 and l, and k1, k2, . . . , km be the sequence of
unsuccessful iterations between k0 and k̄.

| | | | | |
k0 km1

l

km1+1 km

k̄

Let us assume first that there are unsuccessful iterations between l and k̄ (like in the figure
above). Exactly as in the derivation of inequalities (8)–(9), applying also Corollary 3.1 and the
step size updating rules, we have

f(xk̄) < f(xkm)− (k̄ − km − 1)ω‖∇f(xkm)‖p̂

and,

f(xki) < f(xki−1
)− (ki − ki−1 − 1)ω‖∇f(xki−1

)‖p̂, m1 + 2 ≤ i ≤ m,
f(xkm1+1) < f(xl)− (km1+1 − l)ω‖∇f(xkm1

)‖p̂.

Summing up these inequalities and considering ‖∇f(xk)‖ > ε for k < k̄ lead us to

f(xl) > f(xk̄) + (k̄ − l −m+m1)ωεp̂.

If there are no unsuccessful iterations between l and k̄, m = m1 and this inequality is also true
by a similar argument. On the other hand, by Lemma 4.1

(f(xl)− f∗)p̂−1 ≤ Rp̂

ω(l − k0 −m1 − 1)
.

So, in conclusion

(k̄ − l −m+m1)ωεp̂ ≤ (k̄ − l −m+m1)ωεp̂ + f(xk̄)− f∗
≤ f(xl)− f∗

≤
(

Rp̂

ω(l − k0 −m1 − 1)

) 1
p̂−1

. (22)

13

Now we choose l such that the number of successful iterations after l is at most one times
higher than the number of successful iterations until l. To explicitly describe l we divide the
number of successful iterations into two parts (k̄ − k0 −m − 1)/2, then add the number m1 of
unsuccessful iterations until the middle point, and finally shift by k0. Hence l is given by

l =

⌊
k̄ − k0 −m− 1

2

⌋
+ k0 +m1 + 1.

With such a choice of l, the number κ of successful iterations between k0 and l is

κ = l − k0 −m1 − 1

and a simple argument shows that

κ = l − k0 −m1 − 1 ≤ k̄ − l −m+m1 ≤ κ+ 1, (23)

as expected.
Now, from (22),

(ωκ)
p̂
p̂−1 ≤ ω(k̄ − l −m+m1)[ω(l − k0 −m1 − 1)]

1
p̂−1

≤ R
p̂
p̂−1 ε−p̂,

and
κ ≤ R

ω
ε1−p̂. (24)

But due to equation (23), 2κ + 1 is bigger than the number of successful iterations between k0

and k̄,

2κ+ 1 = κ+ 1 + κ

≥ (k̄ − l −m+m1) + (l − k0 −m1 − 1)

= k̄ − k0 −m− 1,

which finishes the proof. �

One can also guarantee that the number of unsuccessful iterations is of the same order as the
number of successful ones.

Lemma 4.4 Let Assumptions 4.2 hold. Let k0 be the index of the first unsuccessful iteration
(which must exist from Lemma 3.1). Given any ε ∈ (0, 1), assume that ‖∇f(xk0)‖ > ε and let k̄
be the first iteration after k0 such that ‖∇f(xk̄)‖ ≤ ε. Then, to achieve ‖∇f(xk̄)‖ ≤ ε, starting
from k0, Algorithm 3.1 takes at most |U(k0, k̄)| unsuccessful iterations, where

|U(k0, k̄)| ≤
⌈
ω1|S(k0, k̄)|+ ω2 +

1

min(p− 1, 1)
logβ2(ωgε)

⌉
,

ωg is given in (7), and ω1 and ω2 are given in (14).

14

Proof. The proof is similar to the one of Lemma 4.2 using k̄−1 instead of k and ε instead of
(f(xk)−f∗)/R. The bound will then be on |U(k0, k̄−1)| but |U(k0, k̄)| = |U(k0, k̄−1)| since k̄−1
is successful (and in the notation U(k0, j) one is not counting j). �

We are finally ready to state the WCC bound for Algorithm 3.1 when the objective function
is convex. To do that we combine Lemmas 4.3 and 4.4 and bound the number of successful
iterations until the first unsuccessful one. By doing so we show below that direct search takes at
most O(ε1−p̂) iterations after the first unsuccessful one to bring the norm of the gradient below
ε ∈ (0, 1).

Theorem 4.2 Let Assumptions 4.2 hold. To reduce the norm of the gradient below ε ∈ (0, 1),
Algorithm 3.1 takes at most

κ3ε
1−p̂ + κ4

iterations, where

κ3 = 2(1− logβ2(γ))
R

ω
− logβ2(exp(1)),

κ4 = logβ2

(
β1

αk0

)
+ logβ2

(
β2

γ
ω

1
min(1,p−1)
g

)
+
f(x0)− f∗
Cαp0

,

and ω and ωg are given in (7). When p = 2, this number is of O(ν2ε−1).

Proof. One can now use Lemmas 4.3 and 4.4

k̄ − k0 = |S(k0, k̄)|+ |U(k0, k̄)|
≤ (1− logβ2(γ))|S(k0, k̄)|+ logβ2(β1/αk0)

+
1

min(1, p− 1)
logβ2(ωgε)

≤ (1− logβ2(γ))

(
2
R

ω
ε1−p̂ + 1

)
+ logβ2(β1/αk0)

+
1

min(1, p− 1)
logβ2(ωgε).

From 1/min(1, p− 1) ≤ p̂− 1 (see the proof of Theorem 4.1) and the derivation (20) with ε̄ = ε,

1

min(1, p− 1)
logβ2(ωgε) ≤ (p̂− 1) logβ2(ωgε).

The proof is then completed by using 1 − logβ2(γ) = logβ2(β2/γ) and then by applying the
bound (17) on k0. �

To count the corresponding number of function evaluations we need first to factor out the
dependence of n in the above bound. We know from [17] that, in this bound, only the minimum
cosine measure of the positive spanning sets depends explicitly on n. One also knows from the
positive spanning set formed by the coordinate vectors and their negatives that such minimum
cosine measure can be set greater than or equal to 1/

√
n, and thus 1/ω ≤ O(n

p̂
2), where ω is

given in (7). On the other hand, each poll step when using such positive spanning sets costs at
most O(n) function evaluations. One then assumes, for compatibility with the cost of such poll
steps, that the search step, when non-empty, takes at most O(n) function evaluations.

15

Corollary 4.1 Let Assumptions 4.2 hold. Let cmmin be at least a multiple of 1/
√
n and the

number of function evaluations per iteration be at most a multiple of n. To reduce the norm of
the gradient below ε ∈ (0, 1), Algorithm 3.1 takes at most

O
(
n
p̂+2
2 ν p̂ε1−p̂

)
function evaluations. When p = 2, this number is of O(n2ν2ε−1).

5 Global rate of direct search under strong convexity

A continuously differentiable function f is called strongly convex in Rn with constant µ > 0
(notation f ∈ F1

µ(Rn)) if there exists a constant µ > 0 such that, for any x, y ∈ Rn,

f(x) ≥ f(y) + 〈∇f(y), x− y〉+
1

2
µ‖x− y‖2.

As in [13, Equation (3.2)], by minimizing both sides of the above inequality in y for any x ∈ Rn,
strong convexity implies

f(x)− f∗ ≤
1

2µ
‖∇f(x)‖2, ∀x ∈ Rn, (25)

where f∗ = f(x∗) and x∗ is the unique minimizer of f . Due to ∇f(x∗) = 0 the first inequality
above also implies

f(x)− f∗ ≥
1

2
µ‖x− x∗‖2, ∀x ∈ Rn. (26)

We will also make use of the following property (see [11, Equation (2.1.6)])

f(y)− f(x)− 〈∇f(x), y − x〉 ≤ ν

2
‖y − x‖2 (27)

for f ∈ F1
ν,µ(Ω) (meaning when f is strongly convex and∇f is Lipschitz continuous with constant

ν > 0).
We are thus prepared to prove that the rate of convergence of function values and iterates

for strongly convex functions is linear when p = 2. To avoid repeating the several assumptions
in the statements of the results of this section we will combine them in the following one.

Assumption 5.1 Consider the application of Algorithm 3.1 when ρ(t) = C t2 (p = 2), C > 0,
and Dk satisfies Assumption 3.1. Let f ∈ F1

ν,µ(Rn).

As usual, we will start by considering first the case of the successful iterations.

Lemma 5.1 Let Assumptions 5.1 hold. Let k0 be the index of the first unsuccessful iteration
(which must exist from Lemma 3.1). Then Algorithm 3.1 generates a sequence {xk}k≥k0 such
that

f(xk)− f∗ < (1− 2ωµ)|S(k0,k)|(f(xk0)− f∗), (28)

‖xk − x∗‖ <
√
ν

µ
(1− 2µω)

1
2
|S(k0,k)|‖xk0 − x∗‖, (29)

where ω is given in (7) and |S(k0, k)| is the number of successful iterations between k0 (including
it) and k.

16

Proof. Let j (with k0 < j ≤ k) be index of a successful iteration generated by Algorithm 3.1.
Again, we can backtrack to nearest unsuccessful iteration k` (with k` ≥ k0), and using the
sufficient decrease condition, the step size updating rules, Corollary 3.1, and the definition of ω
in (7), we obtain

f(xj)− f(xj+1) > Cα2
j

≥ Cβ2
1α

2
k`

≥ ω‖∇f(xk`)‖
2

≥ 2ωµ(f(xk`)− f∗)
> 2ωµ(f(k`)− f∗),

where the fourth inequality follows from inequality (25). Hence,

f(xj+1)− f∗ < (1− 2ωµ)(f(xj)− f∗).

A repeatedly application of the above inequality will lead us to (28).
Now, the application of inequalities (26), (28), and (27) with y = xk0 and x = x∗ gives us

µ

2
‖xk − x∗‖2 ≤ f(xk)− f∗

< (1− 2µω)|S(k0,k)|(f(xk0)− f∗)

≤ (1− 2µω)|S(k0,k)| ν

2
‖xk0 − x∗‖2,

yielding (29). �

Now one needs to take care of the number of unsuccessful iterations. The assumption of
strongly convexity will lead to a bound better than (13).

Lemma 5.2 Let Assumptions 5.1 hold. Let k0 be the index of the first unsuccessful iteration
(which must exist from Lemma 3.1). Then Algorithm 3.1 generates a sequence {xk}k≥k0 such
that

|U(k0, k)| ≤
⌈
ω1|S(k0, k)|+ ω2 + logβ2(ωg

√
2µ(f(xk)− f∗))

⌉
, (30)

|U(k0, k)| ≤
⌈
ω1|S(k0, k)|+ ω2 + logβ2(µωg‖xk − x∗‖)

⌉
, (31)

where ωg is given in (7), ω1 and ω2 are given in (14), and |S(k0, k)| and |U(k0, k)| are the number
of successful and unsuccessful iterations between k0 (including it) and k, respectively.

Proof. From inequality (25), one has for each unsuccessful iteration ki (with k0 ≤ ki ≤ k)

‖∇f(xki)‖
2 ≥ 2µ(f(xki)− f∗) ≥ 2µ(f(xk)− f∗).

Now, by an argument like in the proof of the Lemma 4.2, but using
√

2µ(f(xk)− f∗) instead of
(f(xk)− f∗)/R, one obtains

f(xk)− f∗ ≤
1

2µω2
g

(
αk0
β1

γ|S(k0,k)|β
|U(k0,k)|
2

)2

.

17

In turn, this inequality and (26) imply

‖xk − x∗‖ ≤
1

µωg

(
αk0
β1

γ|S(k0,k)|β
|U(k0,k)|
2

)
,

and the proof can be finished by applying logβ2 and noting that β2 < 1 and ω1 ≥ 0. �

Lemmas 5.1 and 5.2 result in a linear convergence rate (when p = 2) for the absolute error
in function values and iterates after the first unsuccessful iteration.

Theorem 5.1 Let Assumptions 5.1 hold. Let k0 be the index of the first unsuccessful iteration
(which must exist from Lemma 3.1). Then Algorithm 3.1 generates a sequence {xk}k≥k0 such
that

f(xk)− f∗ < β
1
κ5

(k−κ6)
,

‖xk − x∗‖ < β
1

2κ5
(k−κ7)

,

where

κ5 = (1 + ω1) log1−2ωµ(β) + logβ2(
√
β), β = min(β2, 1− 2µω),

κ6 =
f(x0)− f∗
Cα2

0

− (1 + ω1) log1−2ωµ(f(xk0)− f∗) + ω2 + logβ2(ωg
√

2µ),

κ7 =
ν‖x0 − x∗‖2

2Cα2
0

− (1 + ω1) log1−2ωµ

(
ν

µ
‖xk0 − x∗‖2

)
+ ω2 + logβ2(ωgµ),

ω and ωg are given in (7), and ω1 and ω2 are given in (14).

Proof. From inequalities (28) and (30) one has

k − k0 = |U(k0, k)|+ |S(k0, k)|

≤ (1 + ω1)|S(k0, k)|+ ω2 + logβ2

(
ωg
√

2µ(f(xk)− f∗)
)

< (1 + ω1) log1−2ωµ

(
f(xk)− f∗
f(xk0)− f∗

)
+ ω2 + logβ2

(
ωg
√

2µ(f(xk)− f∗)
)

=
[
(1 + ω1) log1−2ωµ(β) + logβ2(

√
β)
]

logβ(f(xk)− f∗)

− (1 + ω1) log1−2ωµ(f(xk0)− f∗) + ω2 + logβ2(ωg
√

2µ).

Then, from inequality (17), one obtains

k −
[
f(x0)− f∗
Cα2

0

− (1 + ω1) log1−2ωµ(f(xk0)− f∗) + ω2 + logβ2(ωg
√

2µ)

]
<

[
(1 + ω1) log1−2ωµ(β) + logβ2(

√
β)
]

logβ(f(xk)− f∗)

which proves the first part of the theorem.

18

By similar arguments, but using now inequalities (29) and (31), it results that

k − k0 = |U(k0, k)|+ |S(k0, k)|
≤ (1 + ω1)|S(k0, k)|+ ω2 + logβ2(ωgµ‖xk − x∗‖)

< (1 + ω1) log1−2ωµ

(
µ

ν

‖xk − x∗‖2

‖xk0 − x∗‖2

)
+ ω2 + logβ2(ωgµ‖xk − x∗‖)

=
[
2(1 + ω1) log1−2ωµ(β) + logβ2(β)

]
logβ(‖xk − x∗‖)

− (1 + ω1) log1−2ωµ

(
ν

µ
‖xk0 − x∗‖2

)
+ ω2 + logβ2(ωgµ).

Again using inequality (17), but now followed by (27) with x = x0 and y = x∗, yields

k −
[
ν‖x0 − x∗‖2

2Cα2
0

− (1 + ω1) log1−2ωµ

(
ν

µ
‖xk0 − x∗‖2

)
+ ω2 + logβ2(ωgµ)

]
<

[
2(1 + ω1) log1−2ωµ(β) + logβ2(β)

]
logβ(‖xk − x∗‖),

which proves the second part. �

The result of Theorem 5.1 improves significantly what has been known for direct search. In
fact, it was proved in [4] that the absolute error for unsuccessful iterates exhibits an r-linear rate
of convergence under the following assumptions: αk is monotonically nonincreasing and xk is
sufficiently close to a point x∗ for which ∇f(x∗) = 0 and ∇2f(x) is positive definite around x∗.
Our result is therefore stronger since (i) the r-linear rate is over the all sequence ‖xk − x∗‖,
whether k is successful or not, (ii) only first order continuously differentiability is assumed, and
(iii) αk can be increased at successful iterations.

6 A comparison with random Gaussian methods

In this section we will report the outcome of numerical experiments involving direct search
(Algorithm 3.1) and the random Gaussian methods of Nesterov [12] and Duchi et al. [5] for the
unconstrained minimization (1) of a smooth, convex function f . We start by describing the
simplest version of the method in [12] when f is smooth. In the scheme below, uk ∈ Rn is drawn
from a Gaussian distribution with correlation operator B−1.

Algorithm 6.1 (Random Gaussian method)

Initialization
Choose x0.

For k = 0, 1, 2, . . .

1. Generate uk and compute gλ(xk) = f(xk+λuk)−f(xk)
λ Buk.

2. Choose a step size hk > 0. Compute xk+1 = xk − hkB−1gλ(xk).

19

n
accuracy

2.0e-3 9.8e-4 4.9e-4 2.4e-4 1.2e-4 6.1e-5 3.1e-5 1.5e-5
2 351 402 451 502 551 599 648 699
4 2738 3169 3588 4019 4439 4848 5256 5694
8 24627 29033 33313 37724 42005 46184 50364 54841
16 251313 304464 356115 409297 460939 511327 561680 615513

Table 1: Average performance of the random Gaussian method (Algorithm 6.1) for the mini-
mization of (34).

One can see that [f(xk+λuk)−f(xk)]/λ is a finite-difference approximation to the derivative
of f(xk +αuk) with respect to α. In [12] it is also considered a central-difference approximation
to this derivative, but we do not present it here as it performed worse. It is proved in [12] that
Algorithm 6.1 achieves a sublinear rate of 1/k in function values for f ∈ F1

ν (Rn), Xf
∗ 6= ∅, in the

case where λ is chosen sufficiently small

λ ≤ λmax =
5

3(n+ 4)

√
ε

2ν
(32)

and hk is set constantly to

hk =
1

4(n+ 4)ν
. (33)

The convergence rate in function values is shown to be r-linear when f is strongly convex.
In the experiments reported in this paper to test Algorithms 3.1 and 6.1, we used the same

positive definite quadratic as in [12],

f(x) =
1

2
x2

1 +
1

2

n−1∑
i=1

(xi+1 − xi)2 +
1

2
x2
n − x1. (34)

Algorithm 6.1 was tested, as in [12], with the constant step size (33) and the maximum allowed
value λmax in (32) where ε = 2−16.

Algorithm 3.1 was run using D⊕ = [I −I] as the set of poll directions. The step size αk was
kept unchanged after a successful iteration, and contracted by a factor of 1/2 after an unsuccessful
one. The forcing function ρ(t) was 10−3t2. Regarding the order of the function evaluations in
the poll step, several strategies were tried with relatively equivalent results, but we report here
results with the random polling strategy, where the poll directions are ordered randomly before
the start of each iteration.

The results are reported in Table 1 for Algorithm 6.1 and in Table 2 for Algorithm 3.1.
The tables display the number of function evaluations needed to reach various optimal value
accuracies. All the figures reported there are averages of 20 runs made for the fixed starting
point x0 = 0. As in [12], the accuracy levels are 2−(r+7), r = 2, . . . , 9. As one can see from the
tables, random Gaussian performs much worse than direct search. Setting instead hk = 1/(k+1),
k = 0, 1, . . . in Step 2 of Algorithm 6.1 did not seem to improve the performance.

One modification that does improve the numerical performance of random Gaussian signif-
icantly is to randomize the point at which the finite-difference approximation is taken (which

20

n
accuracy

2.0e-3 9.8e-4 4.9e-4 2.4e-4 1.2e-4 6.1e-5 3.1e-5 1.5e-5
2 26 34 34 39 39 45 45 50
4 136 146 168 187 207 226 247 263
8 855 970 1061 1202 1338 1480 1585 1716
16 5146 6175 7216 8296 9559 10568 11543 12613

Table 2: Average performance of direct search (Algorithm 3.1) for the minimization of (34).

then naturally leads to two function evaluations per iteration). The approach in [5] is designed
for stochastic optimization but one can consider its counterpart tailored for deterministic opti-
mization in the context of Derivative-Free Optimization (DFO):

Algorithm 6.2 (Two-points random Gaussian method)

Initialization
Choose x0 and two non-increasing sequences of positive finite-difference steps {λ1,k}∞k=0,
{λ2,k}∞k=0.

For k = 0, 1, 2, . . .

1. Generate u1,k and u2,k (uniformly and independently) and compute

gλ1,k,λ2,k(xk) =
f(xk + λ1,ku1,k + λ2,ku2,k)− f(xk + λ1,ku1,k)

λ2,k
u2,k.

2. Choose a step size hk > 0. Compute xk+1 = xk − hkgλ1,k,λ2,k(xk).

Following [5, Theorem 2], one can select the finite-difference steps as

λ1,k = λmax
r0

k + 1
and λ2,k = λmax

r0

n2(k + 1)2
, k = 0, 1, 2, . . . (35)

where λmax is given by (32), with ε = 2−16, and r0 = dist(x0, X
f
∗), with Xf

∗ the set of minimizers
of f . The step size can be set to h = 1/ν, where ν is the Lipschitz constant of gradient of f .
These choices are, of course, unrealistic in DFO, or even in Nonlinear Programming, since neither
Lipschitz constants can be reasonably approximated nor the distance to the solutions set can be
computed.

We tested Algorithm 6.2 on (34), taking also averages of 20 runs from the fixed starting point
x0 = 0. The results are presented in Table 3 in the same way as in Tables 1–2. We observe that
the two-points random Gaussian method (Algorithm 6.2) performs noticeably better than the
random Gaussian one (Algorithm 6.1) but still worse than direct search (Algorithm 3.1).

We also tested Algorithms 3.1 and 6.2 on five unconstrained problems from the CUTEr
collection [8], with objective function convex and dimension n = 8. The numerical results for
these problems are presented in Tables 4–5, organized as the previous ones. The numbers of
function evaluations are averages of 20 runs departing always from the initial point given by

21

n
accuracy

2.0e-3 9.8e-4 4.9e-4 2.4e-4 1.2e-4 6.1e-5 3.1e-5 1.5e-5
2 27 32 35 39 43 47 49 54
4 168 193 216 242 265 290 314 340
8 1039 1222 1406 1593 1775 1952 2129 2322
16 6284 7596 8868 10143 11360 12574 14067 16334

Table 3: Average performance of the two-points random Gaussian method (Algorithm 6.2) for
the minimization of (34).

Problem
accuracy

2.0e-3 9.8e-4 4.9e-4 2.4e-4 1.2e-4 6.1e-5 3.1e-5 1.5e-5
arglinc 179 186 192 199 205 211 217 224
dqrtic 78634 79256 80111 81393 83148 85567 88997 94211
vardim 23409 24582 25738 26922 28082 29225 30378 31590

nondquar 2401 4138 6988 11825 19219 29475 43985 66658
powellsg 11487 14659 19173 27612 43104 66514 100775 154520

Table 4: Average performance of the two-points random Gaussian method (Algorithm 6.2) on
five CUTEr problems (convex and unconstrained).

CUTEr. One sees clearly from these results that direct search (Algorithm 3.1) performs overall
much better than two-points random Gaussian (Algorithm 6.2). The stopping criterion used in
both Algorithms 6.1 and 6.2 considers the value of f at xk+1. We also tried to use the minimum
among this value and all the values of f calculated during the k-th iteration but the impact of
such a change is negligible (in any of the problems reported in this section).

It is important to remark, though, that a huge advantage has been given to Algorithm 6.2
by using the distance r0 to the solutions set and the value ν of the Lipschitz constant of the
gradient of f . In fact, in all these problems, we used the exact value of r0 in Algorithm 6.2,
see (35). Further, the value of ν (used in the step size hk update (33) for Algorithm 6.2) was
set exactly for problem arglinc and approximated around the minimizer for problems dqrtic,
vardim, nondquar, and powellsg. Still, direct search performed significantly better. This does
not come as a surprise since both Algorithms 6.1 and 6.2 do not accept steps and do not adjust
step sizes depending on some form of decrease as does direct search.

7 Conclusions

To our knowledge it is the second time that a derivative-free method is shown to exhibit a worst
case complexity (WCC) bound of O(ε−1) in the convex case, following the random Gaussian
approach [12], but the first time for a deterministic approach (where the bound is not taken
in expectation). In fact we have proved that a maximum of O(ε−1) iterations and O(n2ε−1)
function evaluations are required to compute a point for which the norm of the gradient of the

22

Problem
accuracy

2.0e-3 9.8e-4 4.9e-4 2.4e-4 1.2e-4 6.1e-5 3.1e-5 1.5e-5
arglinc 195 235 235 235 235 235 235 235
dqrtic 69 69 69 69 69 69 69 69
vardim 2796 2996 3198 3478 3716 3935 4156 4460
nondquar 180 211 261 330 800 2196 4668 7905
powellsg 1223 1554 2004 2685 3601 5107 6713 9245

Table 5: Average performance of the direct search (Algorithm 3.1) on five CUTEr problems
(convex and unconstrained).

.

objective function f is smaller than ε ∈ (0, 1) (see Theorem 4.2 and Corollary 4.1 when p = 2
in the forcing function). In addition we proved that the absolute error f(xk) − f∗ decreases at
a sublinear rate of 1/k (see Theorem 4.1). Such results are global in the sense of not depending
on the proximity of the initial iterate to the solutions set.

These WCC bounds and global rates were proved when the solutions set is bounded or,
when that is not the case, when the supreme distance from any point in the initial level set to
the solutions set is bounded (Assumption 4.1). A particular case is strong convexity where the
solution set is a singleton. In such a case, we went a step further (when p = 2 in the forcing
function) and showed that f(xk)−f∗ decreases r-linearly and so does ‖xk−x∗‖ (see Theorem 5.1).

There are some rare pathological instances where Assumption 4.1 does not hold. An example
is the following two-dimensional convex function

f(x, y) =
√
x2 + y2 − x.

The minimum of f is equal to zero and the solutions set is Xf
∗ = {(x, 0) : x ≥ 0}. Let

ς = f(x0, y0) > 0 be given for some (x0, y0). Then

f−1({ς}) = {z ∈ R2 : f(z) = ς} = {(t2 − ς2)/2ς, t)}t∈R.

Thus, for z = ((t2 − ς2)/2ς, t) ∈ f−1({ς}), one has dist(z,Xf
∗) ≥ |t|, which implies

sup
z∈Lf (x0,y0)

dist(z,Xf
∗) ≥ sup

z∈f−1({ς})
dist(z,Xf

∗) ≥ sup
t∈R
|t| = +∞.

Notice that this function is not continuously differentiable at the origin but an alternative,
smoothed version could be instead considered.

Acknowledgments

We would like to thank one anonymous referee for the numerous insightful observations which
led to a much improved version of the paper. We thank also Zaikun Zhang for several interesting
discussions.

23

References
[1] C. Cartis, N. I. M. Gould, and Ph. L. Toint. On the complexity of steepest descent, Newton’s

and regularized Newton’s methods for nonconvex unconstrained optimization. SIAM J. Optim.,
20:2833–2852, 2010.

[2] C. Cartis, N. I. M. Gould, and Ph. L. Toint. On the oracle complexity of first-order and derivative-free
algorithms for smooth nonconvex minimization. SIAM J. Optim., 22:66–86, 2012.

[3] A. R. Conn, K. Scheinberg, and L. N. Vicente. Introduction to Derivative-Free Optimization. MPS-
SIAM Series on Optimization. SIAM, Philadelphia, 2009.

[4] E. D. Dolan, R. M. Lewis, and V. Torczon. On the local convergence of pattern search. SIAM J.
Optim., 14:567–583, 2003.

[5] J. C. Duchi, M. I. Jordan, M. J. Wainwright, and A. Wibisono. Optimal rates for zero-order convex
optimization: the power of two function evaluations. arXiv:1312.2139v2, 2014.

[6] R. Garmanjani and L. N. Vicente. Smoothing and worst-case complexity for direct-search methods
in nonsmooth optimization. IMA J. Numer. Anal., 33:1008–1028, 2013.

[7] C. Cartis N. I. M. Gould and Ph. L. Toint. Adaptive cubic regularisation methods for unconstrained
optimization. Part II: Worst-case function- and derivative-evaluation complexity. Math. Program.,
130:295–319, 2011.

[8] N. I. M. Gould, D. Orban, and P. L. Toint. CUTEr, a Constrained and Unconstrained Testing
Environment, revisited. ACM Trans. Math. Software, 29:373–394, 2003.

[9] S. Gratton, A. Sartenaer, and Ph. L. Toint. Recursive trust-region methods for multiscale nonlinear
optimization. SIAM J. Optim., 19:414–444, 2008.

[10] T. G. Kolda, R. M. Lewis, and V. Torczon. Optimization by direct search: New perspectives on
some classical and modern methods. SIAM Rev., 45:385–482, 2003.

[11] Y. Nesterov. Introductory Lectures on Convex Optimization. Kluwer Academic Publishers, Dor-
drecht, 2004.

[12] Y. Nesterov. Random gradient-free minimization of convex functions. Technical Report 2011/1,
CORE, 2011.

[13] Y. Nesterov. Efficiency of coordinate descent methods on huge-scale optimization problems. SIAM
J. Optim., 22:341–362, 2012.

[14] Y. Nesterov and B. T. Polyak. Cubic regularization of Newton’s method and its global performance.
Math. Program., 108:177–205, 2006.

[15] J. Nocedal and S. J. Wright. Numerical Optimization. Springer-Verlag, Berlin, second edition, 2006.

[16] R. T. Rockafellar. Convex Analysis. Princeton University Press, Princeton, 1970.

[17] L. N. Vicente. Worst case complexity of direct search. EURO Journal on Computational Optimiza-
tion, 1:143–153, 2013.

24

