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Abstract

Interpolation-based trust-region methods are an important class of algorithms for Deriva-
tive-Free Optimization which rely on locally approximating an objective function by quadratic
polynomial interpolation models, frequently built from less points than there are basis com-
ponents.

Often, in practical applications, the contribution of the problem variables to the objective
function is such that many pairwise correlations between variables are negligible, implying,
in the smooth case, a sparse structure in the Hessian matrix. To be able to exploit Hessian
sparsity, existing optimization approaches require the knowledge of the sparsity structure.
The goal of this paper is to develop and analyze a method where the sparse models are
constructed automatically.

The sparse recovery theory developed recently in the field of compressed sensing charac-
terizes conditions under which a sparse vector can be accurately recovered from few random
measurements. Such a recovery is achieved by minimizing the ℓ1-norm of a vector subject
to the measurements constraints. We suggest an approach for building sparse quadratic
polynomial interpolation models by minimizing the ℓ1-norm of the entries of the model Hes-
sian subject to the interpolation conditions. We show that this procedure recovers accurate
models when the function Hessian is sparse, using relatively few randomly selected sample
points.

Motivated by this result, we developed a practical interpolation-based trust-region method
using deterministic sample sets and minimum ℓ1-norm quadratic models. Our computational
results show that the new approach exhibits a promising numerical performance both in the
general case and in the sparse one.
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1 Introduction

The wide range of applications of mathematical optimization have been recently enriched by
the developments in emerging areas such as Machine Learning and Compressed Sensing, where
a structure of a model needs to be recovered from some observations. Specially designed opti-
mization methods have been developed to handle the new applications that often give rise to
large scale, but convex and well structured problems. However, in many real-world applica-
tions, the objective function is calculated by some costly black-box simulation which does not
provide information about its derivatives. Although one could estimate the derivatives, e.g.,
by finite differences, such a process is often too expensive and can produce misleading results
in the presence of noise. An alternative is to consider methods that do not require derivative
information, and such methods are the subject of study in Derivative-Free Optimization (DFO).
In this paper we propose a reverse relationship between optimization and compressed sensing —
instead of using optimization methods to solve compressed sensing problems we use the results
of compressed sensing to improve optimization methods by recovering and exploiting possible
structures of the black-box objective functions.

An important class of methods in DFO are interpolation-based trust-region methods. At
each iteration, these methods build a model of the objective function that locally approximates
it in some trust region centered at the current iterate. The model is then minimized in the trust
region, and the corresponding minimizer is, hopefully, a better candidate for being a minimizer
of the objective function in the trust region, and thus, possibly, is taken as the next iterate. It
is usually preferable that minimization of the model in the trust region is an easy task, hence
the models should be simple. The simplest yet meaningful class of models is the class of linear
functions. Their drawback is that they do not capture the curvature of the objective function
and thus slow down the convergence of the methods. A natural and convenient non-linear
class of models, which is often efficiently used, is the quadratic class. Determined quadratic
interpolation requires sample sets whose cardinality is approximately equal to the square of the
dimension, which may turn out to be too costly if the objective function is expensive to evaluate.
An alternative is to consider underdetermined quadratic models, using sample sets of smaller
size than the ones needed for determined interpolation. However, in this case, the quality of the
model may deteriorate.

In many applications, the objective function has structure, such as sparsity of the Hessian,
which one may exploit to improve the efficiency of an optimization method. In DFO, since
derivatives are not known, typically neither is their sparsity structure. If the structure is known
in advance, such as in group partial separability, it can be exploited as it is proposed in [7].
The main idea of our work is to implicitly and automatically take advantage of the sparsity of
the Hessian in the cases when the sparsity structure is not known in advance, to build accurate
models from relatively small sample sets. This goal is achieved by minimizing the ℓ1-norm of
the Hessian model coefficients.

Our work relies on the sparse solution recovery theory developed recently in the field of
compressed sensing, where one characterizes conditions under which a sparse signal can be
accurately recovered from few random measurements. Such type of recovery is achieved by
minimizing the ℓ1-norm of the unknown signal subject to measurement constraints and can be
accomplished in polynomial time.

The contribution of this paper is twofold. First, we show that it is possible to compute
fully quadratic models (i.e., models with the same accuracy as second order Taylor models)
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for functions defined on Rn with sparse Hessians based on randomly selected sample sets with
only O(n(log n)4) sample points (instead of the O(n2) required for the determined quadratic
case) when the number of non-zero elements in the Hessian of the function is O(n). Second,
we introduce a practical interpolation-based trust-region DFO algorithm exhibiting competitive
numerical performance.

The state-of-the-art approach is to build quadratic interpolation models, based on sample
sets of any size between n+1 and (n+1)(n+2)/2, taking up the available degrees of freedom by
choosing the models with the smallest Frobenius norm of the Hessian [11] or Hessian change [22],
and this approach has been shown to be robust and efficient in practice (see also the recent pa-
per [17] where the models are always determined, varying thus the number of basis components).
In the approach proposed in this paper, the degrees of freedom are taken up by minimizing the
ℓ1-norm of the Hessian of the model. We have tested the practical DFO algorithm using both
minimum Frobenius and minimum ℓ1-norm models. Our results demonstrate the ability of the
ℓ1-approach to improve the results of the Frobenius one in the presence of some form of sparsity
in the Hessian of the objective function.

This paper is organized as follows. In Section 2, we introduce background material on inter-
polation models. We give a brief introduction to compressed sensing in Section 3, introducing
also concepts related to partially sparse recovery (the details are left to a separate paper [3]).
In Section 4, we obtain the main result mentioned above for sparse recovery of models for func-
tions with sparse Hessians, using an orthogonal basis for the space of polynomials of degree ≤ 2.
The proof of this result is based on sparse bounded orthogonal expansions which are briefly
described in the beginning of Section 4. In Section 5, we introduce our practical interpolation-
based trust-region method and present numerical results for the two underdetermined quadratic
model variants, defined by minimum Frobenius and ℓ1-norm minimization. Finally, in Section 6
we draw some conclusions and discuss possible avenues for future research.

The paper makes extensive use of vector, matrix, and functional norms. We will use ℓp or
∥ · ∥p for vector and matrix norms, without ambiguity. The notation Bp(x; ∆) will represent a
closed ball in Rn, centered at x and of radius ∆, in the ℓp-norm, i.e., Bp(x;∆) = {y ∈ Rn :
∥y − x∥p ≤ ∆}. For norms of functions on normed spaces L, we will use ∥ · ∥L.

2 Use of models in DFO trust-region methods

2.1 Fully linear and fully quadratic models

One of the main techniques used in DFO consists of locally modeling the objective function
f : D ⊂ Rn → R by models that are “simple” enough to be optimized easily and sufficiently
“complex” to approximate f well. If a reliable estimate of the derivatives of the function is
available, then one typically uses Taylor approximations of first and second order as polynomial
models of f(x). In DFO one has no access to derivatives or their accurate estimates, and
hence other model classes are considered. However, the essential approximation quality of the
Taylor models is required to be sustained when necessary by the models used in convergent DFO
frameworks. For instance, the simplest first order approximation is provided by, the so-called,
fully linear models, whose definition requires f to be smooth up to the first order.

Assumption 2.1 Assume that f is continuously differentiable with Lipschitz continuous gra-
dient (on an open set containing D). (For simplicity we will assume that all the balls and
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neighborhoods considered in this paper are contained in D.)

The following definition is essentially the same as given in [11, Definition 6.1] stated using
balls in an arbitrary ℓp-norm, with p ∈ (0,+∞].

Definition 2.1 Let a function f : D → R satisfying Assumption 2.1 be given. A set of model
functions M = {m : Rn → R, m ∈ C1} is called a fully linear class of models if the following
hold:

1. There exist positive constants κef , κeg, and νm1 , such that for any x0 ∈ D and ∆ ∈
(0,∆max] there exists a model function m in M, with Lipschitz continuous gradient and
corresponding Lipschitz constant bounded by νm1 , and such that

• the error between the gradient of the model and the gradient of the function satisfies

∥∇f(x)−∇m(x)∥2 ≤ κeg ∆, ∀x ∈ Bp(x0;∆),

• and the error between the model and the function satisfies

|f(x)−m(x)| ≤ κef ∆
2, ∀x ∈ Bp(x0;∆).

Such a model m is called fully linear on Bp(x0;∆).

2. For this class M there exists an algorithm, which we will call a ‘model-improvement’
algorithm, that in a finite, uniformly bounded (with respect to x0 and ∆) number of steps
can

• either provide a certificate for a given model m ∈ M that it is fully linear on
Bp(x0;∆),

• or fail to provide such a certificate and find a model m̃ ∈ M fully linear on Bp(x0;∆).

It is important to note that this definition does not restrict fully linear models to linear
functions, but instead considers models that approximate f as well as the linear Taylor approx-
imations. Linear models such as linear interpolation (and first order Taylor approximation) do
not capture the curvature information of the function that they are approximating. To achieve
better practical local convergence rates in general it is essential to consider nonlinear models. In
this paper we focus on quadratic interpolation models, which ultimately aim at a higher degree
of approximation accuracy. We call such approximation models fully quadratic, following [11],
and note that, as in the linear case, one can consider a wider class of models not necessarily
quadratic. We now require the function f to exhibit smoothness up to the second order.

Assumption 2.2 Assume that f is twice differentiable with Lipschitz continuous Hessian (on
an open set containing D).

Below we state the definition of fully quadratic models given in [11, Definition 6.2], again
using balls in an ℓp-norm, with arbitrary p ∈ (0,+∞].

Definition 2.2 Let a function f : D → R satisfying Assumption 2.2 be given. A set of model
functions M = {m : Rn → R, m ∈ C2} is called a fully quadratic class of models if the following
hold:
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1. There exist positive constants κef , κeg, κeh, and ν
m
2 , such that for any x0 ∈ D and ∆ ∈

(0,∆max] there exists a model function m in M, with Lipschitz continuous Hessian and
corresponding Lipschitz constant bounded by νm2 , and such that

• the error between the Hessian of the model and the Hessian of the function satisfies

∥∇2f(x)−∇2m(x)∥2 ≤ κeh∆, ∀x ∈ Bp(x0;∆),

• the error between the gradient of the model and the gradient of the function satisfies

∥∇f(x)−∇m(x)∥2 ≤ κeg ∆
2, ∀x ∈ Bp(x0; ∆),

• and the error between the model and the function satisfies

|f(x)−m(x)| ≤ κef ∆
3, ∀x ∈ Bp(x0;∆).

Such a model m is called fully quadratic on Bp(x0;∆).

2. For this class M there exists an algorithm, which we will call a ‘model-improvement’
algorithm, that in a finite, uniformly bounded (with respect to x0 and ∆) number of steps
can

• either provide a certificate for a given model m ∈ M that it is fully quadratic on
Bp(x0;∆),

• or fail to provide such a certificate and find a model m̃ ∈ M fully quadratic on
Bp(x0;∆).

This definition of a fully quadratic class requires that given a model from the class one
can either prove that it is a fully quadratic model of f on a given Bp(x0;∆), and for given
κef , κeg, κeh, and ν

m
2 , independent of x0 and ∆, or provide such a model. It is shown in [11,

Chapter 6] that model-improvement algorithms exist for quadratic interpolation and regression
models. Hence quadratic interpolation models form a fully quadratic class of models. They also
exist for a fully linear class of models, where a model-improvement algorithm in [11] checks if
a quadratic interpolation model is built using a well-poised set of at least n + 1 interpolation
points. To certify that a model is fully quadratic, a model-improvement algorithm in [11] requires
that the set of the interpolation points is well poised and contains (n + 1)(n + 2)/2 points in
the proximity of x0. Thus, using a model-improvement algorithm often implies considerable
computational cost: it may be prohibitive to maintain sets of (n + 1)(n + 2)/2 sample points
near the current iterate due to the cost of obtaining the function values and the dimension of the
problem. Moreover, verifying that the sample set is well poised may require a factorization of a
matrix with (n+1)(n+2)/2 rows and columns resulting in O(n6) complexity. For small n, this
additional cost may be negligible, but it becomes substantial as n grows beyond a few dozen.

In this paper we show that for any given function f , there exist constants κef , κeg, κeh, and
νm2 and the corresponding fully quadratic class of quadratic modelsM for which, given x0 and ∆,
we can construct a fully quadratic model of f on Bp(x0;∆) from M, with high probability, using,
possibly, less than (n+ 1)(n+ 2)/2 sample points.

Note that Definition 2.2 requires the existence of an algorithm which can deterministically
certify that a given model is fully quadratic. This requirement is imposed because it enables the
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deterministic convergence analysis of an algorithmic framework, provided in [10] (see also [11,
Chapter 10]), based on fully quadratic (or fully linear) models. In contrast, in this work,
we consider an algorithm which cannot certify that a given model is fully quadratic, but can
construct such models with high probability, hopefully, at a considerable computational saving.
To adapt this approach in a convergent algorithmic framework, a stochastic version of such a
framework has to be designed and analyzed. This work is a subject of future research (see [15]
for some relevant theoretical results).

Finally, we want to point out that while the full convergence theory for the new model-
based algorithmic framework is under development, the practical implementation reported in
this paper shows that in a simple trust-region framework the new method works as well as or
better than other methods discussed in [11].

2.2 Quadratic polynomial interpolation models

In model based DFO fully quadratic models of f are often obtained from the class of quadratic
polynomials by interpolating f on some sample set of points Y . A detailed description of this
process and related theory is given in [11]. Here we present briefly the basic ideas and necessary
notation.

Let P2
n be the space of polynomials of degree less than or equal to 2 in Rn. The dimension

of this space is q = (n + 1)(n + 2)/2. A basis ϕ for P2
n will be denoted by ϕ = {ϕl(x)} with

l = 1, . . . , q. The most natural basis for polynomial spaces is the one consisting of the monomials,
or the canonical basis. This basis appears naturally in Taylor models and is given for P2

n by

ϕ̄ =

{
1

2
x21, ...,

1

2
x2n, x1x2, ..., xn−1xn, x1, ..., xn, 1

}
. (1)

We say that the quadratic function m interpolates f at a given point y if m(y) = f(y).
Assume that we are given a set Y = {y1, ..., yp} ⊂ Rn of interpolation points. A quadratic
function m that interpolates f at the points in Y , written as

m(x) =

q∑
l=1

αlϕl(x),

must satisfy the following p interpolation conditions
∑q

l=1 αlϕl(y
i) = f(yi), i = 1, ..., p. These

conditions form a linear system,
M(ϕ, Y )α = f(Y ), (2)

where M(ϕ, Y ) is the interpolation matrix and f(Y )i = f(yi), i = 1, ..., p.
A sample set Y is poised for (determined) quadratic interpolation if the corresponding in-

terpolation matrix M(ϕ, Y ) is square (p=q) and non-singular, guaranteeing that there exists
a unique quadratic polynomial m such that m(Y ) = f(Y ). It is not hard to prove that this
definition of poisedness and the uniqueness of the interpolant do not depend either on f or on
the basis ϕ (see [11, Chapter 3]).

In [11, Chapters 3 and 6] rigorous conditions on Y are derived which ensure “well poisedness”
for quadratic interpolation. Under these conditions it is shown that if Y ⊂ B2(x0;∆) is a well-
poised sample set for quadratic interpolation, then the quadratic function m that interpolates
f on Y is a fully quadratic model for f on B2(x0;∆) for some fixed positive constants κef , κeg,
κeh, and ν

m
2 .
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One of the conditions imposed in [11] on a sample set Y to guarantee fully quadratic inter-
polation model, is that Y has to contain p = (n+ 1)(n+ 2)/2 points. However, building such a
sample set costs (n+ 1)(n+ 2)/2 evaluations of the function f which is too expensive for many
applications. A typical efficient approach is to consider smaller sample sets, which makes the
linear system in (2) underdetermined.

2.2.1 Underdetermined quadratic interpolation

We will now consider the case where the size of the sample set Y satisfies n + 1 < p < (n +
1)(n+2)/2, in other words, when there are more points than is required for linear interpolation
but fewer than is necessary for determined quadratic interpolation. If we consider the class of
all quadratic functions that interpolate f on Y , then we can choose a model from this class that
for one reason or other seems the most suitable. In particular approaches in [9] and [29] select a
quadratic model with the smallest possible Frobenius norm of the Hessian matrix, while in [22] a
model is chosen to minimize the Frobenius norm of the change of the Hessian from one iteration
to the next. The former approach is studied in detail in [11, Chapter 5]. Let us introduce the
basic ideas here.

To properly introduce the underdetermined models that we wish to consider we split the
basis ϕ̄ in (1) into its linear and quadratic components: ϕ̄L = {x1, ..., xn, 1} and ϕ̄Q = ϕ̄ \ ϕ̄L.

An essential property of a sample set Y with |Y | > n+ 1 is that the matrix M(ϕ̄L, Y ) must
have sufficiently linearly independent columns (in [11, Section 4.4] it is said that Y is well poised
for linear regression). Roughly speaking, well poisedness means that under a suitable scaling
of Y , M(ϕ̄L, Y ) has a relatively small condition number, see [11, Section 4.4]. In that case for
any quadratic model which interpolates f on Y the following holds (see [11, Theorem 5.4] for a
rigorous statement and proof).

Theorem 2.1 For any x0 ∈ D and ∆ ∈ (0,∆max], let m be a quadratic function that inter-
polates f in Y , where Y ⊂ B2(x0;∆) is a sample set well poised for linear regression. Then,
m is fully linear (see Definition 2.1) for f on B2(x0;∆) where the constants κef and κeg are
O(1 + ∥∇2m∥2) and depend on the condition number of M(ϕ̄L, Y ) (where Y here is suitably
scaled).

Theorem 2.1 suggests that one should build underdetermined quadratic models with “small”
model Hessians, thus motivating minimizing its Frobenius norm subject to (2) as in [9] and [29].
Recalling the split of the basis ϕ̄ into the linear and the quadratic parts, one can write the
interpolation model as

m(x) = αT
Qϕ̄Q(x) + αT

Lϕ̄L(x),

where αQ and αL are the corresponding parts of the coefficient vector α. The minimum Frobenius
norm solution [11, Section 5.3] can now be defined as the solution to the following optimization
problem

min 1
2∥αQ∥22

s. t. M(ϕ̄Q, Y )αQ +M(ϕ̄L, Y )αL = f(Y ).
(3)

(If |Y | = (n + 1)(n + 2)/2 and M(ϕ̄, Y ) is nonsingular, this reduces to determined quadratic
interpolation.) Note that (3) is a convex quadratic program with a closed form solution.

In [11, Section 5.3] it is shown that under some additional conditions of well poisedness on Y ,
the minimum Frobenius norm (MFN) interpolating model can be fully linear with uniformly

7



bounded error constants κef and κeg. Hence, the MFN quadratic models provide at least as
accurate interpolation as linear models.

On the other hand, it has not been shown so far that any class of underdetermined quadratic
interpolation models provide provably better approximation of f than fully linear models. The
purpose of this paper is to show how to construct, with high probability, underdetermined
quadratic interpolation models that are fully quadratic.

2.2.2 Sparse quadratic interpolation

It is clear that without any additional assumptions on f we cannot guarantee a fully quadratic
accuracy by an interpolation model based on less than (n + 1)(n + 2)/2 points. We will thus
consider the structure that is most commonly observed and exploited in large-scale derivative
based optimization: the (approximate) sparsity of the Hessian of f . Special structure, in partic-
ular group partial separability of f , has been exploited in DFO before, see [7]. However, it was
assumed that the specific structure is known in advance. In the derivative-free setting, however,
while the sparsity structure of the Hessian may be known in some cases, it is often unavailable.
Moreover, we do not need to assume that there exists a fixed sparsity structure of the Hessian.

What we assume in this paper is that the Hessian of f is “approximately” sparse in the
domain where the model is built. In other words we assume the existence of a sparse fully
quadratic model (a rigorous definition is provided in Section 4.3). In the case where ∇2f is itself
sparse, a Taylor expansion may serve as such a model. The main focus of our work is to recover
sparse quadratic models from the interpolation conditions.

Instead of solving (3) we construct quadratic models from the solution to the following
optimization problem

min ∥αQ∥1
s. t. M(ϕ̄Q, Y )αQ +M(ϕ̄L, Y )αL = f(Y ),

(4)

where αQ, αL, ϕ̄Q, and ϕ̄L are defined as in (3). Solving (4) is tractable, since it is a linear
program. Note that minimizing the ℓ1-norm of the entries of the Hessian model indirectly con-
trols its ℓ2-norm and therefore is an appealing approach from the perspective of Theorem 2.1.
This makes the new approach a reasonable alternative to building MFN models. As we will
show in this paper, this approach is advantageous when the Hessian of f has zero entries (in
other words, when there is no direct interaction between some of the variables of the objective
function f). In such cases, as we will show in Section 4, we are able to recover, with high prob-
ability, fully quadratic models with much less than (n+ 1)(n+ 2)/2 random points. This is the
first result where a fully quadratic model is constructed from an underdetermined interpolation
system. To prove this result we will rely on sparse vector recovery theory developed in the field
of compressed sensing. In the next section we introduce the basic concepts and results that are
involved.

3 Compressed sensing

Compressed sensing is a field concerned with the recovery of a sparse vector z̄ ∈ RN satisfying
b = Az̄, given a vector b ∈ Rk and a matrix A ∈ Rk×N with significantly fewer rows than columns
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(k ≪ N). The desired sparse vector z̄ ∈ RN can be recovered by minimizing the number of
non-zero components by solving

min card(z) s. t. Az = b, (5)

where card(z) = |{i ∈ {1, . . . , n} : zi ̸= 0}|. Since this problem is generally NP-Hard, one
considers a more tractable approximation by substituting its objective function by a relatively
close convex one:

min ∥z∥1 s. t. Az = b, (6)

which is a linear program. The main results of compressed sensing show that, under certain
conditions on the (possibly random) matrix A, the solution of (6) is in fact z̄ and coincides with
the optimal solution of (5) (possibly, with high probability). We will now discuss the compressed
sensing results that are useful for our purposes.

3.1 General concepts and properties

One says that a vector z is s−sparse if card(z) ≤ s. In compressed sensing, one is interested in
matrices A such that, for every s−sparse vector z̄, the information given by b = Az̄ is sufficient
to recover z̄ and, moreover, that such recovery can be accomplished by solving problem (6). The
following definition of the Restricted Isometry Property (RIP) is introduced in [5].

Definition 3.1 (Restricted Isometry Property) One says that δs > 0 is the Restricted
Isometry Property Constant, or RIP constant, of order s of the matrix A ∈ Rk×N if δs is
the smallest positive real such that:

(1− δs) ∥z∥22 ≤ ∥Az∥22 ≤ (1 + δs) ∥z∥22

for every s−sparse vector z.

The following theorem (see, e.g., [6, 24]) provides a useful sufficient condition for successful
recovery by (6) with b = Az̄.

Theorem 3.1 Let A ∈ Rk×N and 2s < N . If δ2s <
1
3 , where δ2s is the RIP constant of A of

order 2s, then, for every s−sparse vector z̄, problem (6) with b = Az̄ has a unique solution and
it is given by z̄.

Although the RIP provides useful sufficient conditions for sparse recovery, it is a difficult
and still open problem to find deterministic matrices which satisfy such a property when the
underlying system is highly underdetermined (see [2, 27] for a discussion on this topic). It turns
out that random matrices provide a better ground for this analysis (see for instance, one of the
results in [4]).

3.2 Partially sparse recovery

To be able to apply sparse recovery results of compressed sensing to our setting we first observe
that problem (4) is similar to problem (6), however, it differs in that only a part of the solution
vector α is expected to be sparse and appears in the objective function. We hence need to
consider an extended recovery result for partial sparsity.
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Formally, one has z = (z1, z2), where z1 ∈ RN−r is (s − r)−sparse and z2 ∈ Rr. A natural
generalization of problem (6) to this setting of partially sparse recovery is given by

min ∥z1∥1 s. t. A1z1 +A2z2 = b, (7)

where A = (A1, A2) and A1 has the first N − r columns of A and A2 the last r. One can easily
see that problem (4) fits into this formulation by setting z1 = αQ, z2 = αL, A1 = M(ϕ̄Q, Y ),
A2 =M(ϕ̄L, Y ), and r = n+ 1.

We can define an extension of the RIP to the partially sparse recovery setting. Under the
assumption that A2 is full column rank (which in turn is implied by the RIP; see [3]), let

P = I −A2

(
A⊤

2 A2

)−1
A⊤

2 (8)

be the matrix representing the projection from RN onto R (A2)
⊥ . Then, the problem of recov-

ering (z̄1, z̄2), where z̄1 is an (s − r)–sparse vector satisfying A1z̄1 + A2z̄2 = b, can be stated
as the problem of recovering an (s − r)−sparse vector z̄1 satisfying (PA1) z1 = Pb and then
recovering z̄2 satisfying A2z2 = b−A1z̄1. The latter task results in solving a linear system given
that A2 has full column rank and (PA1)z̄1 = Pb. Note that the former task reduces to the
classical setting of compressed sensing. These considerations motivate the following definition
of RIP for partially sparse recovery.

Definition 3.2 (Partial RIP Property) We say that δrs−r > 0 is the Partial Restricted Isom-
etry Property Constant of order s−r for recovery of size N−r of the matrix A = (A1, A2) ∈ Rk×N

(with A1 ∈ Rk×(N−r), A2 ∈ Rk×r, and r ≤ s) if A2 is full column rank and δrs−r is the RIP
constant of order s− r (see Definition 3.1) of the matrix PA1, where P is given by (8).

When r = 0 the Partial RIP reduces to the RIP of Definition 3.1. In [3] we show a simple
proof of the fact that if a matrix A satisfies RIP for s−sparse recovery with δs constant, then it
also satisfies Partial RIP with δrs−r = δs. A very similar result has been independently proved
in [18]. It is also shown in [3] that Partial RIP implies that the solution of (7) is the original
s−sparse solution z̄ = (z̄1, z̄2). Hence to be able to apply sparse recovery results to problem (4),
which is of interest to us, it suffices to construct matrices M(ϕ̄, Y ) for which the RIP property
holds. In [28] a specific sufficient condition for partially sparse recovery is given, but it remains
to be seen if we can use such a result to strengthen the bounds on the sample set size which
we derive in Section 4. To establish these bounds, we will rely on results on random matrices
which apply to our specific setting. We discuss these results in the next section.

4 Recovery of Sparse Hessians

4.1 Sparse recovery using orthonormal bases

For the purposes of building quadratic models based on sparse Hessians we are interested in
solving (4) which is equivalent to (7), where A1 = M(ϕQ, Y ), A2 = M(ϕL, Y ), z1 = αQ,
z2 = αL, b = f(Y ), and r = n + 1. In this case ϕ is a basis in the space P2

n of polynomials of
degree ≤ 2 of dimension N = (n+1)(n+2)/2 and the resulting quadratic modelm is constructed
as

m(x) =
N∑
l=1

αlϕl(x)

10



where α is the vector of coefficients which is presumed to be sparse (with partially known support
since αL is not necessarily sparse).

Let us now consider a general setting of a finite dimensional space of functions (defined in
some domain D) spanned by a basis ϕ = {ϕ1, ..., ϕN} of functions (not necessarily polynomial).
Let us also consider a function g : D → R which belongs to that space, in other words g can be
written as

g =

N∑
j=1

αjϕj ,

for some expansion coefficients α1, ..., αN . We are interested in the problem of recovering g from
its values in some finite subset Y = {y1, ..., yk} ⊂ D with k ≤ N , with the additional assumption
that g is s−sparse, meaning that the expansion coefficient vector α is s−sparse. The purpose
of this section is to provide conditions under which such recovery occurs with high probability.
Although the results of this section hold also for complex valued functions, we will restrict
ourselves to the real case, because the functions we are interested in DFO are real valued. We
consider a probability measure µ defined in D (having in mind that D ⊂ Rn). The basis ϕ will
be required to satisfy the following orthogonality property [24].

Definition 4.1 (K-bounded orthonormal basis) A set of functions ϕ = {ϕ1, ..., ϕN}, span-
ning a certain function space, is said to be an orthonormal basis satisfying the K-boundedness
condition (in the domain D for the measure µ) if∫

D
ϕi(x)ϕj(x)dµ(x) = δij ,

(here δij is the Kronecker delta) and ∥ϕj∥L∞(D) ≤ K, for all i, j ∈ {1, . . . , N}.

The following theorem (see [24, Theorem 4.4]) shows that by selecting the sample set Y
randomly we can recover the sparse coefficient vector with fewer sample points than basis coef-
ficients.

Theorem 4.1 Let M(ϕ, Y ) ∈ Rk×N be the interpolation matrix associated with an orthonormal
basis satisfying the K-boundedness condition. Assume that the sample set Y = {y1, ..., yk} ⊂ D
is chosen randomly where each point is drawn independently according to the probability measure
µ. Further assume that

k

log k
≥ c1K

2s(log s)2 logN, (9)

k ≥ c2K
2s log

(
1

ε

)
, (10)

where c1, c2 > 0 are universal constants, ε ∈ (0, 1), and s ∈ {1, . . . , N}. Then, with probability at
least 1−ε, 1√

k
A = 1√

k
M(ϕ, Y ) satisfies the RIP property (Definition 3.1) with constant δ2s <

1
3 .

From the classical results in compressed sensing (see Theorem 3.1 and the paragraph af-
terwards), this result implies that every s−sparse vector z̄ ∈ RN is the unique solution to the
ℓ1-minimization problem (6), with A = M(ϕ, Y ) and b = M(ϕ, Y )z̄ = g(Y ). However, it also
implies, by [3, Theorem 4.2], that every s−sparse vector (z̄1, z̄2) with (s− r)−sparse z̄1 ∈ RN−r
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and possibly dense z̄2 ∈ Rr, is the unique solution to the ℓ1-minimization problem (7), with
A = M(ϕ, Y ) and b = M(ϕ, Y )z̄ = g(Y ). Note that it is a scaled version of A, given by A/

√
k

and not A itself, that satisfies the RIP property but this does not affect the recovery results in
the exact setting. As we will see below the scaling has an effect in the noisy case.

It is worth noting that an optimal result is obtained if one sets ε = e
− k

c2K
2s in the sense

that (10) is satisfied with equality. Also, from (9) we obtain k ≥ (log k)c1K
2 s(log s)2 logN ,

and so, using log s ≥ 1, 1− e
− k

c2K
2s ≥ 1−N−γ log k, for the universal constant γ = c1/c2. Thus,

ε can be set such that the probability of success 1− ε satisfies

1− ε ≥ 1−N−γ log k, (11)

showing that this probability grows polynomially with N and k.
As we observe later in this section, we are not interested in satisfying the interpolation

conditions exactly, hence we need to consider instead of b = g(Y ) a perturbed version b =
g(Y ) + ϵ, with a known bound on the size of ϵ. In order to extend the results we just described
to the case of noisy recovery, some modifications of problem (6) are needed. In the case of full
noisy recovery it is typical to consider, instead of the formulation (6), the following optimization
problem:

min ∥z∥1 s. t. ∥Az − b∥2 ≤ η, (12)

where η is a positive number. We now present a recovery result based on the formulation (12)
and thus appropriate to the noisy case. A proof is available in [6].

Theorem 4.2 Under the same assumptions of Theorem 4.1, with probability at least 1 − ε,
ε ∈ (0, 1), the following holds for every s−sparse vector z̄:

Let noisy samples b =M(ϕ, Y )z̄ + ϵ with

∥ϵ∥2 ≤ η

be given, for any η non-negative, and let z∗ be the solution of the ℓ1-minimization problem (12)
with A =M(ϕ, Y ). Then,

∥z∗ − z̄∥2 ≤ ctotal√
k
η (13)

for some universal constant ctotal > 0.

Since we are interested in the partially sparse recovery case, we need to consider instead

min ∥z1∥1 s. t. ∥Az − b∥2 ≤ η. (14)

The extension of Theorem 4.2 to partially recovery for the noisy case is obtained from the full
noisy recovery, analogously to the exact case (see [3, Theorem 5.2] for a proof).

Theorem 4.3 Under the same assumptions of Theorem 4.1, with probability at least 1 − ε,
ε ∈ (0, 1), the following holds for every vector z̄ = (z̄1, z̄2) with r ≤ s and z̄1 an (s− r)−sparse
vector:

Let noisy samples b =M(ϕ, Y )z̄ + ϵ with

∥ϵ∥2 ≤ η

12



be given, for any η non-negative, and let z∗ = (z∗1 , z
∗
2) be the solution of the ℓ1-minimization

problem (14) with A =M(ϕ, Y ). Then,

∥z∗ − z̄∥2 ≤
cpartial√

k
η, (15)

for some universal constant cpartial > 0.

Note that it is possible to extend these results to approximately sparse vectors (see [3]),
however we do not include such an extension in the present paper for the sake of clarity of the
exposition.

4.2 Sparse recovery using polynomial orthonormal expansions

As described in Section 2, we are interested in recovering a local quadratic model of the objective
function f : D ⊂ Rn → R near a point x0. Therefore we consider the space of quadratic
functions defined in Bp(x0;∆). To apply the results in Theorems 4.1 and 4.2 we need to build
an appropriate orthonormal basis for the space of quadratic functions in Bp(x0;∆). In addition
we require that the models we recover are expected to be sparse in such a basis. In this paper we
consider models that reconstruct sparse Hessians of f , and thus it is natural to include into the
basis polynomials of the forms cij (xi − x0) (xj − x0), with some constant cij (we will henceforth
set x0 = 0 in this section without lost of generality). It is then required that these elements
of the basis do not appear as parts of other basis polynomials. The orthonormal basis should
satisfy the K-boundedness condition for some constant K independent1 of the dimension n.

We will now build such an orthonormal basis on the domain D = B∞(0;∆) = [−∆,∆]n (the
ℓ∞-ball centered at the origin and of radius ∆), using the uniform probability measure µ and
the corresponding L2 inner product.

4.2.1 An orthonormal basis on hypercubes

Let µ be the uniform probability measure on B∞(0;∆). Note that due to the geometric prop-
erties of B∞(0;∆) = [−∆,∆]n, one has∫

[−∆,∆]n
g(xi)h(x1, ..., xi−1, xi+1, ..., xn)dx = (16)

=

∫ ∆

−∆
g(xi)dxi

∫
[−∆,∆]n−1

h(x1, ..., xi−1, xi+1, ..., xn)dx1 · · · dxi−1dxi+1 · · · dxn,

for appropriate functions g and h satisfying the conditions of Fubini’s Theorem.
We want to find an orthonormal basis, with respect to µ, of the second degree polynomials

on B∞(0;∆) that contains the polynomials {cijxixj}i̸=j . We are considering, first, the off-
diagonal part of the Hessian since this is the part which is expected to be sparse (indicating the
lack of direct variable interactions). It is easy to see that the n(n − 1)/2 polynomial functions
{cijxixj}i̸=j are all orthogonal, and that due to symmetry all cij constants are equal, to say,

1Otherwise the results in Theorems 4.1 and 4.2 become weaker. Recently, progress has been made in addressing
the case when K grows with the dimension, where the main idea is to precondition the interpolation matrix
(see [25]).
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k2 (a normalizing constant). Hence we have n(n − 1)/2 elements of the basis. Now, note that
from (16), for different indices i, j, l,∫

B∞(0;∆)
xixjxldµ =

∫
B∞(0;∆)

xixjdµ =

∫
B∞(0;∆)

xix
2
jdµ = 0.

As a result, we can add to the set {k2xixj}i̸=j the polynomials {k1xi}1≤i≤n and the polyno-
mial k0, where k1 and k0 are normalizing constants, forming a set of n(n − 1)/2 + (n + 1)
orthogonal polynomials.

It remains to construct n quadratic polynomials, which have to contain terms x2i but should
not contain terms xixj . We choose to consider n terms of the form k3(x

2
i − α1xi − α0). We

will select the constants α0 and α1 in such a way that these polynomials are orthogonal to the
already constructed ones. From the orthogonality with respect to kixi, i.e.,∫

B∞(0;∆)
xi(x

2
i − α1xi − α0)dµ = 0,

we must have α1 = 0. Then, orthogonality with respect to the constant polynomial k0 implies∫
B∞(0;∆)

(x2i − α0)dµ = 0.

Thus,

α0 =
1

2∆

∫ ∆

−∆
x2dx =

1

2∆

(
2

3
∆3

)
=

1

3
∆2.

Hence we have a set of orthogonal polynomials that span the set of quadratic functions on
B∞(0;∆). What remains is the computation of the normalization constants to ensure normality
of basis elements. From ∫

B∞(0;∆)
k20dµ = 1

we set k0 = 1. From the equivalent statements∫
B∞(0;∆)

(k1xi)
2 dµ = 1,

k21
(2∆)n

∫ ∆

−∆
x2dx

∫
[−∆,∆]n−1

1dx = 1,

k21

∫ ∆

−∆
x2
dx

2∆
= 1,

we obtain k1 =
√
3/∆. From the equivalent statements∫

B∞(0;∆)
(k2xixj)

2 dµ = 1,

k22

(∫ ∆

−∆
x2
dx

2∆

)2

= 1,
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we conclude that k2 = 3/∆2. And from the equivalent statements∫
B∞(0;∆)

(
k3

(
x2i −

1

3
∆2

))2

dµ = 1,

k23

∫ ∆

−∆

(
x2 − 1

3
∆2

)2 1

2∆
dx = 1,

we obtain

k3 =
3
√
5

2∆2
.

We have thus constructed the desirable basis, which we will denote by ψ. We will abuse the
notation to define ψ using indices (0), (1, i), (2, ij) or (2, i) for the elements of ψ in place of the
single index l. The expressions of these sophisticated indices should simplify the understanding.
For instance, (2, ij) index stands for the element of the basis ψ which involves the term xixj ,
similarly α(2,i) is the term corresponding to x2i , and so on.

Definition 4.2 We define the basis ψ as the set of the following (n+ 1)(n+ 2)/2 polynomials:
ψ2,i(x) = 3

√
5

2∆2x
2
i −

√
5
2 ,

ψ2,ij(x) = 3
∆2xixj ,

ψ1,i(x) =
√
3

∆ xi,
ψ0(x) = 1.

(17)

The basis ψ satisfies the assumptions of Theorems 4.1 and 4.2, as stated in the following
theorem.

Theorem 4.4 The basis ψ (see Definition 4.2) is orthonormal and satisfies the K-boundedness
condition (see Definition 4.1) in B∞(0;∆) for the uniform probability measure with K = 3.

Proof. From the above derivation and (16) one can easily show that ψ is orthonormal
in B∞(0;∆) with respect to the uniform probability measure. So, it remains to prove the
boundedness condition with K = 3. In fact, it is easy to check that

∥ψ2,i∥L∞(B∞(0;∆)) =
√
5 ≤ 3,

∥ψ2,ij∥L∞(B∞(0;∆)) = 3 ≤ 3,

∥ψ1,i∥L∞(B∞(0;∆)) =
√
3 ≤ 3,

∥ψ0∥L∞(B∞(0;∆)) = 1 ≤ 3,

(18)

where ∥g∥L∞(B∞(0;∆)) = maxx∈B∞(0;∆) |g(x)|.
We will consider ψQ, the subset of ψ consisting of the polynomials of degree 2, and ψL, the

ones of degree 1 or 0, as we did in Section 2 for ϕ̄.
We are interested in quadratic functions m =

∑
l αlψl (see Definition 4.2) with an h−sparse

coefficient subvector αQ, i.e., only h coefficients corresponding to the polynomials in ψQ in the
representation of m are non-zero, where h is a number between 1 and n(n+1)/2. In such cases,
the corresponding full vector α of coefficients is (h + n + 1)−sparse. We now state a corollary
of Theorem 4.2 for sparse recovery in the orthonormal basis ψ, with k = p (number of sample
points) and N = q (number of elements in ψ), which will be used in the next section to establish
results on sparse quadratic model recovery. Note that we write the probability of successful
recovery of a sparse solution in the form 1 − n−γ log p which can be derived from (11) using
q = O(n2) and a simple modification of the universal constant γ.
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Corollary 4.1 LetM(ψ, Y ) ∈ Rp×q be the matrix with entries [M(ψ, Y )]ij = ψj(y
i), i = 1, ..., p,

j = 1, ..., q, with q = (n+ 1)(n+ 2)/2.
Assume that the sample set Y = {y1, ..., yp} ⊂ B∞(0;∆) is chosen randomly where each point

is drawn independently according to the uniform probability measure µ in B∞(0;∆). Further
assume that

p

log p
≥ 9c (h+ n+ 1) (log (h+ n+ 1))2 log q,

for some universal constant c > 0 and h ∈ {1, ..., n(n + 1)/2}. Then, with probability at least
1 − n−γ log p, for some universal constant γ > 0, the following holds for every vector z̄, having
at most h+ n+ 1 non-zero expansion coefficients in the basis ψ:

Let noisy samples b =M(ψ, Y )z̄ + ϵ with

∥ϵ∥2 ≤ η

be given, for any η non-negative, and let z∗ be the solution of the ℓ1-minimization problem (14)
with A =M(ψ, Y ) = (M(ψQ, Y ),M(ψL, Y )). Then,

∥z∗ − z̄∥2 ≤
cpartial√

p
η

for some universal constant cpartial > 0.

Remark 4.1 It would be natural to consider the interpolation domain to be the ball B2(0;∆) in
the classical ℓ2-norm. However, our procedure of constructing an orthonormal set of polynomials
with desired properties in the hypercube, i.e., using the ℓ∞-norm ball, does not extend naturally
to the ℓ2 one. One problem with the uniform measure in the ℓ2-ball is that formulas like (16) no
longer hold. A construction of an appropriate basis for the uniform measure on the ℓ2-ball is a
subject for further work.

4.3 Recovery of a fully quadratic model of a function with sparse Hessian

As we stated earlier our main interest in this paper is to recover a fully quadratic model (see
Definition 2.2) of a twice continuously differentiable objective function f : D → R near a point x0
using fewer than (n+1)(n+2)/2 sample points. In other words, we want to show that for a given
function f there exist constants κef , κeg, and κeh such that, given any point x0 and a radius ∆,
we can build a model based on a random sample set of p points (with p < (n + 1)(n + 2)/2)
which, with high probability, is a fully quadratic model of f on Bp(x0; ∆) with respect to the
given constants κef , κeg, and κeh. The number p of sample points depends on the sparsity of
the Hessian of the model that we are attempting to reconstruct. Hence we need to make some
assumption about the sparsity. The simplest (and strongest) assumption we can make is that
the function f has a sparse Hessian at any point x0.

Assumption 4.1 (Hessian sparsity) Assume that f : D → R satisfies Assumption 2.2 and
furthermore that for any given x0 ∈ D the Hessian ∇2f(x0) of f at x0 has at most h non-zero
entries, on or above the diagonal, where h is a number between 1 and n(n+ 1)/2. If this is the
case, then ∇2f is said to be h−sparse.
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The above assumption implies that for every x0 ∈ D there exists a fully quadratic second
degree polynomial model qf of f such that the Hessian ∇2qf is h−sparse, from a fully quadratic
class with κ′ef , κ

′
eg, and κ′eh equal to some multiples of the Lipschitz constant of ∇2f . The

second order Taylor model at x0 is, in particular, such a model.
However, we do not need this strong assumption to be able to construct fully quadratic

models. Constructing models via random sample sets and ℓ1-minimization, in the way that
we described above, provides fully quadratic models regardless of the amount of sparsity of
the Hessian, as we will show in this section. The sparsity of the Hessian affects, however, the
number of sample points that are required. Hence, one can consider functions whose Hessian is
approximately sparse and the sparsity pattern, or even the cardinality (number of non-zeros), is
not constant. The following assumption is weaker than Assumption 4.1 but is sufficient for our
purposes.

Assumption 4.2 (Approximate Hessian sparsity) Assume that f : D → R satisfies As-
sumption 2.2 and furthermore that for any given x0 ∈ D and ∆ > 0 there exists a second degree
polynomial m(x) =

∑
l αlψl(x) = αQψQ(x) + αLψL(x), with αQ an h−sparse coefficient vector,

where h may depend on x0 and ∆, which is a fully quadratic model of f on Bp(x0;∆) for some
constants κ′ef , κ

′
eg, and κ

′
eh, independent of x0 and ∆.

If in the above assumption h is independent of x0 and ∆, then the assumption reduces to
Assumption 4.1. As it stands, Assumption 4.2 is less restrictive.

Given the result in Section 4.2, we will consider the ℓ∞-norm in Definition 2.2, thus consid-
ering regions of the form B∞(x0;∆).

When we state that f has a sparse Hessian, it is understood that the representation of the
Taylor second order expansion, or of any other fully quadratic model of f , is a sparse linear
combination of the elements of the canonical basis ϕ̄ (see (1)). However, the basis ϕ̄ is not
orthogonal on B∞(x0;∆). Hence we are interested in models that have a sparse representation
in the orthonormal basis ψ of Definition 4.2. Fortunately, basis ψ can be obtained from ϕ̄
through a few simple transformations. In particular, the sparsity of the Hessian of a quadratic
model m will be carried over to sparsity in the representation of m in ψ, since the expansion
coefficients in ψQ will be multiples of the ones in ϕ̄Q, thus guaranteeing that if the coefficients
in the latter are h−sparse, so are the ones in the former.

We are now able to use the material developed in Section 4.2 to guarantee, with high proba-
bility, the construction, for each x0 and ∆, of a fully quadratic model of f in B∞(x0;∆) using a
random sample set of only O(n(log n)4) points, instead of O(n2) points, provided that h = O(n)
(for the given x0 and ∆, see Assumption 4.2). We find such a fully quadratic model by solving
the partially sparse recovery version of problem (12) written now in the form

min ∥αQ∥1
s. t. ∥M(ψQ, Y )αQ +M(ψL, Y )αL − f(Y + x0)∥2 ≤ η,

(19)

where η is some appropriate positive quantity and Y is drawn in B∞(0;∆). Corollary 4.1 can
then be used to ensure that only O(n(log n)4) points are necessary for recovery of a sparse model
in B∞(0;∆), when the number of non-zero components of the Hessian of m in Assumption 4.2
is of the order of n.

Note that we are in fact considering “noisy” measurements, because we are only able to eval-
uate the function f while trying to recover a fully quadratic model, whose values are somewhat
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different from those of f . We will say that a function q∗ is the solution to the minimization
problem (19) if q∗(x) =

∑
l α

∗
l ψl(x), where α

∗ is the minimizer of (19).
First we need to prove an auxiliary lemma. Corollary 4.1 provides an estimate on the ℓ2-

norm of the error in the recovered vector of coefficients of the quadratic model. In the definition
of fully quadratic models, the error between the quadratic model and the function f is measured
in terms of the maximum difference of their function values in B∞(x0; ∆) and the maximum
norms of the differences of their gradients and their Hessians in B∞(x0;∆). The following lemma
establishes a bound for the value, gradient, and Hessian of quadratic polynomials in B∞(0;∆)
in terms of the norm of their coefficient vector (using the basis ψ).

Lemma 4.1 Let m be a quadratic function and α be a vector in R(n+1)(n+2)/2 such that

m(x) =
∑
l

αlψl(x)

with ψ(x) defined in (17). Then

|m(x)| ≤
(
3
√
card(α)

)
∥α∥2

∥∇m(x)∥2 ≤
(
3
√
5
√

card(α)
) 1

∆
∥α∥2∥∥∇2m(x)

∥∥
2

≤
(
3
√
5
√

card(α)
) 1

∆2
∥α∥2,

for all x ∈ B∞(0;∆), where card(α) is the number of non-zero elements in α.

Proof. We will again use the indices (0), (1, i), (2, ij) or (2, i) for the elements of α in
correspondence to the indices used in Definition 4.2.

From the K-boundedness conditions (18) we have

|m(x)| ≤
∑
l

|αl||ψl(x)| ≤ 3∥α∥1 ≤ 3
√

card(α)∥α∥2,

for all x ∈ B∞(0;∆). Also, from (17),∣∣∣∣∂m∂xi (x)
∣∣∣∣ ≤

∑
l

|αl|
∣∣∣∣∂ψl

∂xi

∣∣∣∣
= |α1,i|

∣∣∣∣∣
√
3

∆

∣∣∣∣∣+ ∑
j∈{1,...,n}\{i}

|α2,ij |
∣∣∣∣ 3

∆2
xj

∣∣∣∣+ |α2,i|

∣∣∣∣∣3
√
5

∆2
xi

∣∣∣∣∣
≤

√
3

∆
|α1,i|+

∑
j∈{1,...,n}\{i}

3

∆
|α2,ij |+

3
√
5

∆
|α2,i|.

Then, by the known relations between the norms ℓ1 and ℓ2,

∥∇m(x)∥2 ≤ ∥∇m(x)∥1 ≤
n∑

i=1

√
3

∆
|α1,i|+

∑
j∈{1,...,n}\{i}

3

∆
|α2,ij |+

3
√
5

∆
|α2,i|


≤

n∑
i=1

√
3

∆
|α1,i|+

∑
i,j∈{1,...,n},j>i

6

∆
|α2,ij |+

n∑
i=1

3
√
5

∆
|α2,i|

≤
(
3
√
5
√

card(α)
) 1

∆
∥α∥1,
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for all x ∈ B∞(0;∆).
For the estimation of the Hessian, we need to separate the diagonal from the non-diagonal

part. For the non-diagonal part, with i ̸= j,∣∣∣∣ ∂2m∂xi∂xj
(x)

∣∣∣∣ ≤
∑
l

|αl|
∂2ψl(x)

∂xi∂xj
≤ |α2,ij |

3

∆2
.

For the diagonal part, with i = 1, . . . , n,∣∣∣∣∂2m∂x2i (x)
∣∣∣∣ ≤

∑
l

|αl|
∂2ψl(x)

∂x2i
≤ |α2,i|

3
√
5

∆2
.

Since the upper triangular part of the Hessian has at most card(α) non-zero components one
has

∥∥∇2m(x)
∥∥
F

=

√√√√ ∑
i,j∈{1,...,n}

(
∂2m

∂xi∂xj
(x)

)2

≤
∑

i,j∈{1,...,n}

∣∣∣∣ ∂2m∂xi∂xj
(x)

∣∣∣∣
≤

∑
i,j∈{1,...,n},j>i

|α2,ij |
6

∆2
+

∑
i∈{1,...,n}

|α2,i|
3
√
5

∆2

≤
√

card(α)

(
3
√
5

∆2

)
∥α∥2.

Thus, ∥∥∇2m(x)
∥∥
2
≤
∥∥∇2m(x)

∥∥
F

≤
√

card(α)

(
3
√
5

∆2

)
∥α∥2

for all x ∈ B∞(0;∆).

Remark 4.2 The dependency of the error bounds in Lemma 4.1 on card(α) cannot be elimi-
nated. In fact, the quadratic function

g(x) =
∑

i,j∈{1,...,n},j>i

√
2

n(n− 1)

3

∆2
xixj

satisfies g(∆, ...,∆) = 3
√
(n(n− 1))/2 = 3

√
card(α) while the vector of coefficients α has norm

equal to 1.

Remark 4.3 Since ψ is orthonormal (with respect to µ) on B∞(0;∆) we have that ∥α∥2 =
∥m∥L2(B∞(0;∆),µ). Hence the ℓ2-norm of the vector of the coefficients is simply the L2-norm of
the function m over B∞(0;∆). If we now consider ∥m∥L∞(B∞(0;∆)), the L

∞-norm of m which is
the maximum absolute value of m(x) over B∞(0;∆), we see that Lemma 4.1 establishes a relation
between two norms of m. By explicitly deriving constants in terms of card(α) we strengthen the
bounds in Lemma 4.1 for the cases of sparse models.
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We are now ready to present our main result.

Theorem 4.5 Let Assumption 4.2 hold (approximate Hessian sparsity). Given ∆ and x0, let h
be the corresponding sparsity level of the fully quadratic model guaranteed by Assumption 4.2. Let
Y = {y1, ..., yp} be a given set of p random points, chosen with respect to the uniform measure
in B∞(0;∆), with

p

log p
≥ 9cpartial (h+ n+ 1) (log (h+ n+ 1))2 log q, (20)

for some universal constant cpartial > 0, then with probability larger than 1− n−γ log p, for some
universal constant γ > 0, the quadratic m∗(x) = m̃∗(x − x0), where m̃

∗ is the solution to the
ℓ1-minimization problem (19), is a fully quadratic model of f on B∞(x0;∆) with νm

∗
2 = 0 and

constants κef , κeg, and κeh not depending on x0 and ∆.

Proof. From Assumption 4.2, there exists a fully quadratic model m for f on B∞(x0;∆)
with νm2 = 0 and some constants κ′ef , κ

′
eg, and κ

′
eh. The quadratic polynomial m̃(z) = m(z+x0),

z ∈ B∞(0;∆), satisfies the assumptions of Corollary 4.1 and, for the purpose of the proof, is
the quadratic that will be approximately recovered. Now, since m is a fully quadratic model,
we have |f(yi + x0)−m(yi + x0)| ≤ κ′ef∆

3, yi ∈ B∞(0;∆). Therefore

∥f(Y + x0)−m(Y + x0)∥2 ≤ √
p κ′ef∆

3,

for any sample set Y ⊂ B∞(0;∆) (where κ′ef is independent of x0 and ∆). Note that one can
only recover m approximately given that the values of m(Y + x0) ≃ f(Y + x0) are ‘noisy’.

Consider again m̃(z) = m(z + x0), z ∈ B∞(0;∆). Then, by Corollary 4.1, with probability
larger than 1− n−γ log p, for a universal constant γ > 0, the solution m̃∗ to the ℓ1-minimization
problem (19) with η =

√
p κ′ef∆

3 satisfies

∥α∗ − α∥2 ≤ cpartialκ
′
ef∆

3,

where α∗ and α are the coefficients of m̃∗ and m̃ in the basis ψ given by (17), respectively. Note
that cpartial does not depend on x0. So, by Lemma 4.1,

|m̃∗(z)− m̃(z)| ≤ cpartial

(
3
√

card(α∗ − α)
)
κ′ef∆

3,

∥∇m̃∗(z)−∇m̃(z)∥2 ≤ cpartial

(
3
√
5
√

card(α∗ − α)
)
κ′ef∆

2,∥∥∇2m̃∗(z)−∇2m̃(z)
∥∥
2

≤ cpartial

(
3
√
10
√

card(α∗ − α)
)
κ′ef∆,

for all z ∈ B∞(0;∆). Note that α∗ and α depend on x0 but card(α∗−α) can be easily bounded
independently of x0. Let now m∗(x) = m̃∗(x− x0) for x ∈ B∞(x0;∆). Therefore, from the fact
that m is fully quadratic (with constants κ′ef , κ

′
eg, and κ

′
eh), one has

|m∗(x)− f(x)| ≤
(
cpartial

(
3
√

card(α∗ − α)
)
κ′ef + κ′ef

)
∆3,

∥∇m∗(x)−∇f(x)∥2 ≤
(
cpartial

(
3
√
5
√

card(α∗ − α)
)
κ′ef + κ′eg

)
∆2,∥∥∇2m∗(x)−∇2f(x)

∥∥
2

≤
(
cpartial

(
3
√
5
√

card(α∗ − α)
)
κ′ef + κ′eh

)
∆,
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for all x ∈ B∞(x0;∆).
Sincem∗ is a quadratic function, its Hessian is Lipschitz continuous with Lipschitz constant 0,

so one has that νm
∗

2 = 0. Hence m∗ is a fully quadratic model of f on B∞(x0;∆).

Note that the result of Theorem 4.5 is obtained for a number p of sampling points satisfying
(see (20) and recall that q = O(n2))

p

log p
= O(n(log n)3)

when h = O(n), i.e., when the number of non-zero elements of the Hessian of f at x0 is of the
order of n. Since p < (n+ 1)(n+ 2)/2, one obtains

p = O
(
n(log n)4

)
. (21)

Theorem 4.5 does not directly assume Hessian sparsity of f . It is worth observing again that
Theorem 4.5 can be established under no conditions on the sparsity pattern of the Hessian of f .

Problem (19) is a second order cone programming problem [1] and can, hence, be solved
in polynomial time. However it is typically easier in practice to solve linear programming
problems. Since the second order Taylor model T satisfies ∥T (Y + x0)− f(Y + x0)∥∞ ≤ η/

√
p

(where η =
√
p κ′ef∆

3), because T is fully quadratic for f , instead of (19), one can consider

min
∥∥∥αm

Q

∥∥∥
1

s. t.
∥∥∥M(ψQ, Y )αm

Q +M(ψL, Y )αm
L − f(Y + x0)

∥∥∥
∞

≤ 1√
pη,

which is a linear program. In our implementation, as we will discuss in the next section, we
chose to impose the interpolation constraints exactly which corresponds to setting η = 0 in the
above formulations, hence simplifying parameter choices. Also, recent work has provided some
insight for why this choice works well (see [30]).

Theorem 4.5 cannot strictly validate a practical setting in DFO like the one discussed in the
next section. It serves to provide motivation and insight on the use of ℓ1-minimization to build
underdetermined quadratic models for functions with sparse Hessians. It also is the first result,
to our knowledge, that establishes a reasonable approach to building fully quadratic models
with underdetermined interpolation, when the sparsity structure of the objective function is not
known. However, in the current implementation the sampling is done deterministically in order
to be able to reuse existing sample points. This may be lifted in future parallel implementations.
Note that the constants in the bound (20) (and thus in (21)) render the current bounds imprac-
tical. In fact, the best known upper bound (see [24]) for the universal constant ctotal appearing
in (13) is ctotal < 17190 (cpartial is of the same order), making (20) only applicable if n is much
greater than the values for which DFO problems are tractable today by deterministic algorithms.
However, such a bound is most likely not tight; in fact, similar universal constants appearing in
the setting of compressed sensing are known to be much smaller in practice.

5 A practical interpolation-based trust-region method

5.1 Interpolation-based trust-region algorithms for DFO

Trust-region methods are a well known class of algorithms for the numerical solution of nonlinear
programming problems [8, 20]. In this section we will give a brief summary of these methods
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when applied to the unconstrained minimization of a smooth function f : D ⊂ Rn → R,

min
x∈Rn

f(x), (22)

without using the derivatives of the objective function f . For comprehensive coverage we refer
the reader to [11].

At each iteration k, these methods build a model mk(xk + s) of the objective function in
a trust region of the form Bp(xk;∆k), typically with p = 2, around the current iterate xk.
The scalar ∆k is then called the trust-region radius. A step sk is determined by solving the
trust-region subproblem

min
s∈B2(0;∆k)

mk(xk + s). (23)

Then, the value f(xk + sk) is computed and the actual reduction in the objective function
(aredk = f(xk) − f(xk + sk)) is compared to the predicted reduction in the model (predk =
mk(xk)−mk(xk+ sk)). If the ratio is big enough (ρk = aredk/predk ≥ η1 ∈ (0, 1)), then xk+ sk
is accepted as the new iterate and the trust-region radius may be increased. Such iterations are
called successful. If the ratio is small (ρk < η1), then the step is rejected and the trust-region
radius is decreased. Such iterations are called unsuccessful.

The global convergence properties of these methods are strongly dependent on the require-
ment that, as the trust region becomes smaller, the model becomes more accurate, implying
in particular that the trust-region radius is bounded away from zero, as long as the stationary
point is not reached. Taylor based-models, when derivatives are known, naturally satisfy this
requirement. However, in the DFO setting, some provision has to be taken in the model and
sample set management to ensure global convergence. These provisions aim at guaranteeing that
the models produced by the algorithm are fully linear or fully quadratic, and to guarantee global
convergence this must be done in arbitrarily smaller trust regions thus driving the trust-region
radius to zero (such a procedure is ensured by the so-called criticality step, which has indeed be
shown necessary [26]).

Conn, Scheinberg, and Vicente [10] proved global convergence to first and second order sta-
tionary points depending whether fully linear or fully quadratic models are used. The approach
proposed in [10] involves special model improving iterations. Scheinberg and Toint [26] have re-
cently shown global convergence to first order stationary points for their self-correcting geometry
approach which replaces model-improving iterations by an appropriate update of the sample set
using only the new trust-region iterates.

Our results derived in Section 4 provide us with a new method to produce (with high proba-
bility) fully quadratic models by considering randomly sampled sets, instead of model handling
iterations as is done in [10] and [26]. On the other hand, to develop full convergence theory of
DFO methods using randomly sampled sets, one needs to adapt the convergence proofs used
in [10] and [26] to the case where successful iterations are guaranteed with high probability,
rather than deterministically. This is a subject for future research.

5.2 A practical interpolation-based trust-region method

We now introduce a simple practical algorithm which we chose for testing the performance of
different underdetermined models. This algorithm follows some of the basic ideas of the approach
introduced by Fasano, Morales, and Nocedal [14], which have also inspired the authors in [26].
The quality of the sample sets is maintained in its simplest form — simply ensuring sufficient
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number of sample points (n + 1 or more) in a reasonable proximity from the current iterate.
This approach is theoretically weak as shown in [26], but seems to work well in practice.

Unlike [14], we discard the sample point farthest away from the new iterate (rather than the
sample point farthest away from the current iterate). Also, in [14], only determined quadratic
models were built based on pmax = (n + 1)(n + 2)/2 sample points. We compare approaches
that use minimum Frobenius or ℓ1 norm interpolation to build the models and hence we allow
sample sets of any size less than or equal to pmax. This poses additional issues to those considered
in [14]. For instance, until the cardinality of the sample set reaches pmax, we do not discard
points from the sample set and always add new trial points independently of whether or not they
are accepted as new iterates, in an attempt to be as greedy as possible when taking advantage
of function evaluations.

Another difference from [14] is that we discard points that are too far from the current
iterate when the trust-region radius becomes small (this can be viewed as a weak criticality
condition), expecting that the next iterations will refill the sample set resulting in a similar
effect as a criticality step. Thus, the cardinality of our sample set might fall below pmin = n+1,
the number required to build fully linear models in general. In such situations, we never reduce
the trust-region radius.

Algorithm 5.1 (A practical DFO trust-region algorithm)
Step 0: Initialization.

Initial values. Select values for the constants ϵg(= 10−5) > 0, δ(= 10−5) > 0, 0 <
η1(= 10−3), η2(= 0.75) > η1, and 0 < γ1(= 0.5) < 1 < γ2(= 2). Set pmin = n + 1 and
pmax = (n+1)(n+2)/2. Set the initial trust-region radius ∆0(= 1) > 0. Choose the norm
t = 1 (the ℓ1-norm) or t = 2 (the Frobenius norm).

Initial sample set. Let the starting point x0 be given. Select as an initial sample set
Y0 = {x0, x0 ±∆0ei, i = 1, . . . , n}, where the ei’s are the columns of the identity matrix of
order n.

Function evaluations. Evaluate the objective function at all y ∈ Y0.

Set k = 0.
Step 1: Model building.

Form a quadratic model mk(xk + s) of the objective function from Yk. Solve the problem

min 1
p∥αQ∥tt

s. t. M(ϕ̄Q, Yk)αQ +M(ϕ̄L, Yk)αL = f(Yk),
(24)

where αQ and αL are, respectively, the coefficients of order 2 and order less than 2 of the
model.

Step 2: Stopping criteria.

Stop if ∥gk∥ ≤ ϵg or ∆k ≤ δ.

Step 3: Step calculation.

Compute a step sk by solving (approximately) the trust-region subproblem (23).
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Step 4: Function evaluation.

Evaluate the objective function at xk + sk. Compute ρk = (f(xk)− f(xk + sk))/(mk(xk)−
mk(xk + sk)).

Step 5: Selection of the next iterate and trust radius update.

If ρk < η1, reject the trial step, set xk+1 = xk, and reduce the trust-region radius, if
|Yk| ≥ pmin, by setting ∆k = γ1∆k (unsuccessful iteration).

If ρk ≥ η1, accept the trial step xk+1 = xk + sk (successful iteration).

Increase the trust-region radius, ∆k+1 = γ2∆k, if ρk > η2.

Step 6: Update the sample set.

If |Yk| = pmax, set y
out
k ∈ argmax ∥y − xk+1∥2 (break ties arbitrarily).

If the iteration was successful:

If |Yk| = pmax, Yk+1 = Yk ∪ {xk+1} \ {youtk }.
If |Yk| < pmax, Yk+1 = Yk ∪ {xk+1}.

If the iteration was unsuccessful:

If |Yk| = pmax, Yk+1 = Yk ∪ {xk + sk} \ {youtk } if ∥(xk + sk)− xk∥2 ≤ ∥youtk − xk∥2.
If |Yk| < pmax, Yk+1 = Yk ∪ {xk + sk}.

Step 7: Model improvement.

When ∆k+1 < 10−3, discard from Yk+1 all the points outside B(xk+1; r∆k+1), where r is
chosen as the smallest number in {100, 200, 400, 800, ...} for which at least three sample
points from Yk+1 are contained in B(xk+1; r∆k+1).

Increment k by 1 and return to Step 1.

We note that relying on the model gradient to stop might not be a reliable stopping criterion,
as we need to resample the function inside a smaller trust region and construct a new model
before safely quitting (criticality step). However, in a practical method, one avoids doing it.

5.3 Numerical results

In this section we describe the numerical experiments which test the performance of Algo-
rithm 5.1 implemented in MATLAB. In particular we are interested in testing two variants of
Algorithm 5.1 defined by the norm used to compute the model in (24). The first variant makes
use of the ℓ2-norm and leads to minimum Frobenius norm models. The solution of (24) with
t = 2 is a convex quadratic problem subject to equality constraints and hence is equivalent to
solving the following linear system[

M(ϕ̄Q, Yk)M(ϕ̄Q, Yk)
T M(ϕ̄L, Yk)

M(ϕ̄L, Yk)
T 0

] [
λ
αL

]
=

[
f(Yk)
0

]
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with αQ =M(ϕ̄Q, Yk)
Tλ.

We solved this system using SVD, regularizing extremely small singular values after the
decomposition and before performing the backward solves, in an attempt to remediate extreme
ill-conditioning caused by nearly ill-poised sample sets. The second approach consisted in using
t = 1, leading to minimum ℓ1-norm models and attempting to recover sparsity in the Hessian
of the objective function. To solve problem (24) with t = 1 we formulated it first as a linear
program. In both cases, t = 1, 2, we first scaled the corresponding problems by shifting the
sample set to the origin (i.e., translating all the sample points such that the current iterate
coincides with the origin) and then scaling the points so that they lie in B2(0; 1) with at least
one scaled point at the border of this ball. This procedure, suggested in [11, Section 6.3], leads
to an improvement of the numerical results, especially in the minimum Frobenius norm case.

The trust-region subproblems (23) have been solved using the routine trust.m from the
MATLAB Optimization Toolbox which corresponds essentially to the algorithm of Moré and
Sorensen [19]. To solve the linear programs (24), with t = 1, we have used the routine linprog.m
from the same MATLAB toolbox. In turn, linprog.m uses in most of the instances considered
in our optimization runs the interior-point solver lipsol.m, developed by Zhang [31].

In the first set of experiments, we considered the test set of unconstrained problems from the
CUTEr collection [16] used in [17], and in [14]. We used the same dimension choices as in [17]
but we removed all problems considered there with less than 5 variables. This procedure resulted
in the test set described in Table 1. Most of these problems exhibit some form of sparsity in the
Hessian of the objective function, for instance, a banded format.

In order to present the numerical results for all problems and all methods (and variants) con-
sidered, we have used the so-called performance profiles, as suggested in [12]. Performance pro-
files are, essentially, plots of cumulative distribution functions ρ(τ) representing a performance
ratio for the different solvers. Let S be the set of solvers and P the set of problems. Let tp,s denote
the performance of the solver s ∈ S on the problem p ∈ P — lower values of tp,s indicate better
performance. This performance ratio ρ(τ) is defined by first setting rp,s = tp,s/min{tp,s̄ : s̄ ∈ S},
for p ∈ P and s ∈ S. Then, one defines ρs(τ) = (1/|P|)|{p ∈ P : rp,s ≤ τ}|. Thus, ρs(1) is the
probability that solver s has the best performance among all solvers. If we are only interested in
determining which solver is the most efficient (is the fastest on most problems), then we should
compare the values of ρs(1) for all the solvers. On the other hand, solvers with the largest value
of ρs(τ) for large τ are the ones which solve the largest number of problems in P, hence are the
most robust. We are interested in considering a wide range of values for τ , hence, we plot the
performance profiles in a log-scale (now, the value at 0 represents the probability of winning
over the other solvers).

In our experiments, we took the best objective function value from [17] (obtained by applying
a derivative-based Non-Linear Programming solver), as a benchmark to detect whether a prob-
lem was successfully solved up to a certain accuracy 10−acc. The number tp,s is then the number
of function evaluations needed to achieve an objective function value within an absolute error of
10−acc of the best objective function value; otherwise a failure occurs and the value of rp,s used
to build the profiles is set to a large number (see [12]). Other measures of performance could be
used for tp,s but the number of function evaluations is the most appropriate for expensive objec-
tive functions. In Figure 1, we plot performance profiles for the two variants of Algorithm 5.1
mentioned above and for the state-of-the-art solver NEWUOA [21, 23]. Following [13], and in
order to provide a fair comparison, solvers are run first with their own default stopping criterion
and if convergence can not be declared another run is repeated with tighter tolerances. In the
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problem n NNZH DFO-TR Frob (acc = 6) DFO-TR l1 (acc = 6)
ARGLINB 10 55 57 59
ARGLINC 8 21 56 57
ARWHEAD 15 29 195 143
BDQRTIC 10 40 276 257
BIGGS6 6 21 485 483
BROWNAL 10 55 437 454
CHNROSNB 15 29 993 1004
CRAGGLVY 10 19 548 392
DIXMAANC 15 44 330 515
DIXMAANG 15 44 395 451
DIXMAANI 15 44 429 361
DIXMAANK 15 44 727 527
DIXON3DQ 10 18 – –
DQDRTIC 10 10 25 25
FREUROTH 10 19 249 252
GENHUMPS 5 9 1449 979
HILBERTA 10 55 8 8
MANCINO 10 55 106 73
MOREBV 10 27 111 105
OSBORNEB 11 66 1363 1023
PALMER1C 8 36 – –
PALMER3C 8 36 56 53
PALMER5C 6 21 29 29
PALMER8C 8 36 60 55
POWER 10 55 466 428
VARDIM 10 55 502 314

Table 1: The test set used in the first set of experiments and the corresponding dimensions
(first three columns). The third column reports the upper bound provided by CUTEr on the
number of nonzero elements of the Hessian stored using the coordinate format. The last two
columns report the total number of function evaluations required by Algorithm 5.1 to achieve
an accuracy of 10−6 on the objective function value (versions DFO-TR Frob and DFO-TR l1).
Both approaches failed to solve two of the problems.

case of Algorithm 5.1, this procedure led to ϵg = δ = 10−7 and a maximum number of 15000
function evaluations. For NEWUOA we used the data prepared for [17] also for a maximum
number of 15000 function evaluations.

Note that NEWUOA requires an interpolation of fixed cardinality in the interval [2n +
1, (n + 1)(n + 2)/2] throughout the entire optimization procedure. We looked at the extreme
possibilities, 2n + 1 and (n + 1)(n + 2)/2, and are reporting results only with the latter one
(NEWUOA quad in the plots) since it was the one which gave the best results. The two variants of
Algorithm 5.1, are referred to as DFO-TR Frob (minimum Frobenius norm models) and DFO-TR

l1 (minimum ℓ1-norm models). Two levels of accuracy (10−4 and 10−6) are considered in
Figure 1. One can observe that DFO-TR l1 is the most efficient version (τ = 0 in the log scale)
and basically as robust as the DFO-TR Frob version (large values of τ), and that both versions
of the Algorithm 5.1 seem to outperform NEWUOA quad in efficiency and robustness.

In the second set of experiments we ran Algorithm 5.1 for the two variants (minimum Frobe-
nius and ℓ1 norm models) on the test set of CUTEr unconstrained problems used in the paper [7].
These problems are known to have a significant amount of sparsity in the Hessian (this informa-
tion as well as the dimensions selected is described in Table 2). We used ϵg = δ = 10−5 and a
maximum number of 5000 function evaluations. In Table 3, we report the number of objective
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Figure 1: Performance profiles comparing Algorithm 5.1 (minimum Frobenius and ℓ1 norm
versions) and NEWUOA [21, 23], on the test set of Table 1, for two levels of accuracy (10−4

above and 10−6 below).

function evaluations taken as well as the final objective function value obtained. In terms of
function evaluations, one can observe that DFO-TR l1 wins in approximately 8/9 cases, when
compared to the DFO-TR Frob version, suggesting that the former is more efficient than the
latter in the presence of Hessian sparsity. Another interesting aspect of the DFO-TR l1 version
is some apparent ability to produce the final model with gradient of smaller norm.
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problem n type of sparsity NNZH

ARWHEAD 20 sparse 39
BDQRTIC 20 banded 90
CHNROSNB 20 banded 39
CRAGGLVY 22 banded 43
DQDRTIC 20 banded 20
EXTROSNB 20 sparse 39
GENHUMPS 20 sparse 39
LIARWHD 20 sparse 39
MOREBV 20 banded 57
POWELLSG 20 sparse 40
SCHMVETT 20 banded 57
SROSENBR 20 banded 30
WOODS 20 sparse 35

Table 2: The test set used in the second set of experiments. For each problem we included the
number of variables and the type of sparsity, as described in [7]. The last column reports the
upper bound provided by CUTEr on the number of nonzero elements of the Hessian stored using
the coordinate format.

6 Conclusion

Since compressed sensing emerged, it has been deeply connected to optimization, using opti-
mization as a fundamental tool (in particular, to solve ℓ1-minimization problems). In this paper,
however, we have shown that compressed sensing methodology can also serve as a powerful tool
for optimization, in particular for Derivative-Free Optimization (DFO), where structure recov-
ery can improve the performance of optimization methods. Namely, our goal was to construct
fully quadratic models (essentially models with an accuracy as good as second order Taylor
models; see Definition 2.2) of a function with sparse Hessian using underdetermined quadratic
interpolation on a sample set with potentially much fewer than O(n2) points. We were able to
achieve this as is shown in Theorem 4.5, by considering an appropriate polynomial basis and
random sample sets of only O(n(log n)4) points when the number of non-zero components of
the Hessian is O(n). The corresponding quadratic interpolation models were built by minimiz-
ing the ℓ1-norm of the entries of the Hessian model. We then tested the new model selection
approach in a deterministic setting, by using the minimum ℓ1-norm quadratic models in a prac-
tical interpolation-based trust-region method (see Algorithm 5.1). Our algorithm was able to
outperform state-of-the-art DFO methods as shown in the numerical experiments reported in
Section 5.3.

One possible way of solving the ℓ1-minimization problem (4) in the context of interpolation-
based trust-region methods is to rewrite it as a linear program. This approach was used to
numerically test Algorithm 5.1 when solving problems (24) for t = 1. For problems of up
to n = 20, 30 variables, this way of solving the ℓ1-minimization problems has produced excellent
results in terms of the derivative-free solution of the original minimization problems (22) and is
reasonable in terms of the overall CPU time.

However, for larger values of n, the repeated solution of the linear programs introduces
significant overhead. Besides the increase in the dimension, one also has to consider possible
ill-conditioning arising due to badly poised sample sets. Although related linear programming
problems are solved in consecutive iterations, it is not trivial to use warmstart. In fact, the num-
ber of rows in the linear programs change frequently, making it difficult to warmstart simplex-
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problem DFO-TR Frob/l1 # f eval final f value final ∇m norm
ARWHEAD Frob 338 3.044e-07 3.627e-03
ARWHEAD l1 218 9.168e-11 7.651e-07
BDQRTIC Frob 794 5.832e+01 5.419e+05
BDQRTIC l1 528 5.832e+01 6.770e-02
CHNROSNB Frob 2772 3.660e-03 2.025e+03
CHNROSNB l1 2438 2.888e-03 1.505e-01
CRAGGLVY Frob 1673 5.911e+00 1.693e+05
CRAGGLVY l1 958 5.910e+00 8.422e-01
DQDRTIC Frob 72 8.709e-11 6.300e+05
DQDRTIC l1 45 8.693e-13 1.926e-06
EXTROSNB Frob 1068 6.465e-02 3.886e+02
EXTROSNB l1 2070 1.003e-02 6.750e-02
GENHUMPS Frob 5000 4.534e+05 7.166e+02
GENHUMPS l1 5000 3.454e+05 3.883e+02
LIARWHD Frob 905 1.112e-12 9.716e-06
LIARWHD l1 744 4.445e-08 2.008e-02
MOREBV Frob 539 1.856e-04 2.456e-03
MOREBV l1 522 1.441e-04 3.226e-03
POWELLSG Frob 1493 1.616e-03 2.717e+01
POWELLSG l1 5000 1.733e-04 2.103e-01
SCHMVETT Frob 506 -5.400e+01 1.016e-02
SCHMVETT l1 434 -5.400e+01 7.561e-03
SROSENBR Frob 456 2.157e-03 4.857e-02
SROSENBR l1 297 1.168e-02 3.144e-01
WOODS Frob 5000 1.902e-01 8.296e-01
WOODS l1 5000 1.165e+01 1.118e+01

Table 3: Results obtained by DFO-TR Frob and DFO-TR l1 on the problems of Table 2 (number
of evaluations of the objective function, final value of the objective function, and the norm of
the final model gradient).

based methods. An alternative is to attempt to approximately solve problem (4) by solving
min ∥M(ϕ̄, Y )α− f(Y )∥2 + τ∥αQ∥1 for appropriate values of τ > 0. We conducted preliminary
testing along this avenue but did not succeed in outperforming the linear programming approach
in any respect. However, it is out of the scope of this paper a deeper study of the numerical
solution of the ℓ1-minimization problem (4) in the context of interpolation-based trust-region
methods.

Although we only considered the most common type of sparsity in unconstrained optimiza-
tion (sparsity in the Hessian), it is straightforward to adapt our methodology to the case where
sparsity also appears in the gradient. In particular, if we aim at only recovering a sparse gradient
or a sparse fully linear model, one can show that the required number of sample points to do so
would be less that O(n) and tighten to the level of sparsity.

Finally, we would like to stress that building accurate quadratic models for functions with
sparse Hessians from function samples could be of interest outside the field of Optimization.
The techniques and theory developed in Section 4 could also be applicable in other settings of
Approximation Theory and Numerical Analysis.
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