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Abstract

In order to be provably convergent towards a second-order stationary point, optimization
methods applied to nonconvex problems must necessarily exploit both first and second-order
information. However, as revealed by recent complexity analyses of some of these methods,
the overall effort to reach second-order points is significantly larger when compared to the
one of approaching first-order ones. On the other hand, there are other algorithmic schemes,
initially designed with first-order convergence in mind, that do not appear to maintain the
same first-order performance when modified to take second-order information into account.

In this paper, we propose a technique that separately computes first and second-order
steps, and that globally converges to second-order stationary points: it consists in better
connecting the steps to be taken and the stationarity criteria, potentially guaranteeing larger
steps and decreases in the objective. Our approach is shown to lead to an improvement of the
corresponding complexity bound with respect to the first-order optimality tolerance, while
having a positive impact on the practical behavior. Although the applicability of our ideas
is wider, we focus the presentation on trust-region methods with and without derivatives,
and motivate in both cases the interest of our strategy.

1 Introduction

1.1 Problem description and motivation

We consider a smooth unconstrained optimization problem

min
x∈Rn

f(x), (1.1)

where f : Rn → R is assumed to satisfy the following assumptions.
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Assumption 1.1 The function f is twice continuously differentiable, with Lipschitz continuous
gradient and Hessian.

Assumption 1.2 The objective function f is bounded below by a value flow on the level-set
Lf (x0) = {x ∈ Rn : f(x) ≤ f(x0)}.

When the objective function is nonconvex, algorithms may exploit both first and second-
order information at a given point in order to make progress towards a (local) minimum, at
which it is known that the gradient must be zero and the Hessian matrix must be positive
semidefinite. Therefore, exploiting directions making an acute angle with a non-zero negative
gradient or negative curvature directions corresponding to negative eigenvalues of the Hessian
matrix is essential in guaranteeing convergence to such a point. It is also instrumental to the
derivation of complexity results, which consists in estimating the worst-case number of iterations
(and, often as a by-product, the amount of calls to f and its derivatives) needed to reach an
iterate xk at which

‖∇f(xk)‖ < εC and
[
−λmin(∇2f(xk))

]
+

= max
{
−λmin(∇2f(xk)), 0

}
< εE (1.2)

hold, for some given tolerances εC, εE ∈ (0, 1) where λmin(·) denotes the minimum eigenvalue of
a symmetric matrix.

As complexity analyses were originally proposed in a convex setting, most of the recently
developed results for nonconvex optimization have focused on the worst-case complexity of
reaching approximate optimality conditions of only first order (i.e., ‖∇f(xk)‖ < εC). Still,
several algorithms were studied from a second-order complexity viewpoint and results related to
the satisfaction of (1.2) have been obtained [5, 6, 3, 11, 17, 14, 18] (see also [7] for a generalization
to even higher orders)1.

These algorithms can be classified in two categories. The first one encompasses classes of
second-order globally convergent trust-region methods (with derivatives [6] and without [14, 19]),
direct-search algorithms [18] for derivative-free optimization, and the general nonlinear stepsize
control framework of [17]. In those methods, the complexity bounds for the sole satisfaction
of the first criterion in (1.2) are generally of the form O(ε−2C ). When both criteria in (1.2) are
considered, the bound is typically the maximum of two quantities related to the corresponding
criteria: O

(
max

{
ε−2C ε−1E , ε−3E

})
for derivative-based trust-region methods; O

(
max

{
ε−3C , ε−3E

})
for direct search. In the remaining cases ([17] and [14, 19]), only the case εC = εE is considered,
and a bound of O

(
ε−3E

)
was derived. The presence of a maximum in the above bounds is related

to the satisfaction of both conditions in (1.2). In that sense, one may view the first term as
characteristic of first-order optimality (related to the gradient norm), and the second as relevant
for second-order consideration (tailored to the minimum Hessian eigenvalue). One then observes
that the part related to the first-order term worsens in each of those frameworks compared to
the case in which only first-order aspects are considered. It indeed becomes O(ε−2C ε−1E ) for
trust-region methods and O(ε−3C ) for direct search.

This phenomenon is not endemic in second-order globally convergent methods. In fact, the
second class of algorithms we review here, essentially based upon the cubic regularization analysis

1We also mention here the recent development of new frameworks inspired by accelerated gradient techniques
that provide second-order guarantees while aiming at satisfying approximate first-order optimality [1, 4], despite
the fact that these methods cannot be viewed as full second-order schemes.
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derived in [5], does not suffer from this deterioration. Those frameworks (which require an
approximate solution to a cubic trust-region subproblem) exhibit complexity bounds of O(ε−1.5C )
in terms of first-order optimality and O(max{ε−1.5C , ε−3E }) for second-order optimality [3, 11, 20].
Such results incite us to investigate further the reasons for this discrepancy.

A partial explanation may be found in the theory established for second-order convergent
(derivative-based) line-search methods [2, 15, 21, 23]. In such studies, it has been identified
that an algorithm exploiting both directions of descent and of negative curvature should not
necessarily associate those with the same step length. Indeed, it may be that one of the two
criteria of interest (namely the gradient norm or the minimum Hessian eigenvalue) is several
orders of magnitude smaller than the other. In that situation, a method based on a unique step
length may compute a very small step to cope with the magnitude of one criterion, even though
more improvement could have been realized by performing a moderate step if one would focus
on the other one.

In trust-region methods, one may also face those issues as any computed step is limited
in norm by the trust-region radius. It may be that this radius is forced to shrink in order
to provide second-order decrease guarantees. Such aspects are also present in derivative-free
optimization, where neither first nor second order derivatives are available. In that setting, the
step size (in direct search) or the trust-region radius (in derivative-free trust regions) are often
the only available tools to simultaneously estimate both optimality measures. As a result, the
cost of the second-order guarantees often overcomes the first-order ones (see [14, 19] and [18]).
On the contrary, for the frameworks with first-order complexity bound in O(ε−1.5C ), first and
second-order properties can be analyzed independently of one another, and this seems necessary
for preserving the first-order behavior.

1.2 Contribution and structure of the paper

The main motivation of this paper is the study of algorithms that preserve their original first-
order properties while additionally taking second-order guarantees into account. For this pur-
pose, we present a decoupling technique that dissociates the first and second-order aspects of a
given optimization method, leading to a better treatment of the potential scaling differences that
may arise between the two optimality measures used in the optimization process. More precisely,
we promote the separate treatment of gradient-type and Hessian-type features of the function
at a given iterate. The introduced decoupling technique consists in duplicating elements of the
algorithm that intervene in the treatment of both features, treating each of them separately by
means of dedicated step sizes.

Such an idea is general enough to be embedded in a wide range of optimization algorithms:
we will however focus on trust-region methods, covering both the derivative-based and the
derivative-free cases. In doing so, we will show that the first-order complexity guarantees of
trust-region schemes are preserved, in that the exponent of the first-order power remains un-
changed in the second-order complexity bound. The complexity analysis serves here as an
indicator of an intrinsic difference in behavior between the standard and decoupled approaches.
A numerical comparison also reveals significant discrepancies and confirms the interest of our
proposed technique.

The structure of our paper is the following. We present the decoupling concept within
a trust-region framework in Section 2. The theoretical analysis of this scheme is derived in
Section 3, through the prism of complexity. We illustrate the potential of our approach with

3



some numerical experiments, which are reported in Section 4. The paper is concluded with a
discussion in Section 5. We provide the details regarding our derivative-free framework in an
appendix.

1.3 Notation

Multiple quantities (models, steps, constants) will be featured in two contexts, respectively
related to first and second-order aspects. Following Section 1.1, we adopt the superscripts and
subscripts C for first-order quantities, and E to second-order ones. This notation departs from
the usual choice of g (for first order) and H (for second order) so as to avoid confusion with
the model gradients and Hessians, that will be identified using g and H. Our notation choice
is a reference to the Cauchy step and eigenstep, that characterize the minimum requirements
to be achieved by a trust-region step to obtain first and second-order global convergence (see
Section 2 and [8, Chapter 6]).

By saying that a certain algorithmic quantity (number of iterations, evaluations) is O(A),
we mean that it can be bounded from above by a scalar times A, with this scalar depending
solely on the problem considered or constants from the algorithm, but not on A.

Norms are meant to be Euclidean although we do not directly use this fact.

2 A trust-region method based on decoupled steps

Our presentation of the decoupling technique will be carried on using a basic trust-region
paradigm. In the commonly adopted definition of a trust-region method [8, 26], the optimiza-
tion process consists in the construction of a model of the function around the current iterate,
followed by a minimization of this model within a trust region (typically defined as a Euclidean
ball). If the resulting decrease on the function value is sufficiently large compared to the decrease
predicted by the model, the step is accepted and the size of the trust region may be increased.
Otherwise, the iterate is not updated but the trust-region radius is decreased in an attempt to
improve the accuracy of the model by looking at a smaller neighborhood [8, 26].

Trust-region methods with second-order guarantees are typically based on the computation
of a step which provides a decrease on the model within the trust region comparable to that
obtained along the direction of the negative gradient (also called Cauchy decrease) and along
the direction of an eigenvector corresponding to the most negative Hessian eigenvalue, if any
(also called eigendecrease) [8, Chapter 6]. The optimal solution of the trust-region subproblem
also satisfies such a property, and is sometimes considered in second-order global convergence
proofs [24, 25].

When one aims at deriving complexity results for such methods, it is necessary to relate the
function decrease and the step size to the optimality criteria, namely the gradient norm and the
minimum Hessian eigenvalue. More specifically, a typical trust-region scheme such as the one
analyzed in [6] guarantees that a successful step at iteration k satisfies

f(xk)− f(xk+1) ≥ θ1 max
{
‖∇f(xk)‖δk,

[
−λmin

(
∇2f(xk)

)]
+
δ2k

}
, (2.1)

where δk is the current trust-region radius and θ1 > 0 is a positive constant independent of k. It
can be additionally established that as long as ‖∇f(xk)‖ ≥ εC or λmin

(
∇2f(xk)

)
≤ −εE holds,
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this radius is bounded away from zero, namely that we have

δk ≥ θ2 min{εC, εE} (2.2)

for a constant θ2 > 0 independent of k, εC, εE. This results in an iteration complexity of order
O(max{ε−2C ε−1E , ε−3E }). If only the first-order criterion is taken into account, a similar reasoning
yields a complexity bound in O(ε−2C ). The introduction of second-order information appears to
worsen the first-order properties of the method, which is not the case for cubic regularization
frameworks [5, 6]. This is actually due to the trust-region radius accounting for both optimality
criteria, resulting in (2.2). The goal of our decoupling technique is thus to dissociate the two
properties, which will result in recovering O(ε−2C ) in the second-order complexity bound.

2.1 Algorithmic framework

Algorithm 2.1 describes a decoupled version of the traditional second-order globally convergent
trust-region method. The critical difference to the classical method is the use of two models,

mC
k(xk + s) = f(xk) + (gCk)

>s+
1

2
s>HC

ks, mE
k(xk + s) = f(xk) + (gEk)

>s+
1

2
s>HE

ks,

each devoted to capturing information related to the corresponding derivative and approximately
minimized within its own trust region. At each iteration, the algorithm thus independently com-
putes two steps that are only connected by a common trust-region parameter δk. This represents
a significant departure from the classical approach whose complexity has been analyzed in [6].
As a result, we will see later that each trust-region radius will converge to zero if the method
converges to a (true or model) second-order stationary point. In that respect, Algorithm 2.1
follows the same idea as [13] in that it explicitly connects trust-region radii to optimality crite-
ria of interest so as to force the convergence of the trust-region radii sequences. Similar ideas
are adopted in the context of derivative-free trust-region methods by the application of the so-
called criticality step (see [10]). In fact, the derivative-free variant of our framework relies on a
decoupled formulation of the criticality step that exploits these connections (see Appendix A).

After the double step computation, the method chooses the best point with respect to the
function value and then computes the minimum of two decrease ratios, where in the numerator
one has the actual variation in function value and in the denominator the decrease predicted by
each step in its model. The purpose of the distinct denominators is to ensure that we accept a
step that does at least as good as sCk for mC

k, and sEk for mE
k. As will be shown in the rest of this

section, taking both predicted decreases into account is crucial in ensuring that an accepted step
will produce a satisfying decrease as long as the iterates are far from stationarity. Note that
when ‖gCk‖ = 0 or λEk ≥ 0, the corresponding step is not computed. Those cases are explicitly
handled in Algorithm 2.1 in order for each iteration to be well defined. For future reference, we
detail below the three cases in which the k-th iteration will be successful:

i) ‖gCk‖ = 0, [−λEk]+ > 0, and ρEk ≥ η.

ii) ‖gCk‖ > 0, [−λEk]+ = 0, and ρCk ≥ η.

iii) ‖gCk‖ > 0, [−λEk]+ > 0, and min{ρCk, ρEk} ≥ η.

We point out that the two variables ‖gCk‖ and [−λEk]+ play a symmetric role in the algorithm’s
description and the conditions above: this symmetry will also appear in the theoretical analysis.
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Algorithm 2.1: DEcoupled Steps in a Trust-REgionS Strategy (DESTRESS)

Choose x0 ∈ Rn, 0 < δ0 < δmax, 0 < γ1 < 1 ≤ γ2, and η > 0. Set k = 0.

1. Compute the models mC
k and mE

k so that Assumptions 2.1 and 2.3 are satisfied. (The
derivative-free case requires a decoupled criticality step for this purpose and may lead to
a reduction in δk before Step 2. It will be treated separately in Appendix A.)

2. First-order trust-region step

(a) If ‖gCk‖ > 0, compute a step sCk that approximately solves the first-order
trust-region subproblem {

mins m
C
k(xk + s)

‖s‖ ≤ δCk
def
= δk

∥∥gCk∥∥ , (2.3)

set xCk = xk + sCk and compute f(xCk).

(b) If ‖gCk‖ = 0, no first-order step is computed.

3. Second-order trust-region step

(a) If [−λEk]+ > 0, compute a step sEk that approximately solves the second-order
trust-region subproblem {

mins m
E
k(xk + s)

‖s‖ ≤ δEk
def
= δk

[
−λEk

]
+
,

(2.4)

set xEk = xk + sEk and compute f(xEk).

(b) If [−λEk]+ = 0, no second-order step is computed.

4. Decrease ratio and iterate update

(a) If no step was computed, terminate.

(b) If only one step was computed, define sk to be that step. Otherwise, choose
sk ∈ arg mins∈{sCk,s

E
k}
{f(xk + s)}.

(c) Set ρk = min
{
ρCk, ρ

E
k

}
, where:

• ρCk = f(xk)−f(xk+sk)
mC

k(xk)−m
C
k(xk+s

C
k)

if sCk was computed, ρCk =∞ otherwise;

• ρEk = f(xk)−f(xk+sk)
mE

k(xk)−m
E
k(xk+s

E
k)

if sEk was computed, ρEk =∞ otherwise.

(d) If ρk ≥ η, set xk+1 = xk + sk and declare the iteration as successful,
otherwise declare the iteration as unsuccessful.

5. Trust-region parameter update

Set δk+1 =

{
min {γ2δk, δmax} if ρk ≥ η
γ1δk if ρk < η.

6. Set k = k + 1 and go back to Step 1.
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2.2 Models

Our first-order model aims to capture gradient information, and for this reason we require that
it satisfies a Taylor-type error bound on its function and gradient values in a neighborhood of
the current point, in the sense of the following assumption.

Assumption 2.1 For every index k, the corresponding first-order model mC
k satisfies∣∣mC

k(xk + s)− f(xk + s)
∣∣ ≤ FC(δ

C
k)

2, ∀s ∈ B(0, δCk),∥∥gCk −∇f(xk)
∥∥ ≤ CC‖gCk‖,

where FC > 0 and CC ≥ 0 are constants independent of k.

Assumption 2.1 is straightforward in the derivative-based case, by choosing gCk = ∇f(xk),
CC = 0, and FC = (L∇f +BC)/2, where L∇f is a Lipschitz constant for ∇f and BC is an upper
bound on HC

k . This assumption can also accommodate the use of an inexact gradient. (In the
derivative-free case, Assumption 2.1 can be achieved by the use of a fully linear model [9, 10] in
a ball of radius δCk. As the definition of δCk depends on the model gradient, a criticality step is
needed to ensure satisfaction of the fully linear property which could lead to a decrease in δk.
The details are provided in Appendix A.)

As in the classical case with or without derivatives, we will also need a uniform upper on
the model Hessians.

Assumption 2.2 There exists BC > 0 such that the first-order model Hessian sequence satisfies

∀k, ‖HC
k‖ ≤ BC. (2.5)

Similarly, our second-order model aims at capturing Hessian information. To this end, we
make the following accuracy requirements on the model value and the minimum eigenvalue λEk
of the model Hessian (when negative).

Assumption 2.3 For every index k, the corresponding second-order model mE
k satisfies∣∣mE

k(xk + s)− f(xk + s)
∣∣ ≤ FE(δ

E
k)

3, ∀s ∈ B(0, δEk),∣∣∣[−λEk]+ − [−λmin(∇2f(xk))
]
+

∣∣∣ ≤ CE

[
−λEk

]
+
,

where FE > 0 and CE ≥ 0 are positive constants independent of k.

When using a Taylor model (gEk = ∇f(xk), H
E
k = ∇2f(xk)), one trivially has FE = L∇2f/6

and CE = 0. (In the derivative-free case, Assumption 2.3 is guaranteed by the use of a fully
quadratic model [9, 10] in a ball of radius δEk. As for the previous assumption, the construction
of such a model must be performed based on a criticality procedure and may lead to a decrease
in δk. The details are provided in Appendix A.)

In the derivative-based case, where again the models are quadratic functions based on the
first and second-order Taylor expansions of f around the current iterate, an iteration of the
DESTRESS algorithm requires one gradient and one Hessian evaluation, together with two
objective function evaluations.
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2.3 Subproblem solution

On the first-order side, we impose on the approximate subproblem solution the classical require-
ment of first-order convergent trust-region methods.

Assumption 2.4 At each iteration k of Algorithm 2.1, the approximate solution of the trust-
region subproblem (2.3) satisfies a fraction of Cauchy decrease, i.e., the first-order step sCk sat-
isfies

mC
k(xk)−mC

k(xk + sCk) ≥ τC‖gCk‖min

{
‖gCk‖
‖HC

k‖
, δCk

}
, (2.6)

where τC ∈ (0, 12 ] and we set ‖gCk‖/‖HC
k‖ =∞ whenever ‖HC

k‖ = 0.

Note that with our specific definition of the trust-region radius δCk for subproblem (2.3), the
formula (2.6) reduces to

mC
k(xk)−mC

k(xk + sCk) ≥ τC‖gCk‖2 min

{
1∥∥HC
k

∥∥ , δk
}
. (2.7)

A similar requirement is imposed on the second-order side.

Assumption 2.5 At each iteration k of Algorithm 2.1, the approximate solution of the trust-
region subproblem (2.4) satisfies a fraction of eigendecrease, i.e., when

[
−λEk

]
+
> 0 the second-

order step sEk satisfies

mE
k(xk)−mE

k(xk + sEk) ≥ τE
[
−λEk

]
+

[
−δEk

]2
, (2.8)

where τE ∈ (0, 1].

As before, we observe that our definition of δEk yields

mE
k(xk)−mE

k(xk + sEk) ≥ τE
[
−λEk

]3
+
δ2k. (2.9)

Assumptions 2.4 and 2.5 are typically satisfied, respectively, by a step along the direction of
the negative gradient (also called Cauchy step) and a step along the direction of an eigenvector
associated to λEk > 0 (also called eigenstep).

2.4 Basic results for step acceptance

The model properties we enforce are instrumental to guarantee progress towards a solution of
problem (1.1). Indeed, when the models are chosen to be sufficiently accurate approximations
of the objective function and the trust-region radii are sufficiently small, steps associated with
the subproblems will produce satisfying decrease in the function value and be accepted as new
iterates. This is the sense of the following lemmas.

Lemma 2.1 Let Assumptions 1.1, 2.1, 2.2, and 2.4 hold. Suppose that at iteration k, one has
‖gCk‖ > 0 (i.e., the first-order step sCk is computed) and

δCk < min

{
1

BC
,
τC(1− η)

FC

}
‖gCk‖. (2.10)

Then, ρCk ≥ η.
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Proof. By definition of the step sk, we have:

ρCk =
f(xk)− f(xk + sk)

mC
k(xk)−mC

k(xk + sCk)
≥

f(xk)− f(xk + sCk)

mC
k(xk)−mC

k(xk + sCk)
.

Letting ρ(sCk) =
f(xk)−f(xk+sCk)

mC
k(xk)−m

C
k(xk+s

C
k)

, it thus suffices to prove that ρ(sCk) ≥ η to guarantee that

ρCk ≥ η. One has

|ρ(sCk)− 1| =

∣∣∣∣f(xk)− f(xk + sCk)−mC
k(xk) +mC

k(xk + sCk)

mC
k(xk)−mC

k(xk + sCk)

∣∣∣∣
=

∣∣mC
k(xk + sCk)− f(xk + sCk)

∣∣∣∣mC
k(xk)−mC

k(xk + sk)
∣∣

≤
FC
[
δCk
]2

τC‖gCk‖min
{
‖gCk‖
‖HC

k‖
, δCk

}
≤

FC
[
δCk
]2

τC‖gCk‖min
{
‖gCk‖
BC

, δCk

}
≤

FCδ
C
k

τC‖gCk‖
≤ 1− η,

where the last two inequalities are direct consequences of (2.10). As a result, ρCk ≥ ρ(sCk) ≥ η. �

Lemma 2.2 Let Assumptions 1.1, 2.3, and 2.5 hold. Suppose that at iteration k, one has
λEk < 0 (i.e., the second-order step sEk is computed) and

δEk ≤
τE(1− η)

FE

[
−λEk

]
+
. (2.11)

Then, ρEk ≥ η.

Proof. Similarly to the proof of Lemma 2.1, we define ρ(sEk) =
f(xk)−f(xk+sEk)

mE
k(xk)−m

E
k(xk+s

E
k)

. One then

has

|ρ(sEk)− 1| =

∣∣∣∣f(xk)− f(xk + sEk)−mE
k(xk) +mE

k(xk + sEk)

mE
k(xk)−mE

k(xk + sEk)

∣∣∣∣
=

∣∣mE
k(xk + sEk)− f(xk + sEk)

∣∣∣∣mE
k(xk)−mE

k(xk + sk)
∣∣

≤
FE
[
δEk
]3

τE[−λEk]+
[
δEk
]2

≤
FE
[
δEk
]

τE[−λEk]+
≤ 1− η,

hence ρEk ≥ ρ(sEk) ≥ η, and the desired result holds. �
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3 Worst case complexity

As an auxiliary result, we can exploit the results of Lemmas 2.1 and 2.2 to provide lower bounds
on the trust-region parameter at points sufficiently away from second-order stationarity (or
model stationarity in the derivative-free case as we will later see in Appendix A).

Lemma 3.1 Let Assumptions 1.1, 2.1, 2.3, 2.4, and 2.5 hold. Suppose that the k-th iteration
is such that for every l ≤ k, either ‖gCl ‖ > 0 or [−λEl ]+ > 0.

Then, for every l ≤ k, one has

δl ≥
γ1
γ2

min

{
1

BC
,
τC(1− η)

FC
,
τE(1− η)

FE

}
. (3.1)

Proof. For the purpose of deriving a contradiction, suppose that l is the first iterate such
that

δl+1 < γ1 min

{
1

BC
,
τC(1− η)

FC
,
τE(1− η)

FE

}
. (3.2)

By the updating rules for the trust-region parameter, we have that δl+1 ≥ γ1δl, so

δl < min

{
1

BC
,
τC(1− η)

FC
,
τE(1− η)

FE

}
also holds. By assumption, we must have either ‖gCl ‖ > 0 or [−λEl ]+ > 0 (or both).

If ‖gCl ‖ > 0, one has

δCl = δl‖gCl ‖ ≤ min

{
1

BC
,
τC(1− η)

FC

}
‖gCl ‖. (3.3)

and by Lemma 2.1, this implies that ρCk ≥ η.
On the other hand, if [−λEl ]+ > 0,

δEl ≤
τE(1− η)

FE

[
−λEl

]
+

(3.4)

holds, and we have from Lemma 2.2 that ρEk ≥ η.
As a result, iteration l necessarily satisfies one of the three conditions defining a successful

iteration, as described in Section 2.1. It thus must be a successful iteration, which implies that
δl+1 ≥ δl, and this contradicts the assumption that l is the first iteration index satisfying (3.2).
Therefore, for every l ≤ k,

γ1 min

{
1

BC
,
τC(1− η)

FC
,
τE(1− η)

FE

}
≤ δl+1 ≤ γ2δl,

hence the result. �

Our goal is now to bound the number of iterations that Algorithm 2.1 needs to reach an
(εC, εE)-approximate second-order stationary point, that is a point at which both

‖∇f(xk)‖ < εC (3.5)
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and
[−λmin(∇2f(xk))]+ < εE, (3.6)

hold, with (εC, εE) ∈ (0, 1)2. To establish such a worst-case complexity bound, we define the set

Sε = { k | ρk ≥ η and (3.5) or (3.6) does not hold } ,

which is a subset of the index set of successful iterations (those for which ρk ≥ η).

Lemma 3.2 Let Assumptions 1.1, 1.2, 2.1, 2.3, 2.4, and 2.5 hold. Then, if Sε 6= ∅,

|Sε| ≤
f(x0)− flow

C
max

{
ε−2C , ε−3E

}
, (3.7)

where

C = ηmin

{
τCκδ

(1 + CC)2
,

τEκ
2
δ

(1 + CE)3

}
, κδ =

γ1
γ2

min

{
1

BC
,
τC(1− η)

FC
,
τE(1− η)

FE

}
. (3.8)

Proof. Let k ∈ Sε. Then, either (3.5) or (3.6) does not hold. Moreover, since the iteration
is successful, we have ρk ≥ η, which translates into

f(xk)− f(xk+1) ≥ η


mC
k(xk)−mC

k(xk + sCk) if λEk ≥ 0,
mE
k(xk)−mE

k(xk + sEk) if ‖gCk‖ = 0,
max

{
mC
k(xk)−mC

k(xk + sCk),m
E
k(xk)−mE

k(xk + sEk)
}

otherwise.
(3.9)

Let us examine the three possibilities.
In the first case, only sCk is computed. We have by Assumption 2.3 that λEk ≥ 0 ⇒

λmin(∇2f(xk)) ≥ 0. Therefore the violated criterion must be (3.5), i.e., we have ‖∇f(xk)‖ ≥ εC.
Using

−
∥∥gCk −∇f(xk)

∥∥+ ‖∇f(xk)‖ ≤
∥∥gCk∥∥ ,

together with Assumption 2.1, we then obtain∥∥gCk∥∥ ≥ ‖∇f(xk)‖
1 + CC

≥ εC
1 + CC

.

Hence, by (2.7) and Assumption 2.2, we have

mC
k(xk)−mC

k(xk + sCk) ≥ τC‖gCk‖2 min

{
1

BC
, δk

}
≥ τCε

2
Cκδ

(1 + CC)2
, (3.10)

where we applied the result of Lemma 3.1 together with the fact that κδ < 1/BC to obtain the
last inequality.

Similarly, in the second case, only sEk is computed and (3.6) must not hold, i.e., we must
have λmin(∇2f(xk)) ≤ −εE. Thus, combining

−
∣∣∣[−λEk]+ − [−λmin(∇2f(xk))

]
+

∣∣∣+
[
−λmin(∇2f(xk))

]
+
≤
[
−λEk

]
+

with Assumption 2.3 yields

[
−λEk

]
+
≥
[
−λmin(∇2f(xk))

]
+

1 + CE
≥ εE

1 + CE
.
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As a result,

mE
k(xk)−mE

k(xk + sEk) ≥ τE
[
−λEk

]3
+
δ2k ≥

τEε
3
Eκ

2
δ

(1 + CE)3
, (3.11)

using again Lemma 3.1 to obtain the last inequality.
In the third case, both sCk and sEk are computed. By the above reasoning, given that at least

one of the conditions (3.5) and (3.6) is violated, at least one of the relations (3.10) and (3.11)
must hold. Therefore, we necessarily have:

max
{
mC
k(xk)−mC

k(xk + sCk),m
E
k(xk)−mE

k(xk + sEk)
}
≥ min

{
τCε

2
Cκδ

(1 + CE)2
,
τEε

3
Eκ

2
δ

(1 + CE)3

}
. (3.12)

Putting the three cases together leads to the following lower bound for the decrease at iteration k

f(xk)− f(xk+1) ≥ ηmin

{
τCε

2
Cκδ

(1 + CE)2
,
τEε

3
Eκ

2
δ

(1 + CE)3

}
.

Finally, by considering the sum of the decreases across all iterations and using Assumption 1.2,
we obtain

f(x0)− flow ≥
∑
k∈Sε

f(xk)− f(xk+1)

≥ |Sε| ηmin

{
τCε

2
Cκδ

(1 + CE)2
,
τEε

3
Eκ

2
δ

(1 + CE)3

}
≥ |Sε| Cmin

{
ε2C, ε

3
E

}
,

hence the result. �

Now we define the set of unsuccessful iterations we want to count as

Uε = { k | ρk < η and (3.5) or (3.6) does not hold } ,

Lemma 3.3 Under the assumptions of Lemma 3.2, if Uε 6= ∅, one has

|Uε| ≤ logγ1
(
δ−10 κδ

)
− logγ1(γ2)|Sε|. (3.13)

Proof. From the update formulas on δk, one has

δkε ≤ δ0γ
|Uε|
1 γ

|Sε|
2 ,

where kε is the last index in Sε ∪Uε. (Note that we know from Lemma 3.2 that Sε is finite and
then the same happens to Uε in view of Lemma 3.1.) Taking logarithms, one obtains

− log(γ1)|Uε| ≤ log(δ0)− log(δkε) + log(γ2)|Sε|.

After division by − log(γ1) > 0, this becomes:

|Uε| ≤ − logγ1(δ0) + logγ1(δkε)− logγ1(γ2)|Sε|.

Since δkε satisfies (3.1) and κδ is given by (3.8), we obtain the desired result �

We finally obtain our complexity bound by summing |Sε| and |Uε|. The result is given below
in Theorem 3.1.
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Theorem 3.1 Let the assumptions of Lemma 3.2 hold. Then, the number of iterations needed
to attain an (εC, εE)-approximate second-order stationary point is

O
(
max

{
ε−2C , ε−3E

})
, (3.14)

where the constant in O(·) does not depend on εC or εE, but on flow, f(x0), FC, FE, CC, CE, τC,
τE, γ1, γ2, η, and δ0.

To end this section, we point out that Theorem 3.1 implies a liminf-type global convergence
result of the form

lim inf
k→∞

max
{
‖∇f(xk)‖,−λmin(∇2f(xk))

}
= 0.

4 Numerical illustrations

In order to illustrate the effect of our approach, we selected a benchmark of 61 smooth problems
from the CUTEst collection [16] for which first and second-order derivatives were provided and
negative curvature was detected, inspired by the benchmark of Avelino et al. [2] 2. Table 1 list
the problems and their dimensions.

We implemented a standard second-order trust-region method (denoted by trbasic) as well
as our algorithm (denoted by destress) in MATLAB. In addition, we also implemented a
“coupled” strategy that proceeds as a classic trust-region algorithm, except for the definition of
the trust-region radius, which is scaled at every iteration so that the trust-region subproblem at
iteration k is

min
s

mk(s) s.t. ‖s‖ ≤ δk max
{
‖∇mk(xk)‖,−λmin(∇2mk(xk))

}
. (4.1)

Such a method can be endowed with a complexity analysis, as we discuss in Section 5. For the
experiments, it will be referred to as trscaled.

4.1 Derivative-based case

We first ran all frameworks with access to the derivatives of the objectives. We used exact
second-order Taylor models for the methods, and we computed Cauchy steps for the first-order
subproblems and eigensteps for the second-order subproblems. As pointed above, those steps
satisfy the necessary requirements for our complexity analysis. We set the initial trust-region
parameter to δ0 = 1 (note that in the case of the classical trust-region framework, this represents
the value of the initial trust-region radius). In addition, we set γ1 = γ−12 = 0.5, η = 0.25, and
δmax =∞.

We built performance profiles [12] using the number of iterations as performance metric.
Note that it also corresponds to the number of gradient and Hessian evaluations. In order to
enlighten the distinctive aspects of our technique, we adopted the standard approach of removing
from the profiles the problems for which both methods had the same performance, indicating
on every profile the number of remaining problems.

2More precisely, of the CUTEst problems tested in [2], we considered the 60 problems for which negative
curvature was detected during a run of one of the second-order methods tested in [2], and for which dimension
could be chosen to be less than 50. We additionally included problem SPARSINE, not tested in [2], but for which
we observed negative curvature at the default initial point given in CUTEst.
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Table 1: List of the CUTEst test problems.

Name Dimension Name Dimension Name Dimension

ALLINITU 4 BARD 3 BIGGS6 6
BOX3 3 BROWNAL 10 BROYDN7D 10

BRYBND 10 CHNROSNB 10 CUBE 2
DENSCHND 3 DENSCHNE 3 DIXMAANA 15
DIXMAANB 15 DIXMAANC 15 DIXMAAND 15
DIXMAANE 15 DIXMAANF 15 DIXMAANG 15
DIXMAANH 15 DIXMAANI 15 DIXMAANJ 15
DIXMAANK 15 DIXMAANL 15 ENGVAL2 3
ERRINROS 25 EXPFIT 2 FMINSURF 16
FREUROTH 10 GROWTHLS 3 GULF 3

HAIRY 2 HATFLDD 3 HATFLDE 3
HEART6LS 6 HEART8LS 8 HELIX 3
HIELOW 3 HIMMELBB 2 HIMMELBG 2
HUMPS 2 KOWOSB 4 LOGHAIRY 2

MANCINO 30 MARATOSB 2 MEYER3 3
MSQRTALS 4 MSQRTBLS 9 OSBORNEA 5
OSBORNEB 11 PENALTY3 50 SCOSINE 10
SINQUAD 50 SNAIL 2 SPARSINE 10
SPMSRTLS 28 STRATEC 10 VAREIGVL 10
VIBRBEAM 8 WATSON 12 WOODS 4

YFITU 3
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(b) εC = 10−4 (40 problems).
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(c) εC = 10−6 (26 problems).

Figure 1: Performance of standard and decoupled trust-region methods given a budget of 500
iterations.

We consider that a method has converged whenever it reaches an iterate at which both (3.5)
and (3.6) are satisfied. During our experiments, we found out that all schemes quickly reached a
region where the second-order criterion (3.6) was satisfied for all subsequent iterates (the Hessian
had no negative eigenvalues or only slightly nonpositive ones): the variation in our profiles was
thus essentially caused by a change upon the tolerance on the norm of the gradient. Therefore,
we will restrict the presentation of the results to a single choice of the second-order tolerance,
namely εE = 10−3.

Figure 1 and 2 correspond to the profiles obtained by considering the tolerances (εC, εE) as
used in our convergence analysis. One observes that the destress algorithm is globally more
efficient than the other methods in that it requires less iterations to reach an approximate sta-
tionary point (therefore the destress curve lies above the other two on the y-axis). Interestingly,
the trscaled method is the least efficient in that sense, which suggests that the behavior of our
decoupled algorithm is not solely due to a scaling of the trust region. Instead, our decoupling
process seems to have a positive impact on efficiency. On the other hand, we observe that the
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(c) εC = 10−6 (50 problems).

Figure 2: Performance of standard and decoupled trust-region methods given a budget of 10000
iterations.
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Figure 3: Performance of standard and decoupled trust-region methods given a budget of 500
iterations, with γ2 = 1.1 for destress.

methods trbasic are trscaled often produce higher curves than destress as the ratio gets
larger, indicating that they can satisfy the desired accuracy on more problems within the given
budget. This trend is less noticeable using a large budget of 10000 iterations (Figure 2), which
concurs with the asymptotic results described by our complexity bounds.

Nevertheless, it seemed that the performance of the destress method could be improved by
carefully updating the trust-region parameter. Indeed, we know from the analysis in Section 2.4
that when δk is sufficiently small, we are guaranteed that the steps will be computed and lead to
successful iterations. When that happens, we increase the trust-region parameter, which makes
sense in a classical trust-region framework as we then hope to be able to take longer steps.
However, in our approach, the length of the step is controlled by δCk and δEk. There are thus two
factors controlling the size of each trust region, δk on the one hand, ‖gCk‖ or [−λEk]+ on the other
hand, and it might be that having δk too large would cancel out the effect of the scaling given
by the optimality measures, thereby preventing longer steps.

To confirm this hypothesis, we modified the destress method so that the trust-region pa-
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(c) εC = 10−6 (50 problems).

Figure 4: Performance of standard and decoupled trust-region methods given a budget of 10000
iterations, with γ2 = 1.1 for destress.
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rameter would be increased by a factor of γ2 = 1.1 on successful iterations, while still being
halved on unsuccessful iterations. Figures 3 and 4 depict these new results: one sees that the
robustness of destress is improved by this new choice of parameters, and we believe that this
indicates that the trust-region parameter should be mildly increased on successful iterations. It
is worth noticing that the performance of trbasic and trscaled with γ2 = 1.1 significantly
deteriorates, which is why we did not report those here. This is another illustration of the
unusual behavior induced by our decoupling technique.

Such results encourage the use of a decoupling strategy rather than a single (standard or
coupled) trust-region radius. They also suggest that the updating rules on the trust-region
parameter should be modified, as the role of this parameter is different in a decoupled context.

4.2 Derivative-free case

We now present results for variants of the algorithms described above that do not rely on
derivatives, which we indicate using the suffix dfo. We consider the same set of problems as in
Section 4.1, with the parameter choices δ0 = 1, γ1 = γ−12 = 0.5, η = 0.25, and δmax = 10 for all
three algorithms.

In order to evaluate the methods in a derivative-free setting, we adopt a classical stopping
criterion based on the function values [22]. Given a tolerance τf , we consider that an algorithm
has reached sufficient accuracy whenever

f(xk)− fbest < τf (f(x0)− fbest) , (4.2)

where fbest is the best value obtained by any of the three solvers (trbasic dfo,trscaled dfo,
destress dfo) within the iteration budget.

For the variants trbasic dfo and trscaled dfo, a new model is computed from a new
interpolation set of size (n+1)(n+2)/2 at every iteration. The sample set is well poised, meaning
that it has a favorable geometry for accuracy purposes, leading to a fully quadratic model in the
trust region. This requires to sampling (n+1)(n+2)/2−1 new function values within the desired
trust region (see [10] for details). We have performed tests for which a criticality step in the spirit
of [14, 19] was included in the algorithms trbasic dfo and trscaled dfo. The destress dfo

algorithm computes models within the criticality step described in Algorithm A.1, for which we
select εC = 10−6, εE = 10−3 and choose ε̂C

εC
= ε̂E

εE
= γ21 (hence the criticality step requires at most

two inner iterations and three first-order and three second-order model constructions). The
total number of iterations of the destress dfo algorithm includes those of the criticality step
as counted in Algorithm A.1. Every first-order model is a quadratic with diagonal Hessian built
using a poised interpolation set of 2n + 1 points, while every second-order model uses a poised
interpolation set of (n+ 1)(n+ 2)/2 points. In both cases, all points but one (corresponding to
the current iterate) correspond to new evaluations of the function.

Figures 5 and 6 present the results obtained for a budget of 500 iterations, using respectively
the number of iterations and of function evaluations as performance indicators. One notices that
the destress dfo algorithm performs extremely well on this set of problems, even though it
consumes more function evaluations when building its models. We believe that our decoupling
process avoids shrinking the trust-region too rapidly, and thus allows for longer steps and larger
decrease in function values. Such a property is of particular interest in a derivative-free context,
where the trust-region radius controls the convergence process and the accuracy of the models.
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(c) τf = 10−9 (60 problems).

Figure 5: Performance (in terms of iterations) of derivative-free trust-region methods given a
budget of 500 iterations.
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Figure 6: Performance (in terms of function calls) of derivative-free trust-region methods given
a budget of 500 iterations.
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Our different scaling of the two trust regions allows to capture the appropriate information
without interference from the other one.

As in the derivative-based case, these results suggest that using two different models (and
two trust regions) has a more significant effect on the algorithmic behavior than a scaling of
the trust-region radius. In fact, we observed that destress dfo was able to find much better
values on most of the problems. Our interpretation is that the use of two models dedicated to
exploiting distinct derivative information is suitable in a derivative-free setting, and opens more
possibilities for decrease. This is consistent with similar findings for direct-search algorithms
exploiting second-order information [18].

Finally, we point out that we conducted the same experiments using γ2 = 1.1 for the
destress dfo, but we found the performance of this variant to be much closer to that of
destress dfo with γ2 = 2 than in the derivative-based case. Our interpretation is that the
trust-region parameter δk intervenes explicitly in the definition of the trust regions, but also
implicitly through the construction of the models. Both ‖gCk‖ and [−λEk]+ are thus functions
of δk, and as a result, the updates of the trust-region parameter have a bigger impact in a
derivative-free setting.

5 Discussion

The result of Theorem 3.1 improves over the bound known [6] for a standard trust-region ap-
proach, in terms of the tolerance (εC, εE). We recall that the standard trust-region bound is

O
(
max

{
ε−2C ε−1E , ε−3E

})
.

which is for instance worse than (3.14) whenever ε−2E < ε−2C < ε−3E , e.g., εC = 10−4 and εE = 10−3.
Our method can be viewed as a second-order decoupled variant of the trust-region method

by Fan and Yuan [13], where the trust-region is defined using the gradient norm, similarly as
the parameter δCk in our algorithm. The algorithm trscaled described in Section 4 represents
a second-order variant of the method in [13]. Its complexity was analyzed within the general
framework of nonlinear stepsize control [17]: the resulting worst-case complexity bounds were
of O

(
ε−2C

)
for first-order optimality (i.e., ‖∇f(x)‖ < εC) and O

(
ε−3
)

for a mixed criterion of
first and second-order optimality, namely,

max{‖∇f(x)‖,−λmin(∇2f(x))} < ε.

We believe that the use of a decoupling is most likely necessary to obtain a bound as the one
established in Theorem 3.1, i.e., a bound based on two tolerances (εC, εE) that would indepen-
dently study the two terms of the maximum. To establish such a bound, one needs to provide
more precise guarantees on the decrease that can be achieved at every iteration. As pointed
out by our numerical experiments, the scaling of the trust-region radius considered in trscaled

does not appear sufficient to induce the positive properties we observed from our decoupled
algorithm. Nevertheless, we conjecture that the generic nonlinear stepsize control framework
could be equipped with a decoupling step, and that this would potentially lead to a different
practical performance and more precise (even improved) complexity results. In fact, many al-
gorithms appear to be prone to decoupling, and extensions of this concept to such schemes are
an interesting perspective of the present work. Further investigating the good performance of
our decoupled framework, particularly in the derivative-free case, is also a subject for future
research.
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[22] J.J. Moré and S. M. Wild. Benchmarking derivative-free optimization algorithms. SIAM
J. Optim., 20:172–191, 2009.

[23] A. Olivares, J. M. Moguerza, and F. J. Prieto. Nonconvex optimization using negative
curvature within a modified linesearch. European J. Oper. Res., 189:706–722, 2008.

[24] G. A. Shultz, R. B. Schnabel, and R. H. Byrd. A family of trust-region-based algorithms for
unconstrained minimization with strong global convergence properties. SIAM J. Numer.
Anal., 22:47–67, 1985.

[25] D. C. Sorensen. Newton’s method with a model trust region modification. SIAM J. Numer.
Anal., 19:409–426, 1983.

[26] Y.-X. Yuan. Recent avances in trust region algorithms. Math. Program., 151:249–281, 2015.

A Computing derivative-free models in a decoupled fashion

In this appendix, we describe a procedure to compute the first and second-order models when
the derivatives of the objective function cannot be accessed. It is a form of criticality step, a
technique that guarantees the construction of fully linear or fully quadratic models by correcting
the model and shrinking the trust-region radius [10]. In the case of our decoupled strategy, the
standard procedure must be modified to cope with the use of two different trust regions. Since
each trust-region radius explicitly depends on its associated model, we need to make sure that
the models are indeed accurate in each region. This is the purpose of our criticality procedure,
outlined in Algorithm A.1.

Algorithm A.1 consists in two disjoint criticality steps, each of which following a standard
approach (see [10, 14]). For classical frameworks, it is possible to show that the number of such
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Algorithm A.1: Decoupled criticality step

Inputs: k, xk, δk, γ1 ∈ (0, 1). Parameters: 0 < ε̂C ≤ εC < 1, 0 < ε̂E ≤ εE < 1.

1. First-order criticality step

a. Build a model mC
k that is fully linear on B(xk, δkεC). If ‖gCk‖ ≥ εC, set l1 = k and

go to Step 2. Otherwise, set l = k and go to Step 1.b.

b. Compute a model mC
l+1 fully linear on B

(
xl, γ1δl‖gCl ‖

)
if ‖gCl ‖ > 0 (otherwise set

mC
l+1 = mC

l ).

c. If
‖gCl+1‖ < ε̂C or γ1δl‖gCl ‖ < δl‖gCl+1‖, (A.1)

set mC
l1

= mC
l1+1, l1 = l and go to Step 2.

Otherwise, set δl+1 = γ1δl, xl+1 = xl, l = l + 1, and go to Step 1.b.

2. Second-order criticality step

a. Build a model mE
k that is fully quadratic on B(xk, δkεE). If [−λEk]+ ≥ εE,

set l2 = k and go to Step 3. Otherwise, set l = k and go to Step 2.b.

b. Compute a model mE
l+1 fully quadratic on B

(
xl, γ1δl[−λEl ]+

)
if [−λEl ]+ > 0

(otherwise set mE
l+1 = mE

l ).

c. If
[−λEl+1]+ < ε̂E or γ1δl[−λEl+1]+ < δl[−λEl ]+, (A.2)

set mC
l = mC

l+1, m
E
l = mE

l+1, l2 = l and go to Step 3.
Otherwise, set δl+1 = γ1δl, xl+1 = xl, l = l + 1, and go to Step 2.b.

3. Set k = min{l1, l2} (so that δk = δmin{l1,l2}), m
C
k = mC

l1
, and mE

k = mE
l2

.
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criticality iterations is at most of the same order as the number of successful iterations [14]. Here
we will perform two sets of iterations (corresponding respectively to a first and a second-order
criticality step), therefore it is unclear whether such a result holds. Still, we will show below that
the number of such inner iterations can be bounded above by an algorithmic constant. Note
that we allow Algorithm A.1 to increase the (outer) iteration index, to account for decreases in
the trust-region parameter δk (the iterate xk is never changed).

For establishing the convergence of our framework in the derivative-free case, we will require
the following additional assumption.

Assumption A.1 There exists gmax > 0 and λmax > 0 such that for every models mC
k and mE

k

computed within Algorithm A.1, one has

‖gCk‖ = ‖∇mC
k(xk)‖ ≤ gmax and |λEk| =

∣∣λmin

(
∇2mE

k(xk)
)∣∣ ≤ λmax, (A.3)

where without loss of generality, we assume gmax ≥ εC and λmax ≥ εE.

Such an assumption guarantees that the trust regions considered by Algorithm 2.1 will be
bounded. For simplicity, we will also make the following assumption.

Assumption A.2 There exists positive constants (κCef , κ
C
eg) and (κEef , κ

E
eg, κ

E
eh) such that every

first-order model mC
k computed within Algorithm A.1 is (κCef , κ

C
eg)-fully linear on the stated trust

region, and every second-order model mE
k computed within Algorithm A.1 is (κEef , κ

E
eg, κ

E
eh)-fully

quadratic on the stated trust region.

Assumption A.2 can be guaranteed to hold when the models are constructed via polynomial
interpolation or regression [10], even when re-using points from previous iterations. In this work,
we are concerned with the worst-case behavior of the method, therefore we will assume that one
can compute such models, possibly by paying an expensive price in function evaluations (which
could anyway be taken into account in the complexity results).

We now state and prove the main result about our criticality step procedure.

Lemma A.1 Under Assumptions 1.1, A.1, and A.2, suppose that Algorithm A.1 is called at the
k-th iteration of Algorithm 2.1, and that the corresponding iterate xk is such that ‖∇f(xk)‖ > 0
or λmin(∇2f(xk)) < 0. Then, the following two properties hold:

1. The method terminates with a fully linear model satisfying Assumption 2.1, for some FC
and CC independent of k, or ‖∇f(xk)‖ < (CCγ1 + 1)εC for some constant CC.

2. The method terminates with a fully quadratic model satisfying Assumption 2.3, for some FE
and CE independent of k, or −λmin(∇2f(xk)) < (CEγ1 + 1)εE.

Proof. To prove the desired result, we proceed as follows. First, we will show that the two
criticality steps lead to the desired outcomes for the indices l1 and l2, respectively. Then, we will
show that the properties will still hold after selecting a single index in Step 3 of Algorithm A.1.

We begin by studying the first-order criticality step of Algorithm A.1. Suppose first that
this step ends after Step 1.a because ‖gCk‖ ≥ εC. In that case, the model mC

k is fully linear on
B(xk, δkεC) by design. Since δk‖gCk‖ ∈ [δkεC, δmaxgmax], we know that it is also fully linear on
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B(xk, δk‖gCk‖) (such a result is proved in [10, Lemma 10.25]). Therefore, by Assumption A.2,
the model mC

k satisfies

|mC
k(xk + s)− f(xk + s)| ≤ κCef

(
δk‖gCk‖

)2
for every s ∈ B(xk, δk‖gCk‖), and (in particular)∥∥∇f(xk)− gCk

∥∥ ≤ κCegδk‖gCk‖ ≤ κegδmax‖gCk‖.

Thus, Assumption 2.1 is satisfied with FC = κCef and CC = κCegδmax.
Suppose now that the method enters the loop between Steps 1.b and 1.c. If the loop does

not terminate, then for every l ≥ k, (A.1) does not hold, i.e.,

‖gCl+1‖ ≥ ε̂C and γ1δl‖gCl ‖ ≥ δl‖gCl+1‖.

Thus, for a given index l ≥ k, we obtain

ε̂C ≤ ‖gCl+1‖ ≤ γ1‖gCl ‖ ≤ · · · ≤ γl−k+1
1 ‖gCk‖ ≤ γl−k+1

1 εC. (A.4)

As the last right-hand side goes to zero when l goes to infinity, we arrive at a contradiction. We
thus conclude from this that the number of iterations within this loop cannot exceed logγ1(ε̂C/εC).

As in the algorithm, we now let l1 denote the first index that satisfies (A.1). Suppose that
the second part of (A.1) is satisfied, i.e., l1 is such that

γ1δl1‖gCl1‖ < δl1‖gCl1+1‖

holds. The fact that mC
l1+1 is fully linear on B(xl1 , γ1δl1‖gl1‖) then implies that it is fully linear

on B(xl1+1, δl1‖gCl1+1‖), since xl1 = xl1+1 = xk. As a result, one has

|mC
k(xl1+1 + s)− f(xl1+1 + s)| ≤ κCef

(
δl1‖gCl1+1‖

)2
for every s ∈ B(xl1+1, δl1‖gCl1+1‖), and (in particular)∥∥∇f(xk)− gCl1+1

∥∥ ≤ κCegδl1+1‖gCl1+1‖ ≤ κCegδmax‖gCl1+1‖.

Thus, the model mC
k = mC

l1+1 satisfies Assumption 2.1 with FC = κCef and CC = κCegδmax.
Finally, suppose that l1 is such that

‖gCl1+1‖ < ε̂C and δl1‖gCl1+1‖ ≤ γ1δl1‖gCl1‖ (A.5)

and mC
l1+1 is fully linear on B(xl1+1, γ1δl1‖gCl1‖). By this last property and Assumption A.2, we

have
‖∇f(xk)− gCl1+1‖ ≤ κCegγ1δl1‖gCl ‖ ≤ CCγ1‖gCl1‖,

where CC = κCegδmax. Then, we have

‖∇f(xk)‖ ≤ ‖∇f(xk)− gCl1+1‖+ ‖gCl1+1‖
≤ CCγ1δl1‖gCl1‖+ ε̂C.
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Given that the iterations up to l1 did not lead to termination, we can apply (A.4) to l1, which
guarantees that

‖gCl1‖ ≤ γl1−k+1
1 ‖gCk‖ ≤ εC, (A.6)

where the last line comes from the fact that the first-order criticality step did not terminate
with l1 = k. Putting (A.5) and (A.6) together yields

‖∇f(xk)‖ ≤ (CCγ1 + 1) εC. (A.7)

We have thus proved the desired result for the first-order criticality step. An identical
reasoning can be applied to the second-order criticality step, using [10, Lemma 10.26] for the
larger ball argument, and the accuracy property of the minimum model Hessian eigenvalue for a
fully quadratic model ([10, Proposition 10.14]). The desired conclusions then hold with FE = κEef
and CE = κEehδmax, and this step terminates in at most l2 ≤ logγ1(ε̂E/εE) iterations.

What is left to prove is that both properties are satisfied for the minimum index between l1
and l2. Since the reasoning is again identical for both cases, we only consider the case l1 > l2.
Two subcases are to be considered. If the model mC

l1
is fully linear on B(xk, δl1‖gl1‖), then it is

still fully linear on B(xk, δl2‖gl1‖) as δl1 < δl2 , so the result holds. Otherwise, we immediately
have that the true gradient norm satisfies (A.7). �

The result of Lemma A.1 justifies the use of the tolerances (ε̂C, ε̂E), which are absent from
classical approaches [14, 19] and arises as a natural consequence of our decoupling strategy.
Indeed, a classical trust-region approach would build a single model based upon the joint criterion
σ(x) = max{‖∇f(x)‖,−λmin(∇2f(x))}. The associated criticality step would terminate in a
finite number of iterations as long as σ(x) > 0, and since for complexity purposes, one would
assume σ(x) ≥ ε, this quantity would be uniformly bounded away from zero. In our case,
however, we decoupled the two criteria, which means that only one of them is guaranteed to be
bounded away from zero, i.e., only one of the criticality steps is guaranteed to terminate. We
thus introduce (ε̂C, ε̂E) in order to ensure finite termination of both criticality steps. As illustrated
by Lemma A.1, this approach either returns models of desirable accuracy or guarantees that the
true stationary measures are small.

We can then state a corollary result of our complexity analysis of Section 3.

Corollary A.1 Let the assumptions of Theorem 3.1 hold. Suppose further that the models are
computed using Algorithm A.1, under Assumptions A.1 and A.2. Let (εC, εE) be the tolerances
used in Algorithm A.1, and suppose that

ε̂C = γr1εC and ε̂E = γr1εE,

where r is a positive integer. Finally, let εC = (CCγ1 + 1)εC and εE = (CEγ1 + 1)εE. Then,
the number of iterations needed by Algorithm 2.1 to attain an (εC, εE)-approximate second-order
stationary point is

O
(
rmax{ε−2C , ε−3E }

)
, (A.8)

where the constant in O(·) does not depend on εC, εE, εC or εE, but on flow, f(x0), FC, FE, CC,
CE, τC, τE, γ1, γ2, η, and δ0.

Proof. Let k ∈ S be an iteration index such that xk is not an (εC, εE)-approximate second-
order stationary point, i.e., either (3.5) or (3.6) does not hold for xk.

28



Suppose that (3.5) does not hold. In that case, Algorithm A.1 cannot terminate by guaran-
teeing ‖∇f(xk)‖ ≤ (CCγ1 + 1)εC = εC, as this would contradict (3.5). We must thus be in one of
the other termination cases identified by Lemma A.1, and both cases imply that the first-order
model mC

k satisfies Assumption 2.1.
Similarly, if (3.6) does not hold, we can show that Algorithm A.1 necessarily outputs a

second-order model satisfying Assumption 2.3. We can thus apply the reasoning from Lemma 3.2
to obtain the same bound on the number of successful iterations. Note that Algorithm A.1 could
lead to a reduction in δk and thus Lemma 3.1 is no longer valid as it stands. However, given our
choices for ε̂C and ε̂E there will be at most r of those reductions in δk, and all we would have to
do is to replace γ1 in (3.1) by γr+1

1 .
What is left to bound is the number of iterations for which the trust-region parameter δk

is decreased, that includes the unsuccessful iterations of Algorithm 2.1 as well as those counted
within Algorithm A.1. The result of Lemma 3.3 regarding the number of unsuccessful iterations
still holds (for a different constant κδ with γ1 replaced by γr+1

1 ). Regarding the iterations in
Algorithm A.1 that are not accounted for in this count, our choices for ε̂C and ε̂E ensure that
there will be at most r of those remaining iterations. Therefore, the total number of iterations
before reaching an approximate second-order stationary point is at most

r(|Sε|+ |Uε|),

where |Sε| and |Uε| are defined as in Section 3. This yields the desired result. �

We point out that the dependence on r can be explicitly controlled by setting the parameters
ε̂C and ε̂E as suggested in Corollary A.1. Note that none of those tolerances appears in the main
algorithm, even though they are instrumental in establishing the complexity guarantees. In
that sense, our complexity guarantees are somehow weaker than those known for derivative-free
trust-region approaches [14, 19]. On the other hand, the derivative-free algorithms cannot rely
on the stopping criteria (3.5) and (3.6), therefore our bounds do not seem less valuable. On the
contrary, the improvement we observe in the decoupled bounds is due to more precise guarantees
on the decrease produced at successful iterations, and this has a positive impact in practice (as
seen in Section 4.2).
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