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TWO-STEP ALGORITHMS FOR NONLINEAR OPTIMIZATION 2available analytially), their appliability is really rather broad. We propose modi�ations to ex-isting nonlinear optimization algorithms. An alternative approah, when feasible, is to reformulatethe original problem by eliminating a subset of variables and then to apply the algorithms in theremaining variables (see, for example, Golub and Pereyra [17℄).This paper deals with two-step algorithms where the seond step is required to yield a dereasein the value of the objetive funtion. The analysis given here overs the global onvergene oftwo-step trust-region algorithms and it is presented for the unonstrained minimization problem:minimize f(y) ; (1)where y 2 IRp, and f : IRp �! IR is a twie ontinuously di�erentiable funtion. For both trustregions and line searhes, one an onsider two versions of the two-step algorithms, one alledgreedy and the other alled onservative. The greedy version exploits as muh as possible thederease obtained by the seond step, whereas the onservative approah alulates the seond steponly after the �rst step has been on�rmed to satisfy the traditional riteria required for globalonvergene. We point out that the onservative two-step line-searh algorithm is not new and anbe found in the books by Bertsekas [1℄, Setion 1.3.1, and Luenberger [19℄, Setion 7.10, where theseond step is alled a spaer step. A desription of the greedy and onservative two-step line-searhalgorithms an be found in [11℄.In trust regions, if the seond step is guaranteed to derease the value of the objetive funtion,global onvergene of the type lim infk�!+1 krf(yk)k = 0 is immediately attained. Further, inthe ases where the �rst step would be rejeted, the sum of the �rst and seond steps has a betterhane of being aepted (see Remark 3.1). To obtain limk�!+1 krf(yk)k = 0 either the norm ofthe seond step has to be ontrolled by the trust region (see ondition (13)) or the derease on theobjetive funtion attained by the seond step has to be of the order of magnitude of the norm ofthis step (see ondition (12)).The update of the slak variables referred to above motivated the study of the loal rate ofonvergene of a two-step Newton's method. We show that a seond Newton step in some of thevariables retains the q-quadrati rate of onvergene of the traditional Newton's method.This paper is strutured as follows. In Setion 2 we introdue the two-step trust-region al-gorithms, and in Setion 3 we analyze their global onvergene properties. The loal rate of thetwo-step Newton's method is studied in Setion 4. The appliation of the two-step ideas to updateslak variables and variables introdued for the solution of minimax problems is desribed in Setion5. Setion 6 presents the numerial results obtained with LANCELOT using these updates for ana-lyti problems and dynami-simulation-based and analyti stati-timing-based iruit optimizationproblems. Finally, some onlusions are drawn in Setion 7.2 Two-step trust-region algorithmsWe �rst onsider the trust-region framework presented in the paper by Mor�e [20℄ for unonstrainedminimization. The (lassial) trust-region algorithm builds a quadrati model of the formmk(yk + s) = f(yk) +rf(yk)>s+ 12s>Hksat the urrent point yk, where Hk is an approximation to r2f(yk) (note that mk(yk) = f(yk)).Then a step sk is omputed by approximately solving the trust-region subproblemminimize mk(yk + s)subjet to ksk � �k ; (2)



TWO-STEP ALGORITHMS FOR NONLINEAR OPTIMIZATION 3where �k is alled the trust-region radius and k�k is an arbitrary norm. The new point yk+1 = yk+skis tested for aeptane. If the atual redution f(yk)� f(yk+ sk) is larger than a given fration ofthe predited redutionmk(yk)�mk(yk+sk), then the step sk and the new point yk+1 are aepted.In this situation, the quadrati model mk(yk + s) is onsidered to be a good approximation to thefuntion f(y) in the region kyk � yk � �k. The trust radius may be inreased. Otherwise, thequadrati model mk(yk + s) is onsidered not to be a good approximation to the funtion f(y) inthe region ky � ykk � �k. In this ase, the new point yk+1 is rejeted, and a new trust-regionsubproblem of the form (2) is solved for a smaller value of the trust radius. This simple trust-regionalgorithm is desribed below.Algorithm 2.1 (Trust-region algorithm)1. Given y0, the value f(y0), the gradient rf(y0) and an approximation H0 to the Hessian of fat y0, and the initial trust-region radius �0. Set k = 0. Choose  and � in (0; 1).2. Compute a step sk based on the trust-region problem (2).3. Compute �k = f(yk)� f(yk + sk)mk(yk)�mk(yk + sk) :4. In the ase where �k > � ;set yk+1 = yk + sk ;ompute Hk+1, and selet �k+1 satisfying �k+1 � �k.Otherwise, set yk+1 = yk ; Hk+1 = Hk ; and �k+1 = �k :5. Inrement k by one and go to Step 2.The mehanism used to update the trust radius that is desribed in Algorithm 2.1 is simple andsuÆes to prove onvergene results. In pratie, with the goal of improving optimization eÆieny,one uses updating shemes that are more omplex involving several subases aording to the valueof �k.We propose in this paper a modi�ation of this trust-region algorithm. We are motivated by asituation where it is desirable to update slak variables and variables introdued to solve minimaxproblems, at every iteration of the trust-region algorithm [7℄ implemented in LANCELOT [9℄. SeeSetion 5 for more details on pratial appliations.The two-step trust-region algorithm is quite easy to desribe. Suppose that after omputing astep �sk based on the trust-region subproblem (2) we know some properties of the funtion f(y) thatenables us to ompute a new step ŝk for whih we an guarantee that f(yk+ �sk+ ŝk) < f(yk+ �sk).In this situation we would ertainly like to have yk+1 = yk + �sk + ŝk and to test whether this newpoint should be aepted or not. This modi�ation requires a areful rede�nition of the atual andpredited redutions given for Algorithm 2.1. The new atual and predited redutions that wepropose are:



TWO-STEP ALGORITHMS FOR NONLINEAR OPTIMIZATION 4
ared(yk; �sk; ŝk) = f(yk)� f(yk + �sk + ŝk) ; (3)pred(yk; �sk; ŝk) = mk(yk)�mk(yk + �sk) + f(yk + �sk)� f(yk + �sk + ŝk) : (4)The new predited redution is the predited redution obtained by the �rst step plus the (atual)redution obtained by the seond step. The hoie pred(yk; �sk; ŝk) = mk(yk)�mk(yk + �sk + ŝk) isnot appropriate sine the seond step ŝk is not omputed using the model mk(yk + s).The two-step trust-region algorithm is given below.Algorithm 2.2 (Two-step trust-region algorithm { Greedy)1. Same as in Algorithm 2.1.2. Compute a step �sk based on the trust-region problem (2).3. If possible, �nd another step ŝk suh thatf(yk + �sk + ŝk) < f(yk + �sk) :Otherwise, set ŝk = 0.4. Compute �̂k = ared(yk; �sk; ŝk)pred(yk; �sk; ŝk) :5. In the ase where �̂k > � ;set yk+1 = yk + �sk + ŝk ;ompute Hk+1, and selet �k+1 satisfying �k+1 � �k.Otherwise, set yk+1 = yk ; Hk+1 = Hk ; and �k+1 = �k :6. Inrement k by one and go to Step 2.The two-step trust-region Algorithm 2.2 evaluates the new point yk + �sk + ŝk for aeptaneafter both steps �sk and ŝk have been omputed. We all this version \greedy" beause it triesto take as muh advantage as possible of the derease obtained by the seond step ŝk. Note thatalthough the funtion f is evaluated twie in Algorithm 2.2, the reevaluation is often omputation-ally inexpensive. The ontext in whih we are partiularly interested involves relatively expensiveevaluations at yk + �sk and evaluations at yk + �sk + ŝk involving only a subset of the variables thatare heap to ompute (see Setion 5).We ould also onsider a two-step trust-region algorithm where �rst an aeptable step �sk isdetermined, and only afterwards a seond step ŝk is omputed. This algorithm is outlined below.



TWO-STEP ALGORITHMS FOR NONLINEAR OPTIMIZATION 5Algorithm 2.3 (Two-step trust-region algorithm { Conservative)1. Same as in Algorithm 2.1.2. Repeat(a) Compute a step �sk based on the trust-region problem (2).(b) Compute �k = f(yk)� f(yk + �sk)mk(yk)�mk(yk + �sk) :() If �k > �, then set �yk = yk + �sk ;ompute �k+1 satisfying �k+1 � �k, and set aepted = true.If �k � �, set �k = �k and aepted = false.Until aepted.3. If possible, �nd another step ŝk suh thatf(�yk + ŝk) < f(�yk) :Otherwise, set ŝk = 0.4. Set yk+1 = �yk + ŝk.5. Update Hk. Inrement k by one and go to Step 2.The same omments about the funtion evaluations apply to Algorithm 2.3 after the ompu-tation of a suessful step �sk. However, in the ase of Algorithm 2.3, the funtion f has to beevaluated twie only in iterations orresponding to suessful �rst steps �sk.3 Global onvergene of the two-step trust-region algorithmsWe analyze �rst the two-step trust-region Algorithm 2.2, i.e., the greedy version. The analysis forthe onservative Algorithm 2.3 is similar.In this setion we make the assumption that fHkg is a bounded sequene. So, there exists a� > 0 for whih kHkk � � for all k : (5)We require the step �sk to satisfy a fration of Cauhy derease on the trust-region problem (2). Inother words we ask �sk to satisfyf(yk)�mk(yk + �sk) � � (mk(yk)�mk(yk + k)) ; (6)for � 2 (0; 1℄. The step k is alled the Cauhy step, and it is de�ned as the solution of the salarproblem in the unknown � minimize mk(yk + s)subjet to ksk � �k ;s = �rf(yk) ; � 2 IR :There is a variety of algorithms that ompute steps satisfying this ondition (see [3℄, [22℄, [23℄, [25℄,and [26℄).



TWO-STEP ALGORITHMS FOR NONLINEAR OPTIMIZATION 6Proposition 3.1 If �sk satis�es a fration of Cauhy derease then:f(yk)�mk(yk + �sk) � �2 krf(yk)k min��k; krf(yk)k� � (7)where � and � are as in (6) and (5) respetively.Proof: See Powell [24℄, Theorem 4, or Mor�e [20℄, Lemma 4.8. 2If we use this proposition and the fat that f(yk + �sk) > f(yk + �sk + ŝk), we obtainpred(yk; �sk; ŝk) = f(yk)�mk(yk + �sk) + f(yk + �sk)� f(yk + �sk + ŝk)� �2 krf(yk)k min��k; krf(yk)k� �+ f(yk + �sk)� f(yk + �sk + ŝk)� �2 krf(yk)k min��k; krf(yk)k� � : (8)This inequality is ruial to prove global onvergene of the two-step algorithm. In partiular, ifthe iteration k is suessful, thenared(yk; �sk; ŝk) = f(yk)� f(yk + �sk + ŝk)� ��2 krf(yk)k minn�k; krf(yk)k� o : (9)We are ready to prove the �rst onvergene result.Theorem 3.1 Consider a sequene fykg generated by Algorithm 2.2 where �sk satis�es (6). If f isontinuously di�erentiable and bounded below onL(y0) = fy : f(y) � f(y0)g ;and fHkg is a bounded sequene, thenlim infk�!+1 krf(yk)k = 0 : (10)So, if the sequene fykg is bounded, there exists at least one limit point y� for whih rf(y�) = 0.Proof: The proof is similar to the proof given in [20℄, Theorem 4.10.Assume by ontradition that fkrf(yk)kg is bounded away from zero, i.e., that there exists an� > 0 suh that krf(yk)k � � for all k. As in [20℄, Theorem 4.10, we make diret use of (9) and ofthe rules that update the trust radius, to obtain:+1Xk=0�k < +1 ;and so limk�!+1�k = 0.The next step is to show that limk�!+1 j�̂k � 1j = 0. Note that from the de�nitions (3) and(4), we have ared(yk; �sk; ŝk) � pred(yk; �sk; ŝk)= f(yk)� f(yk + �sk) +rf(yk)>�sk + 12 �s>k Hk�sk ; (11)



TWO-STEP ALGORITHMS FOR NONLINEAR OPTIMIZATION 7whih in turn, by using a Taylor series expansion and k�skk � �k, impliesjared(yk; �sk; ŝk)� pred(yk; �sk; ŝk)j � o(�k) :This inequality and (8) show that j�̂k � 1j onverges to zero. The rest of the proof follows alassial argument in trust regions: if �̂k onverges to one, the rules that update the trust radiusshow that �k annot onverge to zero. So, a ontradition is attained and the proof is ompleted. 2The result of Theorem 3.1 does not require the step ŝk to be O(�k) whih may seem surprising.This result shows the appropriateness of the de�nitions given in (3) and (4) for the atual andpredited redutions. These de�nitions allow us to obtain the onditions (9) and (11) that areruial to establish (10).Remark 3.1 It is also important to note that the de�nitions (3) and (4) an improve the aept-ability of a step. In fat, we have �̂k = tk + �ktk + 1 � �̂k(tk) ;where tk = f(yk+�sk)�f(yk+�sk+ŝk)mk(yk)�mk(yk+�sk) , and �k = f(yk)�f(yk+�sk)mk(yk)�mk(yk+�sk) , as before. We now note that �̂k(0) =�k and the funtion �̂k(tk) is stritly inreasing if �k < 1. In other words, in ases where astandard trust-region algorithm rejets a step the modi�ed riterion is always better than the usualone. Further, it an be noted that �̂k � 1 = �k�1tk+1 , whih indiates that all suessful iterations ofthe the standard algorithm will also be suessful in the modi�ed two-step algorithm. In partiular,�̂k > 1 whenever �k > 1.The next step in the analysis is to prove that, with additional onditions on the seond step,limk�!+1 krf(yk)k = 0.Theorem 3.2 Consider a sequene fykg generated by Algorithm 2.2 where �sk satis�es (6). As-sume that f is ontinuously di�erentiable and bounded below on L(y0) and that fHkg is a boundedsequene. If rf is uniformly ontinuous on L(y0) and if eitherf(yk + �sk)� f(yk + �sk + ŝk) � 1kŝkk ; (12)or kŝkk � 2�k ; (13)where 1 and 2 are positive onstants independent of k, thenlimk�!+1 krf(yk)k = 0 : (14)So, if the sequene fykg is bounded, every limit point y� satis�es rf(y�) = 0.Proof: The proof is similar to the proof given in [20℄, Theorem 4.14. See also Thomas [27℄.We show the result by ontradition. Assume therefore that there exists an �1 2 (0; 1) anda subsequene indexed by fmig of suessful iterates suh that, for all mi in this subsequene,krf(ymi)k � �1. Theorem 3.1 guarantees the existene of another subsequene indexed by fligsuh that krf(yk)k � �2, for mi � k < li and krf(yli)k < �2 (where fmig is without loss



TWO-STEP ALGORITHMS FOR NONLINEAR OPTIMIZATION 8of generality the subsequene previously mentioned). Here �2 is any real number hosen to be in(0; �1). Sine ff(yk)�f(yk+1)g onverges to zero, for k suÆiently large orresponding to suessfuliterations mi � k < li f(yk)� f(yk+1) � �1�k + 1kŝkk (15)holds if (12) is satis�ed, and f(yk)� f(yk+1) � �1�k (16)holds otherwise with �1 = ���22 .We onsider the ases (12) and (13) separately. In both ases we make use of:kymi � ylik � li�1Xk=mi kyk � yk+1k ;f(ymi)� f(yli) = li�1Xk=mi[f(yk)� f(yk+1)℄ :In the sums Pli�1k=mi we onsider only indies orresponding to suessful iterations.If (12) holds then we use (15) to obtainPli�1k=mi [f(yk)� f(yk+1)℄ � Pli�1k=mi [�1�k + 1kŝkk℄� minf�1; 1gPli�1k=mi [k�skk+ kŝkk℄� minf�1; 1gPli�1k=mi kyk � yk+1k :If (13) holds then we appeal to (16) and writePli�1k=mi [f(yk)� f(yk+1)℄ � Pli�1k=mi �1�k� �12 minf1; 12 gPli�1k=mi [k�skk+ kŝkk℄� �12 minf1; 12 gPli�1k=mi kyk � yk+1k :In either ase we obtain kymi � ylik � �2 (f(ymi)� f(yli)) ;and sine the right hand side of this inequality goes to zero, so does the left hand side kymi � ylik.Sine the gradient of f is uniformly ontinuous, we have for i suÆiently large that�1 � krf(ymi)k � krf(ymi)�rf(yli)k+ krf(yli)k � 2�2 :Sine �2 an be any number in (0; �1) this inequality ontradits the supposition. 2In the theorem above we required the norm of the step ŝk to either be O(�k) or O (f(yk + �sk)� f(yk + �sk + ŝk)). The former ondition an be enfored in Step 2 of the Algorithm 2.2, althoughthis might not be bene�ial and ould lead to an inferior derease.



TWO-STEP ALGORITHMS FOR NONLINEAR OPTIMIZATION 9We an obtain global onvergene to a point that also satis�es the neessary seond-orderonditions for optimality. For this purpose, we require the step �sk to satisfy a fration of optimalderease for the trust-region problem (2). In other words we ask �sk to satisfyf(yk)�mk(yk + �sk) � � (f(yk)�mk(yk + s�k)) ; (17)where � 2 (0; 1℄, and s�k is an optimal solution of (2). (This ondition an be weakened in severalways [20℄.) A step �sk satisfying a fration of optimal derease an be omputed by using thealgorithms proposed in [22℄ and [25℄ in the ase where the trust-region norm is Eulidean. Theglobal onvergene result is the following.Theorem 3.3 Consider a sequene fykg generated by Algorithm 2.2 where Hk = r2f(yk) and �sksatis�es (17). If L(y0) is ompat and f is twie ontinuously di�erentiable on L(y0), then thereexists at least one limit point y� for whih rf(y�) = 0 and r2f(y�) is positive semi-de�nite.Proof: The proof is basially the same as the proof of Theorem 4.7 in [22℄. 2To obtain stronger global onvergene results to seond-order points, for instane the results inTheorems 4.11 and 4.13 in [22℄ (see also [21℄, Theorem 4.17,  and d), other onditions are requiredlike kŝkk being of O(�k).The next results show that the seond step an preserve the nie loal properties of the behaviorof the trust radius that are typial in trust-region algorithms.Theorem 3.4 Let fykg be a sequene generated by Algorithm 2.2 where �sk satis�es (6) and Hk =r2f(yk). In addition, assume that the step ŝk satis�es either ondition (12) or ondition (13). Iff is twie ontinuously di�erentiable and bounded below on L(y0) and fykg has a limit point y�suh that H� = r2f(y�) is positive de�nite, then fykg onverges to y�, all iterations are eventuallysuessful, and f�kg is bounded away from zero.Proof: From Theorem 3.2 we an guarantee that limk�!+1 krf(yk)k = 0. So, the proof isbasially the same as the proof of Theorem 4.19 in [20℄. 2An alternative to this result where we do not impose onditions (12) or (13) on the seond stepis given below. However we need to assume that fykg onverges to y�.Theorem 3.5 Let fykg be a sequene generated by Algorithm 2.2 where �sk satis�es (6) and Hk =r2f(yk). If f is twie ontinuously di�erentiable on L(y0) and fykg onverges to a point y� suhthat H� = r2f(y�) is positive de�nite, then all iterations are eventually suessful and f�kg isbounded away from zero.Proof: The �rst step �sk yields a derease in the quadrati model:mk(yk)�mk(yk + �sk) = �rf(yk)>�sk � 12 �s>k Hk�sk � 0 :Thus, the assumptions made on Hk and H� guaranteek�skk � 3krf(yk)k ; (18)



TWO-STEP ALGORITHMS FOR NONLINEAR OPTIMIZATION 10for suÆiently large k, whih in turn, by using (8), impliespred(yk; �sk; ŝk) � 4k�skk2 : (19)(The onstants 3 and 4 are independent of k.)A Taylor series expansion for the expression (11) givesjared(yk; �sk; ŝk)� pred(yk; �sk; ŝk)j � o(k�skk2) : (20)The fat that fykg onverges and the result lim infk�!+1 krf(yk)k = 0 of Theorem 3.1, to-gether imply limk�!+1 krf(yk)k = 0. Thus, from (18) we get limk�!+1 k�skk = 0.The proof is terminated with a typial argument in trust regions. From (19), (20) and limk�!+1k�skk = 0, we obtain the limit limk�!+1 ����ared(yk; �sk; ŝk)pred(yk; �sk; ŝk) � 1���� = 0 ;whih shows, by appealing to the rules that update the trust radius, that all iterations are eventu-ally suessful and the trust radius is uniformly bounded away from zero. 2The global onvergene analysis for Algorithm 2.3 is idential to the analysis given above forAlgorithm 2.2. We point out that Algorithm 2.3 is well de�ned sine at a nonstationary point it isalways possible to �nd an aeptable �rst step. Also, for every k,f(yk)� f(yk+1) = f(yk)� f(yk + �sk) + f(yk + �sk)� f(yk+1)� ��2 krf(yk)k min��k; krf(yk)k� �+ f(yk + �sk)� f(yk+1)� ��2 krf(yk)k min��k; krf(yk)k� � :Thus, the results given in Theorems 3.1-3.5 hold for Algorithm 2.3. The lim inf-type result (10) isobtained under the lassial assumptions for trust-region algorithms for unonstrained optimization.To obtain the lim-type result (14) one of the two onditions (12) and (13) is required.In the ase of the appliations onsidered in Setion 5, the derease obtained by the seond stepŝk is always guaranteed to satisfyf(yk + �sk)� f(yk + �sk + ŝk) � 5kŝkk2 : (21)Moreover, the objetive funtion stritly dereases along the segment between the points yk + �skand yk + �sk + ŝk. In this ase we an modify Step 3 of Algorithms 2.2 and 2.3 in suh a way thatwe meet the requirements of Theorem 3.2. This modi�ation is given below. It is easy to verifythat ŝk 6= 0 satis�es f(yk + �sk + ŝk) < f(yk + �sk) and either (12) or (13).Algorithm 3.1 (Step 3 for Algorithms 2.2 and 2.3 { Quadrati derease ase)3. Compute a step ŝk suh thatf(yk + �sk)� f(yk + �sk + ŝk) � 5kŝkk2 :If kŝkk < �, then sale ŝk by minf1; 2�k� g so that kŝkk � 2�k and ŝk is not enlarged.(Otherwise (12) holds with 1 = �5.)



TWO-STEP ALGORITHMS FOR NONLINEAR OPTIMIZATION 11The positive parameters � and 2 should be set a priori in Step 1 of Algorithms 2.2 and 2.3.Of ourse, we would like to prove the result of Theorem 3.2 for the ase where the ondition(12) is replaed by the ondition (21). However, suh a result is unlikely to be true.4 Loal rate of onvergene of a two-step Newton's methodIn the next setion we are interested in two-step algorithms where the seond step is alulatedas a Newton-type step in some of the variables. In this setion we investigate the loal rate ofonvergene for an algorithm where eah step is omposed of two Newton steps, the seond beingomputed only for a subset of the variables. For this purpose lety =  xu ! :Suppose the �rst step �sk is a full Newton step, i.e., �sk = �r2f(yk)�1rf(yk). Let also�yk =  �xk�uk ! = yk + �sk :At the intermediate point �yk, a Newton step is applied in the variables u with x = �xk �xed. Thistwo-step Newton's method is desribed below.Algorithm 4.1 (Two-step Newton's method)1. Choose y0.2. For k = 1; 2; : : : do2.1 Compute �sk = �r2f(yk)�1rf(yk) and set �yk = yk + �sk.2.2 Compute ŝk =  0�r2uuf(�yk)�1ruf(�yk) ! and set sk = �sk + ŝk.2.3 Set yk+1 = yk + sk.The proof of the loal onvergene rate of the two-step Newton's method requires a few modi-�ations from the standard proof of Newton's method [12℄, Theorem 5.2.1. Reall that that proofof Newton's method is by indution.Corollary 4.1 Let f be twie ontinuously di�erentiable in an open set D where the seond partialderivatives are Lipshitz ontinuous. If fykg is a sequene generated by Algorithm 4.1 onvergingto a point y� 2 D for whih rf(y�) = 0 and r2f(y�) is positive de�nite, then fykg onverges witha q-quadrati rate.Proof: If yk is suÆiently lose to y�, the perturbation result [12℄, Theorem 3.1.4, an be used toprove the nonsingularity of the Hessian matrix r2f(yk). Furthermore,k�yk � y�k � 6kyk � y�k2 : (22)Now we show that r2uuf(�yk) is also nonsingular. First we point out that r2uuf(y) is Lipshitzontinuous on D and r2uuf(y�) is positive de�nite. Thus, inequality (22) and the perturbation



TWO-STEP ALGORITHMS FOR NONLINEAR OPTIMIZATION 12lemma ited above, together imply the nonsingularity of r2uuf(�yk). Hene the method is loallywell-de�ned, and the seond step yieldskyk+1 � �ykk = kŝkk = kr2uuf(�yk)�1 (ruf(�yk)�ruf(y�)) k � 7k�yk � y�k ; (23)sine ruf(y) is Lipshitz ontinuous near y�. Now we use inequalities (22) and (23), and writekyk+1 � y�k � kyk+1 � �ykk+ k�yk � y�k� (7 + 1)k�yk � y�k� 6(7 + 1)kyk � y�k2 :This last inequality establishes the q-quadrati rate of onvergene. 25 AppliationsWe begin by onsidering updating the slak variables in LANCELOT. Suppose the problem we aretrying to solve has the form minimize f(x)subjet to i(x) � 0 ; i = 1; : : : ;m ; (24)where x 2 IRn, and n and m are positive integers. The tehnique implemented in the LANCELOTpakage [9℄ is the augmented Lagrangian algorithm proposed by Conn, Gould, and Toint in [8℄. Forthe appliation of the augmented Lagrangian algorithm this problem is reformulated as:minimize f(x)subjet to i(x)� ui = 0 ; i = 1; : : : ;m ;ui � 0 ; i = 1; : : : ;m ;by adding the slak variables ui, i = 1; : : : ;m. This algorithm onsiders the following augmentedLagrangian merit funtion:�(x; u; �; S; �) = f(x) + mXi=1 �i(i(x)� ui) + 12� mXi=1 sii(i(x)� ui)2 ;where: �i is an estimate for the Lagrange multiplier assoiated with the i-th onstraint,� is a (positive) penalty parameter,sii is a (positive) saling fator that is assoiated with the i-th onstraint, andS = [sij℄ with sij = 0 for i 6= j:LANCELOT [7℄, [9℄ solves a sequene of minimization problems with simple bounds of thefollowing form: minimize �(x; u; �; S; �)subjet to ui � 0 ; i = 1; : : : ;m ; (25)



TWO-STEP ALGORITHMS FOR NONLINEAR OPTIMIZATION 13for �xed values of �, sii, and �i, i = 1; : : : ;m. The two-step trust-region framework and analysisdesribed in this paper for unonstrained minimization problems an be extended in an entirelystraightforward way to a number of algorithms for minimization problems with simple bounds, inpartiular to the algorithms [7℄ used by LANCELOT to solve problem (25).If x is �xed, the funtion �(x; u; �; S; �) is quadrati in the slak variables u. Let us denote thisquadrati by q(u; x): q(u; x) = �(x; u; �; S; �) = d(x) + e(x)>u+ 12u>Fu ;where d(x) and e(x) depend on x but F is onstant. (The dependeny on �i, sii, and � is notimportant sine these are onstants �xed before the minimization proess is started.)The key idea is to update these slak variables at every iteration k of the trust-region algorithm[7℄ that is used in LANCELOT to solve problem (25). The trust-region algorithm omputes, at theurrent point yk, a �rst step �sk. Now, at the new point yk+�sk we ompute the step ŝk by updatingthe slak variables u. So, we haveyk =  xkuk ! ; �sk =  (�sk)x(�sk)u ! ; ŝk =  0�uk ! ;f(yk + �sk) = q(�uk; �xk) ; f(yk + �sk + ŝk) = q(�uk +�uk; �xk) ;where �xk = xk + (�sk)x ; �uk = uk + (�sk)u :(Here f represents the objetive funtion of Setions 1-4.) Note that the seond step ŝk is exlusivelyin the omponents assoiated with slak variables. This step is omputed as uk+1� �uk, where uk+1is the optimal solution of minimize q(u; �xk)subjet to ui � 0 ; i = 1; : : : ;m : (26)Due to the simple form of this quadrati, the solution is expliit:(uk+1)i = max�0; ��isii + i(�xk)� ; i = 1; : : : ;m : (27)It is important to remark that these updates require no further funtion or gradient evaluations.They have also been onsidered in the odes NPSOL and SNOPT [15℄, [16℄ to update slak variablesafter the appliation of a line searh to the augmented Lagrangian merit funtion and prior to thesolution of the next quadrati programming problem. Other ways of dealing with slak variableshave been studied in the literature (see Gould [18℄ and the referenes therein).For the study of the impat of the slak variable update on the global onvergene of the trust-region algorithm, the step in these variables is required only to derease the quadrati q(u; �xk) from�uk to �uk+�uk. In suh a ase, we an always guarantee that the derease in the objetive funtionis larger than kŝkk2, that is that (21) holds. This result is shown in the following proposition. Wedrop �xk from q( � ; �xk) to simplify the notation.Proposition 5.1 There exists a positive onstant 5 suh that, whenever q(�uk+�uk) < q(�uk), wehave q(�uk)� q(�uk +�uk) � 5k�ukk2 :



TWO-STEP ALGORITHMS FOR NONLINEAR OPTIMIZATION 14Proof: First we write down a few properties of the quadrati q(u). Simple algebrai manipulationslead to: q(�uk)� q(�uk +�uk) = � (F (�uk +�uk) + e(�xk))>�uk + 12�uk>F�uk : (28)Also, sine q(u) is onvex:q(�uk)� q(�uk +�uk) � ���rq(�uk +�uk)>�uk��� : (29)Let  be a positive onstant suh that  < �min(F )2 , where �min(F ) is the smallest eigenvalue ofF . Now we onsider two ases.1. ���rq (�uk +�uk)>�uk��� � k�ukk2. In this ase we use (29), to obtainq(�uk)� q(�uk +�uk) � k�ukk2 :2. ���rq (�uk +�uk)>�uk��� < k�ukk2. In this ase we appeal to (28) andrq (�uk +�uk) = F (�uk +�uk) + e(�xk) ;to get q(�uk)� q(�uk +�uk) = � (F (�uk +�uk) + e(�xk))>�uk + 12�uk>F�uk� ��min(F )2 � � k�ukk2 :The proof is ompleted by setting 5 = minf; �min(F )2 � g. 2Another example of the appliation of two-step algorithms arises in one approah to the solutionof minimax problems. Consider the following minimax problem:minx maxi=1;:::;m fi(x) ; (30)where eah fi is a real-valued funtion de�ned in IRn. One way of solving this minimax problem isto reformulate it as a nonlinear programming problem by adding an arti�ial variable z. See [18℄for more details. This leads tominimize zsubjet to z � fi(x)� ui = 0 ; i = 1; : : : ;m ; (31)ui � 0 ; i = 1; : : : ;m ;where the slak variables have also been introdued. If LANCELOT is used to solve this nonlin-ear programming problem, then the augmented Lagrangian algorithm requires the solution of asequene of problems with simple bounds of the type:minimize �(x; z; u; �; S; �)subjet to ui � 0 ; i = 1; : : : ;m ; (32)



TWO-STEP ALGORITHMS FOR NONLINEAR OPTIMIZATION 15where �(x; z; u; �; S; �) = z + mXi=1 �i(z � fi(x)� ui) + 12� mXi=1 sii(z � fi(x)� ui)2 :In this situation the funtion �(x; z; u; �; S; �) is quadrati in the variables u and z for �xed valuesof x. (Again, �, S, and � are onstants and not variables for problem (32).) The appliation of thetwo-step trust-region algorithm follows in a similar way. The Hessian of the quadrati is positivesemi-de�nite with the following form
F = 1�

0BBBBBBBBBBBBBB�
s11 0 � � � 0 �s110 � �� � �� � �� � �0 snn �snn�s11 � � � � �snn Pmi=1 sii

1CCCCCCCCCCCCCCA ;
where the last row and the last olumn orrespond to the variable z. The solution of the quadratiprogram minimize q(z; u; �xk)subjet to ui � 0 ; i = 1; : : : ;m : (33)is given by (uk+1)i = max�0; ��isii � fi(�xk) + zk+1� ; i = 1; : : : ;m ; (34)where zk+1 is the solution of the equation� 1� mXi=1 siimax�0; ��isii � fi(�xk) + z� + 1�  mXi=1 sii! z = b (35)with right hand side b = �1� mXi=1��i � sii� fi(�xk)� : (36)The equation (35) is solved easily with O(m) oating point operations and omparisons, showingthat the solution of the quadrati program (33) is a relatively inexpensive alulation.There are several nonlinear optimization problems in whih some subset of the problem variablesour linearly, for example, arrival times in stati-timing-based iruit optimization problems [6℄.Suh problems an also bene�t from two-step updating.6 Numerial tests6.1 Analyti problemsWe modi�ed LANCELOT (Release A) [9℄ to inlude the slak variable update (27) and the slakand minimax variable updates (34)-(36). These updates were inorporated in LANCELOT usinga greedy two-step modi�ation of the trust-region algorithm [7℄ for minimization problems with



TWO-STEP ALGORITHMS FOR NONLINEAR OPTIMIZATION 16simple bounds that is implemented in the subroutine SBMIN. (The greedy two-step trust-regionalgorithm for unonstrained minimization problems is Algorithm 2.2.) We tested the followingversions of LANCELOT:1. LANCELOT (Release A) with the default parameter on�guration SPEC.SPC �le, exept thatwe inreased the maximum number of iterations to 4000.2. Version 1 with the slak and minimax variable updates (27) and (34)-(36) inorporated inSBMIN using a greedy two-step trust-region algorithm.3. The same as Version 2 but with no update of the variable z for minimax problems, i.e., z�xed in (34)-(36).We ompared the numerial performane of these three versions on a set of problems1 fromthe CUTE olletion [2℄. This set of problems is listed in Table 1, and in the ase of minimaxformulations in Table 2, where we mention the number of variables (inluding slaks and, whereappliable, the minimax variable z), the number of slak variables, and the number of equality andinequality onstraints (exluding simple bounds on the variables). Note that the minimax problemswere reformulated as nonlinear programming problems by the introdution of an additional minimaxvariable z as shown above (31).The omputational results are presented in Tables 3, 4, and 5. All tests were onduted on anIBM Ris/System 6000 model 390 workstation. In Table 3 we ompare the results of Versions 1and 2 for problems that are not minimax problems. In Table 4 we present the results of Versions1 and 2 for minimax problems. In Table 5 we inlude the results of Versions 1 and 3 for minimaxproblems. In Tables 4 and 5 we inlude the majority of the minimax problems but not all (seeSetion 6.3 for numerial results on the remaining problems). In these tables we report the value ofthe ag INFORM, the number of iterations, the total CPU time, and the determined values (a singlevalue if they are both the same) of the objetive funtion. The values of INFORM have the followingmeaning:INFORM = 0 for normal return, meaning that the norm of the projeted gradient of the augmentedLagrangian funtion has beome smaller than 10�5.INFORM = 1 for ases where the maximum number of iterations (4000) has been reahed.INFORM = 3 for ases where the norm of the step has beome too small.Our onlusion based on these sets of problems is that the version with the slak and minimaxvariable updates exhibits superior numerial behavior. In fat, this version required an average of15% fewer iterations than the version without these updates (the problems HS109, HAIFAM, andPOLAK6 were exluded from this alulation, mainly beause the omparison was extraordinarilyfavorable in the ase of the �rst two and worse in the last). Comparing Tables 4 and 5, updating theminimax variable z in addition to two-step updates on just the slaks is seen to yield a signi�antbene�t. However, there are some minimax problems where the two-step algorithm performs poorlyand this situation is analyzed in detail in Setion 6.3.1Although CUTE ontains more than 56 problems with general onstraints the majority of these are equalityonstrained problems. We exluded all problems that took more than 4000 iterations with both Versions 1 and 2.We inluded the rest, with the exeption of some problems that are too easy, making a total of 56 problems of whih30 are minimax problems and 26 are non-minimax problems.



TWO-STEP ALGORITHMS FOR NONLINEAR OPTIMIZATION 17Problem Name Variables Slaks ConstraintsCAR2 209 30 146CORE1 83 18 59CORE2 157 26 134CORKSCRW 106 70 10CSFI1 7 2 4CSFI2 7 2 4HADAMARD 769 512 648HS32 4 1 1HS67 17 14 14HS85 26 21 21HS109 13 8 4NET1 67 19 57NET2 181 37 160ORBIT2 298 30 207PRODPL0 69 9 29PRODPL1 69 9 29SSEBNLN 218 24 96SWOPF 97 14 92TFI1F 3 101 101TFI2F 3 101 101TFI3F 3 101 101VANDERM1 10 9 19VANDERM2 10 9 19VANDERM3 10 9 19VANDERM4 5 4 9ZIGZAG 74 10 50Table 1: Non-minimax problems from the CUTE olletion that were used.6.2 Ciruit optimization problemsWe have built extensive experiene with iruit optimization problems, where { due to expensivefuntion evaluations, modest numerial noise levels, and pratial stopping riteria { the imple-mentation is designed to terminate before many \asymptoti" iterations are taken. The algorithmsdesribed in this paper have been used in a dynami-simulation-based iruit optimization toolalled Ji�yTune (see [4℄, [5℄, and [10℄). Ji�yTune optimizes transistor and wire sizes of digital in-tegrated iruits to meet delay, power, and area goals. It is based on fast iruit simulation andtime-domain sensitivity omputation in SPECS (see [13℄ and [28℄). To optimize multiple path de-lays through a high-performane iruit, the tuning is often formulated as a minimax problem or aminimization problem with nonlinear inequality onstraints.We remark that many of the analyti problems (espeially the minimax problems) are rathersmall and involve inexpensive funtion evaluations. Moreover, it is lear that two-step updating isunlikely to be helpful asymptotially in these situations. Consequently we also report numerialresults with iruit optimization problems whih are indiative of problems with expensive funtionevaluations, where termination (beause of inherent noise and pratial onsiderations) is enour-aged to be before any signi�ant asymptoti behavior. The numerial results are presented in Table6. As in Version 1, the seond step onsisted of the slak and minimax variable updates (27) and(34)-(36). However the gradient and onstraint toleranes used were 10�3 and 10�5, respetively,



TWO-STEP ALGORITHMS FOR NONLINEAR OPTIMIZATION 18Problem Name Variables Slaks ConstraintsCB2 6 3 3CB3 6 3 3CHACONN1 6 3 3CHACONN2 6 3 3CONGIGMZ 8 5 5COSHFUN 81 20 20DEMYMALO 6 3 3GIGOMEZ1 6 3 3GOFFIN 101 50 50HAIFAL 9301 8958 8958HAIFAM 249 150 150HALDMADS 48 42 42KIWCRESC 5 2 2MADSEN 9 6 6MAKELA1 5 2 2MAKELA2 6 3 3MAKELA3 41 20 20MAKELA4 61 40 40MIFFLIN1 5 2 2MIFFLIN2 5 2 2MINMAXBD 25 20 20POLAK1 5 2 2POLAK2 13 2 2POLAK3 22 10 10POLAK4 6 3 3POLAK5 5 2 2POLAK6 9 4 4SPIRAL 5 2 2SPRALX 5 2 2WOMFLET 6 3 3Table 2: Minimax problems from the CUTE olletion that were used.with some safeguards related to an expeted level of numerial noise. We an learly observe fromTable 6 that the two-step algorithm leads to better �nal objetive funtion values. In pratialappliations where a simple funtion evaluation takes more than ten minutes of CPU time thee�etiveness of suh a simple addition is indeed signi�ant. (There are situations where the greedytwo-step trust-region algorithm is able to take advantage of the derease given by the slak andminimax variable updates and, by doing so, this algorithm an aept steps that otherwise wouldhave been rejeted, see Remark 3.1.)We also applied the algorithms of this paper to analyti stati-timing-based iruit optimizationproblems (see Table 7), where it is lear that the advantage of the two-step approah is inreasinglyapparent for larger problems.



TWO-STEP ALGORITHMS FOR NONLINEAR OPTIMIZATION 19Problem Name Inform Iterations Total CPU Obj. FuntionCAR2 0/0 80/67 15.2/12.3 2.67CORE1 0/0 953/983 7.41/17 91.1CORE2 0/0 1048/1086 25.6/25.7 72.9CORKSCRW 0/0 41/42 0.55/0.54 1.16CSFI1 0/0 112/127 0.11/0.11 -49.1CSFI2 0/0 78/83 0.07/0.07 55HADAMARD 0/0 1709/548 2290/276 1.14/1HS32 0/0 5/5 0.01/0.01 1HS67 0/0 33/21 0.08/0.07 -1.16e+03HS85 1/0 4000/3734 27.1/23.6 -1.85/-2.22HS109 3/3 1578/753 7.58/3.11 5.36e+03NET1 3/0 69/60 0.57/0.54 9.41e+05NET2 3/0 95/69 3.53/2.92 1.19e+06ORBIT2 0/3 615/612 3020/2750 312PRODPL0 3/0 36/26 0.29/0.23 58.8PRODPL1 0/0 56/32 0.55/0.51 35.7SSEBNLN 0/0 51/51 1.46/1.47 1e+12SWOPF 0/0 204/136 7.68/5.51 0.0679TFI1 0/0 26/24 0.4/0.25 5.33TFI2 0/0 25/45 0.33/0.41 0.649TFI3 0/0 23/34 0.38/0.38 4.3VANDERM1 0/0 13/13 0.05/0.08 0VANDERM2 0/0 13/13 0.08/0.07 0VANDERM3 0/0 14/16 0.07/0.08 0VANDERM4 0/0 81/82 0.1/0.1 0ZIGZAG 0/0 35/31 0.54/0.43 1.8Table 3: Comparison between Versions 1 and 2 for non-minimax problems (LANCELOT with-out/with two-step updating).6.3 Further experiments with minimax problemsIn this setion we onsider those minimax problems in our test set for whih the two-step algorithmnot only does not improve numerially the results obtained in the one-step ase, but also makesthem onsiderably worse (see the �rst part of Table 8). We analyze the reasons for the failure of thetwo-step updating on some minimax problems and disuss a few ways to enfore better numerialbehavior.We onsider the general minimax problem (30). Our aim is to show that for some types ofminimax problems the seond step has a tendeny to make the Hessian of � ill-onditioned. Let usassume that �i = 0 and sii = 1, for all i = 1; : : : ;m (as happens by default for the �rst LANCELOTmajor iteration). Under these irumstanes, we have:�(x; z; u; �) = z + 12� mXi=1(z � fi(x)� ui)2:By using the notation gi(x; z; u) = z�fi(x)�ui, we have the following expressions for the elements



TWO-STEP ALGORITHMS FOR NONLINEAR OPTIMIZATION 20Problem Name Inform Iterations Total CPU Obj. FuntionCB2 0/0 17/11 0.03/0.01 1.95CB3 0/0 14/10 0.05/0.02 2CHACONN1 0/0 12/8 0.02/0.04 1.95CHACONN2 0/0 13/10 0.01/0.02 2CONGIGMZ 0/0 32/19 0.04/0.05 28COSHFUN 0/0 127/69 1.31/1.06 -0.773DEMYMALO 0/0 24/17 0.03/0.03 -3GIGOMEZ1 0/0 27/19 0.04/0.02 -3GOFFIN 0/0 14/4 1.03/0.67 0HAIFAM 1/0 4000/136 1140/85.1 -45HALDMADS 0/0 48/73 0.49/0.72 0.0001KIWCRESC 0/0 19/14 0.02/0.02 0MADSEN 0/0 29/18 0.05/0.04 0.616MAKELA1 0/0 17/18 0.04/0.02 -1.41MAKELA2 0/0 21/9 0.05/0 7.2MAKELA4 0/0 6/4 0.09/0.08 0MIFFLIN1 0/0 11/7 0.03/0.01 -1MIFFLIN2 0/0 37/32 0.04/0.05 -1POLAK1 0/0 35/19 0.04/0.02 2.72POLAK2 0/0 40/24 0.09/0.07 54.6POLAK5 0/0 28/20 0.07/0.04 50POLAK6 0/0 124/149 0.24/0.23 -44SPIRAL 0/0 85/93 0.1/0.07 0SPRALX 0/0 87/93 0.13/0.08 0Table 4: Comparison between Versions 1 and 2 for minimax problems (LANCELOT without/withtwo-step updating).of the gradient of �: rxj� = � 1� mXi=1rxjfi(x)gi(x; z; u) ; j = 1; : : : ; n ;rz� = 1 + 1� mXi=1 gi(x; z; u);rui� = � 1�gi(x; z; u) ; i = 1; : : : ;m :Similarly the elements of the Hessian matrix of � are given by:r2xjxk� = � 1�Pmi=1[r2xjxkfi(x)gi(x; z; u) �rxjfi(x)rxkfi(x)℄ ; r2zz� = m� ;r2uiul� = Æil� ; r2zui� = � 1� ;r2xjz� = � 1�Pmi=1rxjfi(x) ; r2uixj� = 1�rxjfi(x) ;for i; l = 1; : : : ;m and j; k = 1; : : : ; n. If the magnitudes of the produts r2xjxkfi(x)gi(x; z; u)are small ompared to those of the produts rxjfi(x)rxkfi(x), then the Hessian of � is given



TWO-STEP ALGORITHMS FOR NONLINEAR OPTIMIZATION 21Problem Name Inform Iterations Total CPU Obj. FuntionCB2 0/0 17/17 0.03/0.03 1.95CB3 0/0 14/16 0.05/0.03 2CHACONN1 0/0 12/10 0.02/0.03 1.95CHACONN2 0/0 13/13 0.01/0.04 2CONGIGMZ 0/0 32/25 0.04/0.1 28COSHFUN 0/0 127/92 1.31/1.08 -0.773DEMYMALO 0/0 24/18 0.03/0.03 -3GIGOMEZ1 0/0 27/20 0.04/0.02 -3GOFFIN 0/0 14/8 1.03/0.66 0HAIFAM 1/3 4000/609 1140/76.7 -45HALDMADS 0/0 48/46 0.49/0.54 0.0001KIWCRESC 0/0 19/18 0.02/0.03 0MADSEN 0/0 29/23 0.05/0.05 0.616MAKELA1 0/0 17/19 0.04/0.02 -1.41MAKELA2 0/0 21/24 0.05/0.03 7.2MAKELA4 0/0 6/6 0.09/0.11 0MIFFLIN1 0/0 11/11 0.03/0.03 -1MIFFLIN2 0/0 37/37 0.04/0.03 -1POLAK1 0/0 35/32 0.04/0.06 2.72POLAK2 0/0 40/15 0.09/0.04 54.6POLAK5 0/0 28/28 0.07/0.01 50POLAK6 0/0 124/332 0.24/0.48 -44SPIRAL 0/0 85/85 0.1/0.07 0SPRALX 0/0 87/87 0.13/0.09 0Table 5: Comparison of Versions 1 and 3 for minimax problems (LANCELOT without/with two-stepupdating only on slaks).approximately by
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1CCCCCCCCCCCA ;
where aij denotes rxjfi(x) and the indies i in the sums go from 1 to m. This matrix is learlysingular. In fat, the n + 1-st row is the negative sum of the last m rows. Moreover, any of the�rst n rows is a linear ombination of the last m rows. As result of these observations, the Hessian(and the projeted Hessian) of � is ill-onditioned if����� 1� mXi=1rxjfi(x)rxkfi(x)����� � ����� 1� mXi=1r2xjxkfi(x)gi(x; z; u)����� (37)happens for \many" indies j and k. This is the key point in this analysis: the seond step hasa tendeny to produe iterates that worsen property (37) beause it produes a derease on the



TWO-STEP ALGORITHMS FOR NONLINEAR OPTIMIZATION 22Problem Name Variables Ineq. Iterations Total CPU Obj. FuntionNon-minimax:IOmuxpower 102 42 21/29 7230/9220 -15100/-16000durham2 13 2 17/17 93.5/93.5 472hen2 2 1 14/14 91/91.2 4290IOmux 101 41 60/61 18000/17700 -16200/-15900Nov01power 5 1 37/54 24.5/35.6 273/268lau2 5 1 33/32 47.9/46.3 158Nov01 8 4 29/33 22.1/27.3 193/181oulman old 33 17 22/22 69.5/68.3 271/262lkgen 22 5 25/5 35/10.8 1.98/1.82oulman hot 33 17 16/32 46.2/100 283/253davies3 16 1 30/30 368/368 254oulman delay 33 17 26/24 72.6/73.5 116/111Minimax:bultmann lath 39 13 17/18 41.8/46.8 95.9/84.6stall1 30 5 23/19 3350/3050 156/86.8oulman old minmax 34 17 61/80 184/229 69.4/66.9oulman hot minmax 34 17 66/44 197/134 74.4/75.1eisher 110 5 53/61 267/330 -458/-505mod5 51 10 17/51 11200/33100 98.9/19northrop xor 18 8 67/64 78.3/77.7 -34.1/-30.2oulman delay minmax 34 17 100/100 290/306 67.4/70.5Table 6: LANCELOT without/with two-step updating for dynami-simulation-based iruit opti-mization problems. Ineq. stands for the number of inequality onstraints.values of gi(x; z; u) for some indies i. The Hessian of � might very well be ill-onditioned if noseond steps are applied, but there is no doubt (and the numerial results are a evidene of thislaim) that the seond step for some problems worsens the situation by making the Hessian of �more ill-onditioned.In the presene of nonzero Lagrange multipliers �i, i = 1; : : : ;m, the formulae for the gradientand Hessian of � are the same with gi(x; z; u) substituted by gi(x; z; u)+��i and similar onlusionsould be drawn.The seond step may produe very bad results on some minimax problems beause it pointstowards the set f(x; z; u) : gi(x; z; u) = 0; for some ig (where the Hessian of the augmented La-grangian is ill-onditioned) and this e�et inuenes negatively the alulation of the �rst step atthe next iteration. Given this undesirable feature of the Hessian of � at points lose to this set,one possible improvement to the two-step algorithm is to make sure that the alulation of the �rststep is aurate (in the LANCELOT ontext this ould be ahieved by hoosing a smaller toleranefor the stopping riterion of the onjugate-gradient tehnique). Another possible improvement is toredue the ill-onditioning of the Hessian of � (for instane by inreasing the value of the penaltyparameter � as an be seen in examples with a few variables). Indeed, these modi�ations improvethe bad numerial results presented before: in the seond part of Table 8 we ompare the resultsobtained by the following modi�ations of Versions 1 and 2:4. Version 1 with an initial value for the penalty parameter � of 100 (the default value is 0:1).5. Version 2 with an initial value for the penalty parameter � of 100 and a tolerane of 10�12 in



TWO-STEP ALGORITHMS FOR NONLINEAR OPTIMIZATION 23Problem Name Variables Ineq. Iterations Total CPU Obj. FuntionSymmetri 3 37 24 � 1 39/40 0.12/0.15 7.7Symmetri 4 77 25 � 1 69/60 0.63/0.6 10.2Symmetri 5 157 26 � 1 97/81 2.09/1.64 12.7Symmetri 6 317 27 � 1 140/118 9.38/7.14 15.2Symmetri 7 637 28 � 1 270/183 44.3/35.3 17.6Symmetri 8 1277 29 � 1 385/340 247/221 19.9Symmetri 9 2557 210 � 1 901/639 1920/1300 22.1Nonsymmetri 3 37 24 � 1 44/27 0.18/0.16 12.4Nonsymmetri 4 77 25 � 1 58/37 0.57/0.31 16Nonsymmetri 5 157 26 � 1 78/45 1.84/0.91 19.7Nonsymmetri 6 317 27 � 1 75/54 5.89/3.3 23.6Nonsymmetri 7 637 28 � 1 96/50 30.9/9.02 27.7Nonsymmetri 8 1277 29 � 1 92/53 63.6/31.6 31.7Nonsymmetri 9 2557 210 � 1 130/63 300/95 35.7Table 7: LANCELOT without/with two-step updating for analyti (minimax) stati-timing-basediruit optimization problems. Ineq. stands for the number of inequality onstraints.the stopping riterion for onjugate gradients.The study of strategies that an make two-step updating more e�etive for minimax problems ingeneral is the subjet for future researh.7 Conluding remarksIn this paper we presented and analyzed a framework under whih lassial algorithms for nonlinearoptimization an be modi�ed to allow seond omputationally eÆient steps that are not generatedin the onventional way but that are guaranteed to yield derease in the objetive funtion. Wegave as examples of the two-step algorithms the update of slak variables in LANCELOT, and theupdate of variables introdued to solve minimax problems. However, we emphasize that the two-step algorithms an be very generally applied, for example, whenever the funtions de�ning theproblem are in a known funtional form in some of the variables.We onsidered trust-region algorithms for whih we proposed a greedy and a onservative two-step algorithm. We analyzed the onvergene properties of the trust-region two-step algorithms(see [11℄ for line-searh two-step algorithms), deriving the onditions under whih they attainglobal onvergene. We also showed that a two-step Newton's method (for whih the seond stepis omputed only for a subset of the variables) has a q-quadrati rate of onvergene.The greedy two-step algorithms are designed to exploit as muh as possible the derease attainedby the seond step. The trust-region framework allowed to us to design a greedy two-step trust-region algorithm that is partiularly well tailored to ahieve this purpose.Finally, we inluded numerial evidene that this tehnique is e�etive, partiularly for prob-lems with expensive funtion evaluations. The two-step algorithms have already found pratialappliations in optimization of high-performane ustom miroproessor integrated iruits.
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