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Abstract

It is known that the Clarke generalized directional derivative is
nonnegative along the limit directions generated by directional direct-
search methods at a limit point of certain subsequences of unsuccessful
iterates, if the function being minimized is Lipschitz continuous near
the limit point.

In this paper we generalize this result for discontinuous functions
using Rockafellar generalized directional derivatives (upper subderiva-
tives). We show that Rockafellar derivatives are also nonnegative
along the limit directions of those subsequences of unsuccessful it-
erates when the function values converge to the function value at the
limit point. This result is obtained assuming that the function is di-
rectionally Lipschitz with respect to the limit direction.

It is also possible under appropriate conditions to establish more
insightful results by showing that the sequence of points generated by
these methods eventually approaches the limit point along the locally
best branch or step function (when the number of steps is equal to
two).

The results of this paper are presented for constrained optimization
and illustrated numerically.
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1 Introduction

In this paper we consider a constrained minimization problem posed as

min f(x),

s.t. x €,

(1)

where f: R" - RU {400} represents a nonsmooth, possibly discontinuous,
extended-real-valued objective function and 2 C R"™ denotes a nonempty
constrained or feasible region. Our interest relies on the solution of prob-
lem (1) by derivative-free methods, i.e., by methods which make no use of
derivatives of the objective function (or of the functions defining the feasible
region), and in particular by direct-search methods (DSM).

We are particularly interested in the situation where the objective func-
tion is discontinuous at a limit point of the sequence of iterates generated by
a direct-search method. Problems where the objective function is discontinu-
ous (and no access to derivatives is available) appear in several applications.
One example is the Omega function [8] which measures the performance of
an asset, or of a portfolio of assets, by the ratio of the weighted gains (above
a given threshold) over the weighted losses (below the threshold). Such
function exhibits numerous discontinuities and recent studies involving its
derivative-free optimization are reported in [15, 18]. Another example arises
in the tuning of algorithmic parameters for a given method/code (see [6]
for instances where DSM have been applied to solve such problems) — the
resulting objective functions are likely to exhibit all sorts of discontinuities
given the way that typically a method/code responds to changes in its pa-
rameters. DSM have also been used for automatic error analysis [12, 13], a
process in which the computer is used to analyze the accuracy or stability of
a numerical computation (and examples have been provided where the ob-
jective function is discontinuous). Many engineering design problems (which
are likely to form the core of the mainstream applications of derivative-free
optimization) lead to objective functions involving discontinuities and lim-
ited or no access to derivatives (one such application in aircraft design which
was recently drawn to our attention is reported in [3]).

DSM can be classified as either directional or simplicial [10, Chapters 7
and 8]. In this paper we are interested in directional DSM and will consider
their iterations organized around a search step (optional) and a poll step.
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We will essentially concentrate on the poll step since it is responsible for the
global convergence properties of the resulting algorithm. A poll step consists
of evaluating the objective function at a set of points defined by a positive
spanning set or, in some methods different from the ones studied in our paper,
defined by a set of positive generators of a cone related to the constraints.
A successful poll step occurs when at least one poll point exhibits a function
value lower (or sufficiently lower) than the current one (infeasible points are
considered to have an infinite objective function value).

A number of directional DSM consider a finite number of such sets of
directions and are referred to as pattern search or generalized pattern search.
Although some of our basic results apply to these methods, we will focus
on those directional DSM, like mesh adaptive direct search (MADS) [5] and
generating set search (GSS) [16] (under sufficient decrease), which are entitled
to use an infinite number of poll directions. A byproduct of our investigation
will actually extend the analysis of GSS type methods to the nonsmooth case
(which, to the best of our knowledge, cannot be found in the literature even
for the continuous case, although there exist results once a specific form of
nondifferentiability is assumed like those in [7]).

It is possible to prove for these classes of methods the existence of a sub-
sequence of unsuccessful iterates (i.e., unsuccessful poll steps) converging to
a limit point and driving the step size parameter to zero (this parameter is
also called the mesh size parameter and it basically controls the displace-
ment along a direction). At these refining subsequences one can consider
limits of normalized poll directions which are then called refining directions.
Audet and Dennis [5] proved that if the objective function is Lipschitz con-
tinuous near the limit point x,, then the Clarke-Jahn directional derivative
is nonnegative along an appropriate refining direction v:

f(l', + t/U) — f(l’/) > (. (2)
n =

folzgv) = lim sup
= a1 €
t10,2 +tvef

This derivative is essentially the Clarke generalized directional derivative [9]
extended by Jahn [14] to the constrained setting. The refining direction must
belong to the hypertangent cone to € at z,, represented by Hq(x,). If the
corresponding set of refining directions for x, is dense in the unit sphere,
then these derivatives are proved to be nonnegative for all directions in the
tangent cone to € at z, (this cone is represented by Tq(z,) and is the closure
of the hypertangent cone Hqg(x,)). A similar result had already been proved
for unconstrained optimization and generalized pattern search [4].

To our knowledge, not too much is known about the behavior of DSM



when applied to discontinuous functions, besides the fact that any limit of a
refining subsequence is the limit of unsuccessful iterations (poll centers) on
meshes or lattices that get infinitely fine (see [5]).

In this paper we will show that the nonnegativity of generalized deriva-
tives along refining directions can be extended to the Rockafellar upper sub-
derivative [20] (generalized by us to the constrained case),

fa"+ ') — f(a)

fzyv) = lim sup inf > 0, (3)
¥ =2 € v = ¢
tL0 ¥+t e

whenever, at the point x,, the function f is lower semicontinuous and di-
rectionally Lipschitz in €2 with respect to a direction v belonging to the
hypertangent cone Hq(z.). Such a result applies to functions discontinuous
at .. The notation 2’ — x represents ' — x and f(2') — f(z). The func-
tion f is said to be directionally Lipschitz at x with respect to v € Hg(x)
if

fa"+ ') — f(a)

fH(a;v) = lim sup sup " < 4o0.
r =0’ €Q v =
t10 ¥+t e

Examples of directionally Lipschitz functions are given in [20, Section 6].
In Section 5 we describe several functions discontinuous at a point that are
directionally Lipschitz at that point with respect to certain directions.

In this paper we will also show that when f is lower semicontinuous at a
point z (but not necessarily continuous) and directionally Lipschitz in  at
the point with respect to v € Hqo(z), one has fT(z;v) = fF(z;v) = fa(z;v),

where
f@ +tv) = f2)
; )

fa@mv) = limsup ()
¥ =, €Q

t10,2 +tve

This result was originally established by Rockafellar [20] for the case Q =
R™ Also by extending the results of Rockafellar [20] for the constrained
setting ) # R"™, we will show, under appropriate conditions, that the upper
subderivative fT(x;v), when v is in the tangent cone To(x), is the limit
inferior of derivatives fp(x;w) where w € Hg(x). This analysis will allow
us then to state a result for directions in the tangent cone Tgq(x,) but not
necessarily in the hypertangent cone Hq(x,).

These results apply to discontinuous functions but they do not provide
information about the ability of the algorithms to locally identify the best
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branch or step function. It is possible, however, to prove that the algorithms
have the capability to generate an infinite number of iterates in such a step,
provided the number of steps is two around the limit point and the function
has some continuity properties in each step (essentially the step domains
must have nonempty interiors and one must be able to extend the function,
in a certain Lipschitz continuous way, from a step domain to a neighborhood
of the limit point).

This paper follows the line of others where nonsmooth calculus (in par-
ticular Clarke calculus) has been used to analyze the asymptotic properties
of the sequence of iterates generated by DSM of directional type (besides the
above cited papers [4, 5], see also [2, 11]).

We organize the material of this paper in the following way. In Section 2
we describe the algorithmic setting for direct-search methods, and gather the
necessary material about the globalization strategies that we consider and
about the notions of refining subsequences and directions. The main asymp-
totic results of this paper are contained in Section 3 for (possibly discon-
tinuous) functions directionally Lipschitz with respect to certain directions.
We leave to an appendix all the auxiliary nonsmooth calculus background
needed for these results. In Section 4 we study the behavior of the algorithm
for step discontinuities. We illustrate a number of our results and assump-
tions in Section 5, numerically and for problems in two dimensions. The
paper is concluded in Section 6 with some final remarks.

2 Algorithmic framework and behavior of the
step size

2.1 Algorithmic description

Our algorithmic description follows the one in [10, Chapter 7] for the uncon-
strained case. This framework will encompass both the MADS methodology
(based on integer lattices and where a simple decrease on the function value
suffices to identify a new iterate) and general directional DSM based on ran-
domly generated normalized directions and sufficient decrease for acceptance
of new iterates. Each iteration of the algorithm is organized around a search
step (optional) and a poll step. The evaluation process of the poll step is op-
portunistic moving to a poll point once simple or sufficient decrease is found,
depending on the variant being used.

As we will see later in the convergence theory, the set of directions used
for polling is not required to positively span R" (although for coherence
with the smooth case we will write it so in the algorithm below) and not



necessarily drawn from a finite set of directions. The algorithm requires an
initial feasible point with finite objective function value.

To make the algorithmic description shorter we will make use of the ex-
treme barrier function

flz) ifzeQ,

fa(z) :{ +o00 otherwise.

Following the terminology in [16], p : (0,+00) — (0,400) will represent a
forcing function, i.e., a continuous and non decreasing function satisfying
p(t)/t — 0 when t | 0. Typical examples of forcing functions are p(t) = t!™¢
for a > 0. To write the algorithm in general terms we will use p(+) to either
represent a forcing function p(-) or the constant, zero function. A relatively
minor difference from the presentation below to what is in [10, Chapter 7] is
the use of p(ay||dk||) instead of p(cy) — this will be discussed in Section 2.3.

Algorithm 2.1 (Directional direct-search method)

Initialization
Choose xg € Q with f(z¢) < 400, a9 > 0,0 < 1 < [y < 1,and v > 1.
Let D be a (possibly infinite) set of positive spanning sets.

For £ =0,1,2,...

1. Search step: Try to compute a point with fqo(z) < f(zx) — p(aw)
by evaluating the function f at a finite number of points (in an
integer lattice or mesh if p(-) = 0, see Section 2.2). If such a point
is found then set x;,,.; = x, declare the iteration and the search
step successful, and skip the poll step.

2. Poll step: Choose a positive spanning set Dj from the set D.
Order the set of poll points P, = {xy + axd : d € Dy}. Start
evaluating fo at the poll points following the chosen order. If a
poll point zy, + aydy is found such that fo(xg + ardy) < f(zx) —
pla||dx||) then stop polling, set zx,1 = zx + apdy, and declare
the iteration and the poll step successful. Otherwise declare the
iteration (and the poll step) unsuccessful and set xy.; = xy.

3. Step size parameter update: If the iteration was success-
ful then maintain or increase the step size parameter: aj.; €
[k, yag]. Otherwise decrease the step size parameter: gyq €

[Brow, Bacur].



The global convergence of directional DSM is heavily based on the analy-
sis of the behavior of the step size parameter o which must approach zero as
an indication of some form of stationarity. There are essentially two known
ways of enforcing the existence of a subsequence of step size parameters con-
verging to zero in DSM of directional type. One way is by ensuring that
all new iterates lie on an integer lattice (rigorously speaking only when the
step size is bounded away from zero). The other form consists of imposing
a sufficient decrease on the acceptance of new iterates. In the former case
we need the iterates to lie in a bounded set and in the latter situation the
objective function must be bounded below.

Assumption 2.1 The level set L(xg) = {x € Q: f(x) < f(xg)} is bounded.
The function f is bounded below in L(xy).

2.2 Integer lattices (MADS)

Generalized pattern search makes use of a finite set of directions D = D
which satisfy appropriate integrality requirements for globalization by integer
lattices.

Assumption 2.2 The set D of positive spanning sets is finite and the el-
ements of D are of the form Gz;, j = 1,...,|D|, where G € R™" is a
nonsingular matrix and each z; is a vector in Z".

Given the type of non-smoothness and discontinuity of the objective func-
tion which we would like to consider in this paper, we need to make use of
an infinite set of directions D dense (after normalization) in the unit sphere.
MADS makes use of such a set of directions but, since it is also based on
globalization by integer lattices, the set D must then be generated from a
finite set D satisfying Assumption 2.2 (which will be guaranteed by the first
requirement of the next assumption).

Assumption 2.3 Let D represent a finite set of positive spanning sets sat-
isfying Assumption 2.2.

The set D is so that the elements di, € Dy C D satisfy the following
conditions:

1. dy is a nonnegative integer combination of the columns of D.

2. The distance between xy and the point xi + audy tends to zero if and

only if oy, does:
keK keK

for any infinite subsequence K.



3. The limits of all convergent subsequences of Dy = {dy./||dk|| : dy € Dy}
are positive spanning sets for R™.

We remark that the third requirement in the above definition is not used
in the convergence theory of DSM of directional type for nonsmooth objective
functions, but is nonetheless included for consistency with the smooth case
and because it is part of the MADS original presentation [5].

In addition to Assumptions 2.2 and 2.3, the update of the step size pa-
rameter must conform to some form of integrality.

Assumption 2.4 The step size parameter is updated as follows: Choose
a rational number T > 1, a nonnegative integer m* > 0, and a negative
integer m~ < —1. If the iteration is successful, the step size parameter is
maintained or increased by taking oy 1 = M oy, with m; € {0,...,m"}.
Otherwise, the step size parameter is decreased by setting oy, = T oy,
with m, € {m~,...,—1}.

Note that these rules respect those of Algorithm 2.1 by setting 8; = 7™ |
By =71 and v =7m".

Finally, the search step is restricted to points in a previously (implicitly
defined) mesh or grid. Note that poll points must also lie on the mesh, but
this requirement is trivially satisfied from the definition of the mesh M, given
below (i.e., one trivially has P, C Mjy,).

Assumption 2.5 The search step in Algorithm 2.1 only evaluates points in

M, = U {z+aDz: 2 e NI},

€Sk

where Sy is the set of all the points evaluated by the algorithm previously to
iteration k.

The following result was originally proved by Torczon [21] for pattern
search and extended later to generalized pattern search [4] and MADS [5].

Theorem 2.1 Let Assumption 2.1 hold. Algorithm 2.1 under Assumptions 2.5
2.5 and p(-) =0 (MADS) generates a sequence of iterates satisfying

liminf o, = 0.
k—+4o00



2.3 Sufficient decrease

An alternative to the use of integer lattices is to impose sufficient rather than
simple decrease as a criterion for accepting new iterates. This can be simply
achieved by selecting p(+) as a forcing function in Algorithm 2.1. We will need
the following assumption (which, note, was already part of Assumption 2.3).

Assumption 2.6 The distance between xy and the point xj + apdy tends to
zero if and only if oy does:

keK keK
for any infinite subsequence K.

The result below (Theorem 2.2) is relatively classic in nonlinear optimiza-
tion when using some form of sufficient decrease. It is proved in [16] and
in [10, Section 7.7] in the context of directional DSM for unconstrained opti-
mization when using p(ay) instead of p(ag||dg||). However, Assumption 2.6
allows the proof to easily go through for the latter case.

Theorem 2.2 Let Assumption 2.1 hold. Algorithm 2.1, when p(-) is a forc-
ing function and Assumption 2.6 holds, generates a sequence of iterates sat-
18fying

liminf oy, = 0.

k—+o0

Note that such a result is derived under a very weak assumption on the

set of directions D. We are free to use, for instance, a normalized set of
directions D dense in the unit sphere.

2.4 Refining subsequences and directions

The type of stationarity results which can be derived for DSM of directional
type are established at limit points of the so-called refining subsequences (a
concept formalized in [4]).

Definition 2.1 A subsequence {xy}rer of iterates corresponding to unsuc-
cessful poll steps is said to be a refining subsequence if {ay}rex converges to
zero.

One can ensure for the two algorithmic settings of this paper (Sections 2.2
and 2.3) the existence of a convergent refining subsequence. Such a result is a
simple and known consequence of Assumption 2.1, Theorems 2.1 or 2.2, and
the scheme that updates the step size parameter (see, e.g., [10, Section 7.3]).
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Theorem 2.3 Let Assumption 2.1 hold. Consider a sequence of iterates gen-
erated by Algorithm 2.1 under the scenarios of either Section 2.2 (MADS) or
Section 2.3 (sufficient decrease). Then there is at least a convergent refining
subsequence {xy}rek -

The type of directions along which appropriate directional derivatives
will be proved nonnegative are the so-called refining directions (a notion
formalized in [5]).

Definition 2.2 Let x, be the limit point of a convergent refining subsequence.
If the limit limgey, di/||dy|| ezists, where L C K and dy € Dy, and if xy +
ardy € Q, for sufficiently large k € L, then this limit is said to be a refining
direction for x,.

Some of the results of this paper will require for the refining subsequence
under consideration that the associated set of refining directions for x, is
dense in the unit sphere (an assumption stronger than just saying that the
normalized set of directions D is dense in the unit sphere).

3 Results for discontinuous functions using
the directionally Lipschitz property

A reader not familiar with nonsmooth calculus, in particular with the paper of
Rockafellar [20], might find difficulties in grasping the essentials of the upper
subderivative fT(x;v) and the notion of directionally Lipschitz with respect
to a vector. Reading the Sections 2.4 and 2.9 of the book [9] will definitely
help. However, these concepts have an immediate geometrical insight. Let
us consider the unconstrained case ) = R" for the purposes of the discussion
in the current paragraph and the next two ones. In fact, one has that the
epigraph epi(fT(x;-)) of the upper subderivative (for a fixed point x and as
a function of the directions) coincides with the tangent cone Ty ¢(, f(z)) of
the epigraph (epi f) of f at (z, f(z)), i.e., epi(fT(x; ")) = Topi (, f(x)). Tt is
known that this result remains true when f is not lower semicontinuous, for
a definition of upper subderivative (see the Appendix) which reduces to (3)
under lower semicontinuity. Also, such a result has been generalized by us,
in the Appendix, to the case 2 # R™.

The above characterization of the tangent cone of the epigraph of a func-
tion allows us to immediately see, for n = 1 or n = 2, when the upper
subderivative is finite or equal to 400 (the definition of tangent cone is given
later, but a geometrical intuition of a tangent cone suffices for the moment).
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In fact, this geometric characterization is precisely the reason why this di-
rectional derivative is called upper subderivative (it allows us to look up and
determine the vectors in the tangent cone of the epigraph of a function).

Now, let Dy q(x) denote the set of vectors with respect to which f is direc-
tionally Lipschitz. It is also known that D qo(x) = int({w : fT(z;w) < +o0})
(a result also generalized by us to the case @ # R™ and also valid with-
out lower semicontinuity). Thus, from the characterization epi(fT(z;-)) =
Tepi f(x, f(2)), one can also easily compute Dygq(x) for examples in one or
two dimensions, gaining insight for the n-dimensional case. In Section 5 we
report what is Dy q(x) at = (0,0) for all the four examples listed there.

Our first convergence result addresses the case where a refining direction
is in the hypertangent cone to €2 at the limit point (see [9, Page 57]).

Definition 3.1 A vector v is said to be hypertangent to §2 at x if there exists
an € > 0 such that

¥+t eQ foral 2eQnB(xe), v € Blvye), and te (0,¢).

The set of all hypertangent vectors to €2 at x is called the hypertangent cone
to Q at x and is represented by Ho(x).

It is easy to see that the hypertangent cone is convex. Note that the
definition of hypertangency used by Rockafellar [20] is different from the one
used by Clarke [9] which later became the standard (and was used for the
analysis of MADS [5]).

As we have seen before, the existence of a convergent refining subsequence
{zk}rer 1s guaranteed by Theorem 2.3. It is then possible to state this
condition as an assumption for deriving asymptotic results at limit points.

Theorem 3.1 Consider a refining subsequence {xy}rex converging to x, €
Q and a refining direction v for x, in Ho(x.). Assume that f is lower semi-
continuous at x, and directionally Lipschitz at x, with respect to v. Assume
further that limyex f(x1) = f(x.). Then fH(x.0) = fH(av) = fo(zgv) >
0.

Proof. Since f is directionally Lipschitz at x, with respect to v, we have
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that f*(z.;v) < +00. Now let v = limgey, di./||di||, with L C K. Thus,

fla"+t') — f(a)

fH(agv) = lim sup sup
/ / / t
¥ =y a2 €Q v =
t10 4+t e

oy £+ /1)) — f)
kel ak||dk||

ey £+ ) = ) + plandil)  planldel)
kel ok || d | |||

The first inequality follows from {z} }rer being a feasible refining subsequence
with limgey, f(xx) = f(x,) and the fact that zy + agdy is feasible for k € L
sufficiently large. The limit limger, p(ag||di]|)/(akl|dk]]) is O for both global-
ization strategies (Sections 2.2 and 2.3). In the case of MADS (Section 2.2)!,
one uses p(-) = 0. When imposing sufficient decrease (Section 2.3), it follows
directly from the properties of a forcing function and from Assumption 2.6.

The fact that fT(z,;v) = f (2. 0) = fa(z.;v) is showed in the Appendix
(Theorem A.2). m

Now we need to address the case where the directions are in the tangent
cone to () at the limit point but not necessarily in the hypertangent cone.

Definition 3.2 A vector v is said to be tangent to Q at x if for all sequences
{ye} C Q converging to x and for all sequences {tx} with t) | 0, there exists
a sequence of vectors {wy} converging to v such that yy + trywy € 0 for all k.

The set of all tangent vectors to 2 at x is called the tangent cone to €)
at x and is represented by Tqo(x).

The tangent cone Ty (x) is the closure of the hypertangent cone Hq(x). It
can be also defined by the limit inferior of a multifunction (see the Appendix
for details).

Let Dsq(z) denote the set of vectors in Hq(z) with respect to which f
is directionally Lipschitz. Note that in the presence of constraints (2 # R")
the definition of D q(x) makes only sense for vectors in Hq(x).

Theorem 3.2 Consider a refining subsequence {xy}rex converging to x, €
Q. Let v be in To(x,) but not necessarily in Hq(x.) (which, in turn, is

!Note that MADS and the imposition of sufficient decrease are compatible. In fact,
this is true because we are using p(ag||dx||) in the statement of Algorithm 2.1 (instead of

plag)).

12



assumed nonempty). Assume that f is lower semicontinuous at x. and
[T (zy;v) < +o00. Assume further that limyere f(zr) = f(2).

If f s directionally Lipschitz with respect to all directions in the inter-
section of a ball centered at v with Hq(x.) and the set of refining directions
for x, is dense in this intersection, then f1(x.;v) > 0.

Proof. First we apply Theorem 3.1 to obtain that f5,(z.;w) > 0 for all
the refining directions w in the intersection of the ball centered at v with
D¢ q(z,). Then, from the result proved in the Appendix (Theorem A.2),

M v) = lim inf fa(xw) > 0.
w—v
w € DﬁQ(ZL'*)

4 Identification of the best branch for discon-
tinuous functions

We are now interested in studying the behavior of directional DSM when
the objective function is defined by several branches or steps, in particular
to know if the algorithm can identify the locally best step. We will give an
affirmative answer provided the number of steps is two, the step domains
have nonempty interiors, and their borders exhibit a minimum of regularity
(the exterior cone property stated below in Definition 4.1).

The condition given next covers a wide range of discontinuities.

Assumption 4.1 The function f is such that there exists a neighborhood B
of . (a limit point of a refining subsequence) which admits a finite partition

B = Ej B;,
i=1
such that, for alli € {1,... ,ng},
1. int(B;) #0,
2. cl(B;) has the exterior cone property (see Definition 4.1),

3. [ is Lipschitz continuous in int(B;) and can be continuously extended
from int(B;) to 0B,;.
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We will refer to the B;’s as either step domains or partition sets. It can be
easily seen that if we extend a Lipschitz continuous function in the interior
of a set to the boundary, in a continuous way, the extension is also Lipschitz
continuous on the closure of the set.

Proposition 4.1 Let f be a locally Lipschitz function in int(S), with Lip-
schitz constant L. The continuous extension of f from S to cl(S) is locally
Lipschitz continuous with Lipschitz constant 3L + 2 .

Proof. Let x € 0S and consider a neighborhood N of x. The value of
the extended function in any point y € 9S N N can be given as the limit of
{f(y7)} for any sequence of points {3/} C int(S) N N converging to y.

Let us consider two points z and w in S N N. Let € < ||z — w||. Then,
there exist z.,w. € int(S) N N, with ||z — z.|| < € and ||w — w,|| < ¢, such
that:

1/ (2) = f(w)] [f(2) = [z + S (2e) = f(we)| + [ f(we) — f(w)]
€+ Ll|ze —we|]| + € <e+3L||z —w| +¢

(24 3L)||z — w]|.

VASVANRVAN

The case where one point is in int(S) N N and the other in S N N can be
proved analogously (the result is trivial when both points are in int(S) N V).
]

The precise form of the exterior cone property which we will use is stated
below. Note that the border of a set exhibiting this property cannot contain
singularities like cusps, in other words, points like the origin when the set is
of the form R?\ {(z,y) € R? : —2? < y < 2%,z > 0}. The exterior cone
property holds for a set when it is possible to ‘stick’ a cone with nonempty
interior to the complementary of the set at any point of its boundary.

Definition 4.1 A set S has the exterior cone property if at any point z €
0S' there exists a cone C, with nonempty interior, an angle 8, > 0, and a
neighborhood N, of z such that E, = N,N{z = z+c¢,c€ C,,c # 0} CR™"\S
and any angle between all the vectors in E, — {z} and all the vectors in
S, —{z}, with S, = SN N,, is larger than 0,.

We will also need the following auxiliary result. Essentially we extend a
Lipschitz continuous function from a set to R™ by first extending it (at a given
point on the boundary of the set) to an ‘exterior cone’ of nonempty interior
along which the function is strictly decreasing. In this way, our extension
to R™ is guaranteed to decrease strictly for a set of directions of nonempty
interior.
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Proposition 4.2 Let S be a set with the exterior cone property and g a
Lipschitz continuous function in S. Let also z € SN S.

Then there exists an extension g of g from S to R™ which is Lipschitz
continuous in R™ and locally strictly decreasing along all directions emanating
from z and belonging to a cone with nonempty interior.

Proof. Consider the sets C,, N, E,, and S, as in Definition 4.1. Define
an auxiliary function g which coincides with ¢ in .S, and is linear and strictly
decreasing from z to the interior of E,. We will show first that this function
is Lipschitz continuous in S, U E,. Let L; be the Lipschitz constant of g = ¢
in S, and L, the Lipschitz constant of g in £,. Now consider a point y € S,
and a point w € E,. One can derive that

19(y) — g(w)] < g(y) — g9(2)| + [g(w) — §(2)|
< max{Ly, Lo} ([ly — 2[| + [[w — 2]])
< max{Ly, Lo} M|ly — wl],

where the last equality follows from ||y — z|| + [[w — z|| < M||y — w||, with
M =\2xn /6.. The cases where both points lie in S, or E, are straightforward
to analyze. We then obtain that |§(y) —g(w)| < max{Ly, Lo} max{1, M }||y—
w||, for all y and w in S, U E..

It is known that any Lipschitz function in a set can be extended to the
whole space with the same Lipschitz constant (see [17, Theorem 1]). Thus,
one can now extend g from S, U E, to R", and in particular to N,, with the
same Lipschitz constant. m

We are now ready for the main result of this section. Recall that the ex-
istence of a convergent refining subsequence {zy }rc is guaranteed by Theo-
rem 2.3. The technique of Proposition 4.2 is used to reach a contradiction in
the proof of Theorem 4.1 below, thus guaranteeing (at a limit point where the
function is discontinuous) an infinite number of poll points (corresponding
to unsuccessful iterations) in the complementary of the step domain where
those unsuccessful iterates belong to.

Theorem 4.1 Consider a refining subsequence {xy}rex converging to x, €
Q (and note that Assumption 2.1 is required for the existence of such a sub-
sequence). Assume that f is lower semicontinuous at x. and satisfies As-
sumption 4.1. Let the sets of refining directions for x, corresponding to any
infinite subsequence of K be dense in the unit sphere.

If . belongs to the interior of a partition set in {Bi,...,B,,}, then
fé(ze;v) >0 for all refining directions v € To(x,) (assuming here also that
Hq(x,) is nonempty).
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Otherwise, there exists a subsequence K' C K and a partition set B' €
{Bi1,...,Bng} such that (i) {zy}ker C cl(B’), (ii) there is an infinite num-
ber of poll points, corresponding to iterates in K', in int(B'), and (iii) there
is an infinite number of poll points, corresponding to iterates in K', in
R™\ cl(B).

Proof. The proof is done for the case of MADS (Section 2.2) but the
case of sufficient decrease (Section 2.3) is obtained from this one with minor
modifications.

Consider first the neighborhood B guaranteed by Assumption 4.1. If z,
belongs to int(B;), for some [ € {1,...,ng}, the Lipschitz continuity of f
near x, would allow to apply the known results from [5].

So, let us assume that x, belongs to the boundary of B;, for some [ €
{1,...,np}. If all the iterates after a certain order lie in borders of the step
domains, then note that the theorem can be easily established, since the
partition is finite and we assume density of the sets of refining directions
for x, corresponding to any infinite subsequence of K. Otherwise, since
the partition is finite, by passing to a subsequence K; C K if necessary,
one can state the existence of an ¢ € {1,...,ng} such that z, € 9B; and
{Zk}rer, C int(B;) with K3 C K. Also, given that B; has a nonempty
interior and that the set of refining directions for z, corresponding to K; is
dense in the unit sphere, there must exist an infinite number of poll points
associated with a subsequence Ky C K belonging to int(B;).

By using Assumption 4.1 and Proposition 4.1, we can extend f from B;
to cl(B;) in a continuous way and ensuring that the extended function f is
Lipschitz continuous in cl(B;).

Let us assume that all poll points associated with the refining subsequence
belong to cl(B;). We will see that this leads us to a contradiction. So, let
us assume that there exists a k& € K, such that z; + axd € cl(B;) for all
k € K, with k > k and for all d € D,. We now apply Proposition 4.2 using
S =cl(B;), g =f,and z = x,. Let f be the extended function (and L its
Lipschitz constant). We then obtain that

fo(w.v)
> Tim sup [l + ardy) — f(zk) n f(zp + aplldi|lv) — f(or + ardy)
ek, | d | | d ||
> Timsup Sk + o di) — flxr)  Loyldl|[lv — (di/[|dk )]
keKs o ||| o |||
> 0,

for all refining directions v, which is a contradiction since these directions are
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dense in the unit sphere and f is locally strictly decreasing from x, along all
directions in a cone of nonempty interior.

So, one can build a sequence of points K3 C K; for which there exists
di € Dy, such that

falze +ardy) > f(ar), 1+ ordy, & cl(By), (5)

for all k € K;.

The proof is completed by setting B’ = B; and K' = K;. =

When the number of steps is equal to two (ng = 2) it is possible to prove
a stronger result. Such a result is an obvious consequence of the existence of
an infinite number of poll points (corresponding to unsuccessful iterations)
in the other step domain, i.e., in the step domain complementary to the one
where those unsuccessful iterates belong to.

Corollary 4.1 Under Assumption 2.1 and the assumptions of Theorem /.1
and when ng = 2, there exists a subsequence K, C K and a partition set B, €
{By, Bs} such that, when x, is in the border of the two partition sets,

1. B, satisfies the properties stated for B’ in Theorem 4.1,

Proof. The proof of the corollary is a continuation of the proof of the
Theorem 4.1.

First we note that {f(xy)} is decreasing and bounded below and thus it
converges, say to f,. Since f is lower semicontinuous, f(z.) < f..

We can now show that it is along B’ (see the proof of Theorem 4.1) that
the value of f is attained, i.e., that f. = limger f(xr) = f(z,). If this was
not true, then there would exist an € > 0 and a bordering B” (since ng = 2,
the remaining one) and a neighborhood N of z, for which f(y) > f(z) + €,
forally e BNNNQand z € B” NN NQ. But this contradicts (5). m

5 Numerical illustrations

To illustrate the ability of Algorithm 2.1 in finding local minimizers for
lower semicontinuous functions we ran some examples in MATLAB. We
included examples which violate some of the assumptions required to en-
sure convergence. Four problems of the form (1) were considered, where
Q =[—1,1] x [—1, 1] was partitioned into a finite number of disjoint subsets
Q=" Q;, with ng = 2 in three of the cases and ng = 4 in the last prob-
lem. The minimizer is unique and corresponds to z, = (0,0). Figures 1-4
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depict plots of each one of the functions considered. Functions f;, f5, and f;
are discontinuous at z, = (0,0). Function fs is continuous at x, = (0,0) but
not Lipschitz continuous near this point. We call the attention of the reader
to the first three paragraphs of Section 3 for instructions on how to determine
whether a function is directionally Lipschitz with respect to a given direction
at a given point.

Problem 1: A lower semicontinuous function of the form

fi(z) =

{x%—i—x% if%§x2§2x1,

10 + 22 + 22 otherwise,

and steps 27 and €2, with nonempty interior. Near z,, the distance between
function values in the two steps remains constant.

The upper subderivative f'(z,;v) is finite for all directions v € R? such
that v1/2 < v < 2v; and coincides there with traditional directional deriva-
tives. Thus, the function is directionally Lipschitz at x, with respect to all
directions w € R? such that w; /2 < wy < 2wy.

Figure 1: Plot of function f;.
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Problem 2: A lower semicontinuous function of the form

1022 + 1023 if 2 <0,
2() =

1022 + 22 otherwise,

and steps 2; and €2y with nonempty interior. Near z,, the distance between
function values in the steps converges to zero.

The upper subderivative fT(z,;v) is finite for all directions v € R? such
that v; > 0 and coincides there with traditional directional derivatives. The
function is directionally Lipschitz at x, with respect to all directions w € R?
such that w; > 0.

xl

Figure 2: Plot of function fs.

Problem 3: A lower semicontinuous function of the form

T+ 23 if £y = 224,
fs(@) = s 9 .
10 4+ 27 + 25 otherwise,

where one of the steps has empty interior.
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The upper subderivative f(x,;v) is finite only along the directions v € R?
such that v, = 2v; and coincides there with traditional directional deriva-
tives. Thus, the function is not directionally Lipschitz at z, since there is no
direction with respect to which it is directionally Lipschitz.

Figure 3: Plot of function f3.

Problem 4: A lower semicontinuous function of the form

r? + 22 if 3 <@y < 21y,

S5+a+a2 ifx; <OAzy <O0A (21,29) # (0,0),
10+ a5 + a3 if oo <% Axy >0,

fa(z) =

15+ 22 + 23 otherwise,

and steps €, i € {1,2,3,4}, with nonempty interior. Near z,, the distance
between function values in any of the steps remains constant. The number of
steps considered exceeds two, which violates one of the conditions required
in Section 4 to establish the asymptotic results.

The upper subderivative f'(z,;v) is finite for all directions v € R? such
that v1/2 < v < 2v; and coincides there with traditional directional deriva-
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tives. Thus, the function is directionally Lipschitz at x, with respect to all
directions w € R? such that w/2 < wy < 2w;.
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Figure 4: Plot of function fy.

We tested NOMADm [1], version 4.6, a MATLAB implementation of MADS
(which fits into Algorithm 2.1, see Section 2.2) and a very simple imple-
mentation of Algorithm 2.1 with a globalization strategy based on sufficient
decrease (as in Section 2.3). In both algorithms, the search step was empty,
the initial step size parameter was set to one, and the run stopped once the
step size reached the threshold 10~7. In the implementation of the variant
which requires sufficient decrease, the poll set Dy, was set equal to [Qr — Qk,
where ()5 is an orthogonal matrix computed by randomly generating the
first column. In MADS, the positive spanning set considered corresponds
to the implementation LTMADS, with a total of 2n directions. Since our
main concern is (proper) convergence rather than efficiency, the poll points
were evaluated following the consecutive order of storage. As a forcing func-
tion, in the case of the sufficient decrease variant, we considered p(t) = 2
(other variants were tested, but with worse results in what concerns the total
number of function evaluations required).
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Given the random behavior of both algorithms, a sequence of 10 runs was
considered for each problem. The initial point was set to zq = (—0.4, —0.5).
A summary of the computational experiments is reported in Table 1.

Algorithm 2.1
MADS Suff. Decrease
function | #failures ‘ #fevals | #failures ‘ #fevals
fi 0 233 0 175.6
f2 0 193.9 0 494.6
f3 10 173.7 10 144.4
£ 2 220.6 1 177.7

Table 1: Number of failures in identifying a local minimizer and corresponding
average number of function evaluations required.

When any of the algorithms failed to converge to the function minimizer,
the final iterate corresponded generally to a point near the minimizer of the
function when restricted to a higher step. The exception occurred with f3
where there were cases of convergence to points lying on the line of discon-
tinuity.

In order to access the dependency of the results from the initial point
provided to the methods, we considered a grid of 100 equally spaced points
in [-1,—0.1]x[—1, —0.1], and ran Algorithm 2.1 with a globalization strategy
based on sufficient decrease. For each of the four problems and for each of the
initial points, we ran the algorithm 10 times, yielding a total of 1000 runs for
each problem. The number of failures in detecting the minimizer is reported
in Table 2. The nature of the results remains the same if we consider a grid
of equally spaced starting points in Q = [—1, 1] x [—1, 1].

’ function ‘ ##failures — for 10~7 ‘ #failures — for 1010 ‘

fi 2 0
Ja 0 0
fs 1000 1000
7y 61 44

Table 2: Number of failures of Algorithm 2.1 (sufficient decrease variant, see
Section 2.3), for a sequence of 1000 runs, starting from different initial points, and
for two different stopping tolerances (10~7 and 10~17).

The numerical results support the theoretical analysis developed in the
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previous sections. Failures in locating the minimizer occur only when at least
one of the assumptions required for establishing convergence is violated. Note
that the failures in f; when the stopping tolerance is 10~7 are due to the fact
that not enough directions were generated. There is no discrepancy between
these results and the theory because the latter assumes a set of refining
directions dense in the unit sphere. In fact, by letting the algorithm run
longer (stopping tolerance of 1071°) these failures disappear while the ones
for f, do not.

6 Final remarks

In this paper we tried to shed some light on the convergence properties of
direct-search methods (DSM) of directional type for lower semicontinuous
functions not necessarily continuous. We divided our analysis into two main
parts. In the first part, we derive results for refining directions with respect to
which the function is directionally Lipschitz (but not necessarily continuous)
at the limit point of the underlying refining subsequence. These results were
derived for the constrained case which forced us to redo the analysis in [20]
for upper subderivatives in the presence of constraints.

In the second part of the analysis, we considered a class of discontinuous
functions and showed that when the number of branches or steps is two and
the function has some continuity properties in each step, these DSM identify
the best local step around the limit point. The problem in extending this
result to more than two local steps or branches lies on the fact that the speed
at which the poll points approach the border of a step domain can be slower
than the speed at which these points approach the iterates. We were able
to prove, by extending continuously the function and taking limits, that an
infinite number of poll points jump out of the step domain. However, they
could only visit a neighbor step and thus one can only infer results when the
number of steps is equal to two.

A Appendix

In this section we provide the rigorous definitions of the various generalized
directional derivatives used throughout this paper.

Definition of upper subderivative

The upper subderivative (3) was defined by Rockafellar [20] for the case
2 = R™. To extend it to the constrained case Q # R", let g(s,y) be an
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extended-real-valued function defined on (R™ x R x [0,4+00)) x R™. Let also
s€ S CR" xR x[0,+00). Define

h(s,y) = limsup /inf g(s',y)
s — s y—y
s'es Y elalp(s))

as
sup inf sup inf sy,
YeN(y) VEN(s) sresnu v'€la(p(s)NY 9(s,y/)
where N (y) and N (s) denote, respectively, a family of sufficiently small neigh-
borhoods around y and s, p(-) denotes the projection from R"™ x R x [0, +00)
onto R™ x [0, +00), and

t1(Q—2x) ift>0,
Fa(,t) = {R"( e

To define the upper subderivative fT(z;v) one proceeds similarly as in [20]
and chooses P
—00 ift=0,

ool ) = | (6)

s = (z, f(x),0), & = («/,d,t), y = v, and ¢y = ¢'. In the constrained
case, however, one has now S = epi(f)(Q2) x [0, +00), where epi(f)(2) is
the epigraph of f restricted to €2. These choices result then in the definition
fM(x;v) = h((z, f(z),0),v). We use the following expression to more easily
grasp the essential of the definition of the upper subderivative fT(z;v):

fH(a;v) = lim sup inf fl@'+ ) - O/.
(@', /) Lz, 2" €Q v — v t
t10 '+t e

The notation (2, ) | s x represents (2, ) — (z, f(x)) with o/ > f(2').
When f is lower semicontinuous at z, the derivative fT(z;v) can be equiv-
alently defined by

[+ 1) — f2)

fH(a;v) = lim sup inf ; :
¥ —px,a’ € v =
t10 ¥+t e

where, recall, 2’ — x represents ' — z and f(z') = f(z).
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A characterization of the epigraph of the upper sub-
derivative
The following proposition extends [20, Proposition 1] to the constrained case

O +#R".

Proposition A.1 For each s’ € S CR" x R x [0,400), let ['(s’) denote the
set in R™ x R which is the epigraph of y — g(s',y) restricted to T'q(p(s')):

[(s') = epi(g(s', ) (Talp(s)))-

Let also
A(s) = liminf T'(s").
s — s
ses
Then A(s) is the epigraph of y — h(s,y) restricted to Tq(s):
epi(h(s,))(Ta(s)) = Als).

Proof. From its definition, the point (y, 8) is in A(s) if and only if
VY € N(y),Ye > 0,3U € N(s):Vs' e SNU, 3y, F') :
y €la(p(s)NY,B € (B—eB+e)g(sy)<p.
which is equivalent to
VY € N(y),Ve > 0,3U € N(s): Vs e SNU, Ty :
y €la(p(s) NY,g(s',y) < B+e.
Thus, (y, ) is in A(s) if and only if y € T(s) and

VY € N(y),Ve > 0,3U € N(s): sup inf g(s',y) < B +e
s'eSnU y'€la(p(s)NY

This last condition is the same as saying that h(s,y) < 5. =
Note that the epigraph of y — ¢(s',y) restricted to I'g(p(s’)) in the
case (6) considered for the upper subderivatives is:

P B = (epi(f)(Q) — (2/,a))) ift >0,
P, a'st) = {]R”XR if £ = 0.

Thus, from Proposition A.1,
lim inf (2 o/, t) = epi(fT(z;-)(Ta(z)).

(', ) Lo, 2" € Q
tl0
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On the other hand, from the definition of tangent cone

lim inf L@, 1) = Ty (@, f(2)-
(', a/) Lz, 2" €Q
£10
Thus,
epi(f1(;))(Ta(r) = Tepiipo) (@, f(2))- (7)

The relation (7) extends, to the constrained case, the part of [20, Theorem 2]
which we need for what comes in Theorem A.2 below.

Definitions of other generalized directional derivatives

To define the generalized directional derivative ff,(z;v) introduced in (4), in
the constrained case, one first considers

h(s,y) = lim sup 9(s", )
s — s
s'€ Sy eTla(p(s))
as

inf sup g Sluy :
UEeN(s) s'eSNU el q(p(s")) ( )

The derivative is then defined as f5(z;v) = h((z, f(2),0),v) by setting g as
in (6), s = (z, f(2),0), s = (2/,a/,t), and y = v and, given the constrained
case, S = epi(f)(€2) x [0, +00). We will also use a more friendly description
for this definition:
fla' +tv) — o

t

frlz;v) = lim sup
(', ) Lpx, 2" €
t10,2 +tvef

When f is lower semicontinuous at x, the derivative f5,(z;v) can be equiv-
alently defined by

fla + t0) = F(a)
t

frlz;v) = lim sup
¥ —=px,a’ €]
t10,2 +tv el
Finally, if f is Lipschitz continuous near x, this derivative coincides with the
Clarke-Jahn generalized directional derivative (2):
[+ tv) — f(2)
; .

fr(x;v) = fo(zv) = lim sup
=z, e
t10,2 +tve
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A characterization for the upper subderivatives

We reproduce below, in the space R™, the result in [9, Theorem 2.4.8] (orig-
inally proved in [20, Corollary 2, Page 268]). Recall, from Definition 3.1, the
notion of a vector hypertangent to a set at a point of the set.

Proposition A.2 Let C C R™ and y € C. Suppose there is at least one
w € He(y). Then, Te(y) = cl(He(y)).

Theorem A.1 The function f is directionally Lipschitz at x with respect to
v € Ho(x) if and only if, for some B € R, (v, f) € Hepi(py)(, f(2)).

Proof. The proof follows the one in [9, Proposition 2.9.3]. Among other
changes one has to replace epi f by epi(f)(€2), the epigraph of f restricted
to €.

First we assume that (v, ) € Hepi(r)) (@, f(x)). From the definition of
hypertangency, there exists an € > 0 such that

¥+t eQ forall 2’ € QN B(x;e), v € B(vje), and ¢t € (0,¢)

and
a+t8 > fla'+t)

for all « > f(2), a € (f(z) — ¢, f(x) +€), B € (B —¢,B + €), and, again,
t € (0,€). From the latter condition we immediately infer that f*(x;v) is
bounded by 5 + € and thus finite.

Now let us prove the other implication and assume that the function f is
directionally Lipschitz at x with respect to v € Hg(z). Let 8 be any number
such that §—¢€ > fT(x;v) for some ¢ > 0. Then, there exists € € (0, €') such
that, for all 2’ € QN B(x;¢), v' € B(vye), a > f(2'), a € (f(z) —e, f(z)+¢€),
pe(B—e+e),and t € (0,¢), one has (note that 5 — € < —e < ')

fl@ +t) —

x +t e, ;

< #,

which proves that (v, 3) € Hepisy) (2, f(z)). =

Let us recall that, following the notation in [9, Section 2.9], Dsq(z) de-
notes the set of vectors in Hq(x) with respect to which f is directionally
Lipschitz. Finally, we prove the results needed for Theorems 3.1 and 3.2.

Theorem A.2 Let f be an extended-real-valued function and x a point in §2
with f(z) < +o00. Suppose Dyq(x) # 0. Then,

Dio(z) = int ({w € Ho(z): fM(z;w) < +o0}) (8)
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and f1(x;-) is continuous and coincides with f*(z;-) and f3(z;-) in Dyo(x).
Furthermore, if v € To(x) and f1(x;v) < +oo, then

f(a;v) = liminf  fT(z;w) = liminf  fi(z;w).  (9)
w—v w—v
w € Dyg(x) w € Dyg(x)

Proof. Part of the proof follows the lines of [9, Theorem 2.9.5]. Again, one
has to replace epi f by epi(f)(£2), among other quantities.

From the assumptions of the theorem and from Theorem A.1, one knows
that Hepi(r))(z, f(z)) # 0. We also know that Dy q(z) is the projection of
Hepi(ry)(z, f(z)) on the set of directions R", i.e.,

Dya(x) = Pro[Hepi(ryo) (2, f(2))].

Thus, let us apply Proposition A.2 with C' = epi(f)(Q2) and y = (z, f(z)).
As a result, we can say that

Dyo(x) = Pee[nt(Tepipye) (z, £(2)))]-

Let us assume first that w is in Pra[int(Tepi(ry ) (x, f(2)))], which implies
the existence of a # € R such that (w, ) € int(Tepicsy) (2, f())). From (7),
(w, B) € int(epi(fT(z;-))(Ta(x))), from which we can infer that fT(x;w’) <
+oo for w' € Hq(x) sufﬁciently close to w. We have thus proved that w €
int{w € Ho(z) : fT(x;v) < +o00}.

Now let us assume that w is in int{w € Hq(z) : fT(2;w) < +oc}. This
means that there exists an € > 0 and a § € R such that for all w’ € B(w;€)N
Hq(z) one has fT(z;w') < 8 — €. Thus, for all such w’' € B(w;e) N Hg(x)
and ' € (8 — ¢, +¢), one has (w', 3') € epi(fT(x;-))(To(x)). As a result,
(w, B) € int(epi( fT(x;))(Ta(x))) = int(Tepicry o) (2, f()))-

At this point of the proof, we have proved (8). Now, a convex function
defined on a convex set, such as fT(x;-) defined on Hq(z), is always con-
tinuous in the interior of {w € Hq(z) : fM(z;w) < +oo} as long as it is
bounded above in a neighborhood of one point (for such a result see, e.g.,
[19, Theorem 10.1]). However, this is precisely the case because Dy g # 0.

Now we will show that fT(z;-) = f(x;-) = fa(z;+) in Dyq(z). This fact
results from the following expressions for w € Dy q(x):

fH(xw) = inf {8 (w, B) € Hepi(pye(x, f(2))}

which is a corollary of Theorem A.1, and
fHa;w) = inf {B: (w,B) € Topipye (@, f(2))}
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which in turn comes from (7) and the fact that f1(z;w) < +o00 in Djg(x).
Since, again, int(Tepiry0) (2, [(2))) = Hepi(pyo) (, f(x)), we obtaln fT( )=
ST (z;-) in Dpgo(x). It results then trivially that fT(z;-) = fT(z;-) = (x )
n Df@( )

Finally, (9) is also a consequence of the above expression for f*(z;-) in
Dy o(z) as well as

fT(m U = inf {ﬁ v 5 S Tepz(f)(Q)('r f( ))}

for the vector v € To(x) of the statement of theorem (which in turn holds
from (7) and the fact that fT(x;v) < +o0c). To prove it, let us define

r(z;v) = liminf  f*(z;w).
w— v
w € Df’Q($)

First we will show that fT(x;v) < r(x;v). For each w € D;g(z) sufficiently
close to v, consider 35, such that (85, w) € Hepi(r) ) (2, f(2)) and | f*(2z;w) —
B5,| goes to zero with € — 0. Let f3, denote the limit of 85, when ¢ — 0 and
w — v. Since (By,v) € Topiry) (@, f(x)), one has

o) < By < (Bo— By) + By, — fH(z;w) + fH (25 w).

We arrive at the conclusion fT(x;v) < r(x;v) by taking limits in the above
derived inequality. Now let us prove that fT(x;v) = r(x;v). Let S35, be
such that (8s,,v) € Topipy(z, f(z)) and |fT(z;v) — Bs,| goes to zero as
61 — 0. Since Hepi(pyo)(x, f()) is dense in Topipy(a)(z, f(x)), there exists

(551 527?)52) € Hem (‘CC f( )) such that H(B51,527U52) (6517 )H goes to zero
when 0, — 0. Thus

f+(I;U52) < 551,52 = (651,52 - 651) + (551 - fT<x;U)) + fT<x;U)7

which shows that f*(x;vs,) can get arbitrarily close to fT(x;v). The proof
is concluded since f*(z;-) and fp(z;-) coincide in Dyg(z). m
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