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Abstract

In order to be provably convergent towards a second-order stationary point, optimization
methods applied to nonconvex problems must necessarily exploit both first and second-order
information. However, as revealed by recent complexity analyzes of some of these methods,
the overall effort to reach second-order points is significantly larger when compared to the one
of approaching first-order ones. In addition, there are other algorithmic schemes, initially
designed with first-order convergence in mind, that do not appear to maintain the same
first-order performance when modified to take second-order information into account.

In this paper, we propose a technique that separately computes first and second-order
steps, and that globally converges to second-order stationary points. Our approach is shown
to lead to an improvement of the corresponding complexity bound with respect to the first-
order optimality tolerance. Although the applicability of our ideas is wider, we focus the
presentation on trust-region methods with and without derivatives.

1 Introduction

1.1 Problem description and motivation

We consider a smooth unconstrained optimization problem

min
x∈Rn

f(x), (1.1)

where f : Rn → R is assumed to satisfy the following assumptions.

Assumption 1.1 The function f is twice continuously differentiable, with Lipschitz continuous
gradient and Hessian (and let L∇2f be the Lipschitz constant of the Hessian).
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Assumption 1.2 The objective function f is bounded below by a value flow on the level-set
Lf (x0) = {x ∈ Rn : f(x) ≤ f(x0)}.

When the objective function is nonconvex, algorithms may exploit both first and second-
order information at a given point in order to make progress towards a (local) minimum, at
which it is known that the gradient must be zero and the Hessian matrix must be positive
semidefinite. Therefore, exploiting directions making an acute angle with a non-zero negative
gradient or negative curvature directions corresponding to negative eigenvalues of the Hessian
matrix is essential in guaranteeing convergence to such a point. That is also instrumental to the
derivation of complexity results, which consists in estimating the worst-case number of iterations
(and, often as a by-product, the amount of calls to f and its derivatives) needed to reach an
iterate xk at which

‖∇f(xk)‖ < εC and
[
−λmin(∇2f(xk))

]
+

= max
{
−λmin(∇2f(xk)), 0

}
< εE (1.2)

hold, for some given tolerances εC, εE ∈ (0, 1).
As complexity analyses were originally proposed in a convex setting, most of the recently

developed results for nonconvex optimization have focused on the worst-case complexity of
reaching approximate optimality conditions of only first order (i.e., ‖∇f(xk)‖ < εC). Still,
several algorithms were studied from a second-order complexity viewpoint and results related to
the satisfaction of (1.2) have been obtained [5, 6, 3, 11, 18, 14, 19] (see also [7] for a generalization
to even higher orders)1.

These algorithms can be classified in two categories. The first one encompasses classes of
second-order globally convergent trust-region methods (with derivatives [6] and without [14, 20]),
direct-search algorithms [19] for derivative-free optimization, and the general nonlinear stepsize
control framework of [18]. In those methods, the complexity bounds for the sole satisfaction
of the first criterion in (1.2) are generally of the form O(ε−2C ). When both criteria in (1.2) are
considered, the bound is typically the maximum of two quantities related to the corresponding
criteria: O

(
max

{
ε−2C ε−1E , ε−3E

})
for derivative-based trust-region methods; O

(
max

{
ε−3C , ε−3E

})
for direct search. In the remaining cases ([18] and [14, 20]), only the case εC = εE is considered,
and a bound of O

(
ε−3E

)
was derived. The presence of a maximum in the above bounds is related

to the satisfaction of both conditions in (1.2). In that sense, one may view the first term as
characteristic of first-order optimality (related to the gradient norm), and the second as relevant
for second-order consideration (tailored to the minimum Hessian eigenvalue). One then observes
that the part related to the first-order term worsens in each of those frameworks compared to
the case in which only first-order aspects are considered. It indeed becomes O(ε−2C ε−1E ) for
trust-region methods and O(ε−3C ) for direct search.

This phenomenon is not endemic in second-order globally convergent methods. In fact,
the second class of algorithms we review here, essentially based upon the cubic regularization
analysis derived in [5], does not suffer from this deterioration. Although those frameworks may
not explicitly require the minimization of a cubic model [3, 11, 21], they all exhibit complexity
bounds of O(ε−1.5C ) in terms of first-order optimality and O(max{ε−1.5C , ε−3E }) for second-order
optimality. Such results incite to investigate further the reasons for this discrepancy.

1We also mention here the recent development of new frameworks inspired by accelerated gradient techniques
that provide second-order guarantees while aiming at satisfying approximate first-order optimality [1, 4], despite
the fact that these methods cannot be viewed as full second-order schemes.
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A partial explanation may be found in the theory established for second-order convergent
(derivative-based) line-search methods [2, 15, 22, 23]. In such studies, it has been identified
that an algorithm exploiting both directions of descent and of negative curvature should not
necessarily associate those with the same step length. Indeed, it may be that one of the two
criteria of interest (namely the gradient norm or the minimum Hessian eigenvalue) is several
orders of magnitude smaller than the other. In that situation, a method based on a unique step
length may compute a very small step to cope with the magnitude of one criterion, even though
more improvement could have been realized by performing a moderate step if one would focus
on the other one.

In trust-region methods, one may also face those issues as any computed step is limited
in norm by the trust-region radius. It may be that this radius is forced to shrink in order to
provide second-order guarantees. Such aspects are also present in derivative-free optimization,
where neither first nor second order derivatives are available. In that setting, the step size
(in direct search) or the trust-region radius (in derivative-free trust regions) are often the only
available tools to simultaneously estimate both optimality measures. As a result, the cost of
the second-order guarantees often overcomes the first-order ones (see [14, 20] and [19]). On the
contrary, any technique with a first-order complexity in O(ε−1.5C ) directly relates the norm of
the computed step(s) and both criteria of interest in an independent manner.

1.2 Contribution and structure of the paper

Our main motivation is thus the study of algorithms that preserve the original first-order guar-
antees while additionally taking second-order properties into account, so that the exponent of
the first-order power remains unchanged in the overall complexity bound. For this purpose,
we present a decoupling technique that dissociates the first and second-order aspects of a given
optimization method. Another goal is to address the potential scaling differences that may arise
between the optimality measures by using different step sizes.

Our study revolves around the separate treatment of gradient-type and Hessian-type proper-
ties of the function at a given iterate. The introduced decoupling technique relies on duplicating
elements of the algorithm that intervene in the treatment of both properties, so as to treat each of
them separately. In doing so, we will reach a worst-case complexity bound of O(max{ε−2C , ε−3E }).

As we will see, the idea is general enough to be embedded in a wide range of optimization
algorithms. We will however focus on trust-region methods, covering both the derivative-based
and the derivative-free cases. The structure of the paper is the following. We present the
decoupling concept within a trust-region framework in Section 2. The complexity analysis is
derived in Section 3. Some numerical experiments are reported in Section 4 to indicate the
potential of our approach. The paper is concluded with a discussion in Section 5.

1.3 Notation

Multiple quantities (models, steps, constants) will be featured in two contexts, respectively
related to first and second-order aspects. To avoid confusion, we adopt the superscripts and
subscripts C for first-order quantities, and E to second-order ones.

The notation O(A) stands for a scalar times A, with this scalar depending solely on the
problem considered or constants from the algorithm. Norms are meant to be Euclidean although
we do not directly use this fact.
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2 A trust-region method based on decoupled steps

Our presentation of the decoupling technique will be carried on using a basic trust-region
paradigm. In the commonly adopted definition of a trust-region method [8, 26], the optimization
process consists in the construction a model of the function around the current iterate, followed
by a minimization of this model within a trust region (typically defined as a Euclidean ball).
If the resulting decrease on the function value is sufficiently large compared to the decrease
predicted by the model, the step is accepted and the size of the trust region may be increased.
Otherwise, the iterate does not change but the trust-region radius is decreased in an attempt to
improve the accuracy of the model by looking at a closer neighborhood [8, 26].

Trust-region methods with second-order guarantees are typically based on the computation
of a step which provides a decrease on the model within the trust region comparable to that
obtained along the direction of the negative gradient (also called Cauchy decrease) and along
the direction of an eigenvector corresponding to the most negative Hessian eigenvalue, if any
(also called eigendecrease) [8, Chapter 6]. The optimal solution of the trust-region subproblem
also satisfies such a property, and is sometimes considered in second-order global convergence
proofs [24, 25].

When one aims to derive complexity results for such methods, it is necessary to relate the
function decrease and the step size to the optimality criteria, namely the gradient norm and the
minimum Hessian eigenvalue. More specifically, a typical trust-region scheme such as the one
analyzed in [6] guarantees that a successful step at iteration k satisfies

f(xk+1)− f(xk) ≥ O
(

min
{
‖∇f(xk)‖δk,

[
−λmin

(
∇2f(xk)

)]
+
δ2k

})
, (2.1)

where δk is the current trust-region radius. It can be additionally established that as long as
‖∇f(xk)‖ ≥ εC or λmin

(
∇2f(xk)

)
≤ −εE holds, this radius is bounded away from zero as follows

δk ≥ O (min{εC, εE}) . (2.2)

This results in an iteration complexity of order O(max{ε−2C ε−1E , ε−3E }). If only the first-order
criterion is taken into account, a similar reasoning yields a complexity bound in O(ε−2C ). The
introduction of second-order information appears to worsen the first-order properties of the
method, which is not the case for cubic regularization frameworks [5, 6]. This is actually due
to the trust-region radius accounting for both optimality criteria, resulting in (2.2). The goal of
our decoupling technique is thus to dissociate the two properties in order to recover O(ε−2C ) in
the second-order complexity bound.

2.1 Algorithmic framework

Algorithm 2.1 describes a decoupled version of the traditional second-order globally convergent
trust-region method. The critical difference to the classical method is the use of two models,

mC
k(xk + s) = fk + (gCk)

>s+
1

2
s>HC

ks, mE
k(xk + s) = fk + (gEk)

>s+
1

2
s>HE

ks,

each devoted to capturing information related to the corresponding derivative and approximately
minimized within its own trust region. At each iteration, the algorithm thus independently
computes two steps that are only connected by a common trust-region parameter δk. As a result,
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we will see later that each trust-region radius will converge to zero if the method converges to a
(true or model) second-order stationary point. In that respect, Algorithm 2.1 follows the same
idea than [13] in that it explicitly connects trust-region radii to optimality criteria of interest
so as to force the convergence of the trust-region radii sequences. Similar ideas are adopted in
the context of derivative-free trust-region methods by the application of the so-called criticality
step (see [10]).

After the double step computation, the method chooses the best point with respect to the
function value and then computes the maximum of two decrease ratios (where in the numerator
one has the actual variation in function value and in denominator the decrease predicted by
each step in its model). This significantly differs from the classical approach whose complexity
has been analyzed in [6].

2.2 Models

Our first-order model aims to capture gradient information. For this reason, we first require a
Taylor-type bound on function values, which will be trivially satisfied in the derivative-based
case gCk = ∇f(xk) with FC = (L∇f +BC)/2, where BC is an upper bound on HC

k .
In the derivative-free case this is achieved by the use of a fully linear model in a ball of

radius δEk. The second assumption tightens the accuracy of the model gradient gCk to its size.
Again, it is trivally satisfied when gCk = ∇f(xk), this time with CC = 0. In the derivative-free
setting this is achieved by means of a criticality step where a fully linear model is computed in
a ball of radius proportional to ‖gCk‖ (see [9]).

Assumption 2.1 For every index k, the corresponding first-order model mC
k satisfies∣∣mC

k(xk + s)− f(xk + s)
∣∣ ≤ FC(δ

C
k)

2, ∀s ∈ B(0, δCk),∣∣gCk −∇f(xk)
∣∣ ≤ CC‖gCk‖,

where FC > 0 and CC ≥ 0 are constants independent of k.

As in the classical case with or without derivatives, we will also need an uniform upper on
the model Hessians.

Assumption 2.2 There exists BC > 0 such that the first-order model Hessian sequence satisfies

∀k, ‖HC
k‖ ≤ BC. (2.5)

Similarly, our second-order model aims to capture Hessian information. Now we require the
use of a fully quadratic model and tighten the accuracy of the minimum eigenvalue λEk of the
model Hessian (when negative) to its magnitude.

Assumption 2.3 For every index k, the corresponding second-order model mE
k satisfies∣∣mE

k(xk + s)− f(xk + s)
∣∣ ≤ FE(δ

E
k)

3, ∀s ∈ B(0, δEk),∣∣∣[−λEk]+ − [−λk]+
∣∣∣ ≤ CE

[
−λEk

]
+

if λEk < 0,

where FE > 0 and CE ≥ 0 are positive constants independent of k.
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Algorithm 2.1: decoupled Steps in a Trust-REgionS Strategy (DESTRESS)

Choose x0 ∈ Rn, 0 < δ0 < δmax, 0 < γ1 < 1 ≤ γ2, and η > 0.
for k = 0, 1, 2, . . . do

1. First-order trust-region step

(a) Compute a model mC
k of the function f , and a step sCk that

approximately solves the first-order trust-region subproblem{
mins m

C
k(xk + s)

‖s‖ ≤ δCk
def
= δk

∥∥gCk∥∥ . (2.3)

(b) Set xCk = xk + sCk and compute f(xCk).

2. Second-order trust-region step

(a) Compute a model mE
k of the function f . If λEk < 0, compute a step sEk that

approximately solves the second-order trust-region subproblem{
mins m

E
k(xk + s)

‖s‖ ≤ δEk
def
= δk

[
−λEk

]
+
.

(2.4)

If λEk ≥ 0, no second-order step is computed.

(b) Set xEk = xk + sEk and compute f(xEk).

3. Decrease ratio and iterate update

(a) If a second-order step was computed, choose sk ∈ arg min
{
f(xk + sCk),

f(xk + sEk)
}

and set
ρk = max

{
ρCk, ρ

E
k

}
with

ρCk =
f(xk)− f(xk + sk)

mC
k(xk)−mC

k(xk + sCk)
and ρEk =

f(xk)− f(xk + sk)

mE
k(xk)−mE

k(xk + sEk)
.

Otherwise, sk = sCk and ρk = ρCk.

(b) If ρk ≥ η, set xk+1 = xk + sk and declare the iteration as successful,
otherwise declare the iteration as unsuccessful.

4. Trust-region parameter update

Set

δk+1 =

{
min {γ2δk, δmax} if ρk ≥ η,
γ1δk otherwise.
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When using a Taylor model (gEk = ∇f(xk), H
E
k = ∇2f(xk)), one trivially has FE = L∇2f/6

and CE = 0.
In the derivative-free case the first assumption is achieved by the use of a fully quadratic

model in a ball of radius δEk and the second one by a criticality step where a fully quadratic model
is computed in a ball of radius proportional to

[
−λEk

]
+

when λEk is negative (as in [9]). We must
point out here that the strict satisfaction of the second assumption in a derivative-free context
would be hard to do in a finite number of iterations within a criticality-type step. However, we
observe that in order to still garantee the result (Lemma 3.2) where such assumption is used,
one can relax it as ∣∣∣[−λEk]+ − [−λk]+

∣∣∣ ≤ CE

[
−λEk

]
+

+
εE
2

if λEk ≤ εE,

where εE > 0 is the second-order tolerance for the derivation of the complexity bound.
In the derivative-based case, where again the models are quadratic functions based on the

first and second-order Taylor expansions of f around the current iterate, an iteration of the
DESTRESS algorithm requires one gradient and one Hessian evaluation, together with two calls
to the objective function.

2.3 Subproblem solution

On the first-order side, we impose on the approximate subproblem solution the classical require-
ment of first-order convergent trust-region methods.

Assumption 2.4 At each iteration k of Algorithm 2.1, the approximate solution of the trust-
region subproblem (2.3) satisfies a fraction of Cauchy decrease, i.e., the first-order step sCk sat-
isfies

mC
k(xk)−mC

k(xk + sCk) ≥ τC‖gCk‖min

{
‖gCk‖
‖HC

k‖
, δCk

}
, (2.6)

where τC ∈ (0, 12 ] and we set ‖gCk‖/‖HC
k‖ =∞ whenever ‖HC

k‖ = 0.

Note that with our specific definition of the first-order trust-region radius, (2.6) reduces to

mC
k(xk)−mC

k(xk + sCk) ≥ τC‖gCk‖2 min

{
1∥∥HC
k

∥∥ , δk
}
. (2.7)

A similar requirement is imposed on the second-order side.

Assumption 2.5 At each iteration k of Algorithm 2.1, the approximate solution of the trust-
region subproblem (2.4) satisfies a fraction of eigendecrease, i.e., when

[
−λEk

]
+
> 0 the second-

order step sEk satisfies

mE
k(xk)−mE

k(xk + sEk) ≥ τE
[
−λEk

]
+

[
−δEk

]2
, (2.8)

where τE ∈ (0, 1].

As before, we observe that our definition of δEk yields

mE
k(xk)−mE

k(xk + sEk) ≥ τE
[
−λEk

]3
+
δ2k. (2.9)

Assumptions 2.4 and 2.5 are typically satisfied, respectively, by a step along the direction of
the negative gradient (also called Cauchy step) and a step along the direction of an eigenvector
associated to λEk > 0 (also called eigenstep).
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2.4 Basic results for step acceptance

The model properties we enforced are instrumental to guarantee progress towards a solution of
problem (1.1). Indeed, when the models are chosen to be sufficiently accurate approximations
of the objective function and the trust-region radii are sufficiently small, steps associated with
the subproblems will produce satisfying decrease in the function value and be accepted as new
iterates. This is the sense of the following lemmas.

Lemma 2.1 Let Assumptions 1.1, 2.1, 2.2, and 2.4 hold. If ‖gCk‖ > 0 and

δCk < min

{
1

BC
,
τC(1− η)

FC

}
‖gCk‖, (2.10)

then the k-th iteration is first-order successful and the first-order trust-region parameter is not
decreased.

Proof. Since we have ρk ≥ ρCk, it suffices to prove that ρCk ≥ η. One has:

|ρCk − 1| =

∣∣∣∣f(xk)− f(xk + sCk)−mC
k(xk) +mC

k(xk + sCk)

mC
k(xk)−mC

k(xk + sCk)

∣∣∣∣
=

∣∣mC
k(xk + sCk)− f(xk + sCk)

∣∣∣∣mC
k(xk)−mC

k(xk + sk)
∣∣

≤
FC
[
δCk
]2

τC‖gCk‖min
{
‖gCk‖
‖HC

k‖
, δCk

}
≤

FC
[
δCk
]2

τC‖gCk‖min
{
‖gCk‖
BC

, δCk

}
≤

FCδ
C
k

τC‖gCk‖
≤ 1− η,

where the last two inequalities are direct consequences of (2.10). �

Lemma 2.2 Let Assumptions 1.1, 2.3, and 2.5 hold. Suppose that at iteration k, λEk < 0 and
Step 2 of Algorithm 2.1 is reached with

δEk ≤
τE(1− η)

FE

[
−λEk

]
+
. (2.11)

Then, the k-th iteration is second-order successful and the second-order trust-region parameter
is not decreased.
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Proof. Similarly to the proof of Lemma 2.1, one then has:

|ρEk − 1| =

∣∣∣∣f(xk)− f(xk + sEk)−mE
k(xk) +mE

k(xk + sEk)

mE
k(xk)−mE

k(xk + sEk)

∣∣∣∣
=

∣∣mE
k(xk + sEk)− f(xk + sEk)

∣∣∣∣mE
k(xk)−mE

k(xk + sk)
∣∣

≤
FE
[
δEk
]3

τE[−λEk]+
[
δEk
]2

≤
FE
[
δEk
]

τE[−λEk]+
≤ 1− η,

hence ρk ≥ ρEk ≥ η. �

3 Worst case complexity

As an auxiliary result, we can exploit the results of Lemmas 2.1 and 2.2 to provide lower bounds
on the trust-region parameter at points sufficiently away from second-order stationarity (or
model stationarity in the derivative-free case).

Lemma 3.1 Let Assumptions 1.1, 2.1, 2.3, 2.4, and 2.5 hold. Suppose that by the k-th iteration,
the method has not reached a (true or model) second-order stationary point, meaning that ∀l ≤ k
either ‖gCl ‖ > 0 or [−λEl ]+ > 0.

Then, for every l ≤ k, one has

δl ≥
γ1
γ2

min

{
1

BC
,
τC(1− η)

FC
,
τE(1− η)

FE

}
. (3.1)

Proof. For the purpose of deriving a contradiction, suppose that l is the first iterate such
that

δl+1 < γ1 min

{
1

BC
,
τC(1− η)

FC
,
τE(1− η)

FE

}
. (3.2)

By the updating rules on the trust-region parameter, we have that δl+1 ≥ γ1δl, so

δl < min

{
1

BC
,
τC(1− η)

FC
,
τE(1− η)

FE

}
also holds. Given that we have not reached a model second-order stationary point by assumption,
we know that either ‖gCl ‖ > 0 or [−λEl ]+ > 0.

Suppose first that ‖gCl ‖ > 0. Then one has

δCl = δl‖gCl ‖ ≤ min

{
1

BC
,
τC(1− η)

LC

}
‖gCl ‖. (3.3)

We thus have from Lemma 2.1 that iteration l is successful and the trust-region parameter is not
decreased. As a result, δl+1 ≥ δl, which contradicts the assumption that l is the first iteration
index satisfying (3.2).
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Suppose now that [−λEl ]+ > 0. In that case,

δEl ≤
τE(1− η)

LE

[
−λEl

]
+

(3.4)

and by Lemma 2.2, iteration l is successful without decreasing the trust-region parameter. One
then draws the same contradiction than in the first case. From both cases we conclude that (3.2)
cannot hold, and thus for every l ≤ k,

γ1 min

{
1

BC
,
τC(1− η)

FC
,
τE(1− η)

FE

}
≤ δl+1 ≤ γ2δl,

hence the result. �

Our goal is now to bound the number of iterations that Algorithm 2.1 needs to reach an
(εC, εE)-approximate second-order stationary point, that is a point at which both

‖∇f(xk)‖ < εC (3.5)

and
[λk]+ < εE, (3.6)

hold, with (εC, εE) ∈ (0, 1)2. To establish such a worst-case complexity bound, we define kε as
the first integer such that both (3.5) and (3.6) hold. Besides, we let Sε and Uε denote the set of
successful iterations and unsuccessful iterations, i.e., the set of iterations of index less than or
equal to kε for which ρk ≥ η and ρk < η, respectively.

Lemma 3.2 Let Assumptions 1.1, 1.2, 2.1, 2.3, 2.4, and 2.5 hold. Then,

|Sε| ≤
f(x0)− flow

C
max

{
ε−2C , ε−3E

}
, (3.7)

where

C = ηmin

{
τCκδ

(1 + CC)2
,

τEκ
2
δ

(1 + CE)3

}
, κδ =

γ1
γ2

min

{
1

BC
,
τC(1− η)

FC
,
τE(1− η)

FE

}
. (3.8)

Proof. Let k ≤ kε be the index of a successful iteration. Then, either (3.5) or (3.6) does
not hold.

In the first case,
−
∥∥gCk −∇f(xk)

∥∥+ ‖∇f(xk)‖ ≤
∥∥gCk∥∥ ,

which by Assumption 2.2 implies then ∥∥gCk∥∥ ≥ εC
1 + CC

.

Hence, using (2.7),

mC
k(xk)−mC

k(xk + sCk) ≥ τC‖gCk‖2 min

{
1

BC
, δk

}
≥ τCε

2
Cκδ

(1 + CC)2
,

where we also applied the result of Lemma 3.1 together with the fact that κδ < 1/BC.
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In the second case, we know from Assumption 2.2 that λEk < 0. Hence, we obtain

−
∣∣∣[−λEk]+ − [−λk]+

∣∣∣+ [−λk]+ ≤
[
−λEk

]
+
,

which by Assumption 2.2 implies then[
−λEk

]
+
≥ εE

1 + CE
.

As a result,

mE
k(xk)−mE

k(xk + sEk) ≥ τE [−λk]3+ δ
2
k ≥

τEε
3
Eκ

2
δ

(1 + CE)3
.

Putting the two bounds together, we obtain that the function decrease at the k-th iteration
satisfies

f(xk)− f(xk+1) ≥ ηmin

{
τCε

2
Cκδ

(1 + CE)2
,
τEε

3
Eκ

2
δ

(1 + CE)3

}
. (3.9)

By considering the sum of the decreases across all iterations and using Assumption 1.2, we
obtain:

f(x0)− flow ≥
∑
k≤kε

f(xk)− f(xk+1)

=
∑
k∈Sε

f(xk)− f(xk+1)

≥ |Sε| ηmin

{
τCε

2
Cκδ

(1 + CE)2
,
τEε

3
Eκ

2
δ

(1 + CE)3

}
≥ |Sε| Cmin

{
ε2C, ε

3
E

}
,

hence the result. �

Lemma 3.3 Under the assumptions of Lemma 3.2, one has

|Uε| ≤ logγ1
(
δ−10 κδ

)
− logγ1(γ2)|Sε|. (3.10)

Proof. From the update formulas on δk, one has

δkε ≤ δ0γ
|Uε|
1 γ

|Sε|
2 .

Taking logarithms, one obtains

− log(γ1)|Uε| ≤ log(δ0)− log(δkε) + log(γ2)|Sε|.

After division by − log(γ1) > 0, this becomes:

|Uε| ≤ − logγ1(δ0) + logγ1(δkε)− logγ1(γ2)|Sε|.

Since δkε satisfies (3.1) and κδ is given by (3.8), we obtain the desired result �

We finally obtain our complexity bound by applying kε = |Sε| + |Uε|. The result is given
below in Theorem 3.1.
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Theorem 3.1 Let Assumptions of Lemma 3.2 hold. Then, the number of iterations needed to
attain an (εC, εE)-approximate second-order stationary point is

O
(
max

{
ε−2C , ε−3E

})
, (3.11)

where the constant in O(·) does not depend on εC or εE, but on flow, f(x0), FC, FE, CC, CE, τC,
τE, γ1, γ2, η, and δ0.

To end this section, we point out that Theorem 3.1 implies a liminf-type global convergence
result of the form

lim inf
k→∞

max
{
‖∇f(xk)‖,−λmin(∇2f(xk))

}
.

4 A numerical illustration

In order to illustrate the effect of our approach, we selected a benchmark of 58 nonconvex
problems from the CUTEst collection [16] for which negative curvature was detected around
the initial point (see [2]). We implemented a standard trust-region method (denoted by trdb)
and Algorithm 2.1 in MATLAB. For both methods, we used exact second-order Taylor models,
and we computed Cauchy steps and steps along eigenvectors corresponding to the most negative
eigenvalue (if any): as pointed above, those steps satisfy the necessary requirements for our
complexity analysis. We set the initial trust-region parameter to δ0 = 1 (note that in the case
of the classical trust-region framework, this represents the value of the trust-region radius). In
addition, we set γ1 = γ−12 = 0.5, η = 0.25, and δmax =∞.

We build performance profiles [12] using the number of iterations as performance metric.
Note that it also corresponds to the number of gradient and Hessian evaluations. In order to
enlighten the specificities of our method, we adopt the standard approach of removing from the
profiles the problems for which both methods had the same performance.

During our experiments, we found out that both methods quickly reached a region where the
second-order criterion was satisfied for all iterates (the Hessian had no negative eigenvalues or
a slightly nonpositive one): the variation in our profiles was thus essentially caused by a change
upon the tolerance on the norm of the gradient. Therefore, we will restrict the presentation of
the results to a single choice of the second-order tolerance, namely εE = 10−3.

Figure 1 and 2 correspond to the profiles obtained by considering the tolerances (εC, εE)
as used in our convergence analysis. One observes that the destress algorithm is generally
more efficient than the trdb method in that it requires less iterations to reach an approximate
stationary point (therefore the destress curve lies above the trdb curve on the y-axis). However,
the classical trust-region approach is the highest curve as the ratio gets larger, indicating that
it is able to solve more problems within the given budget. This trend is more noticeable using
a large budget of 10000 iterations (Figure 2); when the budget is relatively moderate (500
iterations, Figure 1), the two curves eventually coincide for large values of the iteration ratio.

From our results, we can infer that the decoupled approach takes advantage of the iterations
for which one optimality measure has a large value. In that situation, a large step can be taken
within the appropriate trust-region, and this step is guaranteed to yield a decrease if the trust-
region parameter (as opposed to the trust-region radius) is small. However, when high accuracy
is required, the situation might be the opposite in that the trust-region radii of the decoupled
strategy would then inevitably shrink, restricting the steps to be small. Although the resulting
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(c) εC = 10−6.

Figure 1: Performance of standard and decoupled trust-region methods given a budget of 500
iterations.
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Figure 2: Performance of standard and decoupled trust-region methods given a budget of 10000
iterations.
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Figure 3: Performance of standard and decoupled (with alternative rule) trust-region methods
given a budget of 500 iterations.

decrease would be acceptable from a complexity point of view, it could limit the progress made
by the method on a single iteration.

To confirm this idea, we modified the destress method so that the trust-region radii are
given by δCk = δk max

{
‖gCk‖, εC

}
and δEk = δk max

{
[−λEk]+, εE

}
. Note that our complexity

analysis using the tolerances (εC, εE) is not affected by these changes, since it relies on iterations
for which either ‖gCk‖ ≥ εC or [−λEk]+ ≥ εE, in which case the corresponding trust-region radius is
still proportional to the optimality measure. Figures 3 and 4 depict these new results. The new
destress method yields a better profile when compared to the standard trust-region approach
on large ratios, while the efficiency gain can still be observed for small ratios. In view of such
results, it appears that the use of a decoupling technique must be carefully thought, in order
to both retain the characteristics on the traditional approach and improve upon them using
decoupled steps when beneficial. For the trust-region framework, it seems that the parameters
influencing the trust-region radii must be chosen according to the importance and tolerance
related to each criterion.
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Figure 4: Performance of standard and decoupled (with alternative rule) trust-region methods
given a budget of 10000 iterations.
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5 Discussion

Let us focus this discussion on the derivative-based case. The result of Theorem 3.1 improves
over the bound known [6] for a standard trust-region approach, which we recall is

O
(
max

{
ε−2C ε−1E , ε−3E

})
.

For instance, such a bound is worse than (3.11) whenever ε−2E < ε−2C < ε−3E , e.g., εC = 10−4 and
εE = 10−3.

In terms of calls to the objective function and its derivatives, we observe that the iteration
cost of Algorithm 2.1 can be comparable to that of a classical trust-region method enforcing
second-order convergence. Indeed, such a scheme would also require the computation of two
steps satisfying the same properties. If we compute our two models based on one gradient
and one Hessian evaluation per iteration and thus set mC

k = mE
k, the method performs only one

more function evaluation per iteration compared to classical second-order convergent frameworks
(see [8] and [6]). Therefore, the evaluation complexity also benefits from our approach in terms
of the dependence on the tolerances εC and εE.

Our method can be viewed as a second-order decoupled variant of the trust-region method
by Fan and Yuan [13]. We point out that the complexity of this algorithm was only analyzed
in the general framework of nonlinear stepsize control, where worst-case complexity bounds of
O
(
ε−3C

)
for first-order optimality and O

(
ε−3E

)
for a mixed criterion of first and second-order

optimality were derived [17, 18]. Although we believe, as the authors of [17], that their first-
order result can be improved to O

(
ε−2C

)
, we claim that the use of a decoupling technique is most

likely necessary to achieve a bound as the one established Theorem 3.1.
We observe that the generic nonlinear stepsize control framework could be equipped with a

decoupling phase, and that this would potentially lead to improved complexity results. In fact,
many algorithms appear to be prone to “decoupling”, and extensions of this concept to such
schemes is an interesting perspective of the present work.
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