
Worst Case Complexity of Direct Search

L. N. Vicente∗

October 25, 2012

Abstract

In this paper we prove that the broad class of direct-search methods of directional type
based on imposing sufficient decrease to accept new iterates shares the worst case complexity
bound of steepest descent for the unconstrained minimization of a smooth function, more
precisely that the number of iterations needed to reduce the norm of the gradient of the
objective function below a certain threshold is at most proportional to the inverse of the
threshold squared.

In direct-search methods, the objective function is evaluated, at each iteration, at a
finite number of points. No derivatives are required. The action of declaring an iteration
successful (moving into a point of lower objective function value) or unsuccessful (staying at
the same iterate) is based on objective function value comparisons. Some of these methods
are directional in the sense of moving along predefined directions along which the objective
function will eventually decrease for sufficiently small step sizes.

The worst case complexity bounds derived measure the maximum number of iterations as
well as the maximum number of objective function evaluations required to find a point with
a required norm of the gradient of the objective function, and are proved for such directional
direct-search methods when a sufficient decrease condition based on the size of the steps is
imposed to accept new iterates.

Keywords: derivative-free optimization, direct search, worst case complexity, sufficient
decrease

1 Introduction

Direct search is a broad class of methods for optimization without derivatives and includes those
of simplicial type [7, Chapter 8], like the Nelder-Mead method and its numerous modifications
(where typically one moves away from the worst point), and those of directional type [7, Chap-
ter 7] (where one tries to move along a direction defined by the best or a better point). This paper
focuses on direct-search methods of the latter type applied to smooth, continuously differentiable
objective functions. The problem under consideration is the unconstrained minimization of a
real-valued function, stated as minx∈Rn f(x).

Each iteration of the direct-search methods (of directional type) can be organized around
a search step (optional) and a poll step, and it is the poll step that is responsible for the

∗CMUC, Department of Mathematics, University of Coimbra, 3001-454 Coimbra, Portugal (lnv@mat.uc.pt).
Support for the author was provided by FCT under the grant PTDC/MAT/098214/2008. This work was developed
while the author was visiting the Courant Institute of Mathematical Sciences of New York University under a
FLAD scholarship.

1

global convergence of the overall method (meaning the convergence to some form of stationarity
independently of the starting point). In the poll step, the evaluation of the objective function
is done at a finite set of polling points defined by a step size parameter and a set of polling
directions. When the objective function is continuously differentiable and its gradient is Lipschitz
continuous, and for the purpose of global convergence, it suffices that the polling directions
form a positive spanning set (i.e., a set of vectors whose linear combinations with non-negative
coefficients span Rn), and that new iterates are only accepted when satisfying a sufficient decrease
condition based on the step size parameter.

In this paper we will prove that in at most O(ε−2) iterations these methods are capable of
driving the norm of the gradient of the objective function below ε. It was shown by Nesterov [15,
Page 29] that the steepest descent method for unconstrained optimization takes at most O(ε−2)
iterations or gradient evaluations for the same purpose (the stepsize is assumed to verify a
sufficient decrease condition and another one to avoid too short steps, like a curvature type
condition). Direct search-methods that poll using positive spanning sets are directional methods
of descent type, and despite not using gradient information as in steepest descent, it is not
unreasonable to expect that they share the same worst case complexity bound of the latter
method in terms of number of iterations, provided new iterates are only accepted based on a
sufficient decrease condition. In fact, it is known that one of the directions of a positive spanning
set makes necessarily an acute angle with the negative gradient (when the objective function is
continuously differentiable), and, as we will see in the paper, this is what is needed to achieve
the same power of ε in terms of iterations as of steepest descent. There is an effort in terms of
objective function evaluations related to not knowing in advance which of these directions is of
descent and to search for the corresponding decrease, but that is reflected in terms of a power
of n.

More concretely, based on the properties of positive spanning sets and on the number of
objective function evaluations taken in an unsuccessful poll step, we will then conclude that at
most O(n2ε−2) objective function evaluations are required to drive the norm of the gradient of
the objective function below ε.

As a direct consequence of this result, and following what Nesterov [15, Page 29] states for
first order oracles, one can ensure an upper complexity bound for the following problem class
(where one can only evaluate the objective function and not its derivatives):

Model:
Unconstrained minimization
f ∈ C1

ν (Rn)
f bounded below

Oracle: Zero order oracle (evaluation of f)

ε–solution: f(xappr∗) ≤ f(x0), ‖∇f(xappr∗)‖ ≤ ε

where f is assumed smooth with Lipschitz continuous gradient (with constant ν > 0), xappr∗ is
the approximated solution found, and x0 is the starting point chosen in a method. Our result
thus says that the number of calls of the oracle is O(n2ε−2), and thus establishes an upper
complexity bound for the above problem class.

Such an analysis of worst case complexity contributes to a better understanding of the
numerical performance of this class of derivative-free optimizations methods. One knows that

2

these methods, when strictly based on polling, although capable of solving most of the problem
instances, are typically slow. They are also very appealing for parallel environment due to the
natural way of paralelizing the poll step. The global rate of convergence of n2ε−2 indicates that
their work (in terms of objective function evaluations) is roughly proportional to the inverse of
the square of the targeted accuracy ε. It also tells us that such an effort is proportional to the
square of the problem dimension n, and this indication is certainly of relevance for computational
budgetary considerations.

The structure of the paper is as follows. In Section 2 we describe the class of direct search
under consideration. Then, in Section 3, we analyze the worst case complexity or cost of such
direct-search methods. Conclusions and extensions of our work are discussed in Section 4. The
notation O(M) in our paper means a multiple of M , where the constant multiplying M does
not depend on the iteration counter k of the method under analysis (thus depending only on f
or on algorithmic constants set at the initialization of the method). The dependence of M on
the dimension n of the problem will be made explicit whenever appropriate. The vector norms
will be `2 ones.

2 Direct-search algorithmic framework

We will follow the algorithmic description of generalized pattern search in [1] (also adopted
in [7, Chapter 7] for direct-search methods of directional type). Such framework can describe
the main features of pattern search, generalized pattern search (GPS) [1], and generating set
search (GSS) [13].

As we said in the introduction, each iteration of the direct-search algorithms under study
here is organized around a search step (optional) and a poll step. The evaluation process of the
poll step is opportunistic, meaning that one moves to a poll point in Pk = {xk +αkd : d ∈ Dk},
where αk is a step size parameter and Dk a positive spanning set, once some type of decrease is
found.

As in the GSS framework, we include provision to accept new iterates based on a suf-
ficient decrease condition which uses a forcing function. Following the terminology in [13],
ρ : (0,+∞) → (0,+∞) will represent a forcing function, i.e., a non-decreasing (continuous)
function satisfying ρ(t)/t→ 0 when t ↓ 0. Typical examples of forcing functions are ρ(t) = c tp,
for p > 1 and c > 0. We are now ready to describe in Algorithm 2.1 the class of methods under
analysis in this paper.

Algorithm 2.1 (Directional direct-search method)

Initialization
Choose x0 with f(x0) < +∞, α0 > 0, 0 < β1 ≤ β2 < 1, and γ ≥ 1.

For k = 0, 1, 2, . . .

1. Search step: Try to compute a point with f(x) < f(xk)− ρ(αk) by evaluating the
function f at a finite number of points. If such a point is found, then set xk+1 = x,
declare the iteration and the search step successful, and skip the poll step.

2. Poll step: Choose a positive spanning set Dk. Order the set of poll points Pk =
{xk+αkd : d ∈ Dk}. Start evaluating f at the poll points following the chosen order.

3

If a poll point xk + αkdk is found such that f(xk + αkdk) < f(xk)− ρ(αk), then stop
polling, set xk+1 = xk + αkdk, and declare the iteration and the poll step successful.
Otherwise, declare the iteration (and the poll step) unsuccessful and set xk+1 = xk.

3. Mesh parameter update: If the iteration was successful, then maintain or in-
crease the step size parameter: αk+1 ∈ [αk, γαk]. Otherwise, decrease the step size
parameter: αk+1 ∈ [β1αk, β2αk].

As we will see later, the global convergence of these methods is heavily based on the analysis
of the behavior of the step size parameter αk, in particular on having αk approaching zero.
There are essentially two known ways of enforcing the existence of a subsequence of step size
parameters converging to zero in direct search of directional type. One way allows the iterates
to be accepted based uniquely on a simple decrease of the objective function but restricts the
iterates to discrete sets defined by some integral or rational requirements (see [13, 17]). Another
way is to impose a sufficient decrease on the acceptance of new iterates as we did in Algorithm 2.1.

Intuitively speaking, insisting on a sufficient decrease will make the function values decrease
by a certain non-negligible amount each time a successful iteration is performed. Thus, under
the assumption that the objective function f is bounded from below, it is possible to prove
that there exists a subsequence of unsuccessful iterates driving the step size parameter to zero
(see [13] or [7, Theorems 7.1 and 7.11 and Corollary 7.2]).

Lemma 2.1 Let f be bounded from below on L(x0) = {x ∈ Rn : f(x) ≤ f(x0)}. Then Algo-
rithm 2.1 generates an infinite subsequence K of unsuccessful iterates for which lim

k∈K
αk = 0.

One has plenty of freedom to choose the positive spanning sets used for polling when choos-
ing this globalization strategy as long as they do not deteriorate significantly (in the sense of
becoming close to loosing the positive spanning property). To quantify such a deterioration, we
recall first the cosine measure of a positive spanning set Dk (with nonzero vectors), which is
defined by (see [13])

cm(Dk) = min
06=v∈Rn

max
d∈Dk

v>d

‖v‖‖d‖
.

A positive spanning set (with nonzero vectors) has a positive cosine measure. Global convergence
results essentially from the following fact, which is taken from [8, 13] (see also [7, Theorem 2.4
and Equation (7.14)]) and describes the relationship between the size of the gradient and the
step size parameter at unsuccessful iterations.

Theorem 2.1 Let Dk be a positive spanning set and αk > 0 be given. Assume that ∇f is
Lipschitz continuous (with constant ν > 0) in an open set containing all the poll points in Pk.
If f(xk) ≤ f(xk + αkd) + ρ(αk), for all d ∈ Dk, i.e., the iteration k is unsuccessful, then

‖∇f(xk)‖ ≤ cm(Dk)
−1

ν
2
αk max

d∈Dk

‖d‖+
ρ(αk)

αk min
d∈Dk

‖d‖

 . (1)

The positive spanning sets used when globalization is achieved by a sufficient decrease con-
dition are then required to satisfy the following assumption (see [13]), where the cosine measure
stays sufficiently positive and the size of the directions does not approach zero or tend to infinite.

4

Assumption 2.1 All positive spanning sets Dk used for polling (for all k) must satisfy cm(Dk) ≥
cmmin and dmin ≤ ‖d‖ ≤ dmax for all d ∈ Dk (where cmmin > 0 and 0 < dmin < dmax are
constants).

One can then easily see from Theorem 2.1 (under Assumption 2.1) that when αk tends to
zero (see Lemma 2.1) so does the gradient of the objective function. Theorem 2.1 will be also
used in the next section to measure the worst case complexity of Algorithm 2.1.

3 Worst case complexity

We will now derive the worst case complexity bounds on the number of successful and unsuc-
cessful iterations for direct-search methods in the smooth case (Algorithm 2.1 obeying Assump-
tion 2.1 and using a sufficient decrease condition corresponding to a specific forcing function ρ(·)).
We will consider the search step either empty or, when applied, using a number of function eval-
uations not much larger than the maximum number of function evaluations made in a poll step,
more precisely we assume that the number of function evaluations made in the search step is
at most of the order of n. This issue will be clear later in Corollary 3.2 when we multiply the
number of iterations by the number of function evaluations made in each iteration.

As we know, each iteration of Algorithm 2.1 is either successful or unsuccessful. Therefore, in
order to derive an upper bound on the total number of iterations, it suffices to derive separately
upper bounds on the number of successful and unsuccessful iterations. The following theorem
presents an upper bound on the number of successful iterations after the first unsuccessful one
(which, from Lemma 2.1, always exists when the objective function is bounded from below).
Note that when p = 2, one has p/min(p− 1, 1) = 2.

Theorem 3.1 Consider the application of Algorithm 2.1 when ρ(t) = c tp, p > 1, c > 0, and Dk

satisfies Assumption 2.1. Let f satisfy f(x) ≥ flow for x in L(x0) = {x ∈ Rn : f(x) ≤ f(x0)}
and be continuously differentiable with Lipschitz continuous gradient on an open set containing
L(x0) (with constant ν > 0).

Let k0 be the index of the first unsuccessful iteration (which must exist from Lemma 2.1).
Given any ε ∈ (0, 1), assume that ‖∇f(xk0)‖ > ε and let j1 be the first iteration after k0 such
that ‖∇f(xj1+1)‖ ≤ ε. Then, to achieve ‖∇f(xj1+1)‖ ≤ ε, starting from k0, Algorithm 2.1 takes
at most |Sj1(k0)| successful iterations, where

|Sj1(k0)| ≤
⌈(

f(xk0)− flow
c βp1L

p
1

)
ε
− p

min(p−1,1)

⌉
, (2)

with

L1 = min

(
1, L

− 1
min(p−1,1)

2

)
and L2 = cm−1

min(νdmax/2 + d−1
minc). (3)

Proof. Let us assume that ‖∇f(xk)‖ > ε, for k = k0, . . . , j1.
If k is the index of an unsuccessful iteration, one has from (1) and Assumption 2.1 that

‖∇f(xk)‖ ≤ cm−1
min

(ν
2
dmaxαk + d−1

minc α
p−1
k

)
,

which then implies, when αk < 1,

ε ≤ L2α
min(p−1,1)
k .

5

If αk ≥ 1, then αk ≥ ε. So, for any unsuccessful iteration, combining the two cases (αk ≥ 1 and
αk < 1) and considering that ε < 1,

αk ≥ L1ε
1

min(p−1,1) .

Since at unsuccessful iterations the step size is reduced by a factor of at most β1 and it is
not reduced at successful iterations, one can backtrack from any successful iteration k to the
previous unsuccessful iteration k1 (possibly k1 = k0), and obtain αk ≥ β1αk1 . Thus, for any
k = k0, . . . , j1,

αk ≥ β1L1ε
1

min(p−1,1) . (4)

Let now k > k0 be the index of a successful iteration. From (4) and by the choice of the
forcing function,

f(xk)− f(xk+1) ≥ c αpk ≥ c βp1L
p
1ε

p
min(p−1,1) .

We then obtain, summing up for all successful iterations, that

f(xk0)− f(xj1) ≥ |Sj1(k0)|c βp1L
p
1ε

p
min(p−1,1) ,

and the proof is completed.

Next, we bound the number of unsuccessful iterations (after the first unsuccessful one).

Theorem 3.2 Let all the assumptions of Theorem 3.1 hold.
Let k0 be the index of the first unsuccessful iteration (which must exist from Lemma 2.1).

Given any ε ∈ (0, 1), assume that ‖∇f(xk0)‖ > ε and let j1 be the first iteration after k0 such
that ‖∇f(xj1+1)‖ ≤ ε. Then, to achieve ‖∇f(xj1+1)‖ ≤ ε, starting from k0, Algorithm 2.1 takes
at most |Uj1(k0)| unsuccessful iterations, where

|Uj1(k0)| ≤

L3|Sj1(k0)|+ L4 +
log
(
β1L1ε

1
min(p−1,1)

)
log(β2)

 ,
with

L3 = − log(γ)

log(β2)
, L4 = − log(αk0)

log(β2)
,

and L1 given by (3).

Proof. Since either αk+1 ≤ β2αk or αk+1 ≤ γαk, we obtain by induction

αj1 ≤ αk0γ
|Sj1

(k0)|β
|Uj1

(k0)|
2 ,

which in turn implies from log(β2) < 0

|Uj1(k0)| ≤ − log(γ)

log(β2)
|Sj1(k0)| − log(αk0)

log(β2)
+

log(αj1)

log(β2)
.

Thus, from log(β2) < 0 and the lower bound (4) on αk, we obtain the desired result.

6

Using an argument similar as the one applied to bound the number of successful iterations
in Theorem 3.1, one can easily show that the number of iterations required to achieve the first
unsuccessful one is bounded by ⌈

f(x0)− flow
c αp0

⌉
.

Thus, since ε ∈ (0, 1), one has 1 < ε
− p

min(p−1,1) and this number is in turn bounded by⌈
f(x0)− flow

c αp0
ε
− p

min(p−1,1)

⌉
,

which is of the same order of ε as the number of successful and unsuccessful iterations counted
in Theorems 3.1 and 3.2, respectively. Combining these two theorems, we can finally state our
main result in the following corollary. Note, again, that p/min(p− 1, 1) = 2 when p = 2.

Corollary 3.1 Let all the assumptions of Theorem 3.1 hold.
To reduce the gradient below ε ∈ (0, 1), Algorithm 2.1 takes at most

O
(
ε
− p

min(p−1,1)

)
(5)

iterations. When p = 2, this number is of O
(
ε−2
)
.

The constant in O(·) depends only on cmmin, dmin, dmax, c, p, β1, β2, γ, α0, on the lower
bound flow of f in L(x0), and on the Lipschitz constant ν of the gradient of f .

Proof. Let j1 be the first iteration such that ‖∇f(yj1+1)‖ ≤ ε.
Let k0 be the index of the first unsuccessful iteration (which must always exist as discussed

in Section 2).
If k0 < j1, then we apply Theorems 3.1 and 3.2, to bound the number of iterations from

k0 to j1, and the argument above this corollary to bound the number of successful iterations
until k0 − 1.

If k0 ≥ j1, then all iterations from 0 to j1− 1 are successful, and we use the argument above
this corollary to bound this number of iterations.

Interestingly, the fact that the best power of ε is achieved when p = 2 seems to corroborate
previous numerical experience [18], where different forcing functions of the form ρ(t) = c tp (with
2 6= p > 1) were tested but leading to a worse performance.

It is important now to analyze the dependence on the dimension n of the constants multiply-
ing the power of ε in (5). In fact, the lower bound cmmin on the cosine measure depends on n,
and the Lipschitz constant ν might also depend on n. The possible dependence of the Lipschitz
constant ν on n will be ignored — global Lipschitz constants appear in all existing worst case
complexity bounds for smooth nonconvex optimization, and it is well known that such constants
may depend exponentially on the problem dimension n (see also [12]).

The dependence of cmmin on n is more critical and cannot be ignored. In fact, we have
that cm(D) = 1/

√
n when D = [I − I] is the positive basis used in coordinate search [13], and

cm(D) = 1/n when D is the positive basis with uniform angles [7, Chapter 2] (by a positive
basis it is meant a positive spanning set where no proper subset has the same property). Thus,
looking at how the cosine measure appears in (2)–(3) and having in mind the existence of the
case D = [I − I] (for which cm(D) = 1/

√
n and for which the maximum cost of function

evaluations per iteration is 2n), one can state the following result.

7

Corollary 3.2 Let all the assumptions of Theorem 3.1 hold. Assume that cm(Dk) is a multiple
of 1/

√
n and the number of function evaluations per iteration is at most a multiple of n.

To reduce the gradient below ε ∈ (0, 1), Algorithm 2.1 takes at most

O
(
n(
√
n)

p
min(p−1,1) ε

− p
min(p−1,1)

)
function evaluations. When p = 2, this number is O

(
n2ε−2

)
.

The constant in O(·) depends only on dmin, dmax, c, p, β1, β2, γ, α0, on the lower bound
flow of f in L(x0), and on the Lipschitz constant ν of the gradient of f .

It was shown by Nesterov [15, Page 29] that the steepest descent method, for unconstrained
optimization takes at most O(ε−2) iterations or gradient evaluations to drive the norm of the
gradient of the objective function below ε. A similar worst case complexity bound of O(ε−2)
has been proved by Gratton, Toint, and co-authors [10, 11] for trust-region methods and by
Cartis, Gould, and Toint [3] for adaptive cubic overestimation methods, when these algorithms
are based on a Cauchy decrease condition. The worst case complexity bound on the number of
iterations can be reduced to O(ε−

3
2) (in the sense that the negative power of ε increases) for the

cubic regularization of Newton’s method (see Nesterov and Polyak [16]) and for the adaptive
cubic overestimation method (see Cartis, Gould, and Toint [3]).

It has been proved by Cartis, Gould, and Toint [4] that the worst case bound O(ε−2) for
steepest descent is sharp or tight, in the sense that there exists an example, dependent on an
arbitrarily small parameter τ > 0, for which a steepest descent method (with a Goldstein-Armijo
line search) requires, for any ε ∈ (0, 1), at least O(ε−2+τ) iterations to reduce the norm of the
gradient below ε. The example constructed in [4] was given for n = 1.

It turns out that in the unidimensional case, a direct-search method of the type given in
Algorithm 2.1 (where sufficient decrease is imposed using a forcing function ρ(·)) can be cast
as a steepest descent method with Goldstein-Armijo line search, when the objective function
is monotonically decreasing (which happens to be the case in the example in [4]) and one
considers the case p = 2. In fact, when n = 1, and up to normalization, there is essentially
one positive spanning set with 2 elements, {−1, 1}. Thus, unsuccessful steps are nothing else
than reductions of step size along the negative gradient direction. Also, since at unsuccessful
iterations (see Theorem 2.1 and Assumption 2.1) one has ‖gk‖ ≤ L2αk where L2 is the positive
constant given in (3) and gk = ∇f(xk), and since successful iterations do not decrease the step
size, one obtains αk ≥ L1‖gk‖ with L1 = 1/max{L2, 1} ∈ (0, 1]. By setting γk = αk/‖gk‖,
one can then see that successful iterations take the form xk+1 = xk − γkgk with f(xk+1) ≤
f(xk)− c α2

k ≤ f(xk)− cL1γk‖gk‖2 (note that if c is chosen in (0, 1), we have cL1 ∈ (0, 1)).
We make now a final comment (choosing the case p = 2 for simplicity) on the practicality

of the worst case complexity bound derived, given that in derivative-free optimization methods
like direct search one does not use the gradient of the objective function. Since as we have said
just above αk ≥ L1‖∇f(xk)‖ for all k, we could have stated instead a worst case complexity
bound for the number of iterations required to drive αk below a certain ε ∈ (0, 1) (something
now measurable in a computer run of direct search) and from that a bound on the number
of iterations required to drive ‖∇f(xk)‖ below ε/L1. However, we should point out that L1

depends on the Lipschitz constant ν of ∇f and in practice such approach would suffer from the
same unpracticality.

8

4 Final remarks

The study of worst case complexity of direct search (of directional type) brings new insights
about the differences and similarities of the various methods and their theoretical limitations. It
was possible to establish a worst case complexity bound for those direct-search methods based
on the acceptance of new iterates by a sufficient decrease condition (using a forcing function
of the step size parameter) and when applied to smooth functions. Deviation from smoothness
(see [2, 18]) poses several difficulties to the derivation of a worst case complexity bound, and
such a study will be the subject of a separate paper [9].

It should be pointed out that the results of this paper can be extended to bound and linear
constraints, where the number of positive generators of the tangent cones of the nearly active
constraints is finite. In this case, it has been shown in [13, 14] that a result similar to Theorem 2.1
can be derived, replacing the gradient of the objective function by

χ(xk) = max
xk+w∈Ω
‖w‖≤1

−∇f(xk)
>w,

where Ω denotes the feasible region defined by the bound or linear constraints. (Note that χ(·)
is a continuous and non-negative measure of stationarity; see [6, Pages 449–451].) Once such a
result is at hands, and one uses a sufficient decrease for accepting new iterates, one can show
global convergence similarly as in the unconstrained case (see [14, 13]). In terms of worst case
complexity, one would also proceed similarly as in the unconstrained case.

Another point we would like to stress is that once we allow new iterates to be accepted based
uniquely on a simple decrease of the objective function (together, for globalization purposes, with
the restriction that the iterates must lie on discrete sets defined by some integral or rational
requirements [13, 17]), the worst case complexity bound on the number of iterations seems only
provable under additional strong conditions like the objective function satisfying an appropriate
decrease rate. In fact one knows for this class of methods that ‖xk − xk+1‖ is larger than a
multiple of the stepsize αk (see [1]). Thus, if f(xk)− f(xk+1) ≥ θ‖xk − xk+1‖p is true for some
positive constant θ, then we could proceed similarly as in our paper.

Finally, we would like to mention that the result of our paper has been recently compared in
Cartis, Gould, and Toint [5]. These authors derived the following worst case complexity bound
(on the number of function evaluations required to drive the norm of the gradient below ε, and
for the version of their adaptive cubic overestimation algorithm that uses finite differences to
compute derivatives)

O
(

(n2 + 5n)
1 + | log(ε)|

ε3/2

)
.

The bound O(n2ε−2) for direct search is worse in terms of the power of ε.

Acknowledgments

The author would like to thank Michael L. Overton and Mert Gurbuzbalaban (New York Uni-
versity) for interesting discussions on the topic of the paper.

9

References

[1] C. Audet and J. E. Dennis Jr. Analysis of generalized pattern searches. SIAM J. Optim.,
13:889–903, 2002.

[2] C. Audet and J. E. Dennis Jr. Mesh adaptive direct search algorithms for constrained
optimization. SIAM J. Optim., 17:188–217, 2006.

[3] N. I. M. Gould C. Cartis and Ph. L. Toint. Adaptive cubic regularisation methods for uncon-
strained optimization. Part II: Worst-case function- and derivative-evaluation complexity.
Math. Program., 130:295–319, 2011.

[4] C. Cartis, N. I. M. Gould, and Ph. L. Toint. On the complexity of steepest descent,
Newton’s and regularized Newton’s methods for nonconvex unconstrained optimization.
SIAM J. Optim., 20:2833–2852, 2010.

[5] C. Cartis, N. I. M. Gould, and Ph. L. Toint. On the oracle complexity of first-order and
derivative-free algorithms for smooth nonconvex minimization. SIAM J. Optim., 22:66–86,
2012.

[6] A. R. Conn, N. I. M. Gould, and Ph. L. Toint. Trust-Region Methods. MPS-SIAM Series
on Optimization. SIAM, Philadelphia, 2000.

[7] A. R. Conn, K. Scheinberg, and L. N. Vicente. Introduction to Derivative-Free Optimization.
MPS-SIAM Series on Optimization. SIAM, Philadelphia, 2009.

[8] E. D. Dolan, R. M. Lewis, and V. Torczon. On the local convergence of pattern search.
SIAM J. Optim., 14:567–583, 2003.

[9] R. Garmanjani and L. N. Vicente. Smoothing and worst-case complexity for direct-search
methods in nonsmooth optimization. IMA J. Numer. Anal., to appear.

[10] S. Gratton, M. Mouffe, Ph. L. Toint, and M. Weber-Mendonca. A recursive trust-region
method in infinity norm for bound-constrained nonlinear optimization. IMA J. Numer.
Anal., 28:827–861, 2008.

[11] S. Gratton, A. Sartenaer, and Ph. L. Toint. Recursive trust-region methods for multiscale
nonlinear optimization. SIAM J. Optim., 19:414–444, 2008.

[12] F. Jarre. On Nesterov’s smooth Chebyshev-Rosenbrock function. Optim. Methods Softw.,
to appear.

[13] T. G. Kolda, R. M. Lewis, and V. Torczon. Optimization by direct search: New perspectives
on some classical and modern methods. SIAM Rev., 45:385–482, 2003.

[14] R. M. Lewis and V. Torczon. Pattern search methods for linearly constrained minimization.
SIAM J. Optim., 10:917–941, 2000.

[15] Yu. Nesterov. Introductory Lectures on Convex Optimization. Kluwer Academic Publishers,
Dordrecht, 2004.

10

[16] Yu. Nesterov and B. T. Polyak. Cubic regularization of Newton’s method and its global
performance. Math. Program., 108:177–205, 2006.

[17] V. Torczon. On the convergence of pattern search algorithms. SIAM J. Optim., 7:1–25,
1997.

[18] L. N. Vicente and A. L. Custódio. Analysis of direct searches for discontinuous functions.
Math. Program., 133:299–325, 2012.

11

